Taylor Expansion for the Infinitary λ-Calculus

Rémy Cerda, Aix-Marseille Université, CNRS, 12M

Joint work with Lionel Vaux Auclair

WHAT IS IT ALL ABOUT?

The Taylor approximation of λ-terms

Based on the differential λ -calculus, the Taylor expansion [Ehrard and Regnier 2008] is an approximation tool: it maps terms to formal series of approximants.

$$\mathbb{T}$$
: λ -calculus $\Lambda \rightarrow$ resource calculus Λ_r

Resource terms

The set Λ_r of resource terms is defined inductively by:

$$\Lambda_r := \text{Var} \mid \lambda \text{Var.} \Lambda_r \mid \langle \Lambda_r \rangle \Lambda_r^!$$

 $\Lambda_r^! := \text{Multiset}_{\text{fin}}(\Lambda_r)$

Given a semi-ring (\$, +, ×), one works with **resource sums** $S \in \$\langle \Lambda_r^{(!)} \rangle$ (the free \$-module).

We work in the **qualitative setting**: $\$ = (2, \vee, \wedge)$.

Resource substitution

$$s\left\langle \overline{t}/x\right\rangle := \begin{cases} \sum_{\sigma \in \mathfrak{S}_n} s[t_{\sigma(i)}/x_i] & \text{if deg}_x(s) = n \\ 0 & \text{otherwise} \end{cases}$$

$$deg_x(s) & \text{is the number of free occur-}$$

 $\deg_x(s)$ is the number of free occurrences of x in s, $x_1, ..., x_n$ is an arbitrary enumeration, $s[t_{\sigma(i)}/x_i]$ is the formal substitution of the $t_{\sigma(i)}$ to the x_i .

The **resource reduction** $\longrightarrow_r \subset \Lambda_r^{(!)} \times 2\langle \Lambda_r^{(!)} \rangle$ is defined accordingly.

It is extended to $\longrightarrow_r \subset 2\langle \Lambda_r^{(!)} \rangle \times 2\langle \Lambda_r^{(!)} \rangle$ in a parallel way.

Strong confluence

In the qualitative setting all coefficients in the sums are 0 or 1, so we can view the series as sets.

Taylor expansion

 $\mathbb{T}(M)$ is defined by induction by:

$$\mathbb{T}(x) := \{x\}$$

$$\mathbb{T}(\lambda x.M) := \{\lambda x.s, \ s \in \mathbb{T}(M)\}$$

$$\mathbb{T}((M)N) := \{\langle s \rangle \overline{t}, \ s \in \mathbb{T}(M), \ \overline{t} \in \mathbb{T}(N)^! \}$$
$$\mathbb{T}(M)^! := \text{Multiset}_{\text{fin}}(\mathbb{T}(M))$$

The reduction \longrightarrow_r is extended to $P(\Lambda_r)$ in a "natural" way:

$$\mathbb{T}(M) \stackrel{\sim}{\longrightarrow}_{r}^{*} \mathbb{T}(N)$$

means that
$$\mathbb{T}(M) = \bigcup_i \{s_i\}, \mathbb{T}(N) = \bigcup_i T_i$$
 and $\forall i, s_i \longrightarrow_r^* T_i$.

Commutation theorem

In the finitary case,

$$nf(\mathbb{T}(M)) = \mathbb{T}(BT(M))$$

[E. and R. 2008, 2006]

An infinitary λ-calculus

It's just like the usual λ -calculus, but with:

- possibly infinitely deep λ-terms,
- possibly infinitely long β-reductions.

First defined as a metric completion [Kennaway et al. 1997], it is now presented using **coinduction**.

In fact we work with a *variant* of this calculus, called Λ_{∞}^{001} . In Λ_{∞}^{001} infinite branches (and reductions) must cross infinitely often the right part of an application.

001-infinitary terms

$$\Lambda_{\infty}^{001} := vY.\mu X.(Var + \lambda Var.X + (X)Y)$$

Example:

The finitary substitution and β -reduction are defined "as usual".

001-infinitary reduction

$$\frac{M \longrightarrow_{\beta}^{*} X}{M \longrightarrow_{\beta}^{\infty} X} \qquad \frac{M \longrightarrow_{\beta}^{*} \lambda x.P \quad P \longrightarrow_{\beta}^{\infty} P'}{M \longrightarrow_{\beta}^{\infty} \lambda x.P'}$$

$$\frac{M \longrightarrow_{\beta}^{*} (P)Q \quad P \longrightarrow_{\beta}^{\infty} P' \quad Q \Longrightarrow_{\beta}^{\infty} Q'}{M \longrightarrow_{\beta}^{\infty} (P')Q} \qquad \frac{Q \longrightarrow_{\beta}^{\infty} Q'}{Q \Longrightarrow_{\beta}^{\infty} Q'}$$

Example: $Y = \lambda f.(\lambda x.(f)(x)x)\lambda x.(f)(x)x \longrightarrow_{\beta}^{\infty} \lambda f.(f)(f)(f)...$

THE INFINITARY REDUCTION IS FINITELY SIMULATED!

The main theorem

Simulation of the infinitary reduction

Let
$$M, N \in \Lambda^{001}_{\infty}$$
 be terms. If $M \longrightarrow_{\beta}^{\infty} N$, then $\mathbb{T}(M) \xrightarrow{\sim}_{r}^{*} \mathbb{T}(N)$.

Proof sketch, with $d_i \ge \text{depth}(s_i)$:

Further work

We denote by H the operator reducing the head redex of a λ -term: $H(\lambda x_1...\lambda x_n.(...((\lambda y.N)P_1)...)P_m) :=$

$$\lambda x_1 \lambda x_n . (... ((N[P_1/y]) P_2) ...) P_m$$

A consequence of the simulation theorem

Let $M \in \Lambda_{\infty}^{001}$ be a term. There exists an $N \in \Lambda_{\infty}^{001}$ in head normal form such that $M \longrightarrow_{\beta}^{\infty} N$ iff for some $k \in \mathbb{N}$, $H^k(M)$ is in hnf.

The next step is to use this to prove the following result (where $\longrightarrow_h^{\infty}$ is built from the head reduction as $\longrightarrow_{\beta}^{\infty}$ is from the β -reduction):

Standardisation

Let
$$M, N \in \Lambda_{\infty}^{001}$$
 be terms. If $M \longrightarrow_{\beta}^{\infty} N$, then $M \longrightarrow_{h}^{\infty} N$.

We want use the simulation theorem in order to give simple proofs of some known results (like the confluence of $\longrightarrow_{\beta}^{\infty}$), or to extend certain finitary theorems to Λ_{∞}^{001} (like the commutation theorem).

More info:

www.i2m.univ-amu.fr/perso/remy.cerda/fichiers/papiers/simulation.pdf.