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Abstract
Infinitary rewriting, i.e. rewriting featuring possibly infinite terms and sequences of reduction, is
a convenient framework for describing the dynamics of non-terminating but productive rewriting
systems. In its original definition based on metric convergence of ordinal-indexed sequences of
rewriting steps, a highly desirable property of an infinitary rewriting system is Compression, i.e. the
fact that rewriting sequences of arbitrary ordinal length can always be ‘compressed’ to equivalent
sequences of length at most ω.

Since then, the standard examples of infinitary rewriting systems have been given another
equivalent presentation based on coinduction. In this work, we extend this presentation to the
rewriting of arbitrary non-wellfounded derivations and we investigate compression in this setting.
We design a generic proof of compression, relying on a characterisation factorising most of the proof
and identifying the key property a compressible infinitary rewriting system should enjoy.

As running examples, we discuss first-order rewriting and infinitary λ-calculi. For the latter,
compression can in particular be seen as a justification of its coinductive presentation in the literature.
As a more advanced example, we also address compression of cut-elimination sequences in the non-
wellfounded proof system µMALL∞ for multiplicative-additive linear logics with fixed points, which
is a key lemma of several cut-elimination results for similar proof systems.
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1 Introduction

Infinite objects and processes pervade the study of computing, in various ways. It is indeed
well-known that considering non-terminating computations potentially resulting in undefined
results is fundamental in the development of any universal model of computation such as
Turing machines, recursive functions or the λ-calculus. Non-terminating computations are
also crucial in the study of productive processes, for instance for concrete, reactive programs:
in such a setting, programs may run forever but one requires either a good behaviour
with respect to the environment (fairness) or that arbitrary approximations of a result are
computed in finite time (productivity).

In the presence of such non-terminating behaviours, it is natural to consider ideal
objects representing what is computed at the limit of the process (typically constructed
via a completion of the set of finite processes with respect to some algebraic or topological
structure). Standard examples include infinite streams obtained by completing finite words,
or Böhm trees resulting from the ideal completion of λ-terms extended with an undefined
value [4], that can be seen as a ‘syntactic description of the semantics’ of a program. Once
such limit objects enter the picture, it makes sense to give them a first-class status and to
allow computation to be performed directly on infinite objects; in particular in a functional
setting one wants to ensure compositionality, i.e. that the (possibly infinite) result of a
computation should in turn be applicable to some arguments, giving rise to a new (possibly
infinite) computation.

This motivated the introduction and the study of infinitary rewriting in the 1990s, in
particular by the Dutch school of rewriting: in an infinitary rewriting system the terms may
be infinite (they result from the metric completion of usual, finite terms) and the sequences
of rewriting steps may be indexed by arbitrary ordinals. This idea was successfully applied
to first-order rewriting [11, 16], to the λ-calculus [17], to higher-order rewriting [19], etc.
In particular, the limit objects one was interested in are not any more floating somewhere
between syntax and semantics: they become plain syntactic objects (typically the normal
forms of the infinitary rewriting).

The Compression property. This ‘traditional’ line of work on infinitary rewriting is based on
ordinal-indexed strongly Cauchy convergent rewriting sequences (i.e. rewriting sequences that
do not only converge in the topological sense, but such that in addition the computation steps
occur deeper and deeper in the rewritten objects). A key property of such rewriting systems
is Compression, that is, the fact that rewriting sequences of arbitrary ordinal length can be
compressed to sequences of length ω. For example consider the first-order rewriting rules
a −→1 f(g(a)) and g(f(x)) −→2 f(x), then the (strongly converging) rewriting sequence

a −→1 f(g(a)) −→∞
1 f(g(f(g(. . . )))) −→2 f(f(g(. . . ))) −→∞

2 f(f(f(. . . )))

is of ordinal length ω · 2 but can be compressed by interleaving the rewriting steps:

a −→1 f(g(a)) −→1 f(g(f(g(a)))) −→2 f(f(g(a))) −→∞
1,2 f(f(f(. . . ))).

This example illustrates the key benefit of Compression: in a strongly converging rewriting
sequence of length ω, finite approximations of the limit are computed in finite time, which
is clearly not the case with sequences of arbitrary ordinal length (in the example above, it
takes ω + 1 steps to produce the two outermost f).

This ‘approximation’ or ‘continuity’ property enjoyed by rewriting sequences of length ω

is at the heart of most practical motivations for the use of infinitary rewriting. For example,
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in the (001 variant of the) infinitary λ-calculus, it is the reason why infinitary rewriting
allows to provide an easy proof of the continuous approximation theorem [7], a result that is
of paramount importance for the classical study of the λ-calculus [5].

To the best of our knowledge, Compression lemmas have been proved for three kinds of
term rewriting systems:

left-linear first-order rewriting systems [16, 18, 21, 12],
infinitary λ-calculi [17, 3],
fully-extended, left-linear higher-order rewriting systems [19].

The coinductive turn. As an alternative to the traditional definition of infinite objects via
ideal or metric completion, a more recent and very fruitful line of work is based on the use of
coinduction: the metric completion of any algebraic type (e.g. a type of terms) can indeed be
described as the corresponding coalgebraic type [6]. This coinductive reformulation has been
in particular extensively conducted in the setting of infinitary λ-calculi [15, 13, 9, 7] and has
noticeably allowed for a clean presentation of α-equivalence for infinitary λ-terms [20, 8].

Although this coinductive redefinition of infinitary terms is now very standard, finding
a coinductive counterpart to strongly converging rewriting sequences turns out to be less
easy. A first answer has been proposed for an infinitary λ-calculus [13], but in a presentation
corresponding to sequences of length ω, and a generic presentation of coinductive infinitary
rewriting was designed only recently by Endrullis, Hansen, Hendriks, Polonsky and Silva
[12], even though solely for first-order rewriting. The first contribution of this paper is to
propose a framework for describing arbitrary non-wellfounded objects and rewriting systems
acting on such objects, and to extend the correspondence between topology-based and
coinduction-based rewriting to this generic framework.

Infinitary rewriting for non-wellfounded proof theory. On the other side of the Curry-
Howard correspondence between programs and proofs, infinite objects and their dynamics
are also the subject of a blooming line of work on non-wellfounded proof systems (following
[22, 26]). In such systems, proof derivations are potentially infinite trees subject to a
correctness criterion ensuring the productivity of the proof (and hence its correctness). Such
systems are used in particular for modal logics (e.g. an infinite proof can account for the
unfolding of a ‘forever’ temporal modality) or for logics extended with fixed point operators
(here an infinite proof typically has a greatest fixed point as a conclusion, or a least fixed
point as a hypothesis). In practice such systems (and in particular their circular or cyclic
fragments, whose proof derivations are regular) are particularly suited to proof search [28].

As usual in proof theory, good properties of a non-wellfounded proof system (typically
correction, but also more practically the good behaviour of proof search procedures) are
ensured by cut-elimination, i.e. the fact that the cut rule is admissible in the system
[1, 2, 10, 14, 23]. A standard way to proove this property is to show that each application of
the cut rule can be ‘moved upwards’ in the proof derivation: repeated applications of this
fact produce finite approximations of a limit cut-free derivation. This can be presented in the
form of a sequence of rewriting steps (acting on the proof derivations) of length ω. However,
some other cut-elimination results involve rewriting sequences of arbitrary ordinal length
as they rely on a translation of formulæ and proof derivations from one logic to another,
where single cut-elimination steps are typically translated into sequences of ordinal length
[23]. In these cases the result crucially relies on a Compression lemma ensuring that finite
approximations of a cut-free derivation are produced in finitely many steps.

Unfortunately, this rewriting of non-wellfounded proofs does not really fit the usual
presentation of infinitary rewriting, which had to be partially adapted specifically for this
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prupose [2, 23]. On the contrary, the framework we introduce in this paper encompasses it,
and consequently constitutes a first coinductive treatment of such a rewriting: as such, it is
also a first step towards a fully coinductive cut-elimination procedure for the non-wellfounded
proof systems we are considering.

Contributions and organisation of the paper. In Section 2, we recall the basics of infinitary
rewriting in the case of first-order term rewriting and the λ-calculus, as well as for a notion
of arbitrary non-wellfounded derivations that we introduce and that encompasses all the use
cases mentioned so far. In Section 3, we identify a characterisation of Compression factorising
most of the proofs of the property and identifying the key features a compressible infinitary
rewriting system should enjoy; we apply this to first-order coinductive rewriting and to the
λ-calculus. Finally, in Section 4 we recall the non-wellfounded proof system µMALL∞ for
multiplicative-additive linear logic with fixed points, and we show that compression also holds
for the rewriting induced by cut-elimination on this proof system . The choice of µMALL∞

is justified by the fact that Compression in this setting is a cornerstone of cut-elimination
for µLL∞ (the non-wellfounded proof system for linear logic with fixed points), in which
non-wellfounded proof systems for a whole range of logics (intuitionnistic, classical, temporal,
etc.) can be embedded. Finally, we recap and suggest directions for future work in Section 5.

2 Infinitary rewriting: From strong convergence to coinduction

In this section, we first recall how infinitary first-order rewriting based on strong Cauchy
convergence [16] can be reformulated using coinduction, as exposed in [12], and we adapt
this presentation to connect the presentations of infinitary λ-calculi based on convergence
[17] and on coinduction [13]. Finally we provide a generic framework for infinitary rewriting
of non-wellfounded objects, extending again the correspondence between the two views on
infinitary rewriting.

2.1 A first example: First-order rewriting
Fix a countable set V of variables. A first-order signature is given by a countable set Σ of
symbols endowed with an arity function ar : Σ → N; we fix such a signature.

▶ Definition 1. The set TΣ of all finite first-order terms on the signature Σ is defined by
the following set of inductive rules1:

x ∈ TΣ

s1 ∈ TΣ . . . sar(c) ∈ TΣ

c(s1, . . . , sar(c)) ∈ TΣ .

The truncation of a term s ∈ TΣ at depth d ∈ N is defined inductively by

⌊s⌋0 := ∗ ⌊x⌋d+1 := x ⌊c(s1, . . . , sk)⌋d+1 := c(⌊s1⌋d , . . . , ⌊sk⌋d),

where ∗ is a a fresh nullary symbol. The set TΣ is equipped with a metric d defined by
d(s, t) := inf

{
2−d

∣∣ ⌊s⌋d = ⌊t⌋d

}
.

▶ Definition 2. The set T∞
Σ of all (infinitary) first-order terms on the signature Σ is the

metric closure of TΣ wrt. d.

1 Whenever we give such a set of rules where a rule features a variable x, a constructor c, or more generally
an element of an external set, we assume that there is one rule for each element of this set.
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▶ Lemma 3 ([6, Proposition 3.1]). Equivalently, T∞
Σ is the set defined by treating the rules

of Definition 1 coinductively.
In short, TΣ := µX.FX and T∞

Σ := νX.FX where FX := V +
∐

c∈Σ Xar(c). The metric
completion is carried by the canonical (co)algebra morphism TΣ → T∞

Σ .
We call substitution any function V → T∞

Σ . Given a substitution σ and a term t, we denote
by σ ·t the term defined coinductively by σ ·x := σ(x) and σ ·c(s1, . . . , sk) := c(σ ·s1, . . . , σ ·sk).
▶ Definition 4. A (first-order) rewrite rule is a pair (l, r) ∈ TΣ × T∞

Σ such that (i) l is not
a variable, (ii) all variables occurring in r also occur in l. An infinitary (first-order) term
rewriting system, itrs in short, is a set of rewrite rules. An itrs R defines a rewriting
relation −→ on T∞

Σ by the following set of inductive rules:
(l, r) ∈ R σ : V → T∞

Σ

σ · l −→0 σ · r

si −→d s′
i 1 ≤ i ≤ ar(c)

c(s1, . . . , sar(c)) −→d+1 c(s1, . . . , s′
i, . . . , sar(c))

where, as syntactic sugar, −→ may be annotated with integers indicating the depth at which
the rewriting step occurs.

From now on we fix an itrs R.
▶ Definition 5. Given an ordinal γ, a rewriting sequence of length γ from s0 to sγ is
the data of terms (sδ)δ≤γ together with rewriting steps (sδ −→dδ

sδ+1)δ<γ. It is strongly
converging if for all limit ordinal γ′ ≤ γ, (i) limδ→γ′ sδ = sγ′ and (ii) limδ→γ′ dδ = ∞. We
write s0 −→∞ sγ whenever there is a strongly converging rewriting sequence (of any ordinal
length) from s0 to sγ .

We now introduce an alternative definition using coinduction. In general, the sets of rules
we introduce to do so contain both inductive and coinductive rules; to distinguish them, we
draw double rules for the latter. In such a system, non-wellfounded derivations are allowed
provided any infinite branch crosses infinitely many coinductive rules.
▶ Theorem 6 ([12, Theorem 5.2]). Equivalently, −→∞ is the union of all relations −→

γ
∞

(for ordinals γ < ω1) defined by the rule:
s⇝⇝⇝⇝

γ,m
s′ s′ −⇁

γ
∞ t

(split)
s −→

γ
∞ t

using auxiliary relations −⇁
γ

∞ defined by the rules:

(liftx)
x −⇁

γ
∞ x

s1 −→
γ

∞ s′
1 . . . sar(c) −→

γ
∞ s′

ar(c)
(liftc)

c(s1, . . . , sar(c)) −⇁
γ

∞ c(s′
1, . . . , s′

ar(c))

and where s⇝⇝⇝⇝
γ,m

s′ denotes any sequence

s −→∗ s′
1 −⇁

δ1

∞ t1 −→∗ s′
2 −⇁

δ2

∞ . . . −⇁
δm

∞ tm −→∗ s′

such that ∀1 ≤ i ≤ m, δi < γ.
▶ Remark 7. We marginally depart from the original definition [12, Definition 4.2] by
annotating the relations with ordinals and ensuring that these annotating ordinals decrease
along certain branches of the derivations, whereas the original authors explicitly add the
constraint that no branch should cross infinitely many ⇝⇝⇝⇝. The two presentations are
clearly equivalent.

We also replace their generic rule (id), which adds s −⇁
γ

∞ s as an axiom, by its version
(liftx) restricted to variables. This is enough for the defined relations to be reflexive (see
Lemma 23(2)).
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2.2 A second example: Infinitary λ-Calculi

The construction of infinitary λ-terms follows the same path, let us summarise it. The set Λ
of finite λ-terms is defined inductively by:

Λ ∋ s, t, . . . := x | λx.s | st (x ∈ V).

Fix a, b, c ∈ {0, 1}3. The abc-truncation of s ∈ Λ at depth d ∈ N is defined inductively by
⌊s⌋abc

0 := ∗, and by ⌊x⌋abc
d+1 := x, ⌊λx.s⌋abc

d+1 := λx. ⌊s⌋abc
d+1−a and ⌊st⌋abc

d+1 := ⌊s⌋abc
d+1−b ⌊t⌋abc

d+1−c.
For instance, taking abc = 001 means that we consider that one goes ‘deeper’ in a λ-term
only when entering the argument of an application. We equip Λ with a metric dabc defined
by dabc(s, t) := inf

{
2−d

∣∣ ⌊s⌋abc
d = ⌊t⌋abc

d

}
. The set Λabc of abc-infinitary λ-terms is defined

as the metric completion of Λ wrt. dabc.
Equivalently, Λabc can be defined by the following set of rules:

x ∈ Λabc

▷a s ∈ Λabc

λx.s ∈ Λabc

▷b s ∈ Λabc ▷c t ∈ Λabc

st ∈ Λabc

S (▷0)
▷0 S

S
(▷1)

▷1 S
(1)

where S stands for any statement. In short, using fixed points again, Λ := µX.F abc(X, X)
and Λabc := νX1.µX0.F abc(X0, X1) where F abc(X0, X1) := V + V × Xa + Xb × Xc.

▶ Remark 8. This summary is in fact a lie, as we carefully omitted to mention any quotient
by α-equivalence (i.e. by renaming of bound variables). A rigorous construction can be found
in [20, 8]; it consists in working in the category of nominal sets and defining F abc(X0, X1) :=
V + [V]Xa + Xb × Xc, where [V]− is a functor encoding ‘nameless’ abstraction. We do not
detail these technicalities, as all the following work could be straightforwardly transported
from the naive presentation above to the rigorous one.

▶ Notation 9. We denote by s[t/x] the λ-term obtained by substituting all free occurrences
of x with t in s, in a capture-avoiding manner. Formally, this is defined by coinduction on
α-equivalence classes of λ-terms (see again [8]).

▶ Definition 10. β-reduction is the relation on Λabc defined inductively by:

(λx.s)t −→0 s[t/x]
u −→d u′

λx.u −→d+a λx.u′
u −→d u′

uv −→d+b u′v

v −→d v′

uv −→d+c uv′

where again we sometimes annotate −→ with the depth at which the rewriting step occurs.
As in Definition 5, we write s −→∞ t whenever there is a strongly converging β-reduction

sequence from s to t.

As in Theorem 6 this topological presentation can be turned into a coinductive one. This
is another particular case of Theorem 19, to be stated in the next section.

▶ Theorem 11. Equivalently, −→∞ is the union of all relations −⇁
γ

∞ (for ordinals γ <

ω1) defined by the rules (split) and (liftx) from Theorem 6, the rules (▷0) and (▷1) from
Equation (1), as well as the following rules:

▷a u −→
γ

∞ u′

(liftλ)
λx.u −⇁

γ
∞ λx.u′

▷b u −→
γ

∞ u′ ▷c v −→
γ

∞ v′

(lift@)
uv −⇁

γ
∞ u′v′.



R. Cerda and A. Saurin 7

2.3 Infinitary rewriting of arbitrary non-wellfounded derivations
We will now introduce a description of rewriting for arbitrary non-wellfounded derivations.
To build the latter, we first fix a set S of statements. It is typically an inductively defined
set using the singleton type, one or more alphabets, as well as tuples, lists, multisets, etc.
For instance one could consider the set of two-sided sequents in a given logic, encoded as the
set of pairs of lists of formulæ.

▶ Definition 12. A derivation rule (r) is given by (i) its arity ar(r) ∈ N, (ii) a partial function
r : Sar(r) ⇀ S mapping its premisses to its conclusion, (iii) a map coindr : [1, k] → {0, 1}
indicating the (co)inductive behaviour of each premiss. It is represented as follows:

S1 . . . Sar(r)
(r)

r(S1, . . . , Sar(r))
(2)

where the dashed line under Si represents a full line whenever coindr(i) = 1, and an absence
of line otherwise. (When we apply such a rule r to some arguments we implicitly suppose
that they belong to its domain of definition.)

We denote by DT∞
D the set of all (non-wellfounded) derivation trees generated by a family

D of derivation rules such that all infinite branches cross infinitely many double lines ( i.e.
coinductive premisses).

▶ Examples 13. 1. Pre-proofs in your favourite non-wellfounded proof system, e.g. for some
logics with fixed points, can be presented as an instance of this system (see Section 4.1 for
a detailed presentation of the non-wellfounded system µMALL∞ for multiplicative-additive
linear logics with fixed points).

2. The set T∞
Σ of first-order terms on the signature Σ can be seen as the derivation trees gen-

erated by S := {•} and DΣ :=
{

Varx : S0 → S
∣∣ x ∈ V

}
∪

{
Consc : Sar(c) → S

∣∣ c ∈ Σ
}

,
together with coindConsc(i) := 1 for all c and i.

3. Similarly, abc-infinitary λ-terms can be seen as the derivation trees generated by S :=
{•} and Dabc

Λ :=
{

Varx : S0 → S
∣∣ x ∈ V

}
∪ {Absx : S → S | x ∈ V} ∪

{
App : S2 → S

}
,

together with coindAbsx(1) := a, coindApp(1) := b and coindApp(2) := c.

▶ Remark 14. In this formalism the inductive or coinductive behaviour is not a property
of the rules, but of each of their premisses. We could however turn our presentation into a
more traditional one, by turning any rule (r) as in Equation (2) into:

▷coindr(1) S1 . . . ▷coindr(ar(r)) Sar(r)

r(S1, . . . , Sar(r))

and adding the rules (▷0) and (▷1) from Equation (1) to the system. This is exactly what we
did when we defined Λabc in Equation (1).

▶ Notation 15. By abuse of notation, we write s = r(s1, . . . , sk) to express that (i) the
last rule of s is (r), so that there are statements S1, . . . , Sk ∈ S such that s has conclusion
r(S1, . . . , Sk), (ii) each derivation si has conclusion Si and is the subtree rooted at the ith
premiss of the concluding (r).

▶ Remark 16. Using this notation, a more formal definition of DT∞
D can be given by

DT∞
D := νX1.µX0.

∐
r∈D

r
(
Xcoindr(1), . . . , Xcoindr(ar(r))

)
.

This construction can also be performed in richer categories than the category of sets, e.g.
the category of nominal sets, as already suggested in Remark 8.
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In the following, we fix a set D as in Definition 12.

▶ Definition 17. For each S ∈ S, we define a nullary rule truncS : S0 → S, () 7→ S, i.e. a
rule adding S as an axiom. The truncation at depth d ∈ N of a derivation tree s ∈ DT∞

D
with conclusion S ∈ S is defined inductively by

⌊s⌋0 := truncS() ⌊r(s1, . . . , sk)⌋d+1 := r(⌊s1⌋d+1−coindr(1) , . . . , ⌊sk⌋d+1−coindr(k)).

The set DT∞
D is equipped with a metric d defined by d(s, t) := inf

{
2−d

∣∣ ⌊s⌋d = ⌊t⌋d

}
.

▶ Definition 18. A set −→0 ⊆ DT∞
D × DT∞

D of zero steps generates a relation −→ by the
following set of inductive rules:

si −→d s′
i 1 ≤ i ≤ ar(r)

r(s1, . . . , si, . . . , sar(r)) −→d+coindr(i) r(s1, . . . , s′
i, . . . , sar(r))

where, as in Definition 4, we sometimes annotate −→ with the depth at which the rewriting
step occurs.

As in Definition 5, we write s −→∞ t whenever there is a strongly converging β-reduction
sequence from s to t.

Observe that the constructions of first-order rewriting in a given itrs (Definition 4) and
of β-reduction (Definition 10) are particular cases of this definition applied to the derivations
generated by the sets of rules DΣ and Dabc

Λ from Examples 13, respectively. Theorems 6
and 11, which provided a coinductive presentation of strongly converging rewriting sequences
in these particular settings, can also be extended to the general framework we introduced.

▶ Theorem 19. Equivalently, −→∞ is the union of all relations −⇁
γ

∞ (for ordinals γ < ω1)
defined by the rule (split) from Theorem 6, as well as, for each r ∈ D, a rule

s1 −→
γ

∞ s′
1 . . . sar(r) −→

γ
∞ s′

ar(r)
(liftr)

r(s1, . . . , sar(r)) −⇁
γ

∞ r(s′
1, . . . , s′

ar(r))

whose ith premiss is coinductive iff coindr(i) = 1.

3 A generic Compression lemma

As already exposed, the Compression lemma is a result about several infinitary rewriting
systems stating that strongly convergent rewriting sequences of arbitrary ordinal length can
be ‘compressed’ into sequences of length ω with same source and target. The goal of this
section is to prove once and for all what is independent from the rewriting system in the
Compression lemma, in the general coinductive framework we just introduced. To do so, we
first provide a coinductive counterpart to strongly convergent sequences of length ω, then we
prove the main result of the paper (Theorem 24) giving a characterisation of Compression
containing ‘just what needs to be adapted to each system’. We conclude by applying the
theorem to our running examples, first-order rewriting and λ-calculus.

We fix again sets S and D as in Definition 12, and a rewriting relation −→ on DT∞
D as

in Definition 18.
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3.1 Compressed rewriting sequences coinductively
In Theorem 19, we gave a coinductive presentation of arbitrary strongly converging rewriting
sequences, but this presentation does not include a characterisation of the ordinal length of
a sequence. As a consequence, we also need to give a coinductive presentation of strongly
converging rewriting sequences of length at most ω. This is quite straightforward, and is
again an adaption of [12, Equation 9.3].

▶ Definition 20. The relation −→ω of compressed infinitary rewriting is defined on DT∞
D

by −→ω := −→
0

∞, i.e. it is defined by the following rules (splitω) and, for each r ∈ D, (liftω
r ):

s −→∗ s′ s′ −⇁ω t (splitω)
s −→ω t

s1 −→ω s′
1 . . . sar(r) −→ω s′

ar(r)
(liftω

r )
r(s1, . . . , sar(r)) −⇁ω r(s′

1, . . . , s′
ar(r))

where, as in Definition 12, the ith premiss of (liftω
r ) is coinductive iff coindr(i) = 1.

▶ Lemma 21. For s, t ∈ DT∞
D , s −→ω t iff there is a strongly converging sequence of length

at most ω from s to t.

▶ Definition 22. We say that −→ has the Compression property if −→∞ = −→ω.

3.2 A characterisation of Compression
We reach the core technical content of this paper, where we provide a characterisation of
Compression for any rewriting system presented in the generic framework introduced in the
previous section. Before doing so, let us first make some useful observations.

▶ Lemma 23.
1. If s −⇁

γ
∞ t and δ ≥ γ, then s −⇁

δ

∞ t.
2. The relations −⇁

γ
∞ and −⇁∞ are reflexive.

3. If s −⇁
γ

∞ t −⇁
δ

∞ u, then s −⇁
ϵ

∞ u for ϵ := max(γ + 1, δ).
4. As a consequence, the relation −⇁∞ is transitive.
5. The same facts hold with −→∞ (and −→

γ
∞, etc.) instead of −⇁∞ (and −⇁

γ
∞, etc.).

6. The inclusions −⇁
δ

∞ ⊂ −→
δ

∞ hold, hence also −⇁∞ ⊂ −→∞.

This leads us to the main theorem of this article.

▶ Theorem 24. We define the following properties of the rewriting relation −→:

Pδ : ∀n ∈ N, ∀s, s′ ∈ DT∞
D , s⇝⇝⇝⇝

δ,n
s′ ⇒ ∃s′′ ∈ DT∞

D , ∃ϵ < δ, s −→∗ s′′ −⇁
ϵ

∞∗ s′,

Q : ∀δ, ∀s, t, t′ ∈ DT∞
D , Pδ ∧ s −→

δ

∞ t −→ t′ ⇒ ∃s′ ∈ DT∞
D , s −→∗ s′ −→

δ

∞ t′.

Then −→ has the Compression property iff the property Q holds.

The property Q seems quite convoluted at first sight, but is in fact not very surprising: it
essentially means that given a certain induction hypothesis (namely Pδ), a rewriting sequence
of ordinal length δ + 1 (for an arbitrary infinite ordinal δ) can be turned into an equivalent
sequence of length p + δ = δ (for some p ∈ N). When one tries to prove a Compression
lemma in a traditional way, using a transfinite induction and topological arguments, the key
case of the proof is exactly the same, namely the case of a successor ordinal [27, § 12.7].

We now give the proof of Theorem 24, which starts with the following key lemmas.
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▶ Lemma 25. For all ordinal δ such that Pδ holds and for all derivation trees s, t ∈ DT∞
D ,

if s −→
δ

∞ t then there exists s′ ∈ DT∞
D such that s −→∗ s′ −⇁

δ

∞ t.

Proof. The derivation of s −→
δ

∞ t ends with the rule (split), with premisses s⇝⇝⇝⇝
δ,n

t′ and
t′ −⇁

δ

∞ t (for some n ∈ N and t′ ∈ DT∞
D ). By Pδ there are s′ ∈ DT∞

D and ϵ < δ such that
s −→∗ s′ −⇁

ϵ
∞∗ t′, and we can conclude by Lemma 23(3). ◀

▶ Lemma 26. If Q holds then Pγ holds for all ordinal γ.

Proof. Instead of Q, we suppose the following property Q′:

∀δ, ∀s, t, t′ ∈ DT∞
D , Pδ ∧ s −⇁

δ

∞ t −→ t′ ⇒ ∃s′ ∈ DT∞
D , s −→∗ s′ −⇁

δ

∞ t′.

The only difference with the definition of Q in Theorem 24 is that the two occurrences of
−→

δ

∞ have been replaced with −⇁
δ

∞. This is straightforwardly weaker by Lemma 23(6) (for
the first occurrence) and Lemma 25 (for the second one).

Then we proceed by well-founded induction on γ, i.e. we suppose that Pδ holds for all
ordinal δ < γ and we prove that Pγ holds, that is to say:

∀m ∈ N, ∀s, s′ ∈ DT∞
D , s⇝⇝⇝⇝

γ,m
s′ ⇒ ∃s′′ ∈ DT∞

D , ∃δ < γ, s −→∗ s′′ −⇁
δ

∞∗ s′.

We do this by induction on m ∈ N. Take s, s′ ∈ DT∞
D such that s⇝⇝⇝⇝

γ,m
s′. We want to build

s′′ ∈ DT∞
D such that ∃δ < γ, s −→∗ s′′ −⇁

δ

∞∗ s′. If m = 0 the result is immediate: observe
that s ⇝⇝⇝⇝

γ,0
s′ means that s −→∗ s′ and use Lemma 23(2). Otherwise, s ⇝⇝⇝⇝

γ,m
s′ can be

decomposed as follows:

s ⇝⇝⇝⇝
γ,m−1

s′
m −⇁

δm

∞ t′
m −→∗ s′,

with δm < γ. By iterated applications of Q′, using the induction hypothesis on δm (i.e. the
fact that Pδm holds), there is an s′′

m ∈ DT∞
D such that:

s ⇝⇝⇝⇝
γ,m−1

s′
m −→∗ s′′

m −⇁
δm

∞∗ s′.

Notice that s ⇝⇝⇝⇝
γ,m−1

s′
m −→∗ s′′

m can be reformulated as s ⇝⇝⇝⇝
γ,m−1

s′′
m, whence we can apply

the induction hypothesis on m − 1 and obtain a term s′′ and an ordinal ϵ < γ such that:

s −→∗ s′′ −⇁
ϵ

∞∗ s′′
n −⇁

δn

∞ s′,

which can be simplified as

s −→∗ s′′ −⇁
δ

∞∗ s′

with δ := max(ϵ, δn) < γ, thanks to Lemma 23(1). ◀

Proof of Theorem 24. Assume Q holds. We design a coinductive procedure using a deriva-
tion of s −→∞ t to produce a derivation of s −→ω t. We start with a derivation of s −→

γ
∞ t.

It can only be obtained through the rule (split), hence there are s′ ∈ DT∞
D and m ∈ N such

that s⇝⇝⇝⇝
γ,m

s′ −⇁
γ

∞ t. Then:

1. Thanks to Lemma 26, Pγ holds, hence s −→∗ s′′ −⇁
δ

∞∗ s′ −⇁
γ

∞ t for some s′′ ∈ DT∞
D

and some ordinal δ < γ.
2. We apply Lemma 23(3) and obtain s −→∗ s′′ −⇁

γ
∞ t.
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3. As s′′ −⇁
γ

∞ t must be obtained through some rule (liftr), we proceed inductively (resp.
coinductively) in the inductive (resp. coinductive) premisses of this rule. We obtain
s −→∗ s′′ −⇁ω t by applying the rule (liftω

r ), and finally s −→ω t by applying the rule
(splitω).

Conversely, if the Compression property holds then any reduction s −→
δ

∞ t −→ t′ can be
compressed to s −→ω t′. This is equivalent to s −→

0
∞ t′, hence s −→

δ

∞ t′ by Lemma 23(1).
Finally, s −→∗ s −→

δ

∞ t′. ◀

This proof departs from the one presented in the Coq/Rocq formalisation of [12]: besides
being limited to first-order rewriting, their slightly different definition of −→∞ featuring
least and greatest fixed points to constrain the use of coinduction (where we preferred ordinal
annotations) results in a completely different treatment of the inductive part of the proof.
As a consequence, our proof has the advantage to provide an explicit coinductive procedure
for compressing derivations of infinitary rewritings. This suggests that compression may be
computable, in a sense and under conditions that are yet to be made precise (which we will
quickly evoke in the conclusion).

3.3 Compression for left-linear (coinductive) first-order rewriting
In this subsection, we fix an itrs R as in Definition 4, and we prove the Compression lemma
for first-order rewriting: if R is left-linear then it has the Compression property, as first
proved in [16]. Our proof relies on Theorem 24 and relies on two lemmas: the first one
isolates the finite portion of an infinite rewriting that is necessary to produce a given finite
prefix of the output (pattern extraction), the second one performs the remaining infinitary
rewriting on the branches starting from this prefix (pattern filling). These lemmas form the
base case of a straightforward induction proving the property Q.

▶ Definition 27. A term l ∈ TΣ is linear if no variable occurs twice (or more) in l. A
rewrite rule (l, r) is left-linear if l is linear. An itrs R is left-linear if each rule (l, r) ∈ R is
left-linear.

▶ Lemma 28 (pattern extraction). Consider an ordinal δ such that Pδ holds, and s ∈ T∞
Σ ,

σ : V → T∞
Σ and a linear l ∈ TΣ such that s −→

δ

∞ σ · l. Then there is a substitution
τ : V → T∞

Σ such that s −→∗ τ · l and ∀x ∈ V, τ(x) −→
δ

∞ σ(x).

Proof. By induction over l. If l = x, then we define τ(x) := s and τ(y) := σ(y) otherwise. If
l = c(l1, . . . , lk) then there is derivation as follows:

s⇝⇝⇝⇝
δ,n

c(t1, . . . , tk)

t1 −→
δ

∞ σ · l1 . . . tk −→
δ

∞ σ · lk
(liftc)

c(t1, . . . , tk) −⇁
δ

∞ c(σ · l1, . . . , σ · lk)
(split)

s −→
δ

∞ σ · l = c(σ · l1, . . . , σ · lk)

By Pδ applied to the left premiss of (split), there are an ordinal ϵ < δ and s1, . . . , sk ∈ T∞
Σ

such that s −→∗ c(s1, . . . , sk) −⇁
ϵ

∞∗ c(t1, . . . , tk). As a consequence, for all 1 ≤ i ≤ k there
are reductions si −→

ϵ
∞∗ ti −→

δ

∞ σ · li, therefore by Lemma 23(3) si −→
δ

∞ σ · li. By induction
there exist substitutions τi such that si −→∗ τi · li and ∀x ∈ V, τi(x) −→

δ

∞ σ(x). By linearity
of l, each variable occurring in l occurs in exactly one of the li hence we can define, for all
x ∈ V, τ(x) := τi(x) if x occurs in some li and τ(x) := σ(x) otherwise. As a consequence,
∀x ∈ V, τ(x) −→

δ

∞ σ(x). In addition, s −→∗ c(s1, . . . , sk) −→∗ c(τ1 ·l1, . . . , τk ·lk) = τ ·l. ◀
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▶ Lemma 29 (pattern filling). For all r ∈ T∞
Σ and σ, τ : V → T∞

Σ , if ∀x ∈ V, τ(x) −→
δ

∞ σ(x)
then τ · r −→

δ

∞ σ · r.

Proof. By coinduction on r ∈ T∞
Σ . If r is just a variable the result follows by the assumption.

Otherwise r = c(s1, . . . , sar(c)). For all 1 ≤ i ≤ ar(c) we build τ · si −→
δ

∞ σ · si coinductively.
By applying the rule (liftc) we obtain τ · r −⇁

δ

∞ σ · r and we conclude by Lemma 23(6). ◀

▶ Theorem 30. If R is left-linear then −→ satisfies the property Q.

Proof. Take an ordinal δ and terms s, t, t′ ∈ T∞
Σ such that Pδ and s −→

δ

∞ t −→ t′. We want
to build a term s′ ∈ T∞

Σ and reductions s −→∗ s′ −→
δ

∞ t′. By induction over t −→ t′:

If there are a rule (l, r) ∈ R and a substitution σ : V → T∞
Σ such that t = σ · l and

t′ = σ · r, then the result follows from Lemmas 28 and 29.
Otherwise we can write t = c(t1, . . . , tk) and t′ = c(t1, . . . , t′

i, . . . , tk) with ti −→ t′
i.

By Lemma 25 applied to s −→
δ

∞ t, there are s1, . . . , sk ∈ T∞
Σ such that s −→∗

c(s1, . . . , sk) −⇁
δ

∞ c(t1, . . . , tk). By the rule (liftc) this means that for all j ∈ [1, k],
sj −→

δ

∞ tj . In particular we obtain si −→
δ

∞ ti −→ t′
i, to which we can apply the

induction hypothesis: there is an s′
i ∈ T∞

Σ such that si −→∗ s′
i −→

δ

∞ t′
i. Finally,

s −→∗ c(s1, . . . , sk) −→∗ c(s1, . . . , s′
i, . . . , sk) −→

δ

∞ c(t1, . . . , t′
i, . . . , tk) = t′. ◀

▶ Corollary 31 (Compression). If R is left-linear then −→ has the Compression property.

3.4 Compression for (coinductive) infinitary λ-calculi
In this section we fix a, b, c ∈ {0, 1}3 and we prove Compression for the corresponding
abc-infinitary λ-calculus. The structure of the proof is exactly the same as for first-order
rewriting (except for the left-linearity assumption, as (λx.u)v is a fixed left-linear pattern).

▶ Lemma 32 (pattern extraction). Consider an ordinal δ such that Pδ holds, and s, u, v ∈ Λabc

such that s −→
δ

∞ (λx.u)v. Then there are u′, v′ ∈ Λabc such that s −→∗ (λx.u′)v′ with
u′ −→

δ

∞ u and v′ −⇁
δ

∞ v.

Proof. From the hypothesis s −→
δ

∞ (λx.u)v we reconstruct the following premisses:

s −→∗ tv′′

t −→∗ λx.u′

u′ −→
δ

∞ u

(liftλ)
λx.u′ −⇁

δ

∞ λx.u

t −→
δ

∞ λx.u

v′′ −→∗ v′ v′ −⇁
δ

∞ v

v′′ −→
δ

∞ v

(lift@)
tv′′ −⇁

δ

∞ (λx.u)v

s −→
δ

∞ (λx.u)v

where the wavy lines denote applications of Lemma 25 thanks to Pδ. The result follows. ◀

▶ Lemma 33 (pattern filling). For all u, u′, v, v′ ∈ Λabc, if u′ −→
δ

∞ u and v′ −⇁
δ

∞ v then
u′[v′/x] −→

δ

∞ u[v/x].

Proof. We proceed by nested induction and coinduction (depending on the booleans a, b, c)
over u′ −→

δ

∞ u. By the rule (split), there must be reductions u′ ⇝⇝⇝⇝
δ,n

u′′ −⇁
δ

∞ u.
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If u′′ = x −⇁
δ

∞ x = u, then u′′[v′/x] = v′ −⇁
δ

∞ v = u[v/x].
If u′′ = y −⇁

δ

∞ y = u, then u′′[v′/x] = y −⇁
δ

∞ y = u[v/x].
If u′′ = λy.w′′ −⇁

δ

∞ λy.w = u with w′′ −→
δ

∞ w, then by induction (if a = 0) or
coinduction (if a = 1) w′′[v′/x] −⇁

δ

∞ w[v/x], hence by the rule (liftλ) we obtain
u′′[v′/x] −⇁

δ

∞ u[v/x].
In the application case we proceed similarly and obtain u′′[v′/x] −⇁

δ

∞ u[v/x].

In addition, it easy to verify that for all reduction s −⇁
ϵ

∞ t there is a reduction s[v′/x] −⇁
ϵ

∞

t[v′/x]. As a consequence, u′ ⇝⇝⇝⇝
δ,n

u′′ entails that u′[v′/x]⇝⇝⇝⇝
δ,n

u′′[v′/x]. Thus we have built
the two premisses allowing to conclude by the rule (split). ◀

▶ Theorem 34. The relation −→ on Λabc satisfies the property Q.

Proof. Given an ordinal δ and terms s, t, t′ ∈ Λabc such that Pδ and s −→
δ

∞ t −→ t′, we want
to build a term s′ ∈ Λabc and reductions s −→∗ s′ −→

δ

∞ t′. The proof is a straightforward
induction over t −→ t′: in the base case where t = (λx.u)v and t′ = u[v/x] the result follows
from Lemmas 32 and 33; the induction cases are treated exactly as in Theorem 30. ◀

▶ Corollary 35 (Compression). The relation −→ on Λabc has the Compression property.

▶ Remark 36. A noticeable consequence of Compression in this setting is that the coinductive
presentation of −→∞ given in Theorem 11 is equivalent to the standard one [13, 7], namely:

s −→∗ x

s −→∞ x

s −→∗ λx.u u −→∞ u′

s −→∞ λx.u′

s −→∗ uv u −→∞ u′ v −→∞ v′

s −→∞ u′v′

where the inductive or coinductive nature of the premisses again depends on the booleans
a, b, c. Indeed these rules are just the result of the rule (split) followed by the rule (liftx),
(liftλ) or (lift@), respectively.

In fact, Compression holds for a large family of ‘infinitary combinatory reduction systems’
(icrs), i.e. infinitary higher-order rewriting systems:

▶ Fact 37 ([19, Theorem 5.2]). Every fully-extended, left-linear icrs has the Compression
property.

Even though space constraints prevent us from developping this point and the corresponding
definitions, let us mention that icrs fit perfectly in the generic framework introduced in
Section 2.3 and that (Λabc, −→) is a particular case of a fully-extended, left-linear icrs. As
a consequence, Fact 37 can be proved using the characterisation from Theorem 24; the proof
is again essentially the same as for Theorem 30.

4 Compressing µMALL∞ cut-elimination sequences

In this last section, we prove Compression for an example of the other kind of infinitary
rewriting appearing in the litterature: infinitary cut-elimination in non-wellfounded proof
systems. We choose to focus on the multiplicative-additive linear logic with fixed points
µMALL and the non-wellfounded proof system µMALL∞ for this logic, as a Compression
lemma for infinitary cut-elimination in this system can crucially be used to prove cut-
elimination for a whole range of non-wellfounded proof systems for (intuitionistic, classical,
and more interestingly linear) logics with fixed points [23].
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(axF )
⊢ F, F ⊥

⊢ Γ, F ⊢ ∆, F ⊥
(cut)

⊢ Γ, ∆
⊢ Fσ(1), . . . , Fσ(n)

(xσ)
⊢ F1, . . . , Fn

(1)
⊢ 1

(⊤Γ )
⊢ Γ, ⊤

⊢ Γ
(⊥)

⊢ Γ, ⊥

⊢ Γ, F, G
( &)

⊢ Γ, F

&

G

⊢ Γ, F ⊢ ∆, G
(⊗)

⊢ Γ, ∆, F ⊗ G

⊢ Γ, Fi
(⊕i,F1−i

)
⊢ Γ, F0 ⊕ F1

⊢ Γ, F ⊢ Γ, G
(&)

⊢ Γ, F & G

⊢ Γ, F [µX.F/X]
(µ)

⊢ Γ, µX.F

⊢ Γ, F [νX.F/X]
(ν)

⊢ Γ, νX.F

Figure 1 The derivation rules of µMALL∞. F [G/X] denotes the formula obtained by substituting
the fixed point variable X with G in F , in a capture-avoiding manner. Notice that there is no rule
for the constructor 0.

4.1 The non-wellfounded proof system µMALL∞

We recall the definitions of the formulæ of µMALL and the rules of µMALL∞. We closely follow
the exposition from [24], making some technicalities more precise. Along this presentation,
we also show how this material can be encoded as an instance of the general framework we
introduced in Definition 12.

▶ Definition 38. Fix a set A of atomic formulæ and a countable set V of fixed point
variables. The set F0 of µMALL pre-formulæ is defined by induction by:

F0 ∋ F, G, . . . := A | A⊥ (A ∈ A)
| 0 | 1 | ⊤ | ⊥ | F

&

G | F ⊗ G | F ⊕ G | F & G

| X | µX.F | νX.F. (X ∈ X )

The set F of µMALL formulæ is the set of all pre-formulæ containing no free fixed point
variable ( i.e. each X ∈ X only occurs in the scope of fixed point constructors µX and νX).
The set S of µMALL sequents is the set of all finite lists of formulæ, denoted by ⊢ F1, . . . , Fn.
As usual, portions of sequents are denoted by Γ, ∆, etc.

▶ Notation 39. Negation is the involution (−)⊥ : F → F inductively defined by: (A⊥)⊥ := A,
0⊥ := ⊤, 1⊥ := ⊥, (F &

G)⊥ := F ⊥ ⊗ G⊥, (F ⊕ G)⊥ := F ⊥ & G⊥ and (µX.F )⊥ := νX.F ⊥.

We present the derivation rules of the system µMALL∞ in Figure 1. Notice that instead of
the usual binary exchange rule, we define a family of rules (xσ) parametrised by a permutation
σ : [1, n] → [1, n], and acting on sequents of length n. For the rules (ax), (⊤) and (⊕) to be
functional, we also need to present them as families of rules parametrised respectively by
F ∈ F , Γ ∈ S, and (i, Fi−1) ∈ {0, 1} × F .

In addition, cut-elimination theorems for µMALL∞ rely on the moving upwards of finitely
many consecutive cuts (and not of single cuts). For this reason, cut-elimination is usually
proved for systems extended with an n-ary cut rule representing such a tree prefix, and called
multicut rule [14, 2].

▶ Definition 40. The multicut rule parametrised by k ∈ N, n⃗ := (n1, . . . , nk) ∈ Nk and a
relation ⊔ ⊂ (N2)2 is defined by:

⊢ F1,1, . . . , F1,n1 . . . ⊢ Fk,1, . . . , Fk,nk

(mcutk,n⃗,⊔)
⊢ Γ

provided ⊔ satisfies the following conditions:
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Correctness. The support of ⊔, i.e. the indices (i, j) such that there is at least one relation
(i, j) ⊔ (i′, j′) or (i′, j′) ⊔ (i, j), are all such that i ∈ [1, k] and j ∈ [1, ni],

Duality. For all i in the support of ⊔ there is a unique j such that i ⊔ j, which is such that
symmetrically j ⊔ i, and such that Fj = Fi

⊥,
Connectedness and acyclicity. If considered as a graph with vertices [1, k], the first pro-

jection of ⊔ is connected and acyclic; in other terms, (i) for all i, i′ ∈ [1, k] there
exist i1 ⊔ . . . ⊔ im and j, j′ such that i1 = (i, j) and im = (i′, j′), (ii) the only cycles
(i, j) = i1 ⊔ . . . ⊔ im = (i, j′) are due to the symmetry of the relation, i.e. there is
p ∈ [1, m − 2] such that ip+2 = ip,

and where Γ contains all the formulæ Fi such that the pair i is not in the support of ⊔, listed
in the lexicographic order over these pairs of indices.

This definition calls for some explanations: the relation ⊔ (a symbol that is reminiscent of
cut links in proof nets) relates dual formulæ F and F ⊥ that are cut against each other; the
conditions on ⊔ ensure that this is done sensibly, e.g. no formula is cut against two different
formulæ; the conclusion of the rule contains all the formulæ that have not been cut.

▶ Definition 41. µMALL∞ pre-proofs are the elements of DT∞
µMALL∞ , the derivation trees

obtained by the rules from Figure 1 together with the multicut rules.

Usually, one then defines proofs to be the subset of pre-proofs satisfying some validity
criterion. However the Compression lemma can be proved at the level of pre-proofs, hence
we do not give any details about validity here.

4.2 Compression of infinitary cut-elimination
As explained in the introduction of this article, cut-elmination theorems for non-wellfounded
proof systems rely on a rewriting relation ‘moving the cuts upwards’ so that the corresponding
infinitary rewriting produces a cut-free derivation. For µMALL∞ this rewriting relation is
defined by three kinds root rewriting steps:

steps handling technicalities related to multicuts, e.g. merging a cut into a multicut,
principal steps, corresponding to the situation where dual formulæ are (multi)cut against
each other, for example:

Z⃗

⊢ Γ, F0 ⊢ Γ, F1
(&)

⊢ Γ, F0 & F1

⊢ ∆, F ⊥
i

(⊕i,Fi−1
)

⊢ ∆, F0
⊥ ⊕ F1

⊥

(mcutk+2,n⃗,⊔)
⊢ H −→

Z⃗ ⊢ Γ, Fi ⊢ ∆, Fi
⊥

(mcutk+2,n⃗,⊔)
⊢ H

commutative steps, corresponding to the situation where a multicut is permuted with the
last rule of one of its premisses, for example:

Z⃗

⊢ Γ, F, G
( &)

⊢ Γ, F

&

G
(mcutk+1,n⃗,⊔)

⊢ H, F

&

G
−→

Z⃗ ⊢ Γ, F, G
(mcutk+1,n⃗′,⊔)

⊢ H, F, G
( &)

⊢ H, F

&

G

Because of space constraints, the description of all root steps is given in Appendix A.

▶ Definition 42. Cut-elimination is the relation −→ on DT∞
µMALL∞ generated by the zero

steps given in Appendix A, using the construction from Definition 18.
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In the remainder of this section, we prove that Compression holds for µMALL∞ cut-
elimination. Although the definitions for this case of infinitary rewriting are way heavier than
for first-order rewriting or the λ-calculus, the proof of compression happens to be simpler
than in those two frameworks thanks to the following observation: all root steps defining
−→ rewrite only finite patterns into finite patterns: it is obvious, for instance, for the few
examples given above. The proof follows the same steps as the two previous ones.

▶ Definition 43. Given a family D of derivation rules as in Definition 12, derivation
patterns are defined as follows: (i) for all r ∈ D of arity k, r(∗1, . . . , ∗k) is a derivation
pattern, (ii) for all r ∈ D of arity k, for all derivation patterns pi(∗i,1, . . . , ∗i,li

) for 1 ≤ i ≤ k,
r(p1(∗1,1, . . . , ∗1,l1), . . . , pk(∗k,1, . . . , ∗k,lk

)) is a derivation pattern. We denote by p(s1, . . . , sk)
the derivation tree obtained by substituting a derivation tree si to each symbol ∗i in the
derivation pattern p(∗1, . . . , ∗k).

▶ Lemma 44 (pattern extraction). Consider an ordinal δ such that Pδ holds, a derivation
pattern p(∗1, . . . , ∗k) and s, t1, . . . , tk ∈ DT∞

µMALL∞ such that s −→
δ

∞ p(t1, . . . , tk). Then there
exist s′

1, . . . , s′
k ∈ DT∞

µMALL∞ such that s −→∗ p(s′
1, . . . , s′

k) and for all i ∈ [1, k], s′
i −→

δ

∞ ti.

Proof. The proof is identical as the ones for Lemmas 28 and 32: we proceed by a straight-
forward induction over p, using Pδ and Lemma 25. ◀

▶ Lemma 45 (pattern filling). For all derivation pattern q(∗1, . . . , ∗k) and for all s′
1, . . . , s′

k,
t1, . . . , tk ∈ DT∞

µMALL∞ , if for all i ∈ [1, k], s′
i −→

δ

∞ ti then q(s′
1, . . . , s′

k) −→
δ

∞ q(t1, . . . , tk).

Proof. Again, the proof is similar to the one for Lemma 29, but is in fact simpler: as we
only consider a finite pattern q, we just need to proceed by induction on q. ◀

▶ Theorem 46. −→ satisfies the property Q.

Proof. By induction on arbitrary cut-elimination steps s −→ t (as defined in Definition 18),
one can show that any such step has the shape p(s1, . . . , sk) −→ q(s1, . . . , sk) for some
derivation prefixes p and q (to be precise, q may not use some of the si but this has no
incidence on the proof). Indeed, as explained above it is the case for all cut-elimination root
steps (as defined in Appendix A), and the induction case is trivial.

As a consequence, if we take an ordinal δ and s, t, t′ ∈ DT∞
µMALL∞ such that Pδ and

s −→
δ

∞ t −→ t′, we can write t = p(t1, . . . , tn) and t′ = q(t1, . . . , tn). By Lemmas 44 and 45
we obtain s −→∗ p(s′

1, . . . , s′
k) −→

δ

∞ q(t1, . . . , tn) = t′. ◀

▶ Corollary 47 (Compression). µMALL∞ cut-elimination has the Compression property.

5 Conclusion and further work

In the present paper, we did:

1. introduce a generic framework for manipulating the rewriting of infinitary objects, and ex-
tend to this framework the equivalence between topologically and coinductively presented
infinitary rewriting,

2. perform the first generic treatment of the Compression property for coinductive infinitary
rewriting, by providing a characterisation that can be readily applied to all the existing
infinitary term rewriting systems (noticeably including first-order rewriting and the
λ-calculus),
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3. take advantage of the previous work to present cut-elimination in a non-wellfounded
proof system as a coinductive rewriting procedure, and fully work out the example of the
system µMALL∞ for which we provide a simple proof of Compression (a property whose
significance in this setting has been recalled in the introduction).

The former two achievements unify and complete several threads of the literature and are
meant to provide a reasonable level of generality for future investigations into coinductive
infinitary rewriting. Regarding Compression, a natural follow-up would be to investigate
the effectivity of the procedure introduced in the proof of Theorem 24: given a computable
derivation witnessing a rewriting s −→∞ t, is it computable to compress it into s −→ω t?
From our proof one can conjecture that it is indeed the case, but it remains unclear even
how to correctly define ‘computable’ in this context.

The latter achievement is also a first step towards developing non-wellfounded proof
theory (especially of the system µLL∞ for linear logic with fixed points) in a coinductive
setting, which is our longer term goal: a result we typically aim at is a fully coinductive
proof of cut-elimination for µLL∞. Similar research efforts are currently being conducted
in this direction, e.g. by Sierra-Miranda et al. [25] who present non-wellfounded proofs for
Gödel-Löb logic and Grzegorczyk modal logic in a coalgebraic way. A benefit of such a
coinductive treatment would be to help in the formalisation of the meta-theory of these
systems in a proof assistant such as Rocq.
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A Root steps for µMALL∞ cut-elimination

As usual we distinguish the principal cut-elimination steps corresponding to the situation
where dual derivation rules are cut against each other (this is where a cut is actually
‘eliminated’), and the commutative cut-elimination steps where a (multi)cut is permuted with
a derivation rule appearing just above it (here cuts are only ‘moved upwards’). In addition,
we start with two rules use to perform some derivation transformations in the presence of
multicuts: the first one describes how a (mcut) can absorb a (cut) when it meets one, the
second one permutes the premisses of a multicut.

We use the following notations: in the premiss sequents playing an active role of the
cut-elimination steps, the principal formulæ are denoted by F , G and the lists of remaining
formulæ by Γ, ∆, E (as in Figure 1); the other premiss sequents are denoted by Z⃗, which
stands for a list Z1, . . . , Zk; the conclusion sequents are denoted by H.

Notice that what we describe are in fact sets of pairs of derivations, e.g. the (cut)/(mcut)
root steps described by the first yellow square below are all the pairs

(mcutk+1,n⃗,⊔(s1, . . . , sk, cut(t, t′)), mcutk+2,n⃗′,⊔′(s1, . . . , sk, t, t′))

satisfying the given conditions, for s1, . . . , sk, t, t′ ∈ DT∞
µMALL∞ .

A.1 Steps handling multicuts
The merge (cut)/(mcut) root steps are all the pairs of the following shape:

Z⃗

⊢ Γ, F ⊢ ∆, F ⊥
(cut)

⊢ Γ, ∆
(mcutk+1,n⃗,⊔)

⊢ H −→
Z⃗ ⊢ Γ, F ⊢ ∆, F ⊥

(mcutk+2,n⃗′,⊔′ )
⊢ H

such that:

n⃗ := (n1, . . . , nk, |Γ| + |∆|) and n⃗′ := (n1, . . . , nk, |Γ| + 1, |∆| + 1),
on the right-hand side (k + 1, |Γ| + 1) ⊔′ (k + 2, |∆| + 1) and i ⊔′ j if pred(i) ⊔ pred(j), with:

pred(i, j) := (i, j) for i ≤ k

pred(k + 1, j) := (k + 1, j) for j ≤ |Γ|
pred(k + 2, j) := (k + 1, |Γ| + j) for j ≤ |∆|

pred(i, j) := undefined otherwise

i.e. ⊔′ contains (i) cuts between F and F ⊥, (ii) the cuts from ⊔ inside Z⃗ or between Z⃗
and Γ or ∆.

The premiss permutation root steps parametrised by a permutation τ : [1, k] → [1, k] are all
the pairs of the following shape:

⊢ Z1 . . . ⊢ Zk
(mcutk,n⃗,⊔)

⊢ H1, . . . , Hk
−→

⊢ Zτ(1) . . . ⊢ Zτ(k)
(mcutk,n⃗′,⊔′ )

⊢ Hτ(1), . . . , Hτ(k)
(xσ)

⊢ H1, . . . , Hk

such that:
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n⃗ := (n1, . . . , nk) and n⃗′ := (nτ(1),...,nτ(k)),
for all (i, j) and (i′, j′) in the support of ⊔, (τ(i), j) ⊔′ (τ(i′), j′) iff (i, j) ⊔ (i′, j′),
σ is the permutation obtained by permuting the lists Hi according to τ without modifiying
the ordering inside each of these lists.

A.2 Principal reduction steps
The (ax)/(mcut) root steps are all the pairs of the following shape:

Z⃗
(axF )

⊢ F, F ⊥ ⊢ Γ, F
(mcutk+2,n⃗,⊔)

⊢ H −→
Z⃗ ⊢ Γ, F

(mcutk+1,n⃗′,⊔′ )
⊢ H

such that:

n⃗ := (n1, . . . , nk, 2, |Γ| + 1) and n⃗′ := (n1, . . . , nk, |Γ| + 1),
on the left-hand side (k + 1, 2) ⊔ (k + 2, |Γ| + 1), i.e. F ⊥ is cut against the last F ,
on the right-hand side i ⊔′ j iff pred(i) ⊔ pred(j), with:

pred(i, j) := (i, j) for i ≤ k

pred(k + 1, j) := (k + 2, j) for j ≤ |Γ|
pred(k + 1, |Γ| + 1) := (k + 1, 1),

i.e. ⊔′ contains (i) the cuts from ⊔ inside Z⃗ or between Z⃗ and Γ, (ii) if there was a
cut between a formula in Z⃗ and the first F , then a cut between this formula and the
remaining F . Thanks to the assumptions on ⊔ no cut is lost during the process, and ⊔′

satisfies the same required assumptions.

The (⊗)/( &) root steps are all the pairs of the following shape:

Z⃗

⊢ Γ, F ⊢ ∆, G
(⊗)

⊢ Γ, ∆, F ⊗ G

⊢ E, F ⊥, G⊥
( &)

⊢ E, F ⊥ &

G⊥
(mcutk+2,n⃗,⊔)

⊢ H −→
Z⃗ ⊢ Γ, F ⊢ ∆, G ⊢ E, F ⊥, G⊥

(mcutk+3,n⃗′,⊔′ )
⊢ H

such that:

n⃗ := (n1, . . . , nk, |Γ| + |∆| + 1, |E| + 1) and n⃗′ := (n1, . . . , nk, |Γ| + 1, |∆| + 1, |E| + 1),
on the left-hand side (k + 1, nk+1) ⊔ (k + 2, nk+2), i.e. F ⊗ G is cut against F ⊥ &

G⊥,
on the right-hand side (k + 1, |Γ| + 1) ⊔′ (k + 3, |E| + 1), (k + 1, |∆| + 1) ⊔′ (k + 3, |E| + 2),
and i ⊔′ j if pred(i) ⊔ pred(j), with:

pred(i, j) := (i, j) for i ≤ k

pred(k + 1, j) := (k + 1, j) for j ≤ |Γ|
pred(k + 2, j) := (k + 1, |Γ| + j) for j ≤ |∆|
pred(k + 3, j) := (k + 2, j) for j ≤ |E|

pred(i, j) := undefined otherwise

i.e. ⊔′ contains (i) cuts between F and F ⊥ and between G and G⊥, (ii) the cuts from ⊔
inside Z⃗ or between Z⃗ and Γ, ∆ or E.
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The (&)/(⊕) root steps are all the pairs of the following shape:

Z⃗

⊢ Γ, F0 ⊢ Γ, F1
(&)

⊢ Γ, F0 & F1

⊢ ∆, F ⊥
i

(⊕i,Fi−1
)

⊢ ∆, F0
⊥ ⊕ F1

⊥

(mcutk+2,n⃗,⊔)
⊢ H −→

Z⃗ ⊢ Γ, Fi ⊢ ∆, Fi
⊥

(mcutk+2,n⃗,⊔)
⊢ H

such that, thanks to the additive behaviour, everything goes nicely:

n⃗ := (n1, . . . , nk, |Γ| + 1, |∆| + 1),
(k +1, |Γ|+1)⊔ (k +2, |∆|+1), i.e. on the left-hand side F0 & F1 is cut against F0

⊥ ⊕ F1
⊥

and on the right-hand side Fi is cut against Fi
⊥.

The (µ)/(ν) root steps are all the pairs of the following shape:

Z⃗

⊢ Γ, F [µX.F/X]
(µ)

⊢ Γ, µX.F

⊢ ∆, F ⊥[νX.F ⊥/X]
(ν)

⊢ ∆, νX.F ⊥
(mcutk+2,n⃗,⊔)

⊢ H −→
Z⃗ ⊢ Γ, F [µX.F/X] ⊢ ∆, F ⊥[νX.F ⊥/X]

(mcutk+2,n⃗,⊔)
⊢ H

such that:

n⃗ := (n1, . . . , nk, |Γ| + 1, |∆| + 1),
(k + 1, |Γ| + 1) ⊔ (k + 2, |∆| + 1), i.e. on the left-hand side µX.F is cut against νX.F ⊥

and on the right-hand side F [µX.F/X] is cut against F [νX.F ⊥/X].

The (⊥)/(1) root steps are all the pairs of the following shape:

Z⃗
⊢ Γ

(⊥)
⊢ Γ, ⊥

(1)
⊢ 1

(mcutk+2,n⃗,⊔)
⊢ H −→

Z⃗ ⊢ Γ
(mcutk+1,n⃗′,⊔′ )

⊢ H

such that:

on the left-hand side n⃗ := (n1, . . . , nk, |Γ| + 1, 1) and (k + 1, |Γ| + 1) ⊔ (k + 2, 1), i.e. ⊥ is
cut against 1,
on the right-hand side n⃗′ := (n1, . . . , nk, |Γ|) and i ⊔′ j iff pred(i) ⊔ pred(j), with:

pred(i, j) := (i, j) for i ≤ k pred(k + 1, j) := (k + 1, j)

i.e. ⊔′ contains the cuts from ⊔ inside Z⃗ or between Z⃗ and Γ.

A.3 Commutative reduction steps
The ( &)/(mcut) root steps are all the pairs of the following shape:

Z⃗

⊢ Γ, F, G
( &)

⊢ Γ, F

&

G
(mcutk+1,n⃗,⊔)

⊢ H, F

&

G
−→

Z⃗ ⊢ Γ, F, G
(mcutk+1,n⃗′,⊔)

⊢ H, F, G
( &)

⊢ H, F

&

G
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such that n⃗ := (n1, . . . , nk, |Γ| + 1), n⃗′ := (n1, . . . , nk, |Γ| + 2), and (k + 1, |Γ| + 1) is not in
the support of ⊔.

The (⊗)/(mcut) root steps are all the pairs of the following shape:

Z⃗Γ Z⃗∆

⊢ Γ, F ⊢ ∆, G
(⊗)

⊢ Γ, ∆, F ⊗ G
(mcutk+l+1,n⃗,⊔)

⊢ HZ⃗Γ
, HZ⃗∆

, HΓ, H∆, F ⊗ G
−→

Z⃗Γ ⊢ Γ, F
(mcutk+1,n⃗′,⊔′ )

⊢ HZ⃗Γ
, HΓ, F

Z⃗∆ ⊢ ∆, G
(mcutl+1,n⃗′′,⊔′′ )

⊢ HZ⃗∆
, H∆, G

(⊗)
⊢ HZ⃗Γ

, HΓ, HZ⃗∆
, H∆, F ⊗ G

(xσ)
⊢ HZ⃗Γ

, HZ⃗∆
, HΓ, H∆, F ⊗ G

such that (beware, this is the really difficult one!):

n⃗ := (n′
1, . . . , n′

k, n′′
1 , . . . , n′′

l , |Γ| + |∆| + 1) is turned into n⃗′ := (n′
1, . . . , n′

k, |Γ| + 1) and
n⃗′′ := (n′′

1 , . . . , n′′
l , |∆| + 1),

on the left-hand side:

⊔ relates only (indices of) formulæ inside Z⃗Γ, inside Z⃗∆, between Z⃗Γ and Γ, or between
Z⃗∆ and ∆: such a partition of sequents is possible thanks to the acyclicity and
connectedness assumption from Definition 40, and the corresponding reordering of the
premisses of the multicut can be performed thanks to the rewrite rule introduced in
Appendix A.1,
HZ⃗∆

(resp. HZ⃗∆
, HΓ, H∆) contains the formulæ from Z⃗∆ (resp. Z⃗∆, Γ, ∆) whose

indices are not in the support of ⊔, and (k + l + 1, |Γ| + |∆| + 1) is not in the support
of ⊔,

on the right-hand side, i ⊔′ j if pred(i) ⊔ pred(j), with:

pred(i, j) := (i, j) for i ≤ k

pred(k + 1, j) := (k + l + 1, j) for j ≤ |Γ|
pred(i, j) := undefined otherwise

and i ⊔′′ j if pred(i) ⊔ pred(j), with:

pred(i, j) := (k + i, j) for i ≤ l

pred(l + 1, j) := (k + l + 1, |Γ| + j) for j ≤ |∆|
pred(i, j) := undefined otherwise

i.e. ⊔′ and ⊔′′ contain the cuts from ⊔ inside Z⃗Γ or inside Z⃗∆, and between Z⃗Γ and Γ
or Z⃗∆ and ∆; as for the permutation σ, it is obtained by permuting the lists HΓ and
HZ⃗∆

without modifiying the ordering inside each of these lists (and leaving HZ⃗Γ
and H∆

untouched).

The (1)/(mcut) root steps are all the pairs of the following shape:

(1)
⊢ 1

(mcut1,(1),∅)
⊢ 1 −→ (1)

⊢ 1

The (⊥)/(mcut) root steps are all the pairs of the following shape:
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Z⃗
⊢ Γ

(⊥)
⊢ Γ, ⊥

(mcutk+1,n⃗,⊔)
⊢ H, ⊥ −→

Z⃗ ⊢ Γ
(mcutk+1,n⃗′,⊔)

⊢ H
(⊥)

⊢ H, ⊥

such that n⃗ := (n1, . . . , nk, |Γ| + 1), n⃗′ := (n1, . . . , nk, |Γ|), and (k + 1, |Γ| + 1) is not in the
support of ⊔.

Again almost nothing happends for additive constructors and fixed points: the (⊕)/(mcut),
(&)/(mcut), (σ)/(mcut) for σ ∈ {µ, ν}, and (⊤)/(mcut) root steps are, respectively, all the
pairs of the following shape:

Z⃗

⊢ Γ, Fi
(⊕i,Fi−1

)
⊢ Γ, F0 ⊕ F1

(mcutk+1,n⃗,⊔)
⊢ H, F0 ⊕ F1

−→

Z⃗ ⊢ Γ, Fi
(mcutk+1,n⃗,⊔)

⊢ H, Fi
(⊕i,Fi−1

)
⊢ H, F0 ⊕ F1

Z⃗

⊢ Γ, F ⊢ Γ, G
(&)

⊢ Γ, F & G
(mcutk+1,n⃗,⊔)

⊢ H, F & G
−→

Z⃗ ⊢ Γ, F
(mcutk+1,n⃗′,⊔)

⊢ H, F

Z⃗ ⊢ Γ, G
(mcutk+1,n⃗,⊔)

⊢ H, G
(&)

⊢ H, F & G

Z⃗

⊢ Γ, F [σX.F/X]
(σ)

⊢ Γ, σX.F
(mcutk+1,n⃗,⊔)

⊢ H, σX.F
−→

Z⃗ ⊢ Γ, F [σX.F/X]
(mcutk+1,n⃗,⊔)

⊢ H, F [σX.F/X]
(σ)

⊢ H, σX.F

Z⃗
(⊤)

⊢ Γ, ⊤Γ
(mcutk+1,n⃗,⊔)

⊢ H, ⊤ −→ (⊤H)
⊢ H, ⊤

such that n⃗ := (n1, . . . , nk, |Γ| + 1) and (k + 1, |Γ| + 1) is not in the support of ⊔.

The exchange (x)/(mcut) root steps are all the pairs of the following shape:

Z⃗
⊢ Fσ(1), . . . , Fσ(n)

(xσ)
⊢ F1, . . . , Fn

(mcutk+1,n⃗,⊔)
⊢ H, Fi1 , . . . , Fim

−→

Z⃗ ⊢ Fσ(1), . . . , Fσ(n)
(mcutk+1,n⃗,⊔′ )

⊢ H, Fσ(i1), . . . , Fσ(in)
(xσ′ )

⊢ H, Fi1 , . . . , Fim

such that:

n⃗ := (n1, . . . , nk, n) and 1 ≤ i1 < · · · < im ≤ n,
the relation ⊔′ is defined by i ⊔′ j if pred(i) ⊔ pred(j), with:

pred(i, j) := (i, j) for i ≤ k pred(k + 1, j) := (k + 1, σ(j)),

the permutation σ′ acts on the set [1, |H| + m] and is defined by:

σ′(j) := j for j ≤ |H| σ′(|H| + j) := the j′ such that σ(ij) = ij′ .


	1 Introduction
	2 Infinitary rewriting: From strong convergence to coinduction
	2.1 A first example: First-order rewriting
	2.2 A second example: Infinitary λ-Calculi
	2.3 Infinitary rewriting of arbitrary non-wellfounded derivations

	3 A generic Compression lemma
	3.1 Compressed rewriting sequences coinductively
	3.2 A characterisation of Compression
	3.3 Compression for left-linear (coinductive) first-order rewriting
	3.4 Compression for (coinductive) infinitary λ-calculi

	4 Compressing μMALL∞ cut-elimination sequences
	4.1 The non-wellfounded proof system μMALL∞
	4.2 Compression of infinitary cut-elimination

	5 Conclusion and further work
	A Root steps for μMALL∞ cut-elimination
	A.1 Steps handling multicuts
	A.2 Principal reduction steps
	A.3 Commutative reduction steps


