
HOW TO PLAY THE ACCORDION:
UNIFORMITY AND THE (NON-)CONSERVATIVITY OF THE LINEAR

APPROXIMATION OF THE λ-CALCULUS ∗

RÉMY CERDA a,b,c AND LIONEL VAUX AUCLAIR a

a Aix-Marseille Université, CNRS, I2M, France
e-mail address: Remy.Cerda@math.cnrs.fr, Lionel.Vaux@math.cnrs.fr

b Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

c Università di Bologna, Italy

Abstract. Twenty years after its introduction by Ehrhard and Regnier, differentiation
in λ-calculus and in linear logic is now a celebrated tool. In particular, it allows to
establish a Taylor expansion formula for various λ-calculi, hence providing a theory of
linear approximations for these calculi. In the pure λ-calculus, the linear approximants of
λ-terms supporting this Taylor expansion are the terms of a so-called resource calculus,
which is equipped with a finitary (strongly normalising) reduction; and the efficiency of
this linear approximation is expressed by results stating that the (possibly) infinitary
β-reduction of λ-terms is simulated by the reduction of their Taylor expansions, which is
induced by the iterated reduction of resource terms. In terms of rewriting systems, resource
reduction (operating on infinite linear combinations of Taylor approximants) is an extension
of β-reduction.

In this article, we address the converse property, conservativity: do all reductions
between Taylor expansions arise from actual β-reductions? We show that if we restrict
the setting to finite terms and β-reduction sequences, then the linear approximation is
conservative. However, as soon as one allows infinitary reduction sequences this property
is broken. We design a counter-example, the Accordion. Then we show how restricting
the reduction of the Taylor approximants allows to build a conservative extension of the
β-reduction preserving good simulation properties; this restriction relies on uniformity, a
property that was already at the core of Ehrhard and Regnier’s pioneering work. Finally,
we extend our work to β⊥-reductions, which play a key role in λ-calculus as they relate a
λ-term to its Böhm tree.

Key words and phrases: lambda calculus, program approximation, linear approximation, infinitary rewrit-
ing, algebraic rewriting, conservativity, quantitative semantics.

∗ Improved and extended version of the article [CV25] published in the proceedings of the 42nd International
Symposium on Theoretical Aspects of Computer Science (STACS 2025).

The first author was partially funded by the French ANR project RECIPROG (ANR-21-CE48-019).
The second author was partially supported by the French ANR projects LambdaComb (ANR-21-CE48-

0017), RECIPROG (ANR-21-CE48-019), and PPS (ANR-19-CE48-0014).

Preprint submitted to
Logical Methods in Computer Science

© R. Cerda and L. Vaux Auclair
CC⃝ Creative Commons

https://orcid.org/0000-0003-0731-6211
https://orcid.org/0000-0001-9466-418X
http://creativecommons.org/about/licenses

2 R. CERDA AND L. VAUX AUCLAIR

Contents

1. Introduction 2
2. Preliminaries 4
2.1. Finite and infinitary λ(⊥)-calculi 4
2.2. The resource λ-calculus 7
2.3. Linear approximation and the conservativity problems 9
3. Conservativity wrt. the finite λ-calculus 10
4. Non-conservativity wrt. the infinitary λ-calculus 12
4.1. Failure of the “mashup” technique 13
4.2. The Accordion 14
4.3. Proof of the counterexample 16
5. The missing ingredient: Uniformity 22
5.1. Uniform simulation of the infinitary β-reduction 22
5.2. Conservativity wrt. the infinitary λ-calculus 25
5.3. An epilogue on β⊥-reductions 27
6. Summary and conclusive remarks 29
References 33

1. Introduction

The traditional approach to program approximation in a functional setting consists in
describing the total information that a (potentially non-terminating) program can produce
as the supremum of the finite pieces of information it can produce in finite time. This idea
of a continuous approximation is at the core of the Scott semantics of λ-calculi [Sco93], and
can be formulated in syntactic terms by showing that the Böhm tree of a λ-term is the limit
of the approximants produced by hereditary head reduction [Hyl76; Wad78; Bar84].

More recently, Ehrhard and Regnier introduced the differential λ-calculus and differential
linear logic [ER03; ER05], following ideas rooted in the semantics of linear logic [Gir87;
Ehr02; Ehr05]. This suggested the renewed approach of linear approximation of functional
programs. In this setting, a program (i.e. a λ-term) is approximated by multilinear (or
“polynomial”) programs, obtained by iterated differentiation at zero. Using this differential
formalism, the Taylor formula yields the weighted sum T (M) of all multilinear approximants
of a given λ-term M , producing the same total information as M via normalization. More
precisely, Ehrhard and Regnier’s “commutation” theorem [ER08; ER06] ensures that the
normal form of the Taylor expansion of M is the Taylor expansion of the Böhm tree of M :

nf(T (M)) = T (BT(M)) (1.1)

(and a Böhm tree is uniquely determined by its Taylor expansion). This approach subsumes
the previous one, in the sense that many resuls traditionally obtained via continuous approx-
imation enjoy simpler proofs based on linear approximation [BM20], and that the continuous
approximation theorem itself can be proved using Taylor expansion. In addition, it allows
for characterising quantitative properties of programs (e.g. time complexity bounds [Car17]),
which is a key benefit of linearity. This approximation technique has been fruitfully applied
to many languages, richer than the pure λ-calculus: nondeterministic [VA19], probabilistic

HOW TO PLAY THE ACCORDION 3

[DL19], extensional [BCV24], call-by-value [KMP20], and call-by-push-value [EG16; CT20]
calculi, as well as for Parigot’s λμ-calculus [Bar22]. The interplay between operational
properties and Taylor approximations also suggests a broader notion of approximation of a
computation process [Maz21; DM24].

Another benefit of linear approximation is that it can approximate not only β-normal-
isation (the information ultimately produced by a program) but β-reduction (the “information
flow” along program execution). In particular, Eq. (1.1) can be refined into

M −→∗
β N ⇒ T (M) −↠r T (N), (1.2)

where −↠r denotes the so-called “resource” reduction acting linearly on approximants. As
highlighted by our previous work [CV23; Cer24], this can even be extended to

M −→∞
β N ⇒ T (M) −↠r T (N) (1.3)

if one extends the λ-calculus with infinite λ-terms and an infinitary closure of the β-reduction,
which is a way to internalise infinite computations and their limits in the λ-calculus [Ken+97],
without changing the target language of Taylor expansion nor extending its dynamics.

This article is interested in the converse of Eqs. (1.2) and (1.3): is the linear approximation
of the λ-calculus conservative? In other terms, we ask whether every resource reduction from
some T (M) to some T (N) corresponds to a β-reduction sequence from M to N .

In the particular case of normalisation of finite λ-terms, the question is easily solved
thanks to the commutation expressed by Eq. (1.1): if T (N) = nf(T (M)) then N must be
the normal form of M , just because N is a (finite) λ-term and T (N) is in normal form,
so that N = BT(M) = nf(M) (normal λ-terms are precisely those λ-terms that are also
Böhm trees). And if one considers possibly infinite terms and the infinitary version of
normalization, Eq. (1.1) (together with the injectivity of Taylor expansion on Böhm trees) is
both a simulation and a conservativity result: if T (N) = nf(T (M)) then N = BT(M).

In a sense, Eqs. (1.2) and (1.3) thus only generalise to the simulation aspect of Eq. (1.1).
And it turns out that the question of conservativity in the general case of a reduction
T (M) −↠r T (M) is quite subtle, and sensitive to the choice of the source language, as will
become evident along the paper.

Content of the paper. We first recall the necessary material: finite and infinitary λ(⊥)-
calculi, the resource λ-calculus and Taylor expansion (Section 2). We then show that the finite
β-reduction of finite λ-terms is conservatively approximated, i.e. the converse of Eq. (1.2)
holds (Section 3). On the contrary, we are able to design a counterexample to conservativity as
soon as we want to approximate infinitary β-reductions. Defining this λ-term, the “Accordion”
A, and proving that it violates the converse of Eq. (1.3), is the second technical development
of this article (Section 4). However, we do also introduce a uniform linear approximation
which still simulates −→001

β while enjoying conservativity: this identifies the “sub-system” of
the resource λ-calculus that contains exactly the infinitary λ-calculus. We also discuss how
to adapt it to take into account the so-called ⊥-reductions that play a key role in infinitary
λ-calculus, and are needed to reduce a term to its Böhm tree (Section 5). Finally, we review
our results in a detailed conclusion featuring several summarising diagrams (Section 6).

This is an improved and extended version of the article [CV25] published in the pro-
ceedings of the 42nd International Symposium on Theoretical Aspects of Computer Science
(STACS 2025). It features rearranged and extended presentations of Sections 4.3 and 5.2,

4 R. CERDA AND L. VAUX AUCLAIR

which contain the proofs of two key results of the paper (namely Theorem 4.4 and Theo-
rem 5.10). It also provides additional proofs that were omitted in the conference version
due to space constraints (in particular Section 5 has been considerably expanded) as well
as several informal preparatory developments that will hopefully provide a more palatable
exposition of the technical parts of the article. Finally, Sections 5.3 and 6 are almost entirely
new.

A previous version of this work also appears as Chapter 5 of the first author’s PhD
thesis [Cer24], but is limited to the qualitative Taylor expansion (i.e. the case where sums of
approximants are treated as sets); extending it to the full, quantitative linear approximation
solves what was presented as Conjecture 5.15 in the thesis.

2. Preliminaries

In this section, we briefly recall the linear approximation of the λ-calculus, following its refined
presentation in [Cer24]. We first recall the definition of the λ(⊥)-calculus, as well as its “001”
infinitary extension: this is the version of the infinitary λ-calculus that fits the formalism
of both continuous and linear approximations as they are usually presented (Section 2.1).
Then we present the resource λ-calculus, i.e. a multilinear variant of the λ-calculus (there
are no duplications or erasures of subterms during the reduction) enjoying strong confluence
and normalisation properties (Section 2.2). Finally, the linear approximation relies on the
Taylor expansion operator, that maps a λ-term to a sum of resource terms, in a way such
that the reduction of λ-terms is simulated by the reduction of the resource approximants
(Section 2.3).

2.1. Finite and infinitary λ(⊥)-calculi. We give a brief presentation of the 001-infinitary
λ-calculus (and of its extension with an “undefined” term ⊥ and corresponding rewriting
rules, which is a usual construction). A more detailed exposition and a general account of
infinitary λ-calculi can be found in [Cer24; BM22].

From now on, we fix a countable set V of variables.

Definition 2.1. Consider the following derivations rules:

x ∈ V
(V)

x ∈ X
(⊥)

⊥ ∈ X
x ∈ V M ∈ X

(λ)
λx.M ∈ X

M ∈ X N ∈ X
(@)

(M)N ∈ X .

M ∈ X N ∈ X
(@001)

(M)N ∈ X
where in the rule (@001) the second premiss is marked by a double line indicating that it is
coinductive: infinite derivations are allowed provided each infinite branch enters infinitely
often such a coinductive premiss (see [CS25] for a discussion of this notation).
• The set Λ of (finite) λ-terms is the set X defined by the rules (V), (λ) and (@).
• The set Λ⊥ of (finite) λ⊥-terms is the set X defined by the rules (V), (⊥), (λ) and (@).
• The set Λ001 of 001-infinitary λ-terms is the set X defined by the rules (V), (λ) and
(@001).

• The set Λ001
⊥ of 001-infinitary λ⊥-terms is the set X defined by the rules (V), (⊥), (λ)

and (@001).
In all the following, these sets will be implicitly quotiented:

HOW TO PLAY THE ACCORDION 5

• as usual by α-equivalence, i.e. the equivalence relation generated by λx.M = λy.M [y/x]
(for all term M and variables x, y such that y is fresh in M , and where M [y/x] denotes
the renaming of x by y in M), and by lifting to contexts;

• by the equivalence relation generated by the identities λx.⊥ = (⊥)M = ⊥ for all term M ,
and by lifting to contexts. (The reason for this additional quotient will become clear after
Definition 2.16.)

Notice that we use Krivine’s notation for applications [Kri90], i.e. we parenthesise
functions instead of arguments. We abbreviate the application of a term to successive
arguments (· · · ((M)N1) · · ·)Nk as (M)N1 · · ·Nk, which is obtained by nesting applications
on the left: this allows to use parentheses more sparingly, which will be a great relief later
on. By contrast, (M1)(M2) · · · (Mk)N is obtained by nesting applications on the right.

Concretely, the rule (@001) means that Λ001 (resp. Λ001
⊥) contains the infinitary λ-terms

(resp. λ⊥-terms) whose syntax tree contains only infinite branches entering infinitely often
the argument side of an application. A typical example of a term in Λ001 is

(x)ω := (x)(x)(x)

Observe also that there is an immediate inclusion Λ ⊆ Λ001. On the contrary, neither
λx0.λx1.λx2. . . . nor (((. . .)x2)x1)x0 are allowed in Λ001.

As the cautious reader may object, it is not obvious at all how to define the quotient by
α-equivalence on the sets Λ001 and Λ001

⊥ of infinitary terms; to do so, we also implicitely restrict
these sets to their subsets of terms having only finitely many free variables, an innocuous
restriction allowing to handle α-equivalence properly [Kur+13; Cer25]. This enables us to
define capture-avoiding substitution in the usual way, and we denote by M [N/x] the term
obtained by substituting N for x in M .

These sets of terms come equipped with the following dynamics.

Definition 2.2. The relation −→β ⊂ Λ001
⊥ ×Λ001

⊥ of β-reduction is the relation −→ defined
by the following base case:

(β)
(λx.M)N −→ξ M [N/x]

and by the following lifting rules:

P −→ξ P
′

(λξ)
λx.P −→ξ λx.P

′

P −→ξ P
′

(@lξ)
(P)Q −→ξ (P

′)Q

Q −→ξ Q
′

(@rξ)
(P)Q −→ξ (P)Q′.

where the generic symbol ξ is taken to be β.

Recall that a λ⊥-term M is said to have a head normal form (hnf) whenever there is
a reduction

M −→∗
β λx1. . . . λxm.(y)M1 . . .Mn

for some variables x1, . . . , xm, y and terms M1, . . . ,Mn, and where as usual −→∗
β denotes

the reflexive-transitive closure of −→β (see Definition 4.5 for a full reminder of the definition
and the associated properties).

6 R. CERDA AND L. VAUX AUCLAIR

Definition 2.3. Consider the following base case1:
M has no hnf

(β⊥)
M −→ξ ⊥

The relation −→β⊥ ⊂ Λ001
⊥ ×Λ001

⊥ of β⊥-reduction is defined by this base case, (taking
ξ to be β⊥) by the base case (β) and by the liftings (λβ⊥), (@lβ⊥) and (@rβ⊥) from
Definition 2.2.

Definition 2.4. The relation −→001
β ⊂ Λ001

⊥ × Λ001
⊥ (resp. −→001

β⊥) of 001-infinitary
β-reduction (resp. β⊥-reduction) is defined by the rules:

M −→∗
ξ x

(V001
ξ)

M −→001
ξ x

M −→∗
ξ ⊥

(⊥001
ξ)

M −→001
ξ ⊥

M −→∗
ξ λx.P P −→001

ξ P ′

(λ001
ξ)

M −→001
ξ λx.P ′

M −→∗
ξ (P)Q P −→001

ξ P ′ Q −→001
ξ Q′

(@001
ξ)

M −→001
ξ (P ′)Q′

where ξ is taken to be β (resp. β⊥).

Infinitary β-reduction can be understood as allowing an infinite number of β-reduction
steps, as long as the β-redexes are fired inside increasingly nested arguments of applications.
This is formalised in the following result:

Lemma 2.5 (stratification). Given M,N ∈ Λ001, there is a reduction M −→001
β N iff there

exists a sequence of terms (Md) ∈ (Λ001)N such that for all d ∈ N,

M = M0 −→∗
β≥0 M1 −→∗

β≥1 M2 −→∗
β≥2 . . . −→∗

β≥d−1 Md −→001
β≥d N,

where −→∗
β≥d and −→001

β≥d denote β-reductions occurring inside (at least) d nested arguments
of applications. The result still holds:
• if Λ001 is replaced with Λ001

⊥ ,
• if Λ001 is replaced with Λ001

⊥ and β-reductions are replaced with β⊥-reductions.
Formally, for ξ ∈ {β, β⊥}, ξ-reduction at minimum depth d is defined by:

M −→ξ M
′

(ξ ≥ 0)
M −→ξ≥0 M

′

P −→ξ≥d+1 P
′

(λξ≥d+1)
λx.P −→ξ≥d+1 λx.P

′

P −→ξ≥d+1 P
′

(@lξ≥d+1)
(P)Q −→ξ≥d+1 (P

′)Q

Q −→ξ≥d Q′
(@rξ≥d+1)

(P)Q −→ξ≥d+1 (P)Q′

and 001-infinitary ξ-reduction at minimum depth d is defined by:

M −→001
ξ M ′

(ξ001 ≥ 0)
M −→001

ξ≥0 M
′

(V001
ξ≥d+1)

x −→001
ξ≥d+1 x

(⊥001
ξ≥d+1)⊥ −→001

ξ≥d+1 ⊥

P −→001
ξ≥d+1 P

′

(λ001
ξ≥d+1)

λx.P −→001
ξ≥d+1 λx.P

′

P −→001
ξ≥d+1 P

′ Q −→001
ξ≥d Q′

(@001
ξ≥d+1)

(P)Q −→001
ξ≥d+1 (P

′)Q′.

1Usually one also considers two other bases cases, namely λx.⊥ −→ξ ⊥ and (⊥)M −→ξ ⊥. However the
sets of terms, as we defined them in Definition 2.1, are already quotiented by the corresponding equalities.

HOW TO PLAY THE ACCORDION 7

A typical (and in fact motivating) example of an infinitary β-reduction involves the fix-
point combinator Y := λf.(λx.(f)(x)x)λx.(f)(x)x. It consists in the reduction (Y)M −→001

β

(M)ω corresponding to the sequence:

(Y)M −→∗
β≥0 (M)(Y)M −→∗

β≥1 (M)(M)(Y)M −→∗
β≥2 . . .

On the contrary, the infinite reduction sequence Ω −→β Ω −→β Ω −→β . . ., where Ω :=
(λx.(x)x)λx.(x)x, does not give rise to a 001-infinitary reduction because the redexes are
fired at top-level all along the way. (On the other hand, each finite reduction sequence
Ω −→∗

β Ω induces a reduction Ω −→001
β Ω, but only because −→001

β contains −→∗
β ; see [CV23],

Lemma 2.13).

2.2. The resource λ-calculus. The resource λ-calculus is the target language of the linear
approximation of the λ-calculus. We recall its construction, and we refer to [VA19; Cer24]
for more details. The main intuition behind this calculus is that arguments become finite
multisets, and that (λx.s)[t1, . . . , tn] will reduce to a term obtained by substituting linearly
one ti for each occurrence of x in s. The different matchings of the ti’s and the occurrences of
x are superposed by a sum operator; if a wrong number of ti’s is provided, the term collapses
to the empty sum.

Given a set X , we denote by !X the set of finite multisets of elements of X . A multiset
is denoted by x̄ = [x1, . . . , xn], with its elements in an arbitrary order. Multiset union is
denoted multiplicatively, by x̄ · ȳ. Accordingly, the empty multiset is denoted by 1. We may
also write [xk11 , . . . , xkmm] to indicate multiplicities: this is the same as [x1]

k1 · . . . · [xm]km .

Definition 2.6. The set Λr of resource terms is defined by the rules:

x ∈ V
(V)

x ∈ Λr

x ∈ V s ∈ Λr
(λ)

λx.s ∈ Λr

s ∈ Λr t̄ ∈ !Λr
(@!)

(s)t̄ ∈ Λr

and is implicitely quotiented by α-equivalence. Multisets in !Λr are called resource mono-

mials. To denote indistinctly Λr or !Λr, we write (!)Λr.

Given a semiring S and a set X , we denote by SX the set of possibly infinite linear
combinations of elements of X with coefficients in S, considered as formal weighted sums.
Given a sum S ∈ SX , its support |S| is the set of all elements of X bearing a non-null
coefficient; we denote by S(X) the sub-semimodule of SX of all sums having a finite support.
The inclusion on sums is the notation defined by writing

∑
x∈X ax ·x ⊆

∑
x∈X bx ·x whenever

for all x ∈ X there is a coefficient a′x ∈ S such that ax + a′x = bx.
We use the following syntactic sugar. The empty sum

∑
x∈X 0 · x is denoted by 0. The

one-element sum
∑

x∈X δx,y · x is assimilated to y, yielding an inclusion X ⊆ SX . Sums can
be summed, i.e.

∑
x∈X ax · x+

∑
x∈X bx · x =

∑
x∈X (ax + bx) · x.

In practice, we will work with the sets SΛr and S!Λr of sums of resource terms and
monomials. In this setting, it is convenient to extend by linearity all the constructors of the

8 R. CERDA AND L. VAUX AUCLAIR

calculus to sums of resource terms, i.e.

λx.

(∑
i∈I

ai · si
)

:=
∑
i∈I

ai · λx.si,(∑
i∈I

ai · si
) ∑

j∈J
bj · t̄j :=

∑
i∈I

∑
j∈J

aibj · (si)t̄j ,[∑
i∈I

ai · si
]
·
∑
j∈J

bj · t̄ :=
∑
i∈I

∑
j∈J

aibj · [si] · t̄j .

(2.1)

Definition 2.7. For all u ∈ (!)Λr, t̄ = [t1, . . . , tn] ∈ !Λr and x ∈ V, the multilinear
substitution of x by t̄ in u is the finite sum s⟨t̄/x⟩ ∈ N((!)Λr) defined by

s⟨t̄/x⟩ :=


∑

σ∈S(n)

u[tσ(1)/x1, . . . , tσ(n)/xn] if x occurs n times in u

0 otherwise,

where x1, . . . , xn is an arbitrary enumeration of the occurrences of x in u, and u[tσ(1)/x1, . . .]
denotes the result of the (capture-avoiding) substitution of each xi by the corresponding
tσ(i).

Definition 2.8. The relation −→r ⊂ N((!)Λr) × N((!)Λr) of resource β-reduction is defined
using the auxiliary relation −⇀r ⊂ (!)Λr × N((!)Λr) generated by the rules

(βr)
(λx.s) t̄ −⇀r s⟨t̄/x⟩

s −⇀r S
′

(λr)
λx.s −⇀r λx.S

′
s −⇀r S

′
(@lr)

(s) t̄ −⇀r (S
′) t̄

t̄ −⇀r T̄
′

(@rr)
(s) t̄ −⇀r (s) T̄

′
s −⇀r S

′
(!r)

[s] · t̄ −⇀r [S
′] · t̄

as well as the lifting rule

u1 −⇀r U
′
1 ∀i ≥ 2, ui −⇀?

r U
′
i
(Σr)∑n

i=1 ui −→r
∑n

i=1 U
′
i

where −⇀?
r is the reflexive closure of −⇀r.

From now on, we fix a semiring S. We consider N as a subset of S through the map
n 7→ 1 + . . .+ 1 (notice however that it might not be an injection), and we suppose that S
“has fractions”, i.e. for all non-null n ∈ N there is some 1

n ∈ S such that n× 1
n = 1. This is

the case of the semirings Q+ and R+ of non-negative rational (resp. real) numbers, but also
of the semiring B of boolean values (equipped with the logical “or” and “and” operations).

Definition 2.9. Given a set X and a semiring S, a family of sums (Si)i∈I ∈ (SX)I is
summable when each x ∈ X bears a non-null coefficient in finitely many of the Si. If this is
the case then

∑
i∈I Si is a well-defined sum.

Definition 2.10. The relation −↠r ⊂ S(!)Λr × S(!)Λr of pointwise resource reduction is
defined by saying that there is a reduction U −↠r V whenever there are summable families
(ui)i∈I ∈ ((!)Λr)

I and (Vi)i∈I ∈ (N((!)Λr))I such that

U =
∑
i∈I

ai · ui, V =
∑
i∈I

ai · Vi and ∀i ∈ I, ui −→∗
r Vi.

HOW TO PLAY THE ACCORDION 9

Notice that whereas −→r reduces finite sums with integer coefficients, −↠r reduces
arbitrary sums with arbitrary coefficients.

2.3. Linear approximation and the conservativity problems. We recall the definition
of the Taylor expansion of λ-terms, and the approximation theorems it enjoys. Again, a
detailed presentation can be found in [VA19], and in [Cer24] for the adaption to infinitary
λ-calculi. In the latter setting, we shall start with the following unusual definition.

Definition 2.11. The Taylor expansion is the map T : Λ001
⊥ → SΛr defined by

T (M) :=
∑
s∈Λr

T (M, s) · s,

where the coefficient T (M, s) is defined by induction on s ∈ Λr as follows:

T (x, x) := 1

T (λx.P, λx.s) := T (P, s)

T ((P)Q, (s)t̄) := T (P, s)× T !(Q, t̄)

where, for pairwise distinct ti’s, we denote:

T !(Q, [tk11 , . . . , tkmm]) :=
m∏
i=1

T (Q,ti)
ki

ki!
,

and in all other cases (i.e. whenever M and s do not have the same shape):
T (M, s) := 0.

Let us stress a crucial observation: whenever s ∈ |T (M)|, the value of T (M, s) does not
depend on M , hence T (M) is uniquely determined by its support [ER08].

Using the notation from Eq. (2.1), we obtain the following description of the Taylor
expansion. This is usually how the definition is presented for finite λ-terms, but since it is
not a valid coinductive definition we had to provide Definition 2.11 in the infinitary setting.

Lemma 2.12 ([Cer24], Corollary 4.7). For all variables x ∈ V and terms P,Q ∈ Λ001
⊥ ,

T (x) = x T (⊥) = 0 T (λx.P) = λx.T (P) T ((P)Q) = (T (P))T (Q)!,

where the operation of promotion is defined for all S ∈ SΛr by S! :=
∑
n∈N

1
n! · [S]

n.

We defined a map T taking λ-terms to weighted sums of approximants. This induces an
approximation of the λ-calculus, thanks to the following theorems expressing the fact that
the reduction of the approximants can simulate the reduction of the approximated term.

Simulation theorem 2.13 ([VA19], Lemma 7.6). For all M,N ∈ Λ, if M −→∗
β N then

T (M) −↠r T (N).

Simulation theorem 2.14 ([CV23], Theorem 4.21). For all M,N ∈ Λ001, if M −→001
β N

then T (M) −↠r T (N).

This second theorem can in fact be strengthened:

Simulation corollary 2.15 ([CV23], Corollary 5.13). For all M,N ∈ Λ001
⊥ , if M −→001

β⊥ N

then T (M) −↠r T (N)2.

10 R. CERDA AND L. VAUX AUCLAIR

In particular, the Corollary 2.15 encompasses the “Commutation theorem” [ER08; ER06],
which is usually presented as the cornerstone of the linear approximation of the λ-calculus:
the normal form of T (M) is equal to the Taylor expansion of the Böhm tree of M (which is
a notion of infinitary β-normal form of M), i.e. normalisation commutes with approximation.

Definition 2.16. Let (A,−→A) and (B,−→B) be two reduction systems. The latter is an
extension of the former if:
(1) there is an injection i : A ↪→ B,
(2) −→A simulates −→B through i, i.e. ∀a, a′ ∈ A, if a −→A a′ then i(a) −→B i(a′).
This extension is said to be conservative if ∀a, a′ ∈ A, if i(a) −→B i(a′) then a −→A a′.

Notice that our definition of a conservative extension varies from the one chosen by the
Terese [Ter03, § 1.3.21], where the conservativity of −→B wrt. −→A is defined as a property
of the conversions =A and =B they generate. We prefer to distinguish between a conservative
extension of a reduction (“in the image of the small world, the big reduction relates the same
people than the small reduction did”) and a conservative extension of the corresponding
conversion.

An important observation is that the map T : Λ001
⊥ → SΛr is injective [CV23, Lemma 5.18];

in fact, it is only to ensure this that we quotiented λ⊥-terms by λx.⊥ = ⊥ and (⊥)M = ⊥
in Definition 2.1. As a consequence, Theorems 2.13 and 2.14 can be reformulated with the
terminology of Definition 2.16:
• Theorem 2.13 tells that (SΛr ,−↠r) simulates (Λ,−→∗

β),
• Theorem 2.14 tells that (SΛr ,−↠r) simulates (Λ001,−→001

β),
which leads us to the problems we tackle in this article.

Problem 2.17. Is (SΛr ,−↠r) conservative wrt. (Λ,−→∗
β)?

Problem 2.18. Is (SΛr ,−↠r) conservative wrt. (Λ001,−→001
β)?

Sections 3 and 4 are devoted to giving (respectively positive and negative) answers to
these problems. Let us just tell the reader that this may be the right moment for them to
have a first look at Section 6, where we provide an overview of our results, before coming
back to the following technical developments.

3. Conservativity wrt. the finite λ-calculus

In this first section, we prove the following result provinding a positive answer to Problem 2.17:

Conservativity theorem 3.1. For all M,N ∈ Λ, if T (M) −↠r T (N) then M −→∗
β N .

To do so, we adapt a proof technique by Kerinec and the second author [KV23], who used
it to prove that the algebraic λ-calculus is a conservative extension of the usual λ-calculus.
Their proof relies on a relation ⊢, called “mashup” of β-reductions, relating λ-terms (from the
“small world”) to their algebraic reducts (in the “big world”). In our setting, M ⊢ s when s is
an approximant of a reduct of M .

2In the given reference, Theorem 2.14 and Corollary 2.15 were presented and proved only for the qualitative
Taylor expansion (i.e. when S is the semiring of booleans). The proof of the quantitative version (for any
semiring) can be found in [Cer24, Theorem 4.56].

HOW TO PLAY THE ACCORDION 11

Definition 3.2. The mashup relation ⊢ ⊂ Λ× Λr is defined by the following rules:

M −→∗
β x

(⊢V)
M ⊢ x

M −→∗
β λx.P P ⊢ s

(⊢λ)
M ⊢ λx.s

M −→∗
β (P)Q P ⊢ s Q ⊢ t̄

(⊢@)
M ⊢ (s) t̄

M ⊢ t1 . . . M ⊢ tn
(⊢!)

M ⊢ [t1, . . . , tn]

It is extended to Λ× SΛr by the following rule:

∀i ∈ I, M ⊢ si
(⊢Σ)

M ⊢
∑

i∈I ai · si
for any index set I and coefficients ai ∈ S such that the sum exists.

Lemma 3.3. For all M ∈ Λ, M ⊢ T (M).

Proof. Take any s ∈ |T (M)|. By an immediate induction on s, M ⊢ s follows from the rules
of Definition 3.2 (where all the assumptions −→∗

β are just taken to be equalities).

Lemma 3.4. For all M,N ∈ Λ and S ∈ SΛr, if M −→∗
β N and N ⊢ S then M ⊢ S.

Proof. Take any s ∈ |S|, then N ⊢ s. By an immediate induction on s, M ⊢ s follows from
the rules of Definition 3.2 (where the assumptions M −→∗

β . . . follow from the corresponding
M −→∗

β N −→∗
β . . .).

Lemma 3.5. For all M,N ∈ Λ, x ∈ V, s ∈ Λr and t̄ ∈ !Λr, if M ⊢ s and N ⊢ t̄ then
∀s′ ∈ |s⟨t̄/x⟩| , M [N/x] ⊢ s′.

Proof. Assume M and N are given and show the following equivalent result by induction on
s: if M ⊢ s then for all t̄ such that N ⊢ t̄ and for all s′ ∈ |s⟨t̄/x⟩|, M [N/x] ⊢ s′.
• If s = x, then t̄ = [t1] and s′ = t1. Since M ⊢ x and N ⊢ [t1], we have M −→∗

β x and we
obtain M [N/x] −→∗

β N ⊢ t1 = s′.
• If s = y ̸= x, then t̄ = 1 and s′ = y. Since M ⊢ y, we have M −→∗

β y and we obtain
M [N/x] −→∗

β y hence M [N/x] ⊢ y.
• If s = λx.u, then s′ ∈ |λx.u⟨t̄/x⟩|, that is s′ = λx.u′ for some u′ ∈ |u⟨t̄/x⟩|. Since
M ⊢ λx.u, there is some M −→∗

β λx.P with P ⊢ u. By induction hypothesis, P [N/x] ⊢ u′.
Hence M [N/x] −→∗

β λx.P [N/x] and P [N/x] ⊢ u′, so M [N/x] ⊢ λx.u′.
• If s = (u) v̄ with v̄ = [v1, . . . , vn], then s′ = (u′) v̄′ with u′ ∈ |u⟨t̄0/x⟩|, v̄′ = [v′1, . . . , v

′
n]

and v′i ∈ |vi⟨t̄i/x⟩| for i ∈ {1, . . . , n}, so that t̄ = t̄0 · t̄1 · . . . · t̄n. Since M ⊢ (u) v̄, there is
some M −→∗

β (P)Q with P ⊢ u and Q ⊢ v̄. Since N ⊢ t̄, we also have N ⊢ t̄i for each
i ∈ {0, . . . , n}. By induction hypothesis, we obtain P [N/x] ⊢ u′ and Q[N/x] ⊢ v′i for each
i ∈ [1, n]. Therefore M [N/x] −→∗

β (P [N/x])Q[N/x] with P [N/x] ⊢ u′ and Q[N/x] ⊢ v̄′,
so finally M [N/x] ⊢ (u′) v̄′.

Lemma 3.6. For all M ∈ Λ and S,T ∈ SΛr, if M ⊢ S and S −↠r T then M ⊢ T.

Proof. Let us first show that for all M ∈ Λ and s ∈ Λr and T ∈ N(Λr), if M ⊢ s −⇀r T then
∀t ∈ |T |, M ⊢ t. We do so by induction on s −⇀r T . When s = (λx.u) v̄ is a redex, there

12 R. CERDA AND L. VAUX AUCLAIR

exists a derivation:

M −→∗
β (P)Q

P −→∗
β λx.P ′ P ′ ⊢ u

(⊢λ)
P ⊢ λx.u Q ⊢ v̄

(⊢@)
M ⊢ (λx.u) v̄

By Lemma 3.5 with P ′ ⊢ u, Q ⊢ v̄, for all t ∈ |u⟨v̄/x⟩|, we obtain P ′[Q/x] ⊢ t. Finally,
since M −→∗

β (λx.P ′)Q −→β P ′[Q/x], we concude by Lemma 3.4. The other cases of the
induction follow immediately by lifting to the context.

As a consequence, we can easily deduce the following steps:

• if M ⊢ s −⇀r T then M ⊢ T , for all M ∈ Λ, s ∈ Λr and T ∈ N(Λr),
• if M ⊢ S −→r T then M ⊢ T , for all M ∈ Λ and S, T ∈ N(Λr),
• if M ⊢ S −→∗

r T then M ⊢ T , for all M ∈ Λ and S, T ∈ N(Λr),

which leads to the result.

Before we state the last lemma of the proof, recall that there is a canonical injection
⌊−⌋r : Λ → Λr defined by:

⌊x⌋r := x ⌊λx.P ⌋r := λx.⌊P ⌋r ⌊(P)Q⌋r := (⌊P ⌋r) [⌊Q⌋r]

and such that for all N ∈ Λ, ⌊N⌋r ∈ |T (N)|.

Lemma 3.7. For all M,N ∈ Λ, if M ⊢ T (N) then M −→∗
β N .

Proof. If M ⊢ T (N), then in particular M ⊢ ⌊N⌋r. We proceed by induction on N :

• If N = x, then M ⊢ x so M −→∗
β x by definition.

• If N = λx.P ′, then M ⊢ λx.⌊P ′⌋r, i.e. there is a P ∈ Λ such that M −→∗
β λx.P and

P ⊢ ⌊P ′⌋r. By induction, P −→∗
β P ′, thus M −→∗

β λx.P ′ = N .
• If N = (P ′)Q′, then M ⊢ (⌊P ′⌋r) [⌊Q′⌋r] i.e. there are P,Q ∈ Λ such that M −→∗

β (P)Q,
P ⊢ ⌊P ′⌋r and Q ⊢ [⌊Q′⌋r]. By induction, P −→∗

β P ′ and Q −→∗
β Q′, thus M −→∗

β

(P ′)Q′ = N .

Proof of Theorem 3.1. Suppose that T (M) −↠r T (N). By Lemma 3.3 we obtain M ⊢
T (M), hence by Lemma 3.6 M ⊢ T (N). We can conlude with Lemma 3.7.

4. Non-conservativity wrt. the infinitary λ-calculus

The previous theorem relied on the excellent properties of the Taylor expansion of finite
λ-terms: a single (well-chosen) term ⌊M⌋r ∈ |T (M)| is enough to characterise M , and a single
(again, well-chosen) sequence of resource reducts of some s ∈ |T (M)| suffices to characterise
any sequence M −→∗

β N . These properties are not true any more when considering more
complicated settings, like the 001-infinitary λ-calculus. This does not only make the “mashup”
proof technique fail, but also enables us to give a negative answer to Problem 2.18.

HOW TO PLAY THE ACCORDION 13

4.1. Failure of the “mashup” technique. Let us first describe where we hit an obstacle if
we try to reproduce the proof we have given in the finite setting, which will make clearer the
way we later build a counterexample.

First, it is not obvious what the mashup relation should be: we could just use the relation
⊢ defined on Λ001 × Λr by the same set of rules as in Definition 3.2, or define an infinitary
mashup ⊢001 by the rules

M −→001
β x

(⊢001V)
M ⊢001 x

M −→001
β λx.P P ⊢001 s

(⊢001λ)
M ⊢001 λx.s

M −→001
β (P)Q P ⊢001 s Q ⊢001 t̄

(⊢001@)
M ⊢001 (s) t̄

M ⊢001 t1 . . . M ⊢001 tn
(⊢001!)

M ⊢001 [t1, . . . , tn]

and extend it to SΛr accordingly. In fact, this happens to define the same relation.

Lemma 4.1. For all M ∈ Λ001 and s ∈ Λr, M ⊢001 s iff M ⊢ s.

Proof. The inclusion ⊢ ⊆ ⊢001 is immediate. Let us show the converse. First, observe that
the proof of Lemma 3.4 can be easily extended in order to show that for all M,N ∈ Λ001

and s ∈ Λr, if M −→001
β N ⊢001 s then M ⊢001 s. Then we proceed by induction on s.

• If M ⊢001 x, then M −→001
β x, i.e. M −→∗

β x, and finally M ⊢ x.
• If M ⊢001 λx.u, then there is a derivation:

M −→∗
β λx.P P −→001

β P ′

(λ001
β)

M −→001
β λx.P ′ P ′ ⊢001 u

(⊢001λ)
M ⊢001 λx.u

Since P −→001
β P ′ ⊢001 u, we have P ⊢001 u, and by induction on u we obtain P ⊢ u. With

M −→∗
β λx.P , this yields M ⊢ λx.u.

• The case of M ⊢001 (u) v̄ is similar.

As a consequence, Lemmas 3.3 to 3.6 can be easily extended to −→001
β and ⊢001. We

have already explained how the proof of such an extension can be done for Lemma 3.4; for
the other ones, one just needs to observe that the proofs are all by induction on resource
terms or on some inductively defined relation, hence replacing −→∗

β with −→001
β does not

change anything (and neither does replacing ⊢ with ⊢001, thanks to Lemma 4.1).
The failure of the infinitary “mashup” proof occurs in the extension of Lemma 3.7. Indeed,

this proof crucially relies on the existence of an injection ⌊−⌋r : Λ → Λr, whereas for Λ001

there is only the counterpart ⌊−⌋r,− : Λ001 × N → Λr defined by

⌊x⌋r,d := x ⌊(P)Q⌋r,0 := (⌊P ⌋r,0) 1
⌊λx.P ⌋r,d := λx.⌊P ⌋r,d ⌊(P)Q⌋r,d+1 := (⌊P ⌋r,d+1) [⌊Q⌋r,d] .

Now, if we suppose that M ⊢ T (N) and we want to show that M −→001
β N , we cannot rely

any more on the fact that M ⊢ ⌊N⌋r, but only on the fact that ∀d ∈ N, M ⊢ ⌊N⌋r,d. This
makes the induction fail. For instance, for the case where N is an abstraction λx.P ′, we

14 R. CERDA AND L. VAUX AUCLAIR

obtain a d-indexed sequence of derivations
M −→∗

β λx.Pd Pd ⊢ ⌊P ′⌋r,d
(⊢λ)

M ⊢ ⌊N⌋r,d = ⌊λx.P ′⌋r,d
but nothing tells us that the terms Pd and reductions M −→∗

β λx.Pd are coherent! This
failure is what enables us to design a counterexample.

4.2. The Accordion. In this section, we define 001-infinitary λ-terms A and Ā and show
that they form a counterexample not only to the 001-infinitary counterpart of Lemma 3.7,
but also to the conservativity property in the infinitary setting.

As the reader will see below (in Definition 4.3), the definition of the λ-term A turns out
to be quite convoluted; as a consequence, the proof that it is actually a counterexample,
although unsurprising, is boringly technical. To illustrate the intuitions that led to the design
of the term A, let us start with a more naive attempt: although this will ultimately fail, it will
give the main ideas that we leveraged, and will also explain why the technical convolutions
of the actual counterexample were introduced.

Let us first introduce some notations.

Notation 4.2. We denote as follows the usual representation of the Church encodings of
integers, the successor function, and booleans, as well as an “applicator” ⟨−⟩:

n := λf.λx.(f)nx Succ := λn.λf.λx.(n) f (f)x

T := λx.λy.x F := λx.λy.y ⟨M⟩ := λb.(b)M.

Now let us try to construct a counterexample to conservativity. We thus want:
• a term A, possibly finite,
• a term Ā, necessarily infinite (otherwise Theorem 3.1 applies), which we will try to build

of the following shape, for finite terms Bn:

@

B0 @

B1 @

B2

such that the β-reduction of A produces approximations of Ā, as accurate as desired, i.e. there
are terms Cn such that

A −→∗
β (B0)C0 −→∗

β (B0)(B1)C1 −→∗
β (B0)(B1)(B2)C2 −→∗

β . . .

(in particular, the applicative depth of the first difference between (B0)(B1) · · · (Bn)Cn

and Ā tends to infinity) but such that this sequence of β-reductions does not give rise
to a valid infinitary β-reduction A −→001

β Ā, i.e. in each reduction (B0) . . . (Bn)Cn −→∗
β

(B0) . . . (Bn+1)Cn+1 one reduction step should occur at a globally bounded depth. The
precise way we want to achieve this is by decomposing each of the above reductions into

(B0) . . . (Bn)Cn −→∗
β (P) n+ 1 −→∗

β (B0) . . . (Bn+1)Cn+1 (4.1)

for a given term P, so that the second part of Eq. (4.1) starts with a reduction occurring at
depth 0, and to define A := (P)0.

HOW TO PLAY THE ACCORDION 15

For the sake of naivety, let us observe that the first part of Eq. (4.1) can be achieved by
defining Bn := I (the identity λ-term λx.x) and Cn := (P) n+ 1. As for the second part of
Eq. (4.1), we can define:

P := (Y)λp.λn.(n) I (p)(Succ)n

so that, thanks to the fixed-point combinator, (P)n −→∗
β (n) I (P)(Succ)n −→∗

β (I)n(P) n+ 1.
As a result, we obtain:

A = (P)0 −→∗
β (P)1 −→∗

β (I)(P)2 −→∗
β (P)2 −→∗

β (I)(I)(P)3 −→∗
β (P)3 −→∗

β . . .

which, as expected, does not correspond to a valid infinitary β-reduction.
However this counterexample does not work, because we do not only want that one

sequence of β-reductions starting from A and converging to Ā cannot be turned into a valid
infinitary β-reduction, but that all such sequences enjoy this (lack of) property! And in the
naive case we just presented, we can in fact reduce A as follows:

A = (P)0 −→∗
β (P)1 −→∗

β (I) (P)2 −→∗
β (I)(I)(I) (P)3 −→∗

β . . . (4.2)

where we highlighted the subterms that are actually reduced. In this latter reduction sequence,
the depth of the reduced redexes actually tends to infinity, hence by Lemma 2.5 it gives rise
to a reduction A −→001

β (I)(I)(I) . . . = Ā. Too bad!
In order to ensure that no reduction sequence starting from A can be turned into a valid

reduction A −→001
β Ā, we will follow a similar pattern, but ensure that:

• (easy) B0 is distinct from the other Bi’s, so that it can act as a marker for the root of the
comb shaped tree Ā, and of its approximations along the reduction;

• (the hard part) no reduction sequence below the root of the tree (B0) . . . (Bn)Cn can build
(B0) . . . (Bn+1)Cn+1 because, intuitively, the machinery in the lower part of the tree needs
an information produced by the reduction of the root redex involving B0 before it can
build (B0) . . . (Bk)Ck with k > n.

Our solution is as follows:

Definition 4.3. The Accordion λ-term is defined as A := (P)0, where:

P := (Y)λp.λn. (⟨T⟩) ((n)⟨F⟩) Qp,n Qp,n := (Y)λq.λb. ((b)(p)(Succ)n) q.

We also define Ā := (⟨T⟩)(⟨F⟩)ω.

The key in this definition is that it does ensure that Cn := QP,n (or, in practice, some
β-equivalent term) needs to interact with B0 := ⟨T⟩, to be able to produce the next Bn+1

and Cn+1. Therefore there is no other way to produce better and better approximations of Ā
than the following:

A −→∗
β @

P′′ 0

−→∗
β @

⟨T⟩ Q0

−→∗
β @

P′′ 1

−→∗
β @

⟨T⟩ @

⟨F⟩ Q1

−→∗
β @

P′′ n

−→∗
β @

⟨T⟩ @

⟨F⟩ @

⟨F⟩
@

⟨F⟩ Qn.

(4.3)

for given terms P′′ and Qn respectively β-equivalent to P and QP,n. This dynamics (A is
“stretched” and “compressed” over and over) justifies the name “Accordion”. More concretely:

16 R. CERDA AND L. VAUX AUCLAIR

• when fed with a Church integer argument n, the term P′′ produces a term mimicking Ā up
to the n-th copy of ⟨F⟩, the latter being applied to Qn;

• the applicator ⟨−⟩ enforces a kind of call-by-value discipline, giving control to the argument
(observe that (⟨M⟩)N −→β (N)M);

• Qn eats up boolean arguments F, until it is fed with a boolean T (marking the root of the
tree), at which point it restores P′′, applied to the next Church integer.

Theorem 4.4. (i) T (A) −↠r T (Ā), but (ii) there is no reduction A −→001
β Ā.

This theorem improves on the results from the first author’s PhD thesis [Cer24, Theo-
rem 5.12], where only the qualitative setting was treated (i.e. when S = B). Non-conservativity
in the general case was presented as Conjecture 5.15, which is thereby solved.

4.3. Proof of the counterexample. In this (essentially technical) section, we prove
Theorem 4.4: a reader already satisfied with the above intuitions might prefer to skip it, and
jump to Section 5. The key ingredients in the proof are the following well-known notions as
well as the associated factorization property due to Mitschke [Mit79, cor. 5].

Definition 4.5. A λ-term M ∈ Λ001 has two possible head forms:
• either the form λx1 . . . λxm.(y)M1 . . .Mn, called head normal form (hnf),
• or the form λx1 . . . λxm.(λx.P)QM1 . . .Mn, where (λx.P)Q is called the head redex.
As a consequence, a β-reduction M −→β N reduces:
• either a head redex: it is a head reduction, denoted by M −→h N ,
• or any other redex: it is an internal reduction, denoted by M −→i N .

Lemma 4.6 (head-internal decomposition). For all M,N ∈ Λ such that M −→∗
β N , there

exists an M ′ ∈ Λ such that M −→∗
h M ′ −→∗

i N .

The proofs of both implications of Theorem 4.4 rely on the following basic ideas:
(i) We show that A can be (head) reduced to arbitrarily accurate approximations of Ā. As

a consequence, each approximant in T (Ā) is in the reduct of an approximant in T (A).
After some technical work, we can conclude that indeed T (A) −↠r T (Ā).

(ii) If there is a reduction A −→001
β Ā, then by Lemma 4.6 there is such a reduction made

of head reductions followed only by internal reductions. By examining all the possible
head reducts of Ā, we show that it is not possible to produce Ā in this way.

For both directions, we first need to write the complete head reduction sequence starting
from A: let us do this now. We will use the following abbreviations3:

P′ := λp.λn. (⟨T⟩) ((n)⟨F⟩) Qp,n P′′ :=
(
λx. (P′)(x)x

)
λx.(P′)(x)x Qn := QP′′,(Succ)n0

Q′n := λq.λb. ((b)(P′′)(Succ)n+10) q Q′′n := (λx.(Q′n)(x)x)λx.(Q
′
n)(x)x.

The first step is:
A = ((Y)P′)0 −→h (P′′)0 (4.4)

3Notice that the Qn we define here are slightly different from those in the example reduction from Eq. (4.3),
but they are β-equivalent and play the same role.

HOW TO PLAY THE ACCORDION 17

Then, for each n ∈ N, we do the following head reduction steps:

(P′′)(Succ)n0

−→h

(
(P′)P′′

)
(Succ)n0 (4.5)

−→h

(
λn. (⟨T⟩) ((n)⟨F⟩) QP′′,n

)
(Succ)n0 (4.6)

−→h (⟨T⟩) (((Succ)n0) ⟨F⟩) Qn (4.7)

−→h (Succ)n0 ⟨F⟩ Qn T (4.8)

−→h

(
λf.λx.(((Succ)n−10)f)(f)x

)
⟨F⟩ Qn T (4.9)

−→h

(
λx.(((Succ)n−10)⟨F⟩)(⟨F⟩)x

)
Qn T (4.10)

−→h

(
(Succ)n−10 ⟨F⟩ (⟨F⟩)Qn

)
T (4.11)

and by repeating steps (4.9) to (4.11):

−→∗
h

(
(0)⟨F⟩ (⟨F⟩)nQn

)
T (4.12)

−→h

(
(λx.x) (⟨F⟩)nQn

)
T (4.13)

−→h

(
(λb.(b)F) (⟨F⟩)n−1Qn

)
T (4.14)

−→h

(
(⟨F⟩)n−1Qn

)
F T (4.15)

and by repeating step (4.15):

−→∗
h

(
(Y)Q′n

)
F . . . F︸ ︷︷ ︸
n times

T (4.16)

−→h (Q′′n) F . . . F T (4.17)

−→h

(
(Q′n)Q

′′
n

)
F . . . F T (4.18)

−→h

(
λb. ((b)(P′′)(Succ)n+10) Q′′n

)
F . . . F T (4.19)

−→h

((
(λx.λy.y)(P′′)(Succ)n+10

)
Q′′n

)
F . . . F︸ ︷︷ ︸
n−1
times

T (4.20)

−→h

(
(λy.y)Q′′n

)
F . . . F T (4.21)

−→h (Q′′n) F . . . F T (4.22)

and by repeating steps (4.18) to (4.22):

−→∗
h (Q′′n) T (4.23)

−→h

(
(Q′n)Q

′′
n

)
T (4.24)

−→h

(
λb. ((b)(P′′)(Succ)n+10) Q′′n

)
T (4.25)

−→h

(
(λx.λy.x)(P′′)(Succ)n+10

)
Q′′n (4.26)

−→h

(
λy.(P′′) (Succ)n+10

)
Q′′n (4.27)

−→h (P′′) (Succ)n+10 (4.28)

which brings us back to step (4.5).

18 R. CERDA AND L. VAUX AUCLAIR

We are now able to start the proof of Theorem 4.4, whose two parts are the content of
Lemmas 4.7 and 4.8. Notice that in the proof of Lemma 4.7 below, one technical argument
relies on material to be introduced in Section 5.1: the reader reluctant to put a temporary
faith in our assertions may want to have a look there first.

Lemma 4.7 (Theorem 4.4, item (i)). There is a reduction T (A) −↠r T (Ā).

Proof. For all d ∈ N, we define: Ād := (⟨T⟩)(⟨F⟩)dQn. As a consequence of the reduction
described in Eqs. (4.4) to (4.28), in particular its step 4.7, there are reductions A −→∗

β

Ā0 −→∗
β Ā1 −→∗

β Ā2 −→∗
β . . . By Theorem 2.13, we obtain

T (A) −↠r T (Ā0) −↠r T (Ā1) −↠r T (Ā2) −↠r . . . (4.29)

For all d ∈ N, we also define Td(Ā) ⊆ T (Ā) to be the “sub-sum” containing only the
approximants of applicative depth d+1. Explicitely, we first define T ′

d(Ā) := T ((⟨T⟩)(⟨F⟩)d⊥),
where ⊥ is a constant such that T (⊥) := 0 (this is just a trick to “cut” the Taylor expansion
at some point), and then

T0(Ā) := T ′
0 (Ā)

Td+1(Ā) := T ′
d+1(Ā)− T ′

d(Ā) =
∑

s∈|T ′
d+1(Ā)|\|T ′

d(Ā)|
T (s, Ā) · s.

Let us make the following two sec:preliminary observations.

• By construction (using the observation that the coefficient of s ∈ |T (M)| does not depend
on M), we obtain:

T (Ād) = Td(Ā) + Sd, for some Sd such that |Td(Ā)| ∩ |Sd| = ∅ (4.30)

T (Ā) =
∑
n∈N

Td(Ā) (4.31)

• In addition,

∀s ∈ Td(Ā), ∀k > 0, ∄t ∈ Td+k(Ā), s −→∗
r t+ T (4.32)

for some T ∈ N(Λr): this is due to the fact that terms in T (Ā) cannot see their (applicative)
depth increase through resource reduction. In particular it means that in any reduction

T (Ād) = Td(Ā) + Sd −↠r T (Ād+k) = Td+k(Ā) + Sd+k,

only the terms of Sd actually contribute to Td+k(Ā). This is the case in particular for the
reductions coming from Eq. (4.29), as we will now consider.

Now all the material and hypotheses have been exposed, the proof goes as follows. We
want to define a sequence of sums S′

d ⊆ Sd ⊆ T (Ād) such that for all d ∈ N, S′
d −↠r

Td+1(A)+S′
d+1 and such that in all reductions T (Ād) −↠r T (Ād+k) = Td+k(Ā)+Sd+k coming

from Eqs. (4.29) and (4.30), for k > 0, only the terms of S′
d contribute to Td+k(A).

• For d = 0, take S′
0 := S0. By Eq. (4.30), T (Ā0) = T0(Ā) + S0 and the desired property is a

direct consequence of Eq. (4.32).
• For d ≥ 0, consider the reduction T (Ād) −↠r T (Ād+1) = Td+1(Ā) + Sd+1 coming from

Eqs. (4.29) and (4.30). Suppose that S′
d is built, then because we know that only the terms

HOW TO PLAY THE ACCORDION 19

from S′
d contribute to Td+1(Ā) in the above reduction we can decompose it as follows:

T (Ād) =


T1 −↠r

+

S′
d =

 T2 −↠r

+
T3 −↠r

T4

+
S′
d+1

 = Sd+1

+
Td+1(Ā)

 = T (Ād+1) (4.33)

for some T1, . . . ,T4 ∈ SΛr such that S′
d+1 is defined to be the reduct of T2. In addition,

for all k > 0:
– in the reduction T (Ād+1) −↠r T (Ād+1+k) = Td+1+k(Ā)+Sd+1+k coming from Eqs. (4.29)

and (4.30), by the observation (4.32), only the terms from Sd+1 contribute to Td+1+k(Ā),
– in the reduction T (Ād) −↠r T (Ād+1+k) = Td+1+k(Ā) + Sd+1+k also coming from

Eqs. (4.29) and (4.30), by the property ensured on S′
d, only the terms from S′

d contribute
to Td+1+k(Ā),

and the latter reduction is obtained by appending the former to the reduction (4.33). As
S′
d+1 contains exactly the terms of Sd+1 coming from S′

d, only the terms of S′
d+1 contribute

to Td+1+k(Ā) in the former reduction, which was the desired property.
In the end, we obtain, for all N ∈ N:

T (A) −↠r T0(Ā) + S0 −↠r T0(Ā) + T1(Ā) + S′
1 −↠r . . . −↠r

N∑
d=0

Td(Ā) + S′
N (4.34)

For each s ∈ |T (A)|, this can be turned into:

s −→∗
r Ts,0 + Ss,0 −→∗

r Ts,0 + Ts,1 + Ss,1 −→∗
r . . . −→∗

r

N∑
d=0

Ts,d + Ss,N (4.35)

for some Ts,d, Ss,d ∈ N(Λr) satisfying Td(Ā) =
∑

s∈Λr
T (s, A) · Ts,d. At this point the careful

reader might raise an eyebrow, because taking a lifted reduction −↠r in SΛr back to reductions
−→∗

r in N(Λr) may not be possible in general. The reason for this is that the latter only works
with integer coefficients whereas we could start from a reduction like s −↠r

1
3 ·s+

2
3 ·s in QΛr .

This is where we need the material to be introduced in Section 5.1: in fact the reductions
−↠r from Eq. (4.29) were obtained via the simulation Theorem 2.13, but the refined uniform
simulation Theorem 5.6 allows to replace these reductions with −→⌢ ∗

r . As a consequence,
all reductions −↠r from Eq. (4.29) to Eq. (4.34) are in fact uniform reductions −→⌢ ∗

r . In
addition for all d ∈ N the sums Td(Ā) and S′

d have disjoint supports, hence Eq. (4.35) is a
consequence of Lemma 5.5 4.

We are now ready to conclude. Observe the following facts:
• For each s ∈ T (A) there are only finitely many d ∈ N such that Ts,d ̸= 0. This is due to

the fact that a resource term has only finitely many reducts [VA19, Lemma 3.13].
• A has no head normal form as demonstrated in Eqs. (4.4) to (4.28), which entails that
T (A) −↠r 0 [CV23, Theorem 5.6]. Since S′

N only contains reducts of terms in T (A), this
means that we can reduce S′

N −→∗
r 0.

4Notice that obtaining Eq. (4.35) from Eq. (4.34) is immediate when S is the semiring of booleans, as
was done in [Cer24], and remains possible if S has the “refinement” or “additive splitting” property, which is
the case of all semirings used in practice to our knowledge; we rely on Lemma 5.5 only to provide the most
general proof possible.

20 R. CERDA AND L. VAUX AUCLAIR

As a consequence, s −→∗
r

∑
d∈N Ts,d and therefore:

T (A) =
∑
s∈Λr

T (s, A) · s −↠r

∑
s∈Λr

T (s, A) ·
∑
d∈N

Ts,d =
∑
d∈N

Td(Ā) = T (Ā)

by Eq. (4.31).

We can now start the second part of the proof of the counterexample. It consists in
showing that the undesired behaviour illustrated on our naive counterexample candidate
(see Eq. (4.2)) cannot be reproduced with A: all reduction paths have an “accordion-like”
behaviour, hence do not correspond to an infinitary β-reduction.

Lemma 4.8 (Theorem 4.4, item (ii)). There is no reduction A −→001
β Ā.

Proof. We suppose that there is a reduction A −→001
β Ā and we show that this leads to a

contradiction. By Lemmas 2.5 and 4.6, there exists respectively a sequence of terms Ad ∈ Λ
and a term A′0 ∈ Λ such that there are reductions

A −→∗
h A′0 −→∗

i A1 −→∗
β≥1 Ad −→001

β≥d Ā.

A′0 and Ā must have the same head form, i.e. there must be M,N ∈ Λ such that A′0 = (λb.M)N .
The exhaustive description of the head reducts of A detailed in Eqs. (4.4) to (4.28) allows to
observe that this only happens in four cases (corresponding to steps 4.6, 4.7, 4.25 and 4.27
in Eqs. (4.4) to (4.28)):
(1) A′0 =

(
λn. (⟨T⟩) ((n)⟨F⟩) QP′′,n

)
(Succ)n0,

(2) A′0 = (⟨T⟩) (((Succ)n0) ⟨F⟩) Qn,
(3) A′0 =

(
λb. ((b)(P′′)(Succ)n+10) Q′′n

)
T,

(4) A′0 =
(
λy.(P′′) (Succ)n+10

)
Q′′n,

for some n ∈ N (in the following, n denotes this specific integer appearing in A′0). In particular,
for one of these possible values of A′0 there must be a reduction

A′0 −→∗
i An+4 −→001

β≥n+4 Ā.

Since An+4 and Ā are identical up to applicative depth n + 3, we can write An+4 =
(⟨T⟩)(⟨F⟩)n+1M for some M ∈ Λ such that M −→001

β (⟨F⟩)ω (we need to go up to depth n+3

since ⟨T⟩ and ⟨F⟩ are themselves of applicative depth 2). Finally, there must be a reduction

A′0 −→∗
i (⟨T⟩)(⟨F⟩)n+1M.

For each of the possible cases for A′0, let us show that this is impossible. The easy cases are:
Case 1, step (4.6): Such a reduction would imply that (Succ)n0 −→∗

β (⟨F⟩)n+1M . How-
ever (Succ)n0 −→∗

β n, which is in β-normal form, while (⟨F⟩)n+1M has no normal form.
We conclude by confluence of the finite λ-calculus.

Case 3, step (4.25): Immediate because T is in normal form.
Case 4, step (4.27): Such a reduction would imply that λy.(P′′)(Succ)n+10 −→∗

β ⟨T⟩ =
λy.(y)T, and therefore that (P′′)(Succ)n+10 has a hnf (y)T. This is impossible, as
detailed in the exhaustive head reduction of A in Eqs. (4.4) to (4.28).

The remaining case concerns the reduct (⟨T⟩) (((Succ)n0) ⟨F⟩) Qn. It is the only “non-
degenerate” one, in the sense that it is where the accordion-like behaviour of A is actually
happening: the sub-term ⟨T⟩ here is really “the same” as the one appearing at the root of Ā
but we need to reduce this sub-term at some point (i.e. to “compress” the Accordion). Thus

HOW TO PLAY THE ACCORDION 21

there can be no 001-infinitary reduction towards Ā. The formal proof of this case, i.e. of the
impossibility of (Succ)n0⟨F⟩Qn −→∗

β (⟨F⟩)n+1M , is given by Lemma 4.10 below.

Lemma 4.9 (base case of Lemma 4.10). For all k ∈ N, n ∈ N and M ∈ Λ, there is no
reduction

(⟨F⟩)k Qn −→∗
β (⟨F⟩)k+1M.

Proof. We proceed by induction on k. First, take k = 0 and suppose there is a reduction
Qn −→∗

β (⟨F⟩)M . By Lemma 4.6, there are R,R′ ∈ Λ such that

Qn −→∗
h (λb.R)R′ −→∗

i (⟨F⟩)M = (λb.(b)F)M.

An exhaustive head reduction of Qn gives the possible values of R and R′:

Qn = (Y)Q′n

−→h

(
λx.(Q′n)(x)x

)
λx.(Q′n)(x)x

−→h

(
λq.λb. ((b)(P′′)(Succ)n+10) q

)
Q′′n

−→h λb. ((b)(P′′)(Succ)n+10) Q′′n,

the last reduct being in hnf, which leaves only the first three possibilities. In any of those
three cases, R −→∗

β (b)F (modulo renaming of b by α-conversion) is impossible by immediate
arguments, so that (λb.R)R′ −→∗

i (⟨F⟩)M cannot hold.

If k ≥ 1, let us again suppose that there is a reduction (⟨F⟩)k Qn −→∗
β (⟨F⟩)k+1M .

Lemma 4.6 states that there are R,R′ ∈ Λ such that

(⟨F⟩)k Qn −→∗
h (λb.R)R′ −→∗

i (λb.(b)F)(⟨F⟩)kM.

An exhaustive head reduction of (⟨F⟩)k Qn gives the possible values of R and R′ (we write
only the reduction steps corresponding to the well-formed reducts — see the details in the
detailed head reduction of A, steps (4.15) and following):

(⟨F⟩)k Qn = (λb.(b)F) (⟨F⟩)k−1 Qn

−→∗
h

(
λb.

(
(b)(P′′)(Succ)n+10

)
Q′′n

)
F

−→∗
h (λy.y)Q′′n

−→h Q′′n

In the first case, a reduction (λb.(b)F) (⟨F⟩)k−1 Qn −→∗
i (λb.(b)F)(⟨F⟩)kM is impossible because

it would imply that (⟨F⟩)k−1 Qn −→∗
β (⟨F⟩)kM , which is impossible by induction. The second

and third cases are impossible by immediate arguments; the fourth case has already been
explored (Q′′n is exactly the term from the second line of the reduction of Qn above).

Lemma 4.10 (the difficult case of Lemma 4.8). For all n ∈ N, k ∈ [0, n] and M ∈ Λ, there
is no reduction:

(Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→∗
β (⟨F⟩)n+1M.

Proof. We proceed by induction on n − k. The base case is k = n: if there is a reduction
(0) ⟨F⟩ (⟨F⟩)nQn −→∗

β (⟨F⟩)n+1M , then by Lemma 4.6 there are terms R,R′ ∈ Λ such that

(0) ⟨F⟩ (⟨F⟩)nQn −→∗
h (λb.R)R′ −→∗

i (λb.(b)F)(⟨F⟩)nM.

Observe that
(0) ⟨F⟩ (⟨F⟩)nQn −→h (λx.x) (⟨F⟩)nQn −→h (⟨F⟩)nQn

22 R. CERDA AND L. VAUX AUCLAIR

hence, because λx.x is in β-normal form and by Lemma 4.9, we reach a contradiction.

If k < n and there is a reduction (Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→∗
β (⟨F⟩)n+1M , then again

by Lemma 4.6 there are terms R,R′ ∈ Λ such that

(Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→∗
h (λb.R)R′ −→∗

i (λb.(b)F)(⟨F⟩)nM.

Observe that

(Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→h

(
λf.λx.(Succ)n−k−1 0 f (f)x

)
⟨F⟩ (⟨F⟩)kQn

−→h

(
λx.(Succ)n−k−1 0 ⟨F⟩ (⟨F⟩)x

)
(⟨F⟩)kQn

−→h (Succ)n−k−1 0 ⟨F⟩ (⟨F⟩)k+1Qn

The first reduct does not have the expected head form. In the second case, (λb.R)R′ −→∗
i

(λb.(b)F)(⟨F⟩)nM would imply that (⟨F⟩)kQn −→∗
β (⟨F⟩)nM , which is impossible by Lemma 4.9

because k < n. In the third case, apply the induction hypothesis.

5. The missing ingredient: Uniformity

The fact that the simulation of −→001
β by −↠r via Taylor expansion is not conservative

confirms that pointwise reduction −↠r, even if needed in order to express the pointwise
normal form of a sum through resource reduction, weakens the dynamics of the β-reduction
by allowing to reduce resource approximants along reductions paths that do not correspond
to an actual reduction of the approximated term. As already underlined by Ehrhard and
Regnier in their seminal work [ER08], uniformity is what gives the linear approximation all
its robustness; this will also be the case for our study.

We first recall from [ER08; Cer24] the definition of a coherence relation on resource terms
such that Taylor expansions of λ⊥-terms are uniform (i.e. self-coherent), and the fact that
resource reduction can be uniformly lifted to such uniform infinite sums, yielding a uniform
simulation of the infinitary β-reduction (Section 5.1). Then we prove that this simulation,
contrary to the simulation by the weaker lifting −↠r, is conservative (Section 5.2).

5.1. Uniform simulation of the infinitary β-reduction. The intuition behind coherence
and uniformity is simple: two resource terms are coherent with each other when their syntax
trees have the same shape, and in particular, in argument positions, all elements of both
argument multisets are pairwise coherent, for instance:

x ⌢⌣ x ̸⌢⌣ y x[λx.x[y], λx.x1] ⌢⌣ x[λx.x[y, y, y]];

this extends to sums by saying that two sums are coherent whenever all pairs of elements
of their supports are coherent; a resource term (or sum) is uniform when it is self-coherent.
Formally:

Definition 5.1. The relation ⌢⌣ ⊂ (!)Λr × (!)Λr of coherence is defined by the rules:

HOW TO PLAY THE ACCORDION 23

(V⌢⌣)
x ⌢⌣ x

s ⌢⌣ s′
(λ⌢⌣)

λx.s ⌢⌣ λx.s′
s ⌢⌣ s′ t̄ ⌢⌣ t̄′

(@⌢⌣)
(s) t̄ ⌢⌣ (s) t̄′

∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}, ti ⌢⌣ t′j
(!⌢⌣)

[t1, . . . , tm] ⌢⌣ [t′1, . . . , t
′
n]

For S,T ∈ S(!)Λr , we write S ⌢⌣ T whenever ∀s ∈ |S| , ∀t ∈ |T| , s ⌢⌣ t.

We call uniform any S ∈ SΛr such that S ⌢⌣ S. A crucial observation is that for all
M ∈ Λ001

⊥ , T (M) is uniform by construction: all its elements have “the shape of (a prefix of)
M ”.

We now introduce a uniform lifting −→⌢ r of the resource reduction −→r. Intuitively:
• this lifting can only reduce uniform sums,
• each uniform reduction step of a sum is a “bundle” of resource reduction steps occurring at

the same address in the elements of the sum (−⇀⌢ r is an inductive reformulation of Midez’
“giant-step” Γ-reduction, whose definition uses explicit addresses [Mid14]).

This allows to capture only the reductions of some T (M) that correspond to a β-reduction
of M , as will be expressed by the conservative simulation stated in Theorem 5.6 and Theo-
rem 5.10 below.

Definition 5.2. Given an index set I, we define an auxiliary relation −⇀⌢ r ⊂ ((!)Λr)
I ×

(N((!)Λr))I by the following rules:

∀i, j, si ⌢⌣ sj ∀i, j, t̄i ⌢⌣ t̄j
(β r⌢)

((λx.si) t̄i)i∈I −⇀⌢ r (si⟨t̄i/x⟩)i∈I

(si)i∈I −⇀⌢ r (S
′
i)i∈I

(λ r⌢)
(λx.si)i∈I −⇀⌢ r (λx.S

′
i)i∈I

(si)i∈I −⇀⌢ r (S
′
i)i∈I ∀i, j, t̄i ⌢⌣ t̄j

(@l r⌢)
((si) t̄i)i∈I −⇀⌢ r ((S

′
i) t̄i)i∈I

∀i, j, si ⌢⌣ sj (t̄i)i∈I −⇀⌢ r (T̄
′
i)i∈I

(@r r⌢)
((si) t̄i)i∈I −⇀⌢ r ((si) T̄

′
i)i∈I

(ti,j)i∈I
1≤j≤ki

−⇀⌢ r (T
′
i,j)i∈I

1≤j≤ki
(! r⌢)

([ti,1, . . . , ti,ki])i∈I −⇀⌢ r ([T
′
i,1, . . . , T

′
i,ki

])i∈I

and the relation −→⌢ r ⊂ S(!)Λr × S(!)Λr of uniform resource reduction is defined by:

(ui)i∈I −⇀⌢ r (U
′
i)i∈I

(Σ r⌢)∑
i∈I aiui −→⌢ r

∑
i∈I aiU

′
i .

As we are now acquainted with, we also define the relation −→⌢ r≥d ⊂ S(!)Λr × S(!)Λr of
uniform resource reduction at minimum depth d , for d ∈ N, by the following indexed
version of the above rules:

(ui)i∈I −⇀⌢ r (U
′
i)i∈I

(r
⌢ ≥ 0)

(ui)i∈I −⇀⌢ r≥0 (U
′
i)i∈I

(si)i∈I −⇀⌢ r≥d+1 (S
′
i)i∈I

(λ r⌢≥d+1)
(λx.si)i∈I −⇀⌢ r≥d+1 (λx.S

′
i)i∈I

(si)i∈I −⇀⌢ r≥d+1 (S
′
i)i∈I ∀i, j, t̄i ⌢⌣ t̄j

(@l r⌢≥d+1)
((si) t̄i)i∈I −⇀⌢ r≥d+1 ((S

′
i) t̄i)i∈I

∀i, j, si ⌢⌣ sj (t̄i)i∈I −⇀⌢ r≥d (T̄ ′
i)i∈I

(@r r⌢≥d+1)
((si) t̄i)i∈I −⇀⌢ r≥d+1 ((si) T̄

′
i)i∈I

(ti,j)i∈I
1≤j≤ki

−⇀⌢ r≥d+1 (T
′
i,j)i∈I

1≤j≤ki
(! r⌢≥d+1)

([ti,1, . . . , ti,ki])i∈I −⇀⌢ r≥d+1 ([T
′
i,1, . . . , T

′
i,ki

])i∈I

(ui)i∈I −⇀⌢ r (U
′
i)i∈I

(Σ r⌢)∑
i∈I aiui −→⌢ r

∑
i∈I aiU

′
i .

24 R. CERDA AND L. VAUX AUCLAIR

Without giving all the details of their (rather straightforward) proofs, let us state two
crucial properties of the uniform resource reduction. The first one means that whenever we
analyse a reduction U −→⌢ r V, we can choose whichever index set I we like in the backwards
application of the rule (Σ r⌢), which turns out to be extremely helpful!

Lemma 5.3 ([Cer24, Lemma 4.46]). For all reduction (ui)i∈I −⇀⌢ r (U
′
i)i∈I between families

(ui)i∈I ∈ ((!)Λr)
I and (U ′

i)i∈I ∈ (N((!)Λr))I , for i, j ∈ I, if ui = uj then U ′
i = U ′

j.

The second one (which does in fact crucially use the previous one) expresses the fact
that Definition 5.2 does not depart from the previous framework: the uniform lifting is a
strengthening of the usual one.

Lemma 5.4 ([Cer24, Corollary 4.47]). For all S,T ∈ SΛr, if S −→⌢ ∗
r T then S −↠r T.

Before we move on to the simulation and conservativity properties we are actually
interested in, let us state one more result about the uniform resource reduction, as we
have been using it the proof of Theorem 4.4. Observe how uniformity allows for a very
strong control over the reductions, and therefore a simple proof, whereas the corresponding
statement for −→∗

r and −↠r (instead of −→⌢ r and −→⌢ ∗
r) turns out to be quite tricky to prove

or disprove — just as for the transitivity of −↠r, which remains an open question [Cer24,
Open question 3.17].

Lemma 5.5. For all sums S,T,U ∈ SΛr such that S −→⌢ r T+U and |T| ∩ |U| = ∅, and for
all decomposition S =

∑
i∈I ai · Si into finitely supported sums, there are finitely supported

sums Ti, Ui (for i ∈ I) such that T =
∑

i∈I ai · Ti, U =
∑

i∈I ai · Ui, and for all i ∈ I,
Si −→⌢ r Ti + Ui.

Proof. If we decompose each Si into
∑ni

j=1 si,j , the reduction S −→⌢ r T+U must have been
obtained by the following application of the rule (Σ r⌢) (where, as already explained, we can
choose a convenient index set thanks to Lemma 5.3):

(si,j) i∈I
1≤j≤ni

−⇀⌢ r (S
′
i,j) i∈I

1≤j≤ni
(Σ r⌢)

S =
∑

i∈I
∑ni

j=1 ai · si,j −→⌢ r T+U =
∑

i∈I
∑ni

j=1 ai · S′
i,j

Since T and U have disjoint supports, for each i ∈ I and 1 ≤ j ≤ ni we can decompose
S′
i,j = Ti,j+Ui,j with Ti,j ⊆ T and Ui,j ⊆ U. Therefore we can conclude with Ti :=

∑ni
j=1 Ti,j

and Ui :=
∑ni

j=1 Ui,j , for all i ∈ I.

As we are now convinced that we obtained a much better behaved lifting of the resource
reduction to (uniform) sums, let us see if it is still permissive enough to simulate β-reduction.
In the previous parts of this article, we have been considering the simulation of finite β-
reduction acting on finite λ-terms (Theorem 2.13 and Section 3), and of infinitary β-reduction
acting on infinitary λ-terms (Theorem 2.14 and Section 4); in the following we only consider
infinitary λ⊥-terms but we distinguish finite and infinitary β-reductions.

For the former, it is enough to observe that all the pointwise reductions −↠r occurring
in the proof of Theorem 2.13 are in fact instances of the particular case −→⌢ ∗

r , hence the
following reformulation.

Simulation theorem 5.6 ([Cer24], Lemma 4.50). For all λ⊥-terms M,N ∈ Λ001
⊥ , if

M −→β≥d N then T (M) −→⌢ r≥d T (N).

HOW TO PLAY THE ACCORDION 25

However, −→⌢ ∗
r is not sufficient any more to simulate the infinitary β-reduction −→001

β :
we need more than the reflexive-transitive closure. The simulating reduction we are looking
for needs to be:
• an extension of −→⌢ ∗

r , because we want to be able to simulate not only finite, but also
infinite sequences of reductions,

• a restriction of −↠r, because we want to eliminate the non-uniform reductions that cannot
be turned into actual β-reductions, in order to obtain a conservativity result in the end.

The way we proceed is guided by the stratification property (Lemma 2.5).

Notation 5.7. The (applicative) depth of a resource term is the integer defined by

depth(x) := 0 depth((s) t̄) := max (depth(s), 1 + depth(t̄))

depth(λx.s) := depth(s) depth([t1, . . . , tn]) := max
1≤i≤n

depth(ti).

Using this notation, for all sum
∑

i∈I ai · si ∈ SΛr and integer d ∈ N we define:⌊∑
i∈I

ai · si

⌋
d

:=
∑
i∈I

depth(si)<d

ai · si.

Definition 5.8. The relation −→⌢ ∞
r ⊂ S(!)Λr × S(!)Λr of infinitary uniform resource

reduction is defined by writing U −→⌢ ∞
r V whenever there is a sequence (Ud)d∈N such that

U0 = U ∀d ∈ N, Ud −→⌢ ∗
r≥d Ud+1 ∀d ∈ N, ⌊Ud⌋d = ⌊V⌋d.

By design, −→⌢ ∞
r mimics the stratification of an infinitary β-reduction, hence the following

property.

Simulation corollary 5.9 (of Lemma 2.5 and Theorem 5.6). For all M,N ∈ Λ001
⊥ , if

M −→001
β N then T (M) −→⌢ ∞

r T (N).

Proof. We need to define a sequence (Ud)d∈N as in Definition 5.8. By stratification
(Lemma 2.5), we obtain a sequence (Md) ∈ (Λ001

⊥)N such that for all d ∈ N,

M = M0 −→∗
β≥0 M1 −→∗

β≥1 M2 −→∗
β≥2 . . . −→∗

β≥d−1 Md −→001
β≥d N

and we can define Ud := T (Md). The conclusion follows immediately by Theorem 5.6 and
by the fact that if M −→001

β≥d N , then ⌊T (M)⌋d = ⌊T (N)⌋d.

5.2. Conservativity wrt. the infinitary λ-calculus. As announced, the simulation stated
in Corollary 5.9 enjoys a converse conservativity property:

Conservativity theorem 5.10. For M,N ∈ Λ001
⊥ , if T (M) −→⌢ ∞

r T (N) then M −→001
β N .

The purpose of this subsection is to provide the proof of this theorem. We first prove
the following lemma, which expresses how we will use uniformity in the main proof.

Lemma 5.11. For all M ∈ Λ001
⊥ , S ∈ SΛr and d ∈ N, if T (M) −→⌢ r≥d S then there exists

an N ∈ Λ001
⊥ such that S = T (N) and M −→β≥d N .

26 R. CERDA AND L. VAUX AUCLAIR

Proof. By the backwards application of the rule (Σ r⌢≥d), there is a family of finite sums Ts

such that

(s)s∈|T (M)| −⇀⌢ r≥d (Ts)s∈|T (M)| and S =
∑

s∈|T (M)|

T (M, s) · Ts. (5.1)

We proceed by induction on this reduction, following the rules of Definition 5.2. As all the
inductive cases are straightforward, we concentrate in the base case where d = 0 and all
s ∈ |T (M)| are of the shape s = (λx.us)v̄s with Ts = us⟨v̄s/x⟩. By construction of the
Taylor expansion M and its approximants have the same shape, hence there are P,Q ∈ Λ001

⊥
such that M = (λx.P)Q. In addition by Lemma 5.3 we can restate Eq. (5.1) as follows:

((λx.u)v̄) u∈|T (P)|
v̄∈|T (Q)!|

−⇀⌢ r (u⟨v̄/x⟩) u∈|T (P)|
v̄∈|T (Q)!|

,

and:
S =

∑
u∈|T (P)|
v̄∈|T (Q)!|

T (M, (λx.u)v̄) · u⟨v̄/x⟩.

Then we can apply the classical simulation of the substitution by the Taylor expansion, see
e.g. [VA19, Lemma 4.8], obtaining:

T (P [Q/x]) = T (P)⟨T (Q)!/x⟩ =
∑

u∈|T (P)|
v̄∈|T (Q)!|

T (P, u)× T !(Q, v̄) · u⟨v̄/x⟩ = S

therefore we can conclude with N := P [Q/x].

Observe that the conservativity of the simulation of (Λ001
⊥ ,−→∗

β) by (SΛr ,−→⌢ ∗
r) appears

as a particular case of this lemma:

Conservativity corollary 5.12. For all M,N ∈ Λ001
⊥ , if T (M) −→⌢ r T (N) then M −→β N .

This observation being made, we are ready for the proof of conservativity for the infinitary
simulation.

Proof of theorem 5.10. Suppose that there is a sequence (Sd)d∈N such that

S0 = T (M) ∀d ∈ N, Sd −→⌢ ∗
r≥d Sd+1 ∀d ∈ N, ⌊Sd⌋d = ⌊T (N)⌋d.

By iterated applications of Lemma 5.11 to the first two hypotheses, there is a sequence of
terms (Md)d∈N, with M0 = M , such that ∀d ∈ N, Sd = T (Md), as well as:

∀d ∈ N, Md −→∗
β≥d Md+1, (5.2)

whereas the third hypothesis becomes:
∀d ∈ N, ⌊T (Md)⌋d = ⌊T (N)⌋d. (5.3)

For any sequence (Md)d∈N such that Eqs. (5.2) and (5.3) hold, we build a reduction M0 −→001
β

N by nested induction and coinduction on N .
• Case N = x. By Eq. (5.3),

⌊T (M1)⌋1 = ⌊T (N)⌋1 = x

hence also T (M1) = x, and finally M1 = x. By applying the rule (V001
β) from Definition 2.4

to M −→∗
β x, we obtain M −→001

β x = N .

HOW TO PLAY THE ACCORDION 27

• Case N = ⊥. By Eq. (5.3),

⌊T (M1)⌋1 = ⌊T (N)⌋1 = 0

hence also T (M1) = 0, and finally M1 = ⊥. By applying the rule (⊥001
β) from Definition 2.4

to M −→∗
β ⊥, we obtain M −→001

β ⊥ = N .
• Case N = λx.P ′. By Eq. (5.3), for all d ≥ 1,

⌊T (Md)⌋d = ⌊T (N)⌋d = λx.⌊T (P ′)⌋d
hence there is a term Pd ∈ Λ001 such that Md = λx.Pd verifying:
– that Pd −→∗

β≥d Pd+1, by the rule (λβ≥d) from Lemma 2.5 applied to Eq. (5.2),
– that ⌊T (Pd)⌋d = ⌊T (P ′)⌋d, by Eq. (5.3).
We also define P0 := P1, so that the sequence (Pd)d∈N satisfies Eqs. (5.2) and (5.3) wrt. P ′.
By induction we can build a reduction P0 = P1 −→001

β P ′. Since M0 −→∗
β M1 = λx.P1,

we can apply the rule (λ001
β) from Definition 2.4 and obtain M0 −→001

β λx.P ′ = N .
• Case N = (P ′)Q′. By Eq. (5.3), for all d ≥ 1,

⌊T (Md)⌋d = ⌊T (N)⌋d =
(
⌊T (P ′)⌋d

)
⌊T (Q′)!⌋d−1

hence there are terms Pd, Qd ∈ Λ001 such that Md = (Pd)Qd verifying:
– that Pd −→∗

β≥d Pd+1 and Qd −→∗
β≥d−1 Qd+1, by the rule (@β≥d) from Lemma 2.5

applied to Eq. (5.2),
– that ⌊T (Pd)⌋d = ⌊T (P ′)⌋d and ⌊T (Qd)⌋d−1 = ⌊T (Q′)⌋d−1, by Eq. (5.3); for the second

equality one also uses the fact that ⌊S!⌋d = ⌊T!⌋d implies ⌊S⌋d = ⌊T⌋d, which is
straightforward.

We also define P0 := P1, so that the sequences (Pd)d∈N and (Qd+1)d∈N satisfy Eqs. (5.2)
and (5.3), respectively wrt. P ′ and Q′. Respectively by induction and coinduction, we can
build reductions P0 = P1 −→001

β P ′ and Q1 −→001
β Q′. Since M0 −→∗

β M1 = (P1)Q1, we
can apply the rule (@001

β) from Definition 2.4 and obtain M0 −→001
β (P ′)Q′ = N .

In particular, observe that there is no reduction A −→⌢ ∞
r Ā: in the sequence of reductions

given in Eq. (4.29) in the proof of Lemma 4.7 (that is to say the proof of item (i) of
Theorem 4.4), all steps T (Ad) −↠r T (Ad+1) can be turned into T (Ad) −→⌢ ∗

r T (Ad+1) as a
consequence of the uniform simulation Theorem 5.6, but not into T (Ad) −→⌢ ∗

r≥d T (Ad+1):
indeed, there is always a reduction step occurring at depth 0.

5.3. An epilogue on β⊥-reductions. In all the above developments, we did not take into
account the ⊥-reduction steps introduced in Definition 2.3. However, these steps are needed
in order to ensure the confluence of the infinitary λ-calculus [Ken+97] and in particuler to
express the reductions M −→001

β⊥ BT(M), which are the main motivation for considering the
(001-)infinitary λ-calculus and lie at the core of Ehrhard and Regnier’s commutation theorem.
Fortunately, there is almost nothing to add to the previous work in order to extend it to
β⊥-reduction; let us work this out before concluding.

First, let us recall from Corollary 2.15 that (SΛr ,−↠r) also simulates (Λ001
⊥ ,−→001

β⊥), and
make the following observation: the Accordion is also a counter-example to the conservativity
of this simulation. This can be deduced from the following lemma:

Lemma 5.13. For all M ∈ Λ001
⊥ and N ∈ Λ001, if M −→001

β⊥ N then M −→001
β N .

28 R. CERDA AND L. VAUX AUCLAIR

Proof. Denote by −→⊥ the reduction obtained by ommitting the base case (β) in Definition 2.3
(i.e. by only considering (β⊥) as a base case), and by −→001

⊥ its 001-infinitary closure by
Definition 2.4. A standard result in infinitary λ-calculus states that whenever M −→001

β⊥ N ,
there exists a term N ′ such that M −→001

β N ′ −→001
⊥ N (the original proof is [Ken+97,

Lemma 46(iii)], but it can also be seen as a consequence of the observation that M −→⊥
M ′ −→β N implies the existence of M ′′ such that M −→β M ′′ −→∗

⊥ N). In this situation,
if N ∈ Λ001 then there is no other choice than N ′ = N , since any ⊥-reduction step would
introduce occurrences of ⊥ in N .

By contraposition, since Ā ∈ Λ001, the inexistence of a reduction A −→001
β Ā (Theorem 4.4)

ensures that there is no reduction A −→001
β⊥ Ā either. As a consequence, the motivation of

trying to build a conservative simulation using a uniform lifting of −→r is also applicable to
β⊥-reductions. The additional ingredient is as follows.

Definition 5.14. Given an index set I, an extended auxiliary relation −⇀⌢ r⊥ ⊂ ((!)Λr)
I ×

(N((!)Λr))I is defined by the rules (β r⌢) to (! r⌢) from Definition 5.2, together with the following
rule:

∀i, j, ui ⌢⌣ uj ∀i, ui −→∗
r 0

(β⊥ r⌢)
(ui)i∈I −⇀⌢ r⊥ (0)i∈I .

Relations −→⌢ r⊥,−→⌢ r⊥≥d ⊂ S(!)Λr × S(!)Λr , for d ∈ N, are defined from −⇀⌢ r⊥ just as in the
remainder of Definition 5.2.

This definition is justified by a well-known characterisation (see [CV23, Theorem 5.6]):
a λ⊥-term M has no head normal form iff all its resource approximants can be reduced to 0;
in other terms, M −→β⊥ ⊥ iff T (M) −↠r 0. Therefore we extended the uniform resource
reduction just as we needed in order to simulate β⊥-reduction:

Simulation theorem 5.15 ([Cer25], Theorem 4.52). For all M,N ∈ Λ001
⊥ , if M −→β⊥≥d N

then T (M) −→⌢ r⊥≥d T (N).

As for simulating infinitary β⊥-reduction, there is nothing to change to the method
introduced in Section 5.1.

Definition 5.16. A relation −→⌢ ∞
r⊥ ⊂ S(!)Λr × S(!)Λr is defined from −→⌢ r⊥ exactly as in

Definition 5.8, i.e. by writing U −→⌢ ∞
r⊥ V whenever there is a sequence (Ud)d∈N such that

U0 = U ∀d ∈ N, Ud −→⌢ ∗
r⊥≥d Ud+1 ∀d ∈ N, ⌊Ud⌋d = ⌊V⌋d.

Simulation corollary 5.17. For all M,N ∈ Λ001
⊥ , if M −→001

β⊥ N then T (M) −→⌢ ∞
r⊥ T (N).

Proof. Just as we did for proving Theorem 5.6, the result is a straightforward translation of
Lemma 2.5 into the resource calculus, using Theorem 5.15.

Finally, let us state and prove that these two simulations are again conservative, which
concludes our exposition of the benefits of uniformity.

Conservativity theorem 5.18. For all M,N ∈ Λ001
⊥ , if T (M) −→⌢ r⊥≥d T (N) then

M −→β⊥≥d N .

Proof. As we did in Lemma 5.11, we prove a more general result: for all M ∈ Λ001
⊥ , S ∈ SΛr

and d ∈ N, if T (M) −→⌢ r⊥≥d S then there exists an N ∈ Λ001
⊥ such that S = T (N) and

M −→β⊥≥d N . The proof is identical, with the difference that the induction has one more

HOW TO PLAY THE ACCORDION 29

case, corresponding to the rule (β⊥ r⌢): in this case, ∀s ∈ |T (M)| , s −→∗
r 0 and S = 0. by

the above mentionned characterisation [CV23, Theorem 5.6], the first hypothesis means that
M −→β⊥ ⊥, while the second one is equivalent to S = T (⊥), hence we can take N := ⊥.

Conservativity theorem 5.19. For all M,N ∈ Λ001
⊥ , if T (M) −→⌢ ∞

r⊥ T (N) then M −→001
β⊥ N .

Proof. The proof is exactly identical to the proof Theorem 5.10: just as the latter used
Lemma 5.11 as a blackbox, we use its counterpart that we just established in the proof of
Theorem 5.18.

6. Summary and conclusive remarks

A “simulation poset” of reduction systems. In this paper, we have been considering the
linear approximation of the λ-calculus in the light of the simulations it induces between various
reduction systems. Indeed, this linear approximation translates λ-terms into weighted sum of
approximants taken in a multilinear λ-calculus, the resource λ-calculus, via an operation of
Taylor expansion, in such a way that the sums of approximants are endowed with a reduction
relation simulating the reduction of the approximated terms. More precisely, we considered
several simulated λ-calculi:

• where the λ-terms may or may not be extended with an “undefined” constant ⊥,
• where the λ(⊥)-terms may be finite or 001-infinitary,
• where the β-reduction may or may not be extended into a β⊥-reduction collapsing unsolvable

(i.e. non-head-normalising) terms to ⊥,
• where the β(⊥)-reduction may be the usual, finite one, or its 001-infinitary closure;

as well as several simulating reductions acting on sums of resource terms:

• the usual lifting to sums of the resource reduction, −↠r,
• several variants of a coherent lifting that we introduce.

All these possibilites give rise to many reduction systems, that we summarise in the diagram
below.

30 R. CERDA AND L. VAUX AUCLAIR

(Λ,−→∗
β)

(Λ⊥,−→∗
β) (Λ001,−→∗

β)

(Λ⊥,−→∗
β⊥) (Λ001

⊥ ,−→∗
β) (Λ001,−→001

β)

(Λ001
⊥ ,−→∗

β⊥) (Λ001
⊥ ,−→001

β)

(Λ001
⊥ ,−→001

β⊥)

(SΛr ,−→⌢ ∗
r)

(SΛr ,−→⌢ ∗
r⊥) (SΛr ,−→⌢ ∞

r)

(SΛr ,−→⌢ ∞
r⊥)

(SΛr ,−↠r)

In this diagram, each link from a reduction system down to another reduction system
means that the latter simulates the former. It is an immediate consequence of Definition 2.16
that simulation is transitive, and induces an order on reduction systems.

In addition, these links are solid when the simulation is conservative, and dashed when it
is non-conservative. The following table justifies the (non-)conservativity of the simulations
between all the λ(⊥)-calculi we consider.

Simulations

Conservative? Yes Yes Yes Yes No No
Why? Trivial Lemma 5.13 Trivial Easy5

Ω −→β⊥ ⊥ (Y)x −→001
β (x)ω

As concerns the remainder of the diagram:
• each of the four coherent reductions we define on SΛr conservatively simulates one of the
λ(⊥)-calculi: this is the content of our Section 5;

• the simulations between these four reductions are all non-conservative, the counter-
examples being the same as in the simulated λ(⊥)-calculi, namely T (Ω) −→⌢ r⊥ T (⊥)
and T ((Y)x) −→⌢ ∞

r T ((x)ω);
• finally, (SΛr ,−↠r) simulates (SΛr ,−→⌢ ∞

r⊥) non-conservatively, as a consequence of our
Theorem 4.4: T (A) −↠r T (Ā) but there is no reduction T (A) −→⌢ ∞

r⊥ T (Ā)6.

5If M −→001
ξ N but N is finite, one can show by a direct induction over N that M −→∗

ξ N . Alternatively,
one can apply Lemma 2.5 and take d to be the applicative depth of N .

6Otherwise by Theorem 5.19 there would be a reduction A −→001
β⊥ Ā, hence by Lemma 5.13 a reduction

A −→001
β Ā, which is forbidden by Theorem 4.4. This is an application of Observations 6.1 and 6.2 below.

HOW TO PLAY THE ACCORDION 31

(Non-)conservativity results for the usual linear approximation. In an ongoing
line of work [VA17; VA19; CV23; Cer24], we reformulated Ehrhard and Regnier’s linear
approximation of the λ-calculus as a simulation of the β-reduction by (SΛr ,−↠r). In Sections 3
and 4 of this paper we investigated the conservativity of this simulation and obtained two
significant results:
• in Theorem 3.1 we state that the linear approximation is conservative wrt. the finite
λ-calculus (Λ,−→∗

β), which we prove via the “mashup” technique from [KV23];
• in Theorem 4.4 we state that the linear approximation is not conservative wrt. the infinitary
λ-calculus (Λ001,−→001

β), which we prove by exhibiting a counter-example, the Accordion.
This answers to the conservativity problem for only two out of the nine λ(⊥)-calculi

simulated by (SΛr ,−↠r); however the picture can be (almost) completed, as described in the
following diagram. It should be read as follows:
• the black boxes and their annotations point to the result of simulation by (SΛr ,−↠r) for

the given λ(⊥)-calculus (we mention all the results explicitely stated in the paper, although
in fact all nine simulations are implied by the bottom one, by transitivity),

• the λ(⊥)-calculus simulated by (SΛr ,−↠r) in a conservative way is put in a green box
that is annotated with a pointer to the conservativity result,

• the λ(⊥)-calculi simulated by (SΛr ,−↠r) in a non-conservative way are put in a red box
that may be annotated with a pointer to the proof of non-conservativity or with a counter-
example,

• one simulation remains indeterminate , which is discussed in Conjecture 6.4 below.

(Λ,−→∗
β)

(Λ⊥,−→∗
β) (Λ001,−→∗

β)

(Λ⊥,−→∗
β⊥) (Λ001

⊥ ,−→∗
β) (Λ001,−→001

β)

(Λ001
⊥ ,−→∗

β⊥) (Λ001
⊥ ,−→001

β)

(Λ001
⊥ ,−→001

β⊥)

Theorem 3.1

Theorem 2.13 [VA19]

Theorem 4.4

Theorem 2.14
[CV23; Cer24]

Corollary 2.15
[CV23; Cer24]

T (Ω) −↠r T (⊥) T ((Y)x) −↠r T ((x)ω)

In addition, the diagram contains some (non-)conservativity statements without anno-
tation. This means that they can be deduced from other statements using the following
observation:

Observation 6.1. If (C,−→C) simulates (B,−→B) conservatively and (B,−→B) simulates
(A,−→A) conservatively, then (C,−→C) simulates (A,−→A) conservatively. In the diagram:
if Λ2 is below Λ1 and they are related with a solid link, then Λ1 .

or, in fact, its contraposite:

Observation 6.2. If (C,−→C) simulates (B,−→B), (B,−→B) simulates (A,−→A) conser-
vatively, and the induced simulation of (A,−→A) by (C,−→C) is non-conservative, then the

32 R. CERDA AND L. VAUX AUCLAIR

simulation of (B,−→B) by (C,−→C) is non-conservative. In the diagram: if Λ2 is below Λ1

and they are related with a solid link, then Λ2 .

(Non-)conservativity results for uniform linear approximations. In Section 5, we
took advantage of the notion of uniformity introduced in Ehrhard and Regnier’s seminal
work [ER08] as a characterisation of actual approximants of λ-terms out of all resource terms,
by porting it from resource terms to the resource reduction: the uniform resource reduction
−→⌢ r restricts −↠r by acting on uniform sums of resource terms and by reducing them in a
uniform way. Thanks to this construction, completed with the introduction of a 001-infinitary
closure −→⌢ ∞

r of −→⌢ r, we were able to obtain a conservative simulation of the 001-infinitary
λ-calculus via the Taylor expansion (Theorem 5.10).

Again, the two diagrams below describe which of the various λ(⊥)-calculi are simulated
conservatively , non-conservatively , or not simulated at all, respectively by (SΛr ,−→⌢ ∗

r)

and by (SΛr ,−→⌢ ∞
r).

(Λ,−→∗
β)

(Λ⊥,−→∗
β) (Λ001,−→∗

β)

(Λ⊥,−→∗
β⊥) (Λ001

⊥ ,−→∗
β) (Λ001,−→001

β)

(Λ001
⊥ ,−→∗

β⊥) (Λ001
⊥ ,−→001

β)

(Λ001
⊥ ,−→001

β⊥)

Corollary 5.12

Theorem 5.6 [Cer24]

(Λ,−→∗
β)

(Λ⊥,−→∗
β) (Λ001,−→∗

β)

(Λ⊥,−→∗
β⊥) (Λ001

⊥ ,−→∗
β) (Λ001,−→001

β)

(Λ001
⊥ ,−→∗

β⊥) (Λ001
⊥ ,−→001

β)

(Λ001
⊥ ,−→001

β⊥)

Theorem 5.10

Corollary 5.9

As in the previous paragraph, some results have been deduced from the others using
Observations 6.1 and 6.2, or the following additional contraposite:

Observation 6.3. If (C,−→C) simulates (B,−→B) conservatively and (B,−→B) simulates
(A,−→A) non-conservatively, then (C,−→C) simulates (A,−→A) non-conservatively. In the
diagram: if Λ2 is below Λ1 and they are related with a dashed link, then Λ1 .

In this restriction of −↠r to uniform resource reduction, one thing was lost: the ability
to simulate not only β-reductions, but also β⊥-reductions, which is a key feature of the linear
approximation. Therefore we slightly adapted our definitions to re-introduce the behaviour of
−↠r in the uniform resource reductions, but limited to what is needed to simulate ⊥-reduction
steps. The two diagrams below describe which of the various λ(⊥)-calculi are simulated by
this adapted reduction systems, namely (SΛr ,−→⌢ ∗

r⊥) and (SΛr ,−→⌢ ∞
r⊥), respectively.

REFERENCES 33

(Λ,−→∗
β)

(Λ⊥,−→∗
β) (Λ001,−→∗

β)

(Λ⊥,−→∗
β⊥) (Λ001

⊥ ,−→∗
β) (Λ001,−→001

β)

(Λ001
⊥ ,−→∗

β⊥) (Λ001
⊥ ,−→001

β)

(Λ001
⊥ ,−→001

β⊥)

Theorem 5.18

Theorem 5.15

(Λ,−→∗
β)

(Λ⊥,−→∗
β) (Λ001,−→∗

β)

(Λ⊥,−→∗
β⊥) (Λ001

⊥ ,−→∗
β) (Λ001,−→001

β)

(Λ001
⊥ ,−→∗

β⊥) (Λ001
⊥ ,−→001

β)

(Λ001
⊥ ,−→001

β⊥)

Theorem 5.19

Corollary 5.17

Further perspectives. The picture is almost complete: the uniform resource reductions,
which we introduced for their very constrained behaviour to ensure conservativity properties,
have been exhaustively studied in this paper; as for the original reduction −↠r on sums
of resource terms, it is much more uncontrollable (as the complexity of the Accordion
demonstrates) but for almost all λ(⊥)-calculi we managed to discriminate whether they
were simulated conservatively by −↠r or not. However, in the figure of Page 31 one
indeterminate simulation remains... Indeed, in the case of (Λ⊥,−→∗

β⊥), no simple argument
allows to conclude that the simulation is conservative or not. The “mashup” technique from
Section 3 is also inapplicable to this case, because Lemma 3.7 fails in the presence of ⊥.
However we believe that this is a conservative case, although we leave it for future work.

Conjecture 6.4. For all M,N ∈ Λ⊥, if T (M) −↠r T (N) then M −→∗
β⊥ N .

Beyond that, the question naturally arises whether this approach is transferrable to the
richer λ-calculi already endowed with a linear approximation (as listed in the introduction).
This remains unclear, since most of these settings are non-uniform, i.e. it is not true any
more that T (M) ⌢⌣ T (M) in general. Investigating how existing techniques used to tame
non-uniformity, e.g. in [VA19], can be exploited to address the conservativity problem in
richer settings, remains an open line of research.

References

[Bar22] Davide Barbarossa. “Resource approximation for the λμ-calculus”. In: Proceedings of
the 37th Annual ACM/IEEE Symposium on Logic in Computer Science. 2022. doi:
10.1145/3531130.3532469.

[BM20] Davide Barbarossa and Giulio Manzonetto. “Taylor Subsumes Scott, Berry, Kahn and
Plotkin”. In: 47th Symposium on Principles of Programming Languages. 2020. doi:
10.1145/3371069.

[Bar84] Henk P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. 2nd ed. Amsterdam:
Elsevier, 1984.

[BM22] Henk P. Barendregt and Giulio Manzonetto. A Lambda Calculus Satellite. Mathematical
logic and foundations 94. College publications, 2022.

[BCV24] Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair. Extensional
Taylor Expansion. 2024. arXiv: 2305.08489v2.

https://doi.org/10.1145/3531130.3532469
https://doi.org/10.1145/3371069
https://arxiv.org/abs/2305.08489v2

34 REFERENCES

[Car17] Daniel de Carvalho. “Execution time of λ-terms via denotational semantics and intersection
types”. In: Mathematical Structures in Computer Science 28.7 (2017), pp. 1169–1203. doi:
10.1017/s0960129516000396.

[Cer24] Rémy Cerda. “Taylor Approximation and Infinitary λ-Calculi”. PhD thesis. Aix-Marseille
Université, 2024. url: https://hal.science/tel-04664728.

[Cer25] Rémy Cerda. “Nominal Algebraic-Coalgebraic Data Types, with Applications to Infinitary
λ-Calculi”. In: Proceedings Twelfth Workshop on Fixed Points in Computer Science (FICS
2024). Ed. by Alexis Saurin. EPTCS 435. 2025. doi: 10.4204/EPTCS.435.5.

[CS25] Rémy Cerda and Alexis Saurin. Compression for Coinductive Infinitary Rewriting: A
Generic Approach, with Applications to Cut-Elimination for Non-Wellfounded Proofs.
2025. arXiv: 2510.08420.

[CV23] Rémy Cerda and Lionel Vaux Auclair. “Finitary Simulation of Infinitary β-Reduction
via Taylor Expansion, and Applications”. In: Logical Methods in Computer Science 19 (4
2023). doi: 10.46298/LMCS-19(4:34)2023.

[CV25] Rémy Cerda and Lionel Vaux Auclair. “How to Play the Accordion: Uniformity and
the (Non-)Conservativity of the Linear Approximation of the λ-Calculus”. In: 42nd
International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
2025. doi: 10.4230/LIPICS.STACS.2025.23.

[CT20] Jules Chouquet and Christine Tasson. “Taylor expansion for Call-By-Push-Value”. en.
In: 28th EACSL Annual Conference on Computer Science Logic. 2020. doi: 10.4230/
LIPICS.CSL.2020.16.

[DL19] Ugo Dal Lago and Thomas Leventis. “On the Taylor Expansion of Probabilistic Lambda
Terms”. In: 4th International Conference on Fromal Structures for Computation and
Deduction. Ed. by Herman Geuvers. 2019. doi: 10.4230/LIPIcs.FSCD.2019.13.

[DM24] Aloÿs Dufour and Damiano Mazza. “Böhm and Taylor for All!” In: 9th International
Conference on Formal Structures for Computation and Deduction (FSCD 2024). 2024.
doi: 10.4230/LIPICS.FSCD.2024.29.

[Ehr02] Thomas Ehrhard. “On Köthe sequence spaces and linear logic”. In: Mathematical Structures
in Computer Science 12.5 (2002), pp. 579–623. doi: 10.1017/s0960129502003729.

[Ehr05] Thomas Ehrhard. “Finiteness Spaces”. In: Mathematical Structures in Computer Science
15.4 (2005), pp. 615–646. doi: 10.1017/S0960129504004645.

[EG16] Thomas Ehrhard and Giulio Guerrieri. “The Bang Calculus: an untyped lambda-calculus
generalizing call-by-name and call-by-value”. In: Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming. 2016. doi: 10.1145/
2967973.2968608.

[ER03] Thomas Ehrhard and Laurent Regnier. “The differential lambda-calculus”. In: Theoretical
Computer Science 309.1 (2003), pp. 1–41. doi: 10.1016/S0304-3975(03)00392-X.

[ER05] Thomas Ehrhard and Laurent Regnier. “Differential Interaction Nets”. In: Electronic
Notes in Theoretical Computer Science 123 (2005), pp. 35–74. doi: 10.1016/j.entcs.
2004.06.060.

[ER06] Thomas Ehrhard and Laurent Regnier. “Böhm Trees, Krivine’s Machine and the Taylor
Expansion of Lambda-Terms”. In: Logical Approaches to Computational Barriers. Ed. by
Arnold Beckmann et al. Springer, 2006, pp. 186–197. doi: 10.1007/11780342_20.

[ER08] Thomas Ehrhard and Laurent Regnier. “Uniformity and the Taylor expansion of ordinary
lambda-terms”. In: Theoretical Computer Science 403.2 (2008), pp. 347–372. doi: 10.
1016/j.tcs.2008.06.001.

[Gir87] Jean-Yves Girard. “Linear Logic”. In: Theoretical Computer Science 50 (1987), pp. 1–102.
doi: 10.1016/0304-3975(87)90045-4.

[Hyl76] Martin Hyland. “A Syntactic Characterization of the Equality in Some Models for the
Lambda Calculus”. In: Journal of the London Mathematical Society s2-12 (3 1976),
pp. 361–370. doi: 10.1112/jlms/s2-12.3.361.

https://doi.org/10.1017/s0960129516000396
https://hal.science/tel-04664728
https://doi.org/10.4204/EPTCS.435.5
https://arxiv.org/abs/2510.08420
https://doi.org/10.46298/LMCS-19(4:34)2023
https://doi.org/10.4230/LIPICS.STACS.2025.23
https://doi.org/10.4230/LIPICS.CSL.2020.16
https://doi.org/10.4230/LIPICS.CSL.2020.16
https://doi.org/10.4230/LIPIcs.FSCD.2019.13
https://doi.org/10.4230/LIPICS.FSCD.2024.29
https://doi.org/10.1017/s0960129502003729
https://doi.org/10.1017/S0960129504004645
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/j.entcs.2004.06.060
https://doi.org/10.1016/j.entcs.2004.06.060
https://doi.org/10.1007/11780342_20
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1112/jlms/s2-12.3.361

REFERENCES 35

[Ken+97] Richard Kennaway et al. “Infinitary lambda calculus”. In: Theoretical Computer Science
175.1 (1997), pp. 93–125. doi: 10.1016/S0304-3975(96)00171-5.

[KMP20] Axel Kerinec, Giulio Manzonetto, and Michele Pagani. “Revisiting Call-by-value Böhm
trees in light of their Taylor expansion”. In: Logical Methods in Computer Science 16 (3
2020), pp. 1860–5974. doi: 10.23638/LMCS-16(3:6)2020.

[KV23] Axel Kerinec and Lionel Vaux Auclair. The algebraic λ-calculus is a conservative extension
of the ordinary λ-calculus. 2023. arXiv: 2305.01067 [cs.LO].

[Kri90] Jean-Louis Krivine. Lambda-calcul, types et modèles. Masson, 1990.
[Kur+13] Alexander Kurz et al. “Nominal Coalgebraic Data Types with Applications to Lambda

Calculus”. In: Logical Methods in Computer Science 9.4 (2013). doi: 10.2168/lmcs-9(4:
20)2013.

[Maz21] Damiano Mazza. An Axiomatic Notion of Approximation for Programming Languages and
Machines. Unpublished. 2021. url: https://www.lipn.fr/~mazza/papers/ApxAxiom.
pdf.

[Mid14] Jean-Baptiste Midez. “Une étude combinatoire du lambda-calcul avec ressources uniforme”.
PhD thesis. Aix-Marseille Université, 2014. url: http://www.theses.fr/2014AIXM4093.

[Mit79] Gerd Mitschke. “The Standardization Theorem for λ-Calculus”. In: Zeitschrift für mathe-
matische Logik und Grundlagen der Mathematik 25 (1979), pp. 29–31. doi: 10.1002/
malq.19790250104.

[Sco93] Dana Scott. “A type-theoretical alternative to ISWIM, CUCH, OWHY”. In: Theoretical
Computer Science 121.1–2 (1993), pp. 411–440. doi: 10.1016/0304-3975(93)90095-b.
Reprint of the 1969 manuscript.

[Ter03] Terese. Term Rewriting Systems. Cambridge University Press, 2003.
[VA17] Lionel Vaux. “Taylor Expansion, β-Reduction and Normalization”. In: 26th EACSL

Annual Conference on Computer Science Logic (CSL 2017). 2017, 39:1–39:16. doi:
10.4230/LIPICS.CSL.2017.39.

[VA19] Lionel Vaux. “Normalizing the Taylor expansion of non-deterministic λ-terms, via parallel
reduction of resource vectors”. In: Logical Methods in Computer Science 15 (3 2019),
9:1–9:57. doi: 10.23638/LMCS-15(3:9)2019.

[Wad78] Christopher P. Wadsworth. “Approximate Reduction and Lambda Calculus Models”. In:
SIAM Journal on Computing 7.3 (1978), pp. 337–356. doi: 10.1137/0207028.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1016/S0304-3975(96)00171-5
https://doi.org/10.23638/LMCS-16(3:6)2020
https://arxiv.org/abs/2305.01067
https://doi.org/10.2168/lmcs-9(4:20)2013
https://doi.org/10.2168/lmcs-9(4:20)2013
https://www.lipn.fr/~mazza/papers/ApxAxiom.pdf
https://www.lipn.fr/~mazza/papers/ApxAxiom.pdf
http://www.theses.fr/2014AIXM4093
https://doi.org/10.1002/malq.19790250104
https://doi.org/10.1002/malq.19790250104
https://doi.org/10.1016/0304-3975(93)90095-b
https://doi.org/10.4230/LIPICS.CSL.2017.39
https://doi.org/10.23638/LMCS-15(3:9)2019
https://doi.org/10.1137/0207028

	1. Introduction
	2. Preliminaries
	2.1. Finite and infinitary λ(⊥)-calculi
	2.2. The resource λ-calculus
	2.3. Linear approximation and the conservativity problems

	3. Conservativity wrt. the finite λ-calculus
	4. Non-conservativity wrt. the infinitary λ-calculus
	4.1. Failure of the "mashup" technique
	4.2. The Accordion
	4.3. Proof of the counterexample

	5. The missing ingredient: Uniformity
	5.1. Uniform simulation of the infinitary β-reduction
	5.2. Conservativity wrt. the infinitary λ-calculus
	5.3. An epilogue on β⊥-reductions

	6. Summary and conclusive remarks
	References

