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SOME MOTIVATION

Commutation theorem (Ehrhard and Regnier 2006)
Given a λ-term 𝑀, nf𝑟(𝒯(𝑀)) = 𝒯(BT (𝑀)).

A bad (?) reason: This formalism has been successfully
applied to nondeterministic, probabilistic, CBV, CBPV (and
more?) λ-calculi. Let’s try another one.

A good reason:

▶ BT (𝑀) is only “a kind of normal form” of 𝑀
▶ 𝒯(BT (𝑀)) is defined in a somehow complicated way

This should become natural in an infinitary setting.
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OUTLINE

An infinitary λ-calculus

The same (qualitative) Taylor expansion as usual

The main technical result: A simulation theorem

New and old corollaries

Conclusion
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AN INFINITARY λ-CALCULUS



INFINITARY λ-CALCULI?

▶ Well, Böhm trees have existed for a long time (Barendregt
1977, following Böhm 1968)...

▶ Introduced in the 1990s (Kennaway, Klop, et al. 1997;
Berarducci 1996) as an example of infinitary rewriting.

▶ Original definition: metric completion on the syntactic
trees (infinitary terms) and strong notion of convergence
(infinitary reductions).

▶ Coinductive reformulation in the 2010s (Endrullis and
Polonsky 2013).
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DIFFERENT INFINITARY λ-CALCULI
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We work with Λ001∞ (only the first type of infinity is allowed).
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Λ001∞ , THE 001-INFINITARY λ-TERMS

Definition (with fix-points)

Λ001∞ ≔ 𝜈𝑌 .𝜇𝑋 .(𝒱 + 𝜆𝒱.𝑋 + (𝑋)𝑌)
where 𝒱 is a countable set of variables.

Definition (with a mixed formal system, Dal Lago 2016)
Λ001∞ is the set of all coinductive terms 𝑇 such that ⊢ 𝑇 can be
derived in the following system:

(𝒱)⊢ 𝑥
⊢ 𝑀 (𝜆)⊢ 𝜆𝑥.𝑀

⊢ 𝑀 ⊢ ▷𝑁 (@)⊢ (𝑀)𝑁
⊢ 𝑀 (coI)
⊢ ▷𝑀
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A FAMOUS EXAMPLE

𝑌∗ ≔ 𝜆𝑓 .𝑓∞ = 𝜆𝑓 .(𝑓)(𝑓)(𝑓) …

⊢ 𝑓
⊢ 𝑓∞

⊢ ▷ 𝑓∞
⊢ 𝑓∞ = (𝑓)𝑓∞
⊢ 𝑌∗ = 𝜆𝑓 .𝑓∞
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⟶∞
𝛽 , THE 001-INFINITARY β-REDUCTION

▶ Substitution: (almost) as usual
▶ Finite β-reduction: (really) as usual

Definition (⟶∞
𝛽 )

𝑀 ⟶∗
𝛽 𝑥 (ax∞𝛽 )

𝑀 ⟶∞
𝛽 𝑥

𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃 𝑃 ⟶∞

𝛽 𝑃′
(𝜆∞𝛽 )

𝑀 ⟶∞
𝛽 𝜆𝑥.𝑃′

𝑀 ⟶∗
𝛽 (𝑃)𝑄 𝑃 ⟶∞

𝛽 𝑃′ ▷𝑄 ⟶∞
𝛽 𝑄′

(@∞
𝛽 )

𝑀 ⟶∞
𝛽 (𝑃′)𝑄′

𝑀 ⟶∞
𝛽 𝑀′

(coI∞𝛽 )
▷𝑀 ⟶∞

𝛽 𝑀′
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THE SAME FAMOUS EXAMPLE

The well-known 𝑌 = 𝜆𝑓 .(Δ𝑓 )Δ𝑓 , with Δ𝑓 = 𝜆𝑥.(𝑓)(𝑥)𝑥, satisfies
𝑌 ⟶∞

𝛽 𝑌∗. Indeed:

𝑌 ⟶∗
𝛽 𝜆𝑓 .(Δ𝑓 )Δ𝑓

(Δ𝑓 )Δ𝑓 ⟶∗
𝛽 (𝑓)(Δ𝑓 )Δ𝑓

𝑓 ⟶∗
𝛽 𝑓

𝑓 ⟶∞
𝛽 𝑓

(Δ𝑓 )Δ𝑓 ⟶∞
𝛽 𝑓∞

▷(Δ𝑓 )Δ𝑓 ⟶∞
𝛽 𝑓∞

(Δ𝑓 )Δ𝑓 ⟶∞
𝛽 𝑓∞ = (𝑓)𝑓∞

𝑌 ⟶∞
𝛽 𝑌∗ = 𝜆𝑓 .𝑓∞
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THE SAME (QUALITATIVE) TAYLOR
EXPANSION AS USUAL



THE RESOURCE λ-TERMS

Introduced as a fragment of the differential λ-calculus
(Ehrhard and Regnier 2003; Ehrhard and Regnier 2008).

Definition (resource λ-terms)
Λ𝑟 ≔ 𝒱 | 𝜆𝒱.Λ𝑟 | ⟨Λ𝑟⟩Λ!𝑟 ∋ 𝑠, 𝑡, …
Λ!𝑟 ≔ ℳfin(Λ𝑟) ∋ ̄𝑡 = [𝑡1, … , 𝑡𝑛],1, …
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THE RESOURCE SUBSTITUTION

Definition (substitution of resource terms)
If 𝑠 ∈ Λ𝑟 , 𝑥 ∈ 𝒱 and ̄𝑡 = [𝑡1, … , 𝑡𝑛] ∈ Λ!𝑟 , we define:

𝑠⟨ ̄𝑡/𝑥⟩ ≔ {
∑
𝜎∈𝔖𝑛

𝑠[𝑡𝜎(𝑖)/𝑥𝑖] if deg𝑥(𝑠) = 𝑛

0 otherwise

We take the sums in 2⟨Λ(!)𝑟 ⟩, the free 2-module generated by
Λ(!)𝑟 — where (2, ∨, ∧) is the semi-ring of boolean values.
𝑆 ∈ 2⟨Λ𝑟⟩ is a formal (unweighted) finite sum of resource terms.

This is the qualitative setting, we follow (more or less) its
presentation by (Barbarossa and Manzonetto 2020).
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THE RESOURCE REDUCTION

The resource reduction⟶𝑟 is defined accordingly, and
extended to sums by linearity (modulo technicalities...).

Crucial property
The resource reduction is weakly normalizing (in our setting)
and strongly confluent:

𝑆

𝑇1 𝑇2

𝑈

𝑟 𝑟

𝑟
?

𝑟
?
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THE TAYLOR EXPANSION

A new theory of approximation for the λ-calculus (Ehrhard and
Regnier 2008; Ehrhard and Regnier 2006).

𝒯 ∶ a λ-term ↦ a sum of approximants

Definition (for finite λ-terms)
𝒯(𝑥) ≔ 𝑥,

𝒯(𝜆𝑥.𝑀) ≔ ∑𝑠∈𝒯(𝑀) 𝜆𝑥.𝑠,
𝒯((𝑀)𝑁) ≔ ∑𝑠∈𝒯(𝑀) ∑ ̄𝑡∈𝒯(𝑁)! ⟨𝑠⟩ ̄𝑡,
𝒯(𝑀)! ≔ ℳfin(𝒯(𝑀)).

We take the same definition (modulo technicalities) for
infinitary λ-terms.
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THE MAIN TECHNICAL RESULT:
A SIMULATION THEOREM



WHAT WE WANT

Theorem (simulation)
For all 𝑀,𝑁 ∈ Λ001∞ , if 𝑀 ⟶∞

𝛽 𝑁 then 𝒯(𝑀) ⟶̃∗𝑟 𝒯(𝑁),

where ⟶̃∗𝑟 is defined on a (possibly infinite) sum by applying
⟶∗𝑟 pointwise.

Lemma (simulation, finitary ed.)
For all 𝑀,𝑁 ∈ Λ001∞ , if 𝑀 ⟶∗

𝛽 𝑁 then 𝒯(𝑀) ⟶̃∗𝑟 𝒯(𝑁).
This is adapted from (Vaux 2019).
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A PROOF SKETCH

𝑀 𝑀1 𝑀2 ⋯ 𝑀𝑑𝑖 𝑁

𝒯(𝑀) 𝒯(𝑀1) 𝒯(𝑀2) ⋯ 𝒯(𝑀𝑑𝑖)

𝑠𝑖 𝑇1,𝑖 𝑇2,𝑖 ⋯

𝑠𝑗

𝑠𝑘

∗
𝛽⩾0

∗
𝛽⩾1

∗
𝛽⩾2

∗
𝛽⩾𝑑𝑖−1

∞
𝛽⩾𝑑𝑖

∗̃
𝑟⩾0

∗̃
𝑟⩾1

∗̃
𝑟⩾2

∗̃
𝑟⩾𝑑𝑖−1

∗
𝑟⩾0

∗
𝑟⩾1

∗
𝑟⩾2

∗
𝑟⩾𝑑𝑖−1

𝑟
∗

𝑟
∗
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NEW AND OLD COROLLARIES



HEAD REDUCTION

Let 𝑀 ∈ Λ001∞ be a term, then either

𝑀 = 𝜆𝑥1… 𝜆𝑥𝑚. (… (((𝜆𝑧.𝑁)𝑃)𝑄1) … )𝑄𝑛
or:

𝑀 = 𝜆𝑥1… 𝜆𝑥𝑚. (… ((𝑦)𝑄1) … )𝑄𝑛

The same holds for resource terms.

Definition
The head reduction is the relation⟶ℎ defined on Λ001∞ so that
𝑀 ⟶ℎ 𝑁 if 𝑁 is obtained by reducing the head redex of 𝑀.

We define⟶𝑟ℎ similarly on (sums of) resource terms.
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HEAD NORMALISATION

Theorem (characterisation of head-normalisables)
Let 𝑀 ∈ Λ001∞ be a term, then the following propositions are
equivalent:

1. there exists 𝑁 ∈ Λ001∞ in HNF such that 𝑀 ⟶∞
𝛽 𝑁,

2. there exists 𝑠 ∈ 𝒯(𝑀) such that nf𝑟(𝑠) ≠ 0,
3. there exists 𝑁 ∈ Λ001∞ in HNF such that 𝑀 ⟶∗

ℎ 𝑁.

Proof: Refinement of a folkore result, see (Olimpieri 2020).
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A GOOD OLD COROLLARY

A term 𝑀 ∈ Λ001∞ is solvable in Λ (resp. in Λ001∞ ) if there exist
𝑥1, … , 𝑥𝑚 and 𝑁1, … ,𝑁𝑛 ∈ Λ (resp. Λ001∞ ) such that

(… ((𝜆𝑥1… 𝜆𝑥𝑚.𝑀)𝑁1) … )𝑁𝑛 ⟶∗
𝛽 𝜆𝑥.𝑥 (resp. ⟶∞

𝛽 ).

Otherwise, 𝑀 is unsolvable.

Corollary (characterisation of solvables)
Let 𝑀 ∈ Λ001∞ be a term, then the following propositions are
equivalent:

1. 𝑀 is solvable in Λ001∞ ,
2. 𝑀 is head-normalisable,
3. 𝑀 is solvable in Λ.
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λ⊥-TERMS

We add a constant ⊥ and get the set Λ001∞⊥.

⟶∞
𝛽⊥ is defined as previously, we just add:

▶ 𝑀 unsolvable⟶∞
𝛽⊥ ⊥

▶ 𝜆𝑥.⊥ ⟶𝛽⊥ ⊥
▶ (⊥)𝑀 ⟶𝛽⊥ ⊥
▶ and all closures.

Everything still holds!
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HERE ARE THE BÖHM TREES

Definition
Given 𝑀 ∈ Λ001∞ , BT (𝑀) is the λ⊥-term defined coinductively by:

▶ if 𝑀 is solvable and 𝑀 ⟶∗
ℎ 𝜆𝑥1… 𝜆𝑥𝑚. (… ((𝑦)𝑀1) … )𝑀𝑛,

then:

BT (𝑀) ≔ 𝜆𝑥1… 𝜆𝑥𝑚. (… ((𝑦)BT (𝑀1)) … )BT (𝑀𝑛) ,

▶ if 𝑀 is unsolvable, then BT (𝑀) ≔ ⊥.

Lemma
For all 𝑀 ∈ Λ001∞ , 𝑀 ⟶∞

𝛽⊥ BT (𝑀).
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THE COMMUTATION THEOREM

Theorem (Commutation)
For all term 𝑀 ∈ Λ001∞ , ñf𝑟(𝒯(𝑀)) = 𝒯(BT (𝑀)).
This was the big resut in (Ehrhard and Regnier 2006).

Proof: 𝑀 ⟶∞
𝛽⊥ BT (𝑀), so 𝒯(𝑀) ⟶̃∗𝑟 𝒯(BT (𝑀)) (simulation).

But BT (𝑀) is in β⊥-normal form, so 𝒯(BT (𝑀)) is in normal
form too. QED.
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TWO FAMOUS PROPERTIES FOR FREE

Corollary (unicity of normal forms)
Let 𝑀 ∈ Λ001∞ be a term, then BT (𝑀) is its unique β⊥-normal
form.

Corollary (confluence)
The reduction⟶∞

𝛽⊥ is confluent.

These were the big results in (Kennaway, Klop, et al. 1997).
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NORMALISABLE TERMS

We call a resource term 𝑑-positive if it has no occurrence of 1
at depth smaller than 𝑑.
Corollary (characterisation of normalisables)
Let 𝑀 ∈ Λ001∞ be a term, then the following propositions are
equivalent:

1. there exists 𝑁 ∈ Λ001∞ in normal form such that 𝑀 ⟶∞
𝛽 𝑁,

2. for any 𝑑 ∈ N, there exists 𝑠 ∈ 𝒯(𝑀) such that nf𝑟(𝑠)
contains a 𝑑-positive term.
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AN INFINITARY GENERICITY LEMMA

We define contexts: λ-terms with a “hole” (a constant ∗).
Theorem (Genericity)
Let 𝑀 ∈ Λ001∞ be unsolvable and 𝐶L∗M be a Λ001∞ -context.
If 𝐶L𝑀M has a normal form 𝐶∗, then for any term 𝑁 ∈ Λ001∞ ,
𝐶L𝑁M ⟶∞

𝛽 𝐶∗.

There were versions of this in (Kennaway, Oostrom, and Vries
1996; Salibra 2000), with different formalisms and proofs.
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CONCLUSION



A SUMMARY

▶ The Taylor expansion provides a powerful approximation
theory for the infinitary λ-calculus
• new, elegant proofs of old results
• new characterisations of normalisation properties

▶ The Λ001∞⊥ infinitary λ-calculus is a “natural” setting to
define the Taylor expansion of (finitary) λ-terms
• head reduction is “hard-coded”
• no technical patch to handle the Taylor expansion of
Böhm trees

• the Commutation theorem comes at no cost once the
simulation property is established
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AND FOR OTHER INFINITARY λ-CALCULI?

Two other interesting infinitary λ-calculi: Λ101∞ (Lévy-Longo
trees) and Λ111∞ (Berarduci trees).

What would a resource calculus and a Taylor expansion for
these look like?

Λ𝑟 ≔ 𝒱 | 𝜆𝒱.Λ

?

𝑟 | ⟨Λ?𝑟⟩Λ!𝑟
Λ

?

𝑟 ≔ 𝕡 | Λ𝑟
Λ?𝑟 ≔ 𝕕 | Λ𝑟
Λ!𝑟 ≔ 1 | Λ𝑟 ⋅ Λ!𝑟
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AND THE CONVERSE OF THE SIMULATION?

Conjecture (conservativity)
For all 𝑀,𝑁 ∈ Λ001∞ , if 𝒯(𝑀) ⟶̃∗𝑟 𝒯(𝑁) then 𝑀 ⟶∞

𝛽 𝑁.

Idea: adapt a technique from (Kerinec 2019), where it is used
to show the conservativity of the reduction in the algebraic
λ-calculus.

For now it works for the finitary case, but I face a serious
problem in the general case...
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