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In “traditional” infinitary rewriting based on ordinal-indexed rewriting sequences and strong
Cauchy convergence, a key property of rewriting systems is compression, that is, the fact that
rewriting sequences of arbitrary ordinal length can be compressed to sequences of length ω.
Famous examples of compressible systems are left-linear first-order systems and infinitary λ-
calculi.

In this work, we investigate compression in the equivalent setting of coinductive infinitary
rewriting, introduced by Endrullis et al. [End+18], which we recall in Section 1 in a slightly
augmented form: the original work only covered first-order rewriting, we extend it to rewriting
of (possibly non-wellfounded) derivations in an arbitrary sytem of derivation rules.

Then in Section 2 we define the coinductive counterpart of compressed rewriting sequences,
and we present a general coinductive procedure turning arbitrary infinitary rewriting derivations
into compressed ones, without relying on a topological formalism. The coinductive presentation
of the two aforementioned examples, that is left-linear first-order systems and the full infinitary
λ-calculus, are endowed with compression lemmas as instances of our general method.

This is a preliminary work, as our main motivation is to tackle the rewriting induced on non-
wellfounded proofs by eliminating cuts. For future work, we will focus on the system µMALL∞

for multiplicative-additive linear logic with fixed points, the cut-elimination theorem of which
crucially relies on a compression lemma [Sau23]. In particular, we hope to be able to use a
coinductive compression step as a component of a fully coinductive cut-elimination proof.

1 Coinductive infinitary rewriting

In this first section, we recall the coinductive presentation of infinitary first-order rewriting from
[End+18]. Then we provide an extension of this presentation to infinitary λ-calculus, and to a
generic notion of rewriting system for non-wellfounded derivations.

1.1 First order infinitary rewriting

Fix a countable set V of variables. A first-order signature is a countable set Σ equipped with
an arity function ar : Σ → N; we fix such a signature. The set TΣ of first-order terms on this
signature can be defined inductively by the derivation rules:

x ∈ V
x ∈ TΣ

t1 ∈ TΣ . . . tar(c) ∈ TΣ

c(t1, . . . , tar(c)) ∈ TΣ (for each c ∈ Σ).

The set T∞
Σ of infinitary first-order terms on the signature Σ can then be defined by completing

TΣ with respect to the metric defined by d(s, t) := 2−(the smallest depth at which s and t differ), or
equivalently by treating the above rules coinductively [Bar93] (which we will denote by using
double inference bars).
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In this setting, an (infinitary) rewrite rule is a couple (p, q) where p ∈ TΣ and q ∈ T∞
Σ . An

infinitary term rewriting system (itrs) is a countable set of rewrite rules; we fix an itrs R.
Two terms s, t ∈ T∞

Σ are related by a rewrite step, denoted s −→ t, whenever there are a rule
(p, q) ∈ R, a (single-hole) context u[∗] and a substitution σ : V → T∞

Σ such that s = u[σ · p]
and t = u[σ · q] (where σ · p denotes the substitution of each x ∈ V by σ(x) in p).

A rewriting sequence of ordinal length γ is given by terms (sδ)δ≤γ together with rewrite
steps (sδ −→ sδ+1)δ<γ . Such a rewriting sequence is said to be strongly convergent if for all
limit ordinal δ ≤ γ, limϵ→δ d(sϵ, sϵ+1) = 0 and in addition, for all limit ordinal δ < γ, the steps
sϵ −→ sϵ+1 occur at depths tending to infinity when ϵ → δ [Ken+95].

Definition 1. We say that s −→∞ t when there is an ordinal γ such that s −→
γ

∞ t is derivable
in the following system of rules (wheres simple bars denote inductive inferences and double
bars denote coinductive inferences, i.e. non-wellfounded derivations are allowed provided each
infinite branch crosses infinitely often a double bar):

s⇝⇝⇝⇝
γ,n

s′ s′ −⇁
γ

∞ t
(split)

s −→
γ

∞ t

x ∈ V
(var)

x −⇁
γ

∞ x

∀1 ≤ i ≤ n, si −→γ
∞ ti

(liftc)
c(s1, . . . , sn) −⇁

γ
∞ c(t1, . . . , tn)

where s ⇝⇝⇝⇝
γ,n

s′ denotes any sequence s −→∗ s′1 −⇁
δ1

∞ t1 −→∗ s′2 −⇁
δ2

∞ . . . −⇁
δn

∞ tn −→∗ s′

such that ∀1 ≤ i ≤ n, δi < γ. (Notice that we are in fact defining two relations, namely −→
γ

∞

and −⇁
γ

∞, the latter one indicating that the former one occurs under a constructor.)

This coinductive presentation was introduced (with slightly different notations) by Endrullis
et al. [End+18], who prove that it is equivalent to the “traditional”, topology-based one. Indeed:

Theorem 2 ([End+18]). For s, t ∈ T∞
Σ , there is a strongly converging rewriting sequence from

s to t iff. s −→∞ t.

1.2 Infinitary λ-calculus

An identical path can be followed to present an infinitary λ-calculus. (Finite) λ-terms are the
elements of the set Λ defined by:

x ∈ V
x ∈ Λ

x ∈ V M ∈ Λ

λx.M ∈ Λ

M ∈ Λ N ∈ Λ

MN ∈ Λ

and the set Λ∞ of infinitary λ-terms can be defined either by metric completion [Ken+97] or by
treating these rules coinductively [EP13]. In both cases we work modulo α-equivalence (which
raises some subtleties, see [Kur+13] for a formal treatment.)

As usual, the reduction −→ of β-reduction is defined on Λ∞ by (λx.M)N −→ M [N/x] for
all M,N ∈ Λ∞ (where M [N/x] denotes the term obtained by substituting N to each free x in
M), as well as lifting to contexts. As above, we define:

Definition 3. For M,N ∈ Λ∞, we say that M −→∞ N when there is an ordinal γ such that
M −→

γ
∞ N is derivable with the rules (split), (var),

M −→
γ

∞ M ′

(liftλ)
λx.M −⇁

γ
∞ λx.M ′

and
M −→

γ
∞ M ′ N −→

γ
∞ N ′

(lift@)
MN −⇁

γ
∞ M ′N ′

.

Theorem 4. For M,N ∈ Λ∞, there is a strongly converging β-reduction sequence from M to
N iff. M −→∞ N .
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This can in fact be extended to all abc-infinitary λ-calculi from [Ken+97]. The corresponding
work (but the missing piece we intend to add) is presented in [Cer24; Cer25].

1.3 Rewriting non-wellfounded derivations

Consider the set D of all derivations obtained from a set of rules of one of the following shapes:

p1 . . . pk
(r)

c
or

p1 . . . pk
(r)

c

and some rewriting relation −→ on D. Just as we did in Definitions 1 and 3, we can define a
relation −→

γ
∞ on D by the rules (split) as well as:

(refl)
d −⇁

γ
∞ d

and
d1 −→

γ
∞ d′1 . . . dk −→

γ
∞ d′k

(liftr)
d −⇁

γ
∞ d′

where d (resp. d′) is a derivation concluded by a rule (r) as above, d1, . . . , dk (resp. d′1, . . . , d
′
k)

are the sub-derivations rooted at the premises of this rule, and (liftr) is coinductive whenever
(r) is. We say that d −→∞ d′ whenever there is γ such that d −→

γ
∞ d′.

Our presentations of first-order rewriting and β-reduction are instances of this construction.
Furthermore, as we did in Theorems 2 and 4, one can show that d −→∞ d′ iff. there is a strongly
convergent rewriting sequence from d to d′.

What remains to be investigated is whether this construction is compatible with validity
criteria, that is, global criteria used on top of non-wellfounded derivation systems to sort out
“incorrect” derivations, typically to avoid inconsistencies in non-wellfounded proof systems.
Our hope is that reasonable validity criteria on the rewritten derivations can be transported to
restrict the derivations defining −→∞ in such a way that −→∞ rewrites valid derivations into
valid derivations.

2 Compression lemmas

Two standard instances of the Compression lemma, which we would like to transport to the
coinductive setting we just presented, are the following:

Theorem 5 ([Ken+95]). Let R be a left-linear itrs, that is, no variable occurs twice in the
left component of a rule of R. Then for all s, t ∈ T∞

Σ , there is a strongly convergent rewriting
sequence from s to t iff. there is such a sequence of length at most ω.

Theorem 6 ([Ken+97]). For all M,N ∈ Λ∞, there is a strongly convergent β-reduction se-
quence from M to N iff. there is such a sequence of length at most ω.

2.1 Compressed rewriting sequences, coinductively

Since the “length” of a derivation d −→∞ d′ is not defined, we first need to introduce a
coinductive counterpart of strongly converging rewriting sequences of length ω, extending again
a definition from [End+18].

Definition 7. With the notation of Section 1.3, a relation −→ω is defined on D by:

d −→∗ e e −⇁ω d′
(splitω)

d −→ω d′
(reflω)

d −⇁ω d

d1 −→ω d′1 . . . dk −→ω d′k
(liftωr )

d −⇁ω d′

3
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Lemma 8. For d, d′ ∈ D, there is a strongly convergent rewriting sequence of length at most
ω from d to d′ iff. d −→ω d′.

In particular, this construction defines relations −→ω on T∞
Σ and Λ∞, capturing exactly

strongly convergent sequences of rewriting steps through R and β-reductions, respectively.
A relation −→∞ defined as in Section 1.3 has the (coinductive) compression property if any

derivation of d −→∞ d′ can be turned into a derivation of d −→ω d′, that is, if −→∞ = −→ω.
In particular for the relation −→∞ on T∞

Σ , the compression property can be obtained by
translating s −→∞ s′ as a strongly convergent rewriting sequence (Theorem 2), compressing
it (Theorem 5), and translating the compressed sequence again (Lemma 8). Similarly, the
compression property in Λ∞ is a consequence of Theorems 4 and 6 and Lemma 8. However,
we would like to build a direct, explicit proof, without resorting to ordinal-based infinitary
rewriting.

2.2 A general proof structure

With the general notations from Section 1.3, consider the following properties:

Pγ,n : For all d, d′ ∈ D, if d ⇝⇝⇝⇝
γ,n

d′ then there are d′′ ∈ D and an ordinal δ < γ such

that d −→∗ d′′ −⇁
δ

∞∗ d′.

Q : For any ordinal δ, if ∀m ∈ N, Pδ,m holds, then for any reduction d′n −⇁
δ

∞ e′n −→
d′ there is a d′′n ∈ D such that d′n −→∗ d′′n −⇁

δ

∞ d′.

Theorem 9. If Q holds then −→∞ has the compression property.

Lemma 10. If d −→
γ

∞ e, then for any ordinal ϵ ≥ γ there is also a derivation of d −→
ϵ

∞ e.

Lemma 11. If d −→
γ

∞ e and e −→
δ

∞ f , then d −→
ϵ

∞ f for ϵ := max(γ + 1, δ).

Lemma 12. If Q holds then ∀γ, ∀n ∈ N, Pγ,n.

Proof. We proceed by well-founded induction over γ, and we suppose that ∀δ < γ, ∀m ∈
N, Pδ,m. Then we proceed by induction on n ∈ N.

If n = 0 the result is immediate since d ⇝⇝⇝⇝
γ,0

d′ means that d −→∗ d′. Otherwise, suppose

that d ⇝⇝⇝⇝
γ,n

d′. This can be decomposed as: d ⇝⇝⇝⇝
γ,n−1

d′n −⇁
δn

∞ e′n −→∗ d′, with δn < γ. Using

Q and the induction hypothesis (i.e. the fact that ∀m ∈ N, Pδn,m holds), there is a d′′n ∈ D
such that d ⇝⇝⇝⇝

γ,n−1
d′n −→∗ d′′n −⇁

δn

∞ d′. Notice that d ⇝⇝⇝⇝
γ,n−1

d′n −→∗ d′′n can be reformulated

as d ⇝⇝⇝⇝
γ,n−1

d′′n, whence we can apply the induction hypothesis on n − 1 and obtain a term d′′

and an ordinal δ′ < γ such that d −→∗ d′′ −⇁
δ′

∞∗ d′′n −⇁
δn

∞ d′, which can be simplified as

d −→∗ d′′ −⇁
δ

∞∗ d′ with δ := max(δ′, δn) < γ thanks to Lemma 10.

Proof of Theorem 9. Suppose Q. We start with a derivation of d −→
γ

∞ e. It can only be
obtained through the rule (split), hence d⇝⇝⇝⇝

γ,n
d′ −⇁

γ
∞ e. Then:

1. We apply Lemma 12 to d ⇝⇝⇝⇝
γ,n

d′, and obtain d −→∗ d′′ −⇁
δ

∞∗ d′ −⇁
γ

∞ e for some
d′′ ∈ D and some ordinal δ < γ.

2. We apply the transitivity Lemma 11, and obtain d −→∗ d′′ −⇁
γ

∞ e.

3. We proceed coinductively in d′′ −⇁
γ

∞ e, building d −→∗ d′′ −⇁ω e. We conclude with
the rule (splitω).
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Our proof departs from the one presented in the Coq formalisation of [End+18] in three
directions: first, as already stressed, it is parametric in the kind of rewriting we consider
(whereas their proof only covers first-order rewriting); second, our definition of −→∞ features
ordinal annotations to constrain the use of coinduction, whereas their definition relies on mixing
least and a greatest fixed points, which results in different treatments of the inductive part of the
proof; third, our proof provides an explicit coinductive procedure for compressing derivations of
infinitary rewritings. This suggests that compression may be computable, in a sense and under
conditions that are yet to be made precise (which we leave for further work).

2.3 Back to our main examples

In the property Q, we isolated the precise step where the specific properties of the considered
rewriting system come into play. Let us come back to the two previously described examples,
that is left-linear itrs and infinitary λ-calculus, and instantiate Theorem 9.

Lemma 13. If R is a left-linear itrs, then the relation −→ it defines on T∞
Σ satisfies the

property Q.

Proof sketch. Let δ be an ordinal such that ∀m ∈ N, Pδ,m holds, and consider a derivation
of s′n −⇁

δ

∞ t′n −→ s′. The last step can be described as p[σ] −→ q[σ] for a substitution σ.
The key observation is that since p is finite, we can analyse s′n −⇁

δ

∞ t′n inductively (using the
hypothesis on δ when we meet ⇝⇝⇝⇝

δ,m
) and produce, on one hand a finite reduction s′n −→∗ p[τ ]

for some substitution τ , on the other hand derivations τ(x) −⇁
δ

∞ σ(x) for each x ∈ V. This
allows to conclude: s′n −→∗ p[τ ] −→ q[τ ] −⇁

δ

∞ q[σ]. The left-linearity assumption is used when
we define τ : if a variable x appeared several times in p, then we might define τ(x) in several
conflicting ways.

Corollary 14. If R is a left-linear itrs, then the relation −→∞ it defines on T∞
Σ has the

compression property.

The same holds in the infinitary λ-calculus:

Lemma 15. The relation −→ defined on Λ∞ satisfies the property Q.

Proof sketch. Let δ be an ordinal such that ∀m ∈ N, Pδ,m holds, and consider a derivation
of M ′

n −⇁
δ

∞ N ′
n −→ M ′. If the last β-reduction step occurs at top-level, i.e. N ′

n = (λx.P ′)Q′

and M ′ = P ′[Q′/x], then by analysing M ′
n −⇁

δ

∞ N ′
n and using the hypothesis Pδ,m we are

able to identify terms P,Q such that M ′
n −→∗ (λx.P )Q −→ P [Q/x], as well as P −⇁

δ

∞ P ′ and
Q −⇁

δ

∞ Q′. For the last two hypotheses we are able to deduce that P [Q/X] −⇁
δ

∞ P ′[Q′/x] =
N ′

n. In general the last redex occurs in context, i.e. N ′
n = C[(λx.P ′)Q′], and we have to

scan this context inductively, collecting finite reductions P0 −→∗ P1 −→∗ . . . −→∗ PK as in
Lemma 13.

Corollary 16. The relation −→ defined on Λ∞ has the compression property.

In particular, notice that this justifies the coinductive definition of infinitary β-reduction as
it is usually written, that is, using −→ω instead of the rather impractical −→∞ [EP13; Cza20;
Cer24].
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