
Taylor Approximation
and Infinitary λ-Calculi

Rémy Cerda, Aix-Marseille Université, I2M
PhD defence
Marseille, June 10, 2024

Contents

Introduction

Why the λ-calculus?

Introducing the characters

Conclusion

A convenient setting to study β-reduction

New and (arguably) easier proofs for many results

Bonuses

1/20

Introduction

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔
proofs ↔

cut-elimination

This is the Curry-Howard correspondence.

2/20

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔
proofs ↔

cut-elimination

This is the Curry-Howard correspondence.

2/20

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔
proofs ↔

cut-elimination

This is the Curry-Howard correspondence.

2/20

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔
proofs ↔

cut-elimination

This is the Curry-Howard correspondence.

2/20

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔
proofs ↔

cut-elimination

This is the Curry-Howard correspondence.

2/20

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔ problems
proofs ↔ programs

cut-elimination

This is the Curry-Howard correspondence.

2/20

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔ program specifications
proofs ↔ programs

cut-elimination

This is the Curry-Howard correspondence.

2/20

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔ types
proofs ↔ programs

cut-elimination

This is the Curry-Howard correspondence.

2/20

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔ types
proofs ↔ programs

cut-elimination ↔ execution

This is the Curry-Howard correspondence.

2/20

Why the λ-calculus?

What is it to deduce?

Given a sentence 𝑃, can we
compute a (dis)proof of 𝑃?

What is it to compute?

Not always.

The same thing.

Church,Turing: there is a problem that no program can solve.
But also Gödel: there is a formula that no proof can (dis)prove.

formulæ ↔ types
proofs ↔ programs = λ-terms

cut-elimination ↔ execution = β-reduction

This is the Curry-Howard correspondence.

2/20

The λ-calculus

𝑀,𝑁,… ≔ 𝑥 | 𝜆𝑥.𝑀 | 𝑀𝑁
𝑥 ↦ 𝑀 𝑀(𝑁)

Example:
(𝜆𝑥.𝑧)((𝑦)𝜆𝑥.𝑥)

3/20

The λ-calculus

𝑀,𝑁,… ≔ 𝑥 | 𝜆𝑥.𝑀 | 𝑀𝑁
𝑥 ↦ 𝑀 𝑀(𝑁)

Example:
(𝜆𝑥.𝑧)((𝑦)𝜆𝑥.𝑥)

3/20

The λ-calculus

(𝑥 ↦ 𝑀)(𝑁) ⟶ 𝑀 where 𝑥 is replaced with 𝑁
(𝜆𝑥.𝑀)𝑁 ⟶𝛽 𝑀[𝑁/𝑥]

Example: (𝜆𝑥.add (pow 2 𝑥) (add 𝑥 𝑥)) 5
⟶𝛽 add (pow 2 5) (add 5 5)
⟶∗

𝛽 add 32 10
⟶∗

𝛽 42 4/20

Böhm trees

A program may run forever!

... and compute no meaningful result:

Ω ≔ (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) Ω ⟶𝛽 Ω ⟶𝛽 …

... or still produce a meaningful output:

Y𝑓 ≔ (𝜆𝑥.(𝑓)(𝑥)𝑥)(𝜆𝑥.(𝑓)(𝑥)𝑥)
Y𝑓 ⟶𝛽 𝑓(Y𝑓)⟶𝛽 𝑓(𝑓(Y𝑓))⟶𝛽 …

5/20

Böhm trees

The Böhm tree of a term is a (possibly infinite) description of all
the meaningful information it can produce.

⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

if𝑀 ⟶∗
𝛽 , then BT(𝑀) ≔

otherwise, then BT(𝑀) ≔ ⊥.

6/20

The continous approximation of⟶𝛽

For𝑀 ∈ Λ,

𝒜(𝑀) ≔
⎧
⎪
⎨
⎪
⎩

stable prefix

|
|
|
|
|
|
|

𝑀 ⟶∗
𝛽

⎫
⎪
⎬
⎪
⎭

is a directed set such that:
Syntactic approximation theorem
(Wadsworth’76, Barendregt’84, ...):
BT(𝑀) = ⨆𝒜(𝑀).

7/20

The linear (aka Taylor) approximation of⟶𝛽

For𝑀 ∈ Λ, its Taylor approximation 𝒯(𝑀)
is a sum of “polynomial approximations”

such that:

Commutation theorem (Ehrhard-Regnier’06):
𝒯(BT(𝑀)) = nf(𝒯(𝑀)).

8/20

(001)-infinitary λ-calculus

Possibly infinite terms and reductions:

such that

Theorem (Kennaway et al.’97):
The unique normal form of any𝑀 ∈ Λ∞

⊥ through⟶∞
𝛽⊥ is BT(𝑀).

9/20

(001)-infinitary λ-calculus

Possibly infinite terms and reductions:

such that

Theorem (Kennaway et al.’97):
The unique normal form of any𝑀 ∈ Λ∞

⊥ through⟶∞
𝛽⊥ is BT(𝑀).

9/20

Conclusion

Amaximal setting for the usual Taylor expansion

The resource λ-calculus is a (multi)linear λ-calculus.

Resource terms:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡1,… , 𝑡𝑛].

Resource reduction, featuring a multilinear substitution:

... and 𝐒 −↠r 𝐓 denotes the pointwise reduction (through⟶∗
r)

of possibly infinite sums of resource terms.

10/20

Amaximal setting for the usual Taylor expansion

The resource λ-calculus is a (multi)linear λ-calculus.

Resource terms:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡1,… , 𝑡𝑛].

Resource reduction, featuring a multilinear substitution:

... and 𝐒 −↠r 𝐓 denotes the pointwise reduction (through⟶∗
r)

of possibly infinite sums of resource terms.

10/20

Amaximal setting for the usual Taylor expansion

The resource λ-calculus is a (multi)linear λ-calculus.

Resource terms:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡1,… , 𝑡𝑛].

Resource reduction, featuring a multilinear substitution:

... and 𝐒 −↠r 𝐓 denotes the pointwise reduction (through⟶∗
r)

of possibly infinite sums of resource terms. 10/20

Amaximal setting for the usual Taylor expansion

The Taylor expansion for finite λ-terms:

𝒯(𝑥) ≔ 𝑥
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀)

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) (∑
𝑛∈ℕ

1
𝑛!𝒯(𝑁)

𝑛)

And for 001-infinitary λ-terms? It’s the same!

• Same target calculus: the resource calculus.
• Same definition (kind of).

11/20

Approximating reduction instead of normalisation

• The classical, continuous approximation can only speak
about (infinitary) normalisation.

• The Taylor approximation can speak about reduction!

Theorem (commutation, Ehrhard-Regnier’06)

𝑀 BT(𝑀)

𝒯(𝑀) 𝒯(BT(𝑀))

nf∞
𝛽⊥

𝒯 𝒯
nf
𝑟

12/20

Approximating reduction instead of normalisation

• The classical, continuous approximation can only speak
about (infinitary) normalisation.

• The Taylor approximation can speak about reduction!

Theorem (simulation, C.-V.A.’23)

𝑀 𝑁

𝒯(𝑀) 𝒯(𝑁)

nf∞
𝛽⊥

𝒯 𝒯
nf
𝑟

12/20

(Arguably) easier proofs, in a unified setting

We retrieve what we knew about...

... the Taylor expansion:

Corollary: the commutation theorem.

... the 001-infinitary λ-calculus:

Corollary: ⟶∞
𝛽⊥ is confluent.

... the continuous approximation:

Corollary1: the syntactic approximation theorem.

1But the margin of the manuscript was too short for the second, direct proof...

13/20

(Arguably) easier proofs, in a unified setting

And there’s more!

Corollary
𝑀 has a hnf through⟶∗

𝛽 or⟶∞
𝛽

iff the head reduction strategy terminates on𝑀
iff nf(𝒯(𝑀)) ≠ 0.

Corollary
The Genericity lemma.

Corollary
BT ∶ Λ∞

⊥ → Λ∞
⊥ is Scott-continuous.

14/20

Perspectives

Is our method transferrable, for instance to...

• an extensional setting?
• there is an extensional Taylor expansion (Blondeau-P. et al.’24)
• infinitary 𝜂!-reductions are not well-behaved

• richer languages?
• use infinitary rewriting in languages having a Taylor
approximation?

• find a Taylor approximation for coinductive languages?
• other proof systems?

• non-wellfounded proof systems, e.g. infinets (De et al.’21)?
• characterise good properties to prove validity criteria

15/20

Perspectives

Is our method transferrable, for instance to...

• an extensional setting?
• there is an extensional Taylor expansion (Blondeau-P. et al.’24)
• infinitary 𝜂!-reductions are not well-behaved

• richer languages?
• use infinitary rewriting in languages having a Taylor
approximation?

• find a Taylor approximation for coinductive languages?

• other proof systems?
• non-wellfounded proof systems, e.g. infinets (De et al.’21)?
• characterise good properties to prove validity criteria

15/20

Perspectives

Is our method transferrable, for instance to...

• an extensional setting?
• there is an extensional Taylor expansion (Blondeau-P. et al.’24)
• infinitary 𝜂!-reductions are not well-behaved

• richer languages?
• use infinitary rewriting in languages having a Taylor
approximation?

• find a Taylor approximation for coinductive languages?
• other proof systems?

• non-wellfounded proof systems, e.g. infinets (De et al.’21)?
• characterise good properties to prove validity criteria

15/20

Bonuses

A lazy Taylor approximation

Lazy normalisation:

• a meaningful prefix is aweak head normal form,

𝜆𝑥.𝑀 or (𝑦)𝑀1…𝑀𝑛,

• the normal forms are Lévy-Longo trees (LLT), e.g.

Y𝜆𝑦.𝜆𝑥.𝑦 ⟶∗
𝛽 𝜆𝑥.Y𝜆𝑦.𝜆𝑥.𝑦

BT(Y𝜆𝑦.𝜆𝑥.𝑦) = ⊥
LLT(Y𝜆𝑦.𝜆𝑥.𝑦) = O = 𝜆𝑥0.𝜆𝑥1.𝜆𝑥2.…

• the corresponding infinitary λ-calculus is (Λ101
⊥ ,⟶101

𝛽⊥).

16/20

A lazy Taylor approximation

The lazy resource λ-calculus:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | 𝟘 | (𝑠) [𝑡1,… , 𝑡𝑛],

with (𝟘) ̄𝑡 ⟶r 0 and ℓ𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.ℓ𝒯(𝑀) + 𝟘.

Theorem (simulation)
If𝑀 ⟶101

𝛽⊥ 𝑁 then ℓ𝒯(𝑀) −↠ℓr ℓ𝒯(𝑁).

Corollary (commutation)
nf(ℓ𝒯(𝑀)) = ℓ𝒯(LLT(𝑀)).

Theorem (Severi-de Vries’05)
Only BT and LLT are Scott-continuous.

17/20

A lazy Taylor approximation, and nothing more

The lazy resource λ-calculus:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | 𝟘 | (𝑠) [𝑡1,… , 𝑡𝑛],

with (𝟘) ̄𝑡 ⟶r 0 and ℓ𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.ℓ𝒯(𝑀) + 𝟘.

Theorem (simulation)
If𝑀 ⟶101

𝛽⊥ 𝑁 then ℓ𝒯(𝑀) −↠ℓr ℓ𝒯(𝑁).

Corollary (commutation)
nf(ℓ𝒯(𝑀)) = ℓ𝒯(LLT(𝑀)).

Theorem (Severi-de Vries’05)
Only BT and LLT are Scott-continuous.

17/20

Conservativity of the Taylor approximation

Question: if 𝒯(𝑀) −↠r 𝒯(𝑁), is there a reduction𝑀 ⟶∞
𝛽 𝑁?

• In the finite λ-calculus, yes.
• In the 001-infinitary λ-calculus, no.

18/20

α-equivalence for mixed higher-order terms

• In the finite λ-calculus, we “just” quotient by α-equivalence.

• With infinitary λ-terms it’s not that easy...
• ... but a solution can be found, adapting existing work
(Kurz et al.’13).

19/20

α-equivalence for mixed higher-order terms

• In the finite λ-calculus, we “just” quotient by α-equivalence.
• With infinitary λ-terms it’s not that easy...

𝑈(µ𝑍.ℱΣ(𝑍, 𝑍))
µ𝑍.ℱΣ(𝑍, 𝑍)

𝒯Σ
ν𝑌.µ𝑋.ℱΣ(𝑋, 𝑌)

𝒯∞
Σ

𝒯∞
Σ /=𝛼

𝒯Σ/=𝛼
𝑈(µ𝑍.𝒬Σ(𝑍, 𝑍))

(𝒯Σ/=𝛼)∞

compl.

≠

compl.

• ... but a solution can be found, adapting existing work
(Kurz et al.’13).

19/20

α-equivalence for mixed higher-order terms

• In the finite λ-calculus, we “just” quotient by α-equivalence.
• With infinitary λ-terms it’s not that easy...
• ... but a solution can be found, adapting existing work
(Kurz et al.’13).

𝑈(µ𝑍.ℱΣ(𝑍, 𝑍))
µ𝑍.ℱΣ(𝑍, 𝑍)

𝒯Σ
𝑈(ν𝑌.µ𝑋.ℱΣ(𝑋, 𝑌))

(𝒯∞
Σ)fs (𝒯∞

Σ)ffv
ν𝑌.µ𝑋.ℱΣ(𝑋, 𝑌)

𝒯∞
Σ

𝒯Σ/=𝛼
𝑈(µ𝑍.𝒬Σ(𝑍, 𝑍))

(𝒯Σ/=𝛼)∞fs
𝑈(ν𝑌.µ𝑋.𝒬Σ(𝑋, 𝑌))

(𝒯∞
Σ)ffv/=𝛼 (𝒯Σ/=𝛼)∞

nom.
compl.

compl.

nom.
compl.

compl.

⌟

19/20

Thanks for your attention!
20/20

	Introduction
	Why the λ-calculus?
	Introducing the characters

	Conclusion
	A convenient setting to study β-reduction
	New and (arguably) easier proofs for many results

	Bonuses

