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SOME MOTIVATION

Given a A-term M, nf(7(M)) = 7 (BT (M)).

A bad (?) reason: This formalism has been successfully
applied to nondeterministic, probabilistic, CBV, CBPV (and
more?) A-calculi. Let’s try another one.

A good reason:

BT (M) is only “a kind of normal form” of M
T (BT (M)) is defined in a somehow complicated way

This should become natural in an infinitary setting.
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OUTLINE

An infinitary A-calculus
The same (qualitative) Taylor expansion as usual

The main technical result: A simulation theorem
New and old corollaries

Conclusion
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AN INFINITARY A-CALCULUS




INFINITARY A-CALCULI?

Well, Bohm trees have existed for a long time (Barendregt
1977, following Bohm 1968)...
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INFINITARY A-CALCULI?

Well, Bohm trees have existed for a long time (Barendregt
1977, following Bohm 1968)...

Introduced in the 1990s (Kennaway, Klop, et al. 1997;
Berarducci 1996) as an example of infinitary rewriting.

Original definition: metric completion on the syntactic
trees (infinitary terms) and strong notion of convergence
(infinitary reductions).

Coinductive reformulation in the 2010s (Endrullis and
Polonsky 2013).
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DIFFERENT INFINITARY A-CALCULI

Af

Ag

AXO
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DIFFERENT INFINITARY A-CALCULI
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We work with A% (only the first type of infinity is allowed).
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A", THE 001-INFINITARY A-TERMS

AR = VY X (V £ AV X + (X)Y)

where V is a countable set of variables.
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A", THE 001-INFINITARY A-TERMS

AR = VY X (V £ AV X + (X)Y)

where V is a countable set of variables.

A" is the set of all coinductive terms T such that — T can be

derived in the following system:

M FM >N
_ A
- X ) = AX.M @ —(M)N @ F>M

(col)
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A FAMOUS EXAMPLE

Y* = Aff% = Af.(FXHS) .

=fe ]
Ff o Fof® /
- Y* = Af.f
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—> %, THE 00T-INFINITARY B-REDUCTION

Substitution: (almost) as usual

Finite B-reduction: (really) as usual
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—> %, THE 00T-INFINITARY B-REDUCTION

Substitution: (almost) as usual

Finite B-reduction: (really) as usual

M —>E X . M —>;§ AXP P —>E° p’ -
(ax (Ag)
M—®x P M — Ax.P’
B B
M—p(PQ P—FP 2Q—FQ M—g M .
- (@g) = (colp)
M —3p PHQ >M —>E° M’
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THE SAME FAMOUS EXAMPLE

The well-known Y = Af.(Ap)Af, with A = AX.(f)(X)X, satisfies
Y —>§° Y*. Indeed:

@pAs —5 (NBPL;  f—F f  »@pdy —F f

Y —p M Bphy @pAs —F fR=DF
Y —p Y= AL

8/30



THE SAME (QUALITATIVE) TAYLOR
EXPANSION AS USUAL




THE RESOURCE A-TERMS

Introduced as a fragment of the differential A-calculus
(Ehrhard and Regnier 2003; Ehrhard and Regnier 2008).

Ar = VIAVA | (MY 38,8 ...
/\!r = Mﬁn(/\r) 3t= [t1,...,tn],1,...
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THE RESOURCE SUBSTITUTION

IfseAr,xeVandt=][ty,..,th] € A!r, we define:

Z s[toy/xi] if degy(s)=n
S<f/X> B= i 0€Q,

0] otherwise
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THE RESOURCE SUBSTITUTION

IfseAr,xeVandt=][ty,..,th] € A!r, we define:

) > s[tgiy/xi] if degy(s) =n
s(t/x):={ oce,
0 otherwise

where deg,(s) is the number of free occurrences of x in s,
X1,..., Xp 1S @n arbitrary enumeration of these occurrences,
and s[tg(y/X;] is the term obtained by formally substituting
to(i) to each corresponding occurrence x;.
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THE RESOURCE SUBSTITUTION

IfseAr,xeVandt=][ty,..,th] € A!r, we define:

Z s[toy/xi] if degy(s)=n
S<f/X> B= i 0€Q,

0] otherwise

We take the sums in 2</\$)), the free 2-module generated by

/\E!) — where (2,v, ) is the semi-ring of boolean values.

S € 2(N\r) is a formal (unweighted) finite sum of resource terms.

This is the qualitative setting, we follow (more or less) its
presentation by (Barbarossa and Manzonetto 2020).
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THE RESOURCE REDUCTION

The resource reduction —, is defined accordingly, and
extended to sums by linearity (modulo technicalities...).
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THE RESOURCE REDUCTION

The resource reduction —, is defined accordingly, and
extended to sums by linearity (modulo technicalities...).

The resource reduction is weakly normalizing (in our setting)
and strongly confluent:
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THE TAYLOR EXPANSION

A new theory of approximation for the A-calculus (Ehrhard and
Regnier 2008; Ehrhard and Regnier 2006).

J : aA-term — a sum of approximants
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THE TAYLOR EXPANSION

A new theory of approximation for the A-calculus (Ehrhard and
Regnier 2008; Ehrhard and Regnier 2006).

J : aA-term — a sum of resource A-terms

T(x) X,
TAXM) = Yserm)AX.s,

TMN) = Fserm) Leerny (ST
T (M) Miin(T(M)).

We take the same definition (modulo technicalities) for
infinitary A-terms.
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THE MAIN TECHNICAL RESULT:
A SIMULATION THEOREM




WHAT WE WANT

001

For all M,N € Ae", if M —% N then 7 (M) S (N,
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WHAT WE WANT

Forall M,N € AQ, if M —% N then 7(M) —7 7(N),

where — is defined on a (possibly infinite) sum by applying
—s7 pointwise.

For allM,N € A" if m —% N then 7(M) “SE T(N).

This is adapted from (Vaux 2019).
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A PROOF SKETCH
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A PROOF SKETCH

* \ \ \ \ \
M >0 > My B>1 > My B>2 7 B>d;—1 7 Md, B>d; > N
* * * N * N
TON) —5> T(M)) —Z T(My) —— = —— T(Mg)
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A PROOF SKETCH
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A PROOF SKETCH
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A PROOF SKETCH

TM) —=> TM) ——= TM) — > = ———> T(Mg))

; > Thj = Ty B > Tgi C Jeg(N
Si r>0 ’ T1" r>1 ’ TZ" =2 r>di—1 7 i <d’( )
*
Sj - > Taj € Teg;(N)
*
Sk - > Tdk C Tz, (N)
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A PROOF SKETCH
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NEW AND OLD COROLLARIES




HEAD REDUCTION

Let M e A% bea term, then either

M = AXq..AXp.(..((AZ.N)P) Q1) ...) Qp
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M = AXq..AXp.(..((V)Q1)...) Qp
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HEAD REDUCTION

Let M e A% bea term, then either

M = AXq..AXp.(..((AZ.N)P) Q1) ...) Qp

or:
M = AXq..AXp.(..((V)Q1)...) Qp

The same holds for resource terms.

The head reduction is the relation —, defined on A" so that
M —;, N if N is obtained by reducing the head redex of M.

We define — ), similarly on (sums of) resource terms.
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HEAD NORMALISATION

Let M e A% be a term, then the following propositions are

equivalent:

there exists N € A% in HNF such that M —>E° N,

there exists s € 7 (M) such that nf,(s) = 0,
there exists N € A2 in HNF such that M — 5 N.

Proof: Refinement of a folkore result, see (Olimpieri 2020).
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A GOOD OLD COROLLARY

Aterm M e AR is solvable in A (resp. in /\%91) if there exist
X1, Xm and Ny, ..., N, € A (resp. A% such that

(... ((AXq ... AXp.M)N4) .. )N, —>E Ax.x (resp. —>,°3°).

Otherwise, M is unsolvable.

Let M e A% be a term, then the following propositions are

equivalent:

M is solvable in /\%21,

M is head-normalisable,

M is solvable in A.
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We add a constant L and get the set /\%81,
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We add a constant L and get the set /\%81,

—>E°l is defined as previously, we just add:
M unsolvable —>E°l 1
AX.L—pg, L
(LM —pg L
and all closures.
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We add a constant L and get the set /\%81,

—>E°l is defined as previously, we just add:

M unsolvable —>E°l 1
AX.L—pg, L
(LM —p, L

and all closures.

Everything still holds!
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HERE ARE THE BOHM TREES

Given M € /\%91, BT (M) is the AL-term defined coinductively by:

if M is solvable and M —¢ AXq ... AXp. (... (V)M1) ... ) Mp,
then:
BT (M) := AXq ...AXp. (... ((¥)BT (M1q))...) BT(M,),

if M is unsolvable, then BT (M) := 1.
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HERE ARE THE BOHM TREES

Given M € /\%91, BT (M) is the AL-term defined coinductively by:

if M is solvable and M —¢ AXq ... AXp. (... (V)M1) ... ) Mp,
then:
BT (M) := AXq ...AXp. (... ((¥)BT (M1q))...) BT(M,),

if M is unsolvable, then BT (M) := 1.

001 5
ForallMeANw , M —g BT (M).
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THE COMMUTATION THEOREM

For all term M € AR, nf,(7(M)) = 7(BT (M)).
This was the big resut in (Ehrhard and Regnier 2006).

Proof: M —>E°L BT (M), so (M) —~>; T(BT(M)) (simulation).
But BT (M) is in BL-normal form, so (BT (M)) is in normal
form too. QED.
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TwWO FAMOUS PROPERTIES FOR FREE

Let M e AR be a term, then BT (M) is its unique BL-normal
form.

The reduction —>I°3°L is confluent.

These were the big results in (Kennaway, Klop, et al. 1997).

21/30




NORMALISABLE TERMS

We call a resource term d-positive if it has no occurrence of 1
at depth smaller than d.

Let M e AR be a term, then the following propositions are

equivalent:

there exists N € A% in normal form such that M —>[‘§° N,

for any d € N, there exists s € 7(M) such that nf,(s)
contains a d-positive term.
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AN INFINITARY GENERICITY LEMMA

We define contexts: A-terms with a “hole” (a constant ).

Let M € A% be unsolvable and C(x) be a A -context.

If C(M) has a normal form C*, then for any term N ¢ /\%91,

C(N) — C*.

There were versions of this in (Kennaway, Oostrom, and Vries
1996; Salibra 2000), with different formalisms and proofs.
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CONCLUSION




A SUMMARY

The Taylor expansion provides a powerful approximation
theory for the infinitary A-calculus

+ new, elegant proofs of old results
+ new characterisations of normalisation properties
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A SUMMARY

The Taylor expansion provides a powerful approximation
theory for the infinitary A-calculus

+ new, elegant proofs of old results
+ new characterisations of normalisation properties

The A%! infinitary A-calculus is a “natural” setting to
define the Taylor expansion of (finitary) A-terms

- head reduction is “hard-coded”
« no technical patch to handle the Taylor expansion of

Bohm trees
+ the Commutation theorem comes at no cost once the

simulation property is established
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AND FOR OTHER INFINITARY A-CALCULI?

Two other interesting infinitary A-calculi: AR (Lévy-Longo
trees) and A (Berarduci trees).

What would a resource calculus and a Taylor expansion for
these look like?
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AND FOR OTHER INFINITARY A-CALCULI?

Two other interesting infinitary A-calculi: AR (Lévy-Longo
trees) and A (Berarduci trees).

What would a resource calculus and a Taylor expansion for
these look like?

A = V | AVAS | </\}’>/\’r
A= p | A

No=d | A

A = 1 | AN
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AND THE CONVERSE OF THE SIMULATION?

For all M,N € A%, if (M) —; 7(N) then M —2 N.
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AND THE CONVERSE OF THE SIMULATION?

001

ForallM,N e A%, if 7(M) —} 7(N) then M —& N.

B
Idea: adapt a technique from (Kerinec 2019), where it is used
to show the conservativity of the reduction in the algebraic
A-calculus.

For now it works for the finitary case, but | face a serious
problem in the general case...
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Thanks for your attention!
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