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WHY THE A-CALCULUS?

What is it to deduce? What is it to compute?

formule <« types
proofs <« programs = A-terms
cut-elimination <« execution = f-reduction
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THE A-CALCULUS

M,N,... = x | AxM | MN
XM M(N)

L
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THE A-CALCULUS

M,N,... = x | AxM | MN
x> M M(N)
x I ”
@
Example: AK/ N
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THE A-CALCULUS

(x> M)(N) — M where x is replaced with N

Ax.M)N —g M|[N/x]
XK A A
NES

Example: (Ax.add (pow 2 x) (add x x)) 5
— add (pow 2 5) (add 5 5)
—>Z, add 3210
—g 42 4/20



A program may run forever!

... and compute no meaningful result:
Q= (Ax.xx)(Ax.xx) Q—pQ—p ..
... or still produce a meaningful output:

Yp := (Ax.(f)(x0)x)(Ax.(f)(x)x)
Yy —p f(Yy) —p f(f(Yf) —p ...

P> A - > ---
Pe ™ 3Tk TN T DN
1P 4"' Pis

5/20



The Bohm tree of a term is a (possibly infinite) description of all
the meaningful information it can produce.

it M —>Z§ .- N\ then BT(M):= -
‘ BT(A)
BT(A)
otherwise, then BT(M) := L.

6T (p,) = 2
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THE CONTINOUS APPROXIMATION ()IT-———>ﬁ

For M € A,

AM) := stable prefix M —>Z¥

is a directed set such that:

Syntactic approximation theorem
(Wadsworth’76, Barendregt’84, ...):
BT(M) = | | AM).
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THE LINEAR (AKA TAYLOR) APPROXIMATION OF —

For M € A, its Taylor approximation J (M)
is a sum of “polynomial approximations”

such that:

T(BT(M)) = nf(T(M)). 8/20



(001)-INFINITARY A-CALCULUS

Possibly infinite terms and reductions:

yt—a/@\—P@ —> @\

/\@ 7
£y e § e

A
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(001)-INFINITARY A-CALCULUS

Possibly infinite terms and reductions:

yt—a/@\—P@ —> @\

d \@ d
A S N Y N
£y ¢ {@\

such that

The unique normal form of any M € AP through — 2’ is BT(M).
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CONCLUSION




A MAXIMAL SETTING FOR THE USUAL TAYLOR EXPANSION

The resource A-calculus is a (multi)linear A-calculus.
Resource terms:

Styee = X | AXS | () [ty eee s bl

Resource reduction, featuring a multilinear substitution:
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A MAXIMAL SETTING FOR THE USUAL TAYLOR EXPANSION

The resource A-calculus is a (multi)linear A-calculus.
Resource terms:

Styee = X | AXS | () [ty eee s bl

Resource reduction, featuring a multilinear substitution:

®

XA 2

* *

... and S —», T denotes the pointwise reduction (through —)
of possibly infinite sums of resource terms. 10/20



A MAXIMAL SETTING FOR THE USUAL TAYLOR EXPANSION

The Taylor expansion for finite A-terms:

T(x)=x
T(Ax.M) = Ax.T (M)

T(MN) = T(M) ( >, %T(N)”)

neN "’

And for 001-infinitary A-terms? It’s the same!

Same target calculus: the resource calculus.

Same definition (kind of).
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APPROXIMATING REDUCTION INSTEAD OF NORMALISATION

The classical, continuous approximation can only speak
about (infinitary) normalisation.

The Taylor approximation can speak about reduction!
M —2 5 BT(M)

7| |7

T(M) —2Ls 7(BT(M))
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APPROXIMATING REDUCTION INSTEAD OF NORMALISATION

The classical, continuous approximation can only speak
about (infinitary) normalisation.

The Taylor approximation can speak about reduction!

M N

7| 7

T(M) T(N)

12/20




(ARGUABLY) EASIER PROOFS, IN A UNIFIED SETTING

We retrieve what we knew about...

... the Taylor expansion:

the commutation theorem.

... the 001-infinitary A-calculus:

—>§°l is confluent.

... the continuous approximation:

the syntactic approximation theorem.

1But the margin of the manuscript was too short for the second, direct proof...
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(ARGUABLY) EASIER PROOFS, IN A UNIFIED SETTING

And there’s more!

M has a HNF through —>;§ or —g
iff the head reduction strategy terminates on M
iff nf(7°(M)) # 0.

The Genericity lemma.

BT : AT — AT is Scott-continuous.
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PERSPECTIVES

Is our method transferrable, for instance to...

an extensional setting?

« there is an extensional Taylor expansion (Blondeau-P. et al.’24)
+ infinitary »!-reductions are not well-behaved
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PERSPECTIVES

Is our method transferrable, for instance to...

an extensional setting?

« there is an extensional Taylor expansion (Blondeau-P. et al.’24)
+ infinitary »!-reductions are not well-behaved

richer languages?
« use infinitary rewriting in languages having a Taylor
approximation?
« find a Taylor approximation for coinductive languages?

other proof systems?

» non-wellfounded proof systems, e.g. infinets (De et al.’21)?
« characterise good properties to prove validity criteria
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BONUSES




A LAZY TAYLOR APPROXIMATION

Lazy normalisation:

a meaningful prefix is a weak head normal form,
Ax.M or (y)M;..M,,

the normal forms are Lévy-Longo trees (LLT), e.g.

Y/ly./lx.y _’Z’ Ax-Y/ly./lx.y
BT(Y/ly./lx.y) =1
LLT(Y/ly./lx.y) =0= /1XO./1)C1./‘LX2.
the corresponding infinitary A-calculus is (A”, —£11).
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A LAZY TAYLOR APPROXIMATION

The lazy resource A-calculus:
Sty.. = Xx | Axs | | (8)[t1s - tyls

with (0)f —,0 and &7 (Ax.M) = Ax.6T (M)
If M —>;;>f N then 7 (M) —»,, €T(N).

nf(6T(M)) = €7 (LLT(M)).
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A LAZY TAYLOR APPROXIMATION, AND NOTHING MORE

The lazy resource A-calculus:
Sty.. = Xx | Axs | | (8)[t1s - tyls

with (0)f —,0 and &7 (Ax.M) = Ax.6T (M)
If M —>;;>f N then 7 (M) —»,, €T(N).
nf(¢7(M)) = €7 (LLT(M)).

Only BT and LLT are Scott-continuous.
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CONSERVATIVITY OF THE TAYLOR APPROXIMATION

Question: if (M) —» . J(N), is there a reduction M —>lg,° N?

In the finite A-calculus, yes.

In the 001-infinitary A-calculus, no.
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a-EQUIVALENCE FOR MIXED HIGHER-ORDER TERMS

In the finite A-calculus, we “just” quotient by a-equivalence.
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a-EQUIVALENCE FOR MIXED HIGHER-ORDER TERMS

In the finite A-calculus, we “just” quotient by a-equivalence.
With infinitary A-terms it’s not that easy...

(VARSI VAVA))

WZ.F5(Z,2) VY. X.Fs(X,Y)

\7)5 compl. , .7%00
=y
M compl.
Tsl=a - y (Fa/=a)®

U(pZ.95(Z,2))
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a-EQUIVALENCE FOR MIXED HIGHER-ORDER TERMS

In the finite A-calculus, we “just” quotient by a-equivalence.
With infinitary A-terms it’s not that easy...

... but a solution can be found, adapting existing work
(Kurz et al.’13).

compl.

UZ.F5(Z, 2)) /\
WZ.F5(Z,Z) UQY.pX.F5(X,Y)) VY X F5(X, Y)

Iz —2 (I5° )ss — (I )iy — J5°

compl.
l l l J J
T5/=« %} (ji/za)?so (ji:oo)ffv/za —— (ji/zoc)oo
pl.
U(pZ.95(2,2)) UY.pX.Q5(X,Y))
compl.
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Thanks for your attention!
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