## TAYLOR EXPANSION FOR THE INFINITARY $\lambda$-CALCULUS

Rémy Cerda, Aix-Marseille Université, I2M
(jww. Lionel Vaux Auclair)
SCALP Working Group Days, CIRM, 16 Feb. 2023

## Outline

The characters
Infinitary $\lambda$-calculi
The Taylor expansion

The story
We have a nice (?) theorem
It tells about the Taylor expansion
It also tells about the infinitary $\lambda$-calculus

Future adventures

THE CHARACTERS

## Infinitary $\lambda$-calculi?

The well known $Y=\lambda f .(\lambda x .(f)(x) x) \lambda x .(f)(x) x$ does not normalise, but still computes "something":


## Infinitary $\lambda$-calculi?

The well known $Y=\lambda f .(\lambda x .(f)(x) x) \lambda x .(f)(x) x$ does not normalise, but still computes "something". We would like:


- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...


## Infinitary $\boldsymbol{\lambda}$-calcul!

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
〉 ... but infinitary $\boldsymbol{\lambda}$-calculi were formally introduced in the 1990s (Kennaway, Klop, et al. 1997; Berarducci 1996) as an example of infinitary rewriting.


## Infinitary $\boldsymbol{\lambda}$-CALCULI!

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
> ... but infinitary $\lambda$-calculi were formally introduced in the 1990s (Kennaway, Klop, et al. 1997; Berarducci 1996) as an example of infinitary rewriting.
- Original definition: metric completion on the syntactic trees (infinitary terms) and strong notion of convergence (infinitary reductions).


## Infinitary $\boldsymbol{\lambda}$-CALCULI!

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
> ... but infinitary $\lambda$-calculi were formally introduced in the 1990s (Kennaway, Klop, et al. 1997; Berarducci 1996) as an example of infinitary rewriting.
- Original definition: metric completion on the syntactic trees (infinitary terms) and strong notion of convergence (infinitary reductions).
- Coinductive reformulation in the 2010s (Endrullis and Polonsky 2013).

OUR FAVORITE INFINITARY $\boldsymbol{\lambda}$-CALCULUS: $\Lambda_{\infty}^{001}$


OUR FAVORITE INFINITARY $\boldsymbol{\lambda}$-CALCULUS: $\Lambda_{\infty}^{001}$




## OUR favorite infinitary $\boldsymbol{\lambda}$-calculus: $\Lambda_{\infty}^{001}$


... and $\Lambda_{\infty}^{001}$ is endowed with a reduction $\rightarrow_{\beta}^{\infty}$.

## Motivation 1

We would like to have a convenient framework to provide finite approximations of these infinite terms and reductions.

## The Taylor approximation of the $\boldsymbol{\lambda}$-calculus

What is this thing called
$\beta$-reduction?


## The TAYLOR APPROXIMATION OF THE $\boldsymbol{\lambda}$-CALCULUS

What is this thing called $\beta$-reduction?


Now, what is a multilinear approximation of $\beta$-reduction?

## The TAYLOR APPROXIMATION OF the $\boldsymbol{\lambda}$-CALCULUS

What is this thing called $\beta$-reduction?


Now, what is a multilinear approximation of $\beta$-reduction?


## The TAYLOR APPROXIMATION OF the $\boldsymbol{\lambda}$-CALCULUS



What is this thing called $\beta$-reduction?


Now, what is a multilinear approximation of $\beta$-reduction?


## The TAylor expansion

$\mathcal{J}(-)$ maps a term to the sum of its approximants.

| Terms | $x$ | $\lambda_{x}$ |  |
| :--- | :--- | :--- | :--- |
| Approximants | $x$ |  |  |

AND FOR INFINITE TERMS?

Terms may look like this:


## And FOR INFINITE TERMS?

Terms may look like this:


In which case they are approximated by terms like this:


## And FOR INFINITE TERMS?

Terms may look like this: In which case they are approxi-
 mated by terms like this:


## And FOR INFINITE TERMS?

Terms may look like this: In which case they are approxi-
 mated by terms like this:


AN EXAMPLE


An example


## An example



## An example



An example


An example


## Motivation 2

The big theorem about Taylor expansion of $\lambda$-terms:
Commutation theorem (Ehrhard and Regnier 2006)
Given a $\lambda$-term $M, \operatorname{nf}_{r}(\mathcal{T}(M))=\mathcal{T}(\mathrm{BT}(M))$.

## Motivation 2

The big theorem about Taylor expansion of $\lambda$-terms:
Commutation theorem (Ehrhard and Regnier 2006)
Given a $\lambda$-term $M, \operatorname{nf}_{r}(\mathcal{T}(M))=\mathcal{T}(\mathrm{BT}(M))$.
A bad (?) motivation: This formalism has been successfully applied to nondeterministic, probabilistic, CBV, CBPV (and more?) $\lambda$-calculi. Let's try another one: our $\Lambda_{\infty}^{001}$.

## Motivation 2

The big theorem about Taylor expansion of $\lambda$-terms:
Commutation theorem (Ehrhard and Regnier 2006)
Given a $\lambda$-term $M, \operatorname{nf}_{r}(\mathcal{T}(M))=\mathcal{T}(\mathrm{BT}(M))$.
A bad (?) motivation: This formalism has been successfully applied to nondeterministic, probabilistic, CBV, CBPV (and more?) $\lambda$-calculi. Let's try another one: our $\Lambda_{\infty}^{001}$.
A good motivation: $\Lambda_{\infty}^{001}$ is a world where Böhm trees are "true" normal forms, this should be a nice setting to express the commutation property.

THE STORY

## We have a nice (?) theorem

## Theorem (simulation)

For all $M, N \in \Lambda_{\infty}^{001}$, if $M \longrightarrow_{\beta}^{\infty} N$ then $\mathcal{T}(M) \longrightarrow_{r} \mathcal{T}(N)$.
Proof: some technicalities and a diagonal argument, see (Cerda and Vaux Auclair 2022).

## The Commutation theorem comes for free

## Facts

- For all $M \in \Lambda_{\infty}^{001}, M \longrightarrow{ }_{\beta \perp}^{\infty} \mathrm{BT}(M)$.
- For such an $M, \operatorname{BT}(M)$ is in normal form (for $\longrightarrow_{\beta \perp}^{\infty}$ ) and $\mathcal{J}(\mathrm{BT}(M))$ is in normal form too (for $\quad$ mı $_{r}$ ).
> $\quad m\rangle_{r}$ is confluent.


## Corollary (Commutation theorem)

For all $M \in \Lambda_{\infty}^{001}, \mathrm{nf}_{r}(\mathcal{T}(M))=\mathcal{T}(\mathrm{BT}(M))$.

## The Commutation theorem comes for free

## Facts

- For all $M \in \Lambda_{\infty}^{001}, M \longrightarrow{ }_{\beta \perp}^{\infty} \mathrm{BT}(M)$.
- For such an $M, \mathrm{BT}(M)$ is in normal form (for $\longrightarrow_{\beta \perp}^{\infty}$ ) and $\mathcal{T}(B T(M))$ is in normal form too (for $\rightarrow \psi_{r}$ ).
> $m_{r} \psi_{r}$ is confluent.


## Corollary (Commutation theorem)

For all $M \in \Lambda_{\infty}^{001}, \operatorname{nf}_{r}(\mathcal{T}(M))=\mathcal{T}\left(\mathrm{nf}_{\beta \perp}(M)\right)$.

## NEW PROOFS FOR OLD PROPERTIES

## Corollary (unicity of normal forms)

Let $M \in \Lambda_{\infty}^{001}$ be a term, then $B T(M)$ is its unique $\beta \perp$-normal form.

Corollary (confluence)
The reduction $\longrightarrow_{\beta \perp}^{\infty}$ is confluent.
These were the big results in (Kennaway, Klop, et al. 1997).

## TAYLOR TELLS ABOUT HEAD-NORMALISING TERMS

## Theorem (characterisation of head-normalisables)

Let $M \in \Lambda_{\infty}^{001}$ be a term, then the following propositions are equivalent:

1. there exists $N \in \Lambda_{\infty}^{001}$ in HNF such that $M \longrightarrow{ }_{\beta}^{\infty} N$,
2. there exists $s \in \mathcal{T}(M)$ such that $\operatorname{nf}_{r}(s) \neq 0$,
3. there exists $N \in \Lambda_{\infty}^{001}$ in HNF such that $M \longrightarrow{ }_{h}^{*} N$.

Proof: Refinement of a folkore result, see (Olimpieri 2020).

## TAYLOR TELLS ABOUT NORMALISING TERMS

We call a resource term $d$-positive if it has no occurrence of 1 at depth smaller than $d$.

## Corollary (characterisation of normalisables)

Let $M \in \Lambda_{\infty}^{001}$ be a term, then the following propositions are equivalent:

1. there exists $N \in \Lambda_{\infty}^{001}$ in normal form such that $M \longrightarrow{ }_{\beta}^{\infty} N$,
2. for any $d \in \mathbf{N}$, there exists $s \in \mathcal{T}(M)$ such that $n_{r}(s)$ contains a $d$-positive term.

## An infinitary Genericity lemma

We define contexts: $\lambda$-terms with a "hole" (a constant *).
Theorem (Genericity)
Let $M \in \Lambda_{\infty}^{001}$ be unsolvable and $C(*)$ be a $\Lambda_{\infty}^{001}$-context. If $C(M)$ has a normal form $C^{*}$, then for any term $N \in \Lambda_{\infty}^{001}$, $C(N) \longrightarrow{ }_{\beta}^{\infty} C^{*}$.
There were versions of this in (Kennaway, Oostrom, and de Vries 1996; Salibra 2000), with different formalisms and proofs.

## We're happy

As we hoped:

- The Taylor expansion is a powerful tool to study $\wedge_{\infty}^{001}$.
$>\Lambda_{\infty}^{001}$ is a well-suited setting for defining the Taylor expansion.


## FUTURE ADVENTURES

## What about other infinitary $\boldsymbol{\lambda}$-CALCULI?

Two other interesting infinitary $\lambda$-calculi: $\Lambda_{\infty}^{101}$ (Lévy-Longo trees) and $\Lambda_{\infty}^{111}$ (Berarduci trees).


## What about other infinitary $\lambda$-calcull?

Two other interesting infinitary $\lambda$-calculi: $\Lambda_{\infty}^{101}$ (Lévy-Longo trees) and $\wedge_{\infty}^{111}$ (Berarduci trees).

What would a resource calculus and a Taylor expansion for these look like?

## What about other infinitary $\boldsymbol{\lambda}$-CALCULI?

Two other interesting infinitary $\lambda$-calculi: $\wedge_{\infty}^{101}$ (Lévy-Longo trees) and $\Lambda_{\infty}^{111}$ (Berarduci trees).

What would a resource calculus and a Taylor expansion for these look like?

$$
\begin{aligned}
& \Lambda_{r}:=\mathcal{v}\left|\lambda \mathcal{v} \cdot \Lambda_{r}^{i}\right|\left\langle\Lambda_{r}^{?}\right\rangle \Lambda_{r}^{\prime} \\
& \Lambda_{r}^{i}:=p \mid \Lambda_{r} \\
& \Lambda_{r}^{?}:=\mathbb{d} \mid \Lambda_{r} \\
& \Lambda_{r}^{\prime}:=1 \mid \Lambda_{r} \cdot \Lambda_{r}^{\prime}
\end{aligned}
$$

## What about the converse of the main theorem?

## Conjecture (conservativity)

For all $M, N \in \Lambda_{\infty}^{001}$, if $\mathcal{T}(M)$ m $_{r} \mathcal{T}(N)$ then $M \longrightarrow{ }_{\beta}^{\infty} N$.

## What about the converse of the main theorem?

## Conjecture

This:
Conjecture (conservativity)
For all $M, N \in \Lambda_{\infty}^{001}$, if $\mathcal{T}(M)$ mır $_{r} \mathcal{T}(N)$ then $M \longrightarrow{ }_{\beta}^{\infty} N$. is false.

## References I

Barendregt, Henk P. (1977). "The Type Free Lambda Calculus." In: Handbook of Mathematical Logic. Ed. by Jon Barwise. Studies in Logic and the Foundations of Mathematics 90. Elsevier, pp. 1091-1132. DoI: 10.1016/s0049-237x (08)71129-7.

Berarducci, Alessandro (1996). "Infinite $\lambda$-calculus and non-sensible models." In: Logic and Algebra. Routledge, pp. 339-377. DOI: 10.1201/9780203748671-17.
Böhm, Corrado (1968). "Alcune proprietà delle forme $\beta-\eta$-normali nel $\lambda$ - $K$-calcolo." In: Pubblicazioni dell'Instituto per le Applicazioni del Calcolo 696. URL: http://www.enslyon.fr/LIP/REWRITING/TYPES_AND_L_CALCULUS/bohm696.pdf.
Cerda, Rémy and Lionel Vaux Auclair (2022). "Taylor Expansion Finitely Simulates Infinitary $\beta$-Reduction." Submitted to Logical Methods in Computer Science.
Ehrhard, Thomas and Laurent Regnier (2006). "Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms." In: Logical Approaches to Computational Barriers. Ed. by Arnold Beckmann et al. Berlin, Heidelberg: Springer, pp. 186-197. DOI: 10.1007/11780342_20.

## References II

Endrullis, Jörg and Andrew Polonsky (2013). "Infinitary Rewriting Coinductively." In: 18th International Workshop on Types for Proofs and Programs (TYPES 2011). Ed. by Nils Anders Danielsson and Bengt Nordström. LIPIcs 19. Dagstuhl: Schloss Dagstuhl-Leibniz-Zentrum für Informatik, pp. 16-27. DOI: 10.4230/LIPICS.TYPES.2011.16.

Kennaway, Richard, Jan Willem Klop, et al. (1997). "Infinitary lambda calculus." In: Theoretical Computer Science 175.1, pp. 93-125. DOI: 10.1016/S0304-3975(96)00171-5.

Kennaway, Richard, Vincent van Oostrom, and Fer-Jan de Vries (1996). "Meaningless terms in rewriting." In: Algebraic and Logic Programming, pp. 254-268. DOI: 10.1007/3-540-61735-3_17.

Olimpieri, Federico (2020). Normalization, Taylor expansion and rigid approximation of $\lambda$-terms. arXiv: 2001.01619.
Salibra, Antonino (2000). "On the algebraic models of lambda calculus." In: Theoretical Computer Science 249.1, pp. 197-240. DOI: 10.1016/s0304-3975(00)00059-1.


Thanks for your attention!

