Taylor expansion for the infinitary λ -calculus

Rémy Cerda, Aix-Marseille Université, 12M (jww. Lionel Vaux Auclair) SCALP Working Group Days, CIRM, 16 Feb. 2023

OUTLINE

The characters Infinitary λ-calculi The Taylor expansion The story We have a nice (?) theorem It tells about the Taylor expansion It also tells about the infinitary λ -calculus

Future adventures

THE CHARACTERS

The well known $Y = \lambda f.(\lambda x.(f)(x)x)\lambda x.(f)(x)x$ does not normalise, but still computes "something":

The well known $Y = \lambda f.(\lambda x.(f)(x)x)\lambda x.(f)(x)x$ does not normalise, but still computes "something". We would like:

Infinitary λ -calculi!

Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...

INFINITARY λ-CALCULI!

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
- ... but infinitary λ-calculi were formally introduced in the 1990s (Kennaway, Klop, et al. 1997; Berarducci 1996) as an example of infinitary rewriting.

INFINITARY λ-CALCULI!

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
- ... but infinitary λ-calculi were formally introduced in the 1990s (Kennaway, Klop, et al. 1997; Berarducci 1996) as an example of infinitary rewriting.
- Original definition: metric completion on the syntactic trees (infinitary terms) and strong notion of convergence (infinitary reductions).

INFINITARY λ-CALCULI!

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
- ... but infinitary λ-calculi were formally introduced in the 1990s (Kennaway, Klop, et al. 1997; Berarducci 1996) as an example of infinitary rewriting.
- Original definition: metric completion on the syntactic trees (infinitary terms) and strong notion of convergence (infinitary reductions).
- Coinductive reformulation in the 2010s (Endrullis and Polonsky 2013).

Our favorite infinitary $\lambda\text{-calculus: }\Lambda^{001}_\infty$

Our favorite infinitary $\lambda\text{-calculus:}\ \Lambda^{001}_\infty$

Sn ൧ a \bigcirc

Our favorite infinitary $\lambda\text{-calculus: }\Lambda^{001}_\infty$

... and Λ^{001}_{∞} is endowed with a reduction $\longrightarrow^{\infty}_{\beta}$.

We would like to have a convenient framework to provide **finite approximations** of these infinite terms and reductions.

What is this thing called β-reduction?

What is this thing called β-reduction?

Now, what is a multilinear approximation of β -reduction?

What is this thing called β-reduction?

Now, what is a multilinear approximation of β -reduction?

What is this thing called β-reduction?

Now, what is a multilinear approximation of β -reduction?

 $\mathcal{T}(-)$ maps a term to the sum of its approximants.

Terms may look like this:

The big theorem about Taylor expansion of λ -terms: **Commutation theorem (Ehrhard and Regnier 2006)** Given a λ -term M, $nf_r(\mathcal{T}(M)) = \mathcal{T}(BT(M))$. The big theorem about Taylor expansion of λ -terms: **Commutation theorem (Ehrhard and Regnier 2006)** Given a λ -term *M*, nf_r($\mathcal{T}(M)$) = $\mathcal{T}(BT(M))$.

A bad (?) motivation: This formalism has been successfully applied to nondeterministic, probabilistic, CBV, CBPV (and more?) λ -calculi. Let's try another one: our Λ_{∞}^{001} .

The big theorem about Taylor expansion of λ -terms: **Commutation theorem (Ehrhard and Regnier 2006)** Given a λ -term *M*, nf_r($\mathcal{T}(M)$) = $\mathcal{T}(BT(M))$.

A bad (?) motivation: This formalism has been successfully applied to nondeterministic, probabilistic, CBV, CBPV (and more?) λ -calculi. Let's try another one: our Λ^{001}_{∞} .

A good motivation: Λ_{∞}^{001} is a world where Böhm trees are "true" normal forms, this should be a nice setting to express the commutation property.

THE STORY

Theorem (simulation)

For all $M, N \in \Lambda^{001}_{\infty}$, if $M \longrightarrow_{\beta}^{\infty} N$ then $\mathcal{F}(M) \leadsto_{r} \mathcal{F}(N)$.

Proof: some technicalities and a diagonal argument, see (Cerda and Vaux Auclair 2022).

Facts

- ► For all $M \in \Lambda_{\infty}^{001}$, $M \longrightarrow_{\beta \perp}^{\infty} BT(M)$.
- ► For such an *M*, BT(*M*) is in normal form (for $\rightarrow_{\beta\perp}^{\infty}$) and $\mathcal{T}(BT(M))$ is in normal form too (for \rightsquigarrow_r).
- •••• $_r$ is confluent.

Corollary (Commutation theorem)

For all $M \in \Lambda^{001}_{\infty}$, $nf_r(\mathcal{T}(M)) = \mathcal{T}(BT(M))$.

Facts

- For all $M \in \Lambda^{001}_{\infty}$, $M \longrightarrow^{\infty}_{B^{\perp}} BT(M)$.
- For such an M, BT (M) is in normal form (for $\longrightarrow_{\beta_{\perp}}^{\infty}$) and $\mathcal{T}(BT(M))$ is in normal form too (for \rightsquigarrow_r).

Corollary (Commutation theorem)

For all $M \in \Lambda_{\infty}^{001}$, $nf_r(\mathcal{T}(M)) = \mathcal{T}(nf_{\beta}(M))$.

Corollary (unicity of normal forms)

Let $M \in \Lambda_{\infty}^{001}$ be a term, then BT (*M*) is its unique $\beta \perp$ -normal form.

Corollary (confluence)

The reduction $\longrightarrow_{\mathcal{B}\perp}^{\infty}$ is confluent.

These were the big results in (Kennaway, Klop, et al. 1997).

Theorem (characterisation of head-normalisables)

Let $M \in \Lambda_{\infty}^{001}$ be a term, then the following propositions are equivalent:

- 1. there exists $N \in \Lambda_{\infty}^{001}$ in HNF such that $M \longrightarrow_{\beta}^{\infty} N$,
- 2. there exists $s \in \mathcal{T}(M)$ such that $nf_r(s) \neq 0$,
- 3. there exists $N \in \Lambda^{001}_{\infty}$ in HNF such that $M \longrightarrow_{h}^{*} N$.

Proof: Refinement of a folkore result, see (Olimpieri 2020).

We call a resource term *d*-*positive* if it has no occurrence of 1 at depth smaller than *d*.

Corollary (characterisation of normalisables)

Let $M \in \Lambda_{\infty}^{001}$ be a term, then the following propositions are equivalent:

- 1. there exists $N \in \Lambda^{001}_{\infty}$ in normal form such that $M \longrightarrow^{\infty}_{\beta} N$,
- 2. for any $d \in \mathbb{N}$, there exists $s \in \mathcal{T}(M)$ such that $nf_r(s)$ contains a *d*-positive term.

We define contexts: λ -terms with a "hole" (a constant *).

Theorem (Genericity)

Let $M \in \Lambda_{\infty}^{001}$ be unsolvable and C(|*|) be a Λ_{∞}^{001} -context. If C(|M|) has a normal form C^* , then for any term $N \in \Lambda_{\infty}^{001}$, $C(|N|) \longrightarrow_{\beta}^{\infty} C^*$.

There were versions of this in (Kennaway, Oostrom, and de Vries 1996; Salibra 2000), with different formalisms and proofs. As we hoped:

The Taylor expansion is a powerful tool to study Λ⁰⁰¹_∞.
Λ⁰⁰¹_∞ is a well-suited setting for defining the Taylor expansion.

FUTURE ADVENTURES

What about other infinitary λ -calculi?

Two other interesting infinitary λ -calculi: Λ_{∞}^{101} (Lévy-Longo trees) and Λ_{∞}^{111} (Berarduci trees).

What about other infinitary λ -calculi?

Two other interesting infinitary λ -calculi: Λ_{∞}^{101} (Lévy-Longo trees) and Λ_{∞}^{111} (Berarduci trees).

What would a resource calculus and a Taylor expansion for these look like?

What about other infinitary λ -calculi?

Two other interesting infinitary λ -calculi: Λ_{∞}^{101} (Lévy-Longo trees) and Λ_{∞}^{111} (Berarduci trees).

What would a resource calculus and a Taylor expansion for these look like?

$$\begin{array}{rcl} \Lambda_r & \coloneqq & \mathcal{V} & \mid & \lambda \mathcal{V} . \Lambda_r^{\dot{c}} & \mid & \left\langle \Lambda_r^2 \right\rangle \Lambda_r^{\dot{c}} \\ \Lambda_r^{\dot{c}} & \coloneqq & \mathbb{P} & \mid & \Lambda_r \\ \Lambda_r^2 & \coloneqq & \mathbb{d} & \mid & \Lambda_r \\ \Lambda_r^{\dot{c}} & \coloneqq & \mathbf{1} & \mid & \Lambda_r \cdot \Lambda_r^{\dot{c}} \end{array}$$

Conjecture (conservativity) For all $M, N \in \Lambda^{001}_{\infty}$, if $\mathcal{T}(M) \rightsquigarrow_r \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^{\infty} N$.

Conjecture

This: **Conjecture (conservativity)** For all $M, N \in \Lambda^{001}_{\infty}$, if $\mathcal{T}(M) \leadsto_r \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^{\infty} N$. is false.

REFERENCES I

- Barendregt, Henk P. (1977). "The Type Free Lambda Calculus." In: Handbook of Mathematical Logic. Ed. by Jon Barwise. Studies in Logic and the Foundations of Mathematics 90. Elsevier, pp. 1091–1132. DOI: 10.1016/s0049-237x(08)71129-7.
- Berarducci, Alessandro (1996). "Infinite λ-calculus and non-sensible models." In: Logic and Algebra. Routledge, pp. 339–377. DOI: 10.1201/9780203748671-17.
- Böhm, Corrado (1968). "Alcune proprietà delle forme β-η-normali nel λ-K-calcolo." In: Pubblicazioni dell'Instituto per le Applicazioni del Calcolo 696. URL: http://www.ens
 - lyon.fr/LIP/REWRITING/TYPES_AND_L_CALCULUS/bohm696.pdf.
- Cerda, Rémy and Lionel Vaux Auclair (2022). "Taylor Expansion Finitely Simulates Infinitary β-Reduction." Submitted to Logical Methods in Computer Science.
- Ehrhard, Thomas and Laurent Regnier (2006). "Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms." In: Logical Approaches to Computational Barriers. Ed. by Arnold Beckmann et al. Berlin, Heidelberg: Springer, pp. 186–197. DOI: 10.1007/11780342_20.

REFERENCES II

- Endrullis, Jörg and Andrew Polonsky (2013). "Infinitary Rewriting Coinductively." In: 18th International Workshop on Types for Proofs and Programs (TYPES 2011). Ed. by Nils Anders Danielsson and Bengt Nordström. LIPIcs 19. Dagstuhl: Schloss Dagstuhl-Leibniz-Zentrum für Informatik, pp. 16–27. DOI: 10.4230/LIPIcs.TYPES.2011.16.
- Kennaway, Richard, Jan Willem Klop, et al. (1997). "Infinitary lambda calculus." In: Theoretical Computer Science 175.1, pp. 93–125. doi: 10.1016/S0304-3975(96)00171-5.
- Kennaway, Richard, Vincent van Oostrom, and Fer-Jan de Vries (1996). "Meaningless terms in rewriting." In: Algebraic and Logic Programming, pp. 254–268. DOI: 10.1007/3-540-61735-3_17.

Olimpieri, Federico (2020). Normalization, Taylor expansion and rigid approximation of λ -terms. arXiv: 2001.01619.

Salibra, Antonino (2000). "On the algebraic models of lambda calculus." In: Theoretical Computer Science 249.1, pp. 197–240. DOI: 10.1016/s0304-3975(00)00059-1.

Thanks for your attention!