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linear approximation, and that’s all
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The advent of a linear approximation of the A-calculus based on Taylor expansion allowed for a renewal
and a refinement of the classic approach based on continuous approximation. The major property of the
linear approximation, known as the Commutation theorem, relates the infinitary head normalisation
of a A-term towards its Bohm tree to the (finitary) normalisation of its Taylor expansion, that is, the
sum of its multilinear approximants [ER08; ER06].

This approximation theory is therefore related to the standard evaluation of A-terms, that retains head
normal forms as meaningful prefixes of information; in this work, we adapt it to the lazy evaluation
where weak head normal forms play this role. We introduce a lazy resource A-calculus and the corre-
sponding Taylor expansion, and show that it simulates the 101-infinitary A-calculus (theorem @ In
particular, we obtain a Commutation theorem with respect to Lévy-Longo trees (corollary .

This shows that a second normal form model enjoys a linear approximation, out of the 2¢ existing
normal form models (where ¢ is the cardinality of the continuum). We conclude by noticing that there
cannot be a similar linear approximation for all other such models, and in particular for Berarducci
trees.

This work has previously appeared as Chapter 6 in the author’s PhD thesis [Cer24], and a longer
version is to be submitted to a forthcoming conference.

1 Lazy evaluation of A-terms

Recall the inductive definition of the (finite) A-terms, given a countable set V of variables:
A > MN,.. = zxzeV| .M|(M)N. (1)

It is implicitely quotiented by o-equivalence, so that we can define M[N/x], that is the term obtained
by substituting all free occurrences of z in M with N. It is endowed with the relation —3 of
B-reduction, defined by (Az.M)N — g M[N/z] and by lifting to contexts.

Weak head B-reduction and Lévy-Longo trees Remember that a A-term is either a head normal
form (HNF), i.e. a term Azq.... A&, (y) M1 ... My, or a term Azy.... AZp,.((Ax.P)Q)Mj ... M, where
(Az.P)Q is called the head redex. As they are stable under B-reduction, HNF’s are usually taken as a
notion of “prefix of stable information”: if a A-term B-reduces to a HNF, then it has produced some
information. According to this idea, the full information produced by a A-term is usually described
by its Bohm tree, a potentially infinite tree coinductively defined by:

BT(M) = AZ1. . Ay (y) BT (M) .. .BT(M,) if M —f Az1.... A2y (y) My ... My,
Tl L otherwise,

where —, denotes head reduction, i.e. the restriction of B-reduction where one only reduces head
redexes.
During the same years where Barendregt and Wadsworth popularised this idea of “information as

HNF's”, Lévy [Lév75| carried out similar work using weak head normal forms instead, which rely on
the following refinement: a A-term is either a term A\x.M, or a term (y)Mj ... M, (two types of weak
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head normal forms, or WHNF’s), or a term ((Az.P)Q)Mj ... M, where (Az.P)Q is called the weak
head redex. As pointed out by Abramsky [Abr90], WHNF’s are a more reasonable notion of prefix of
stable information, in particular because it corresponds to the lazy evaluation of A-terms (information
is looked for in the body of an abstraction only if it is given an argument), which is closer to the
way A-calculus is implemented in the main programming languages or abstract machinesﬂ In this
perspective, the full information produced by a A-term is described by its Lévy-Longo tree [Lon83|,
coinductively defined by:

Az.LLT (M) if M —%, Ax. M’
LLT(M) == (y)LLT(My)...LLT(M,) if M —%, (y)Mi...M,,
L otherwise,

where —y, denotes weak head reduction, i.e. the restriction of B-reduction where one only reduces
weak head redexes.

Infinitary A-calculus As we want to internalise Bohm and Lévy-Longo trees in the calculus, as
well as the dynamics leading to their constructions, we use the prowerful tool of infinitary A-calculus
[Ken+97]. The set A of infinitary A-terms is defined by treating eq. coinductively (we silently
quotient it by a-equivalence, which becomes subtle; a detailed treatment can be found in [Kur+13]).
The relation —3° of infinitary -reduction is defined by the following set of coinductive rules:

M—j M —j AP P—3 P M—5(P)Q P—FP Q—FQ

M —Fa M —F Az.P' M —F (P)Q

The sets A | and AT of (finite and infinitary) A L-terms are defined by adding a constant L to eq. .
Given a set U C AT, a reduction — |4 is defined on AT by M — 144 L for all M € U, and by lifting
to contexts. We also define — 5,4 == —g U —> 1y, and —>%°J_u by replacing —>E with —>E 1y In
the rules above. In particular for ¢ we may consider the following sets:

HN = {M € A*° | M has no HNF} WN :={M € A*° | M has no WHNF} .

o0 [e.e]
Theorem 1 ([Ken+97]). — T and — N are confluent.
Corollary 2. BT(M) and LLT (M) are the unique normal forms of any M € AT through HZOLW
o .
and — BN respectively.

In the following, — 7 will denote —>Z°J_W—N.

Continuous approximation The approximation order C is defined on A} by L & M for all
M € A, and by monotonicity of contexts. The ideal completion of (A;,C) is isomorphic (as a set)
to AT°, and we denote by C°° the order induced on AT°. C and £ coincide on A .

We define the set Ay, € A of weak head approximants as follows:

Aww > PQ,... = L|Xx.P|(y)Pr...P,,

and the set Ayn(M) = {P € Ayn ‘ IM e A, M —% M’ and P C*® M’} of the weak head ap-

proximants of any term M € AT.

Theorem 3 (continuous approximation). For any M € A, (Awn(M),E*) is directed, and

LLT(M) = | ["Awn(M).

! As often in our rapidly developped field of research, we have to deal with unfortunate historical namings of objects.
In the following, “lazy”, “weak head” and even “Lévy-Longo” should be taken as synonyms. The author wonders whether

these may eventually be unified.




2 A lazy linear approximation

In the resource A-calculus, that is the target of the usual Taylor expansion associated to head reduction,
head approximants (different from 1) are in bijection with normal affine resource A-terms. The
bijection is as follows:

o) =z  o(w.P):=Xr.d(P)  o(P)Q) = (o(P))[o(Q)]  o((P)L) = (¢(P))]]:

This is the reason why the linear approximation refines the continuous one in this setting, allowing
for efficient and simple proofs of various important results [BM19]. What we want is to adapt the
resource A-calculus so that this property holds with respect to weak head approximants. To do so, we
need to treat one more case in the definition of ¢, namely to define ¢(Az.L). We introduce a constant
o in the syntax of the resource A-calculus, which will play the role of an “empty abstraction”.

Definition 4. The set Ay, of lazy resource A-terms (resource terms in short) is defined inductively by:

= x|o|Xxs|(s)t (xeV)

Ape > s,t,...
S LUy = [t1,...,tn) (n € N)

Agr

We write (1)Ay to denote Ay or [Ay,.

We denote by N[(!)As] the N-semimodule of finitely supported formal sums of lazy resource A-terms
(finite resource sums in short). We denote by boldface s, t, etc. its elements and by 0 the empty sum.
As usual in resource A-calculus, we assimilate resource terms to one-element resource sums and we
extend the constructors of the above inductive definitions by linearity (e.g., Ax.(s + t) := Az.s + Az.t
or (0)t := 0). See [Vaul9} [Cer24] for a detailed presentation.

Definition 5. Substitution in resource terms is defined as usual, namely

St ] ) = | 2o Slta)/ Tty fn] i degy(s) = n
0 otherwise,
where deg,(s) is the number of free occurrences of x in s (in particular, deg, (o) = 0), x1,...,z, is
an arbitrary enumeration of these free occurrences, and s[t,(1)/21,. .., ty(n)/Ts] is the resource term

obtained by substituting the ¢; to the occurrences x;.

Definition 6. The relation —, of resource reduction is defined as a subset of (1)Ag x N[(1)Ag] by
(Az.8)t —> 4 s{t/z), (0)t —>4 0, and by lifting to contexts. It is extended to a relation on N[A,] by
saying that s +t —. 8’ +t’ whenever s —, s’ and t —>Er t/ (—>zr denoting the reflexive closure).

Lemma 7. —, is confluent and strongly normalising.
As usual, —; even enjoys a way stronger confluence property: —>zr has the diamond property.
Definition 8. A relation T, is defined as a subset of A, x AT° by the following inductive rules:

sErn, M st M H &, N ... t, C, N
zCr, o oLy Ax.M Ar.s 7, Aov.M ($)[t1,..-,tn] C7, (M)N

The (qualitative) lazy Taylor expansion of any M € AP is defined by Ty(M) :== {s € Ay | s Ty, M }.

Since our Taylor expansion maps A-terms to sets of resource terms, we need to explain how to lift
the resource reduction to such sets. Let us denote by |s| the support of any finite sum s € N[()Ay,].
Then for all S,T C (!)Ay we write S —»4 1" whenever there is a set I such that S = [J;c;{si},
T = U;er Iti] and for all i € I, s; —, t;.

Thanks to lemma |7, we can also define nfy.(s) to be the unique normal form through —, of any
s € N[()Agy], and nfy(S) = {nfy(s) | s € S} for all set S C (1)Ag. In particular, S — g nfy (S).

Our main result is the following approximation theorem.



Theorem 9 (simulation). For all M, N € AT, if M —3 N then To(M) —> 4 To(N).

The proof of this qualitative version can be adapted from the one published in |[CV23]. In general, a
quantitative version of the theorem (with a somehow more canonical proof) can be found in [Cer24].
As an immediate consequence, we obtain a commutation theorem in the style of Ehrard and Regnier’s
celebrated result.

Corollary 10 (commutation). For all M € A, nfy(7,(M)) = To(LLT(M)).
Let us mention other important consequences of theorem [9

e nfy, (7;(M)) being non-empty characterises the fact that M has a WHNF, and equivalently that
—wh terminates on M. This can be read as a consequence of the correspondence between
resource approximants of M and typing derivations of M in a given non-idempotent intersection
type system characterising weak head normalising terms.

e The confluence of —5 (theorem [1]) can be straightforwardly deduced from theorem @

e Our linear approximation subsumes the continuous one, and as a conquence the continuous
approximation theorem [3]is also a corollary of the simulation theorem [0

e As a consequence, the work of [BM19] can be adapted to show that the equivalence relation
generated on A-terms by equality of Lévy-Longo trees is a A-theory.

This last observation justifies that both Bohm and Lévy-Longo are described as “normal form models”.
In the last part of this paper, we investigate the other existing such models.

3 What about other normal form models?

In our exposition, we defined a reduction — |7 collapsing any subset &/ C A9 to L, but only used
it for the two subsets HA  and WAN. This can in fact be seen as a general construction for restoring
confluence of the infinitary -reduction, as expressed by the following extension of theorem [1} It relies
on a notion of “meaningless set” defined by a certain list of axioms (see [KOV99; SV11b]), such that
in particular HA” and WA are meaningless sets.

Theorem 11 ([KOV99; |SV11b]). For all meaningless set ¢/ C AT, the reduction —3°, is confluent.
In addition, each M € AT has a unique normal form through — 3

In particular, if we denote by Ty/(—) the map taking A-terms to their normal form through —Fu
(so that in particular T55 = BT and Ty;5r = LLT), the equivalence relation generated by equating
M and N whenever Tj; = T induces a A-model, called “normal form model”. These models form a
lattice of cardinality 2¢, where c is the cardinality of the continuum [SV11a].

However, exploiting the semantic properties of these models, Severi and de Vries were able to distin-
guish BT and LLT from all other normal form models:

Theorem 12 ([SV05a]). HA and WN are the only meaningless sets U such that Ty : AT — AT is
Scott-continuous (with respect to C>°).

Notice that the approximation order on A-terms corresponds to inclusion of Taylor expansions (both in
the traditionnal setting and in our lazy setting). This means that Taylor expansion is Scott-continuous
in both settings; with the notations from the previous part:

Lemma 13. For all directed subset D of (AT, E%), To(LI D) = Uprep Te(M).

This is the key property of Taylor approximation, that explains the powerful simplifications it allows
in the proofs of many standard A-calculus results, as exemplified above (and more in detail in [BM19]).
In particular, it can be used to deduce the content of theorem [12| for WA (and similarly for HN):

Corollary 14. LLT : A7 — A is Scott-continous.
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Thus, a consequence of theorem is that for all meaningless set ¢/ different from HA and WN,
there cannot be a Taylor expansion continous with respect to C°° and characterising the normal form
model associated to U, i.e. enjoying a commutation theorem with respect to Ty. In particular the
other standard notion of infinite normal form for A-terms, namely Berarducci trees [Ber96|, does not
enjoy such a Taylor expansion.

A possible workaround would be to consider another ordering on A°, as introduced in [SV05b], which
makes Ty, monotonous as soon as U is “quasi-regular” (which is the case in particular for Berarducci
trees): one could wonder whether a linear approximation compatible with such an ordering can be

constructed.
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