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THE CHARACTERS



INFINITARY λ-CALCULI?

The well known 𝑌 = 𝜆𝑓 .(𝜆𝑥.(𝑓)(𝑥)𝑥)𝜆𝑥.(𝑓)(𝑥)𝑥 does not
normalise, but still computes “something”:
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INFINITARY λ-CALCULI!

▶ Well, Böhm trees have existed for a long time (Barendregt
1977, following Böhm 1968)...

▶ ... but infinitary λ-calculi were formally introduced in the
1990s (Kennaway, Klop, et al. 1997; Berarducci 1996) as an
example of infinitary rewriting.

▶ Original definition: metric completion on the syntactic
trees (infinitary terms) and strong notion of convergence
(infinitary reductions).

▶ Coinductive reformulation in the 2010s (Endrullis and
Polonsky 2013).
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OUR FAVORITE INFINITARY λ-CALCULUS: Λ001∞

... and Λ001∞ is endowed with a reduction⟶∞
𝛽 .
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MOTIVATION 1

We would like to have a convenient framework to provide
finite approximations of these infinite terms and reductions.
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THE TAYLOR APPROXIMATION OF THE λ-CALCULUS

What is this thing called
β-reduction?

Now, what is a multilinear approximation of β-reduction?
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THE TAYLOR EXPANSION

𝒯(−) maps a term to the sum of its approximants.

Terms

Approximants
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AND FOR INFINITE TERMS?

Terms may look like this:

In which case they are approxi-
mated by terms like this:
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AN EXAMPLE
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MOTIVATION 2

The big theorem about Taylor expansion of λ-terms:

Commutation theorem (Ehrhard and Regnier 2006)
Given a λ-term 𝑀, nf𝑟(𝒯(𝑀)) = 𝒯(BT (𝑀)).

A bad (?) motivation: This formalism has been successfully
applied to nondeterministic, probabilistic, CBV, CBPV (and
more?) λ-calculi. Let’s try another one: our Λ001∞ .

A good motivation: Λ001∞ is a world where Böhm trees are
“true” normal forms, this should be a nice setting to express
the commutation property.
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THE STORY



WE HAVE A NICE (?) THEOREM

Theorem (simulation)
For all 𝑀,𝑁 ∈ Λ001∞ , if 𝑀 ⟶∞

𝛽 𝑁 then 𝒯(𝑀) ⟿𝑟 𝒯(𝑁).

Proof: some technicalities and a diagonal argument, see
(Cerda and Vaux Auclair 2022).
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THE COMMUTATION THEOREM COMES FOR FREE

Facts

▶ For all 𝑀 ∈ Λ001∞ , 𝑀 ⟶∞
𝛽⊥ BT (𝑀).

▶ For such an 𝑀, BT (𝑀) is in normal form (for⟶∞
𝛽⊥)

and 𝒯(BT (𝑀)) is in normal form too (for⟿𝑟).
▶ ⟿𝑟 is confluent.

Corollary (Commutation theorem)
For all 𝑀 ∈ Λ001∞ , nf𝑟(𝒯(𝑀)) = 𝒯(BT (𝑀)).
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NEW PROOFS FOR OLD PROPERTIES

Corollary (unicity of normal forms)
Let 𝑀 ∈ Λ001∞ be a term, then BT (𝑀) is its unique β⊥-normal
form.

Corollary (confluence)
The reduction⟶∞

𝛽⊥ is confluent.

These were the big results in (Kennaway, Klop, et al. 1997).

13/22



TAYLOR TELLS ABOUT HEAD-NORMALISING TERMS

Theorem (characterisation of head-normalisables)
Let 𝑀 ∈ Λ001∞ be a term, then the following propositions are
equivalent:

1. there exists 𝑁 ∈ Λ001∞ in HNF such that 𝑀 ⟶∞
𝛽 𝑁,

2. there exists 𝑠 ∈ 𝒯(𝑀) such that nf𝑟(𝑠) ≠ 0,
3. there exists 𝑁 ∈ Λ001∞ in HNF such that 𝑀 ⟶∗

ℎ 𝑁.

Proof: Refinement of a folkore result, see (Olimpieri 2020).
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TAYLOR TELLS ABOUT NORMALISING TERMS

We call a resource term 𝑑-positive if it has no occurrence of 1
at depth smaller than 𝑑.
Corollary (characterisation of normalisables)
Let 𝑀 ∈ Λ001∞ be a term, then the following propositions are
equivalent:

1. there exists 𝑁 ∈ Λ001∞ in normal form such that 𝑀 ⟶∞
𝛽 𝑁,

2. for any 𝑑 ∈ N, there exists 𝑠 ∈ 𝒯(𝑀) such that nf𝑟(𝑠)
contains a 𝑑-positive term.

15/22



AN INFINITARY GENERICITY LEMMA

We define contexts: λ-terms with a “hole” (a constant ∗).
Theorem (Genericity)
Let 𝑀 ∈ Λ001∞ be unsolvable and 𝐶L∗M be a Λ001∞ -context.
If 𝐶L𝑀M has a normal form 𝐶∗, then for any term 𝑁 ∈ Λ001∞ ,
𝐶L𝑁M ⟶∞

𝛽 𝐶∗.

There were versions of this in (Kennaway, Oostrom, and de
Vries 1996; Salibra 2000), with different formalisms and proofs.
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WE’RE HAPPY

As we hoped:

▶ The Taylor expansion is a powerful tool to study Λ001∞ .
▶ Λ001∞ is a well-suited setting for defining the Taylor
expansion.
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FUTURE ADVENTURES



WHAT ABOUT OTHER INFINITARY λ-CALCULI?

Two other interesting infinitary λ-calculi: Λ101∞ (Lévy-Longo
trees) and Λ111∞ (Berarduci trees).

What would a resource calculus and a Taylor expansion for
these look like?

Λ𝑟 ≔ 𝒱 | 𝜆𝒱.Λ

?

𝑟 | ⟨Λ?𝑟⟩Λ!𝑟
Λ

?

𝑟 ≔ 𝕡 | Λ𝑟
Λ?𝑟 ≔ 𝕕 | Λ𝑟
Λ!𝑟 ≔ 1 | Λ𝑟 ⋅ Λ!𝑟
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WHAT ABOUT THE CONVERSE OF THE MAIN THEOREM?

Conjecture

This:

Conjecture (conservativity)
For all 𝑀,𝑁 ∈ Λ001∞ , if 𝒯(𝑀) ⟿𝑟 𝒯(𝑁) then 𝑀 ⟶∞

𝛽 𝑁.

is false.
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Thanks for your attention!
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