The lazy evaluation of the λ -calculus enjoys linear approximation, and that's all

Abstract submitted to the 9th International Workshop on Trends in Linear Logic and Interactions (TLLA 2025)

Rémy Cerda

Aix-Marseille Université, CNRS, I2M, France Université Paris Cité, CNRS, IRIF, F-75013, Paris Remy.Cerda@math.cnrs.fr

The advent of a linear approximation of the λ -calculus based on Taylor expansion allowed for a renewal and a refinement of the classic approach based on continuous approximation. The major property of the linear approximation, known as the Commutation theorem, relates the infinitary head normalisation of a λ -term towards its Böhm tree to the (finitary) normalisation of its Taylor expansion, that is, the sum of its multilinear approximants [ER08; ER06].

This approximation theory is therefore related to the standard evaluation of λ -terms, that retains head normal forms as meaningful prefixes of information; in this work, we adapt it to the lazy evaluation where weak head normal forms play this role. We introduce a lazy resource λ -calculus and the corresponding Taylor expansion, and show that it simulates the 101-infinitary λ -calculus (theorem 9). In particular, we obtain a Commutation theorem with respect to Lévy-Longo trees (corollary 10).

This shows that a second normal form model enjoys a linear approximation, out of the 2^c existing normal form models (where c is the cardinality of the continuum). We conclude by noticing that there cannot be a similar linear approximation for all other such models, and in particular for Berarducci trees.

This work has previously appeared as Chapter 6 in the author's PhD thesis [Cer24], and a longer version is to be submitted to a forthcoming conference.

1 Lazy evaluation of λ -terms

Recall the inductive definition of the (finite) λ -terms, given a countable set \mathcal{V} of variables:

$$\Lambda \quad \ni \quad M, N, \dots \quad \coloneqq \quad x \in \mathcal{V} \mid \lambda x.M \mid (M)N. \tag{1}$$

It is implicitely quotiented by α -equivalence, so that we can define M[N/x], that is the term obtained by substituting all free occurrences of x in M with N. It is endowed with the relation \longrightarrow_{β} of β -reduction, defined by $(\lambda x.M)N \longrightarrow_{\beta} M[N/x]$ and by lifting to contexts.

Weak head β -reduction and Lévy-Longo trees Remember that a λ -term is either a head normal form (HNF), *i.e.* a term $\lambda x_1 \dots \lambda x_m (y) M_1 \dots M_n$, or a term $\lambda x_1 \dots \lambda x_m ((\lambda x.P)Q)M_1 \dots M_n$ where $(\lambda x.P)Q$ is called the head redex. As they are stable under β -reduction, HNF's are usually taken as a notion of "prefix of stable information": if a λ -term β -reduces to a HNF, then it has produced some information. According to this idea, the full information produced by a λ -term is usually described by its Böhm tree, a potentially infinite tree coinductively defined by:

$$BT(M) \coloneqq \begin{cases} \lambda x_1 \dots \lambda x_m . (y) BT(M_1) \dots BT(M_n) & \text{if } M \longrightarrow_{h}^* \lambda x_1 \dots \lambda x_m . (y) M_1 \dots M_n, \\ \bot & \text{otherwise,} \end{cases}$$

where $\rightarrow_{\rm h}$ denotes head reduction, *i.e.* the restriction of β -reduction where one only reduces head redexes.

During the same years where Barendregt and Wadsworth popularised this idea of "information as HNF's", Lévy [Lév75] carried out similar work using weak head normal forms instead, which rely on the following refinement: a λ -term is either a term $\lambda x.M$, or a term $(y)M_1...M_n$ (two types of weak

head normal forms, or WHNF's), or a term $((\lambda x.P)Q)M_1 \dots M_n$ where $(\lambda x.P)Q$ is called the weak head redex. As pointed out by Abramsky [Abr90], WHNF's are a more reasonable notion of prefix of stable information, in particular because it corresponds to the lazy evaluation of λ -terms (information is looked for in the body of an abstraction only if it is given an argument), which is closer to the way λ -calculus is implemented in the main programming languages or abstract machines¹. In this perspective, the full information produced by a λ -term is described by its Lévy-Longo tree [Lon83], coinductively defined by:

$$LLT(M) \coloneqq \begin{cases} \lambda x.LLT(M') & \text{if } M \longrightarrow_{\text{wh}}^* \lambda x.M' \\ (y)LLT(M_1) \dots LLT(M_n) & \text{if } M \longrightarrow_{\text{wh}}^* (y)M_1 \dots M_n \\ \bot & \text{otherwise,} \end{cases}$$

where \rightarrow_{wh} denotes weak head reduction, *i.e.* the restriction of β -reduction where one only reduces weak head redexes.

Infinitary λ -calculus As we want to internalise Böhm and Lévy-Longo trees in the calculus, as well as the dynamics leading to their constructions, we use the prowerful tool of infinitary λ -calculus [Ken+97]. The set Λ^{∞} of infinitary λ -terms is defined by treating eq. (1) coinductively (we silently quotient it by α -equivalence, which becomes subtle; a detailed treatment can be found in [Kur+13]). The relation $\longrightarrow_{\beta}^{\infty}$ of infinitary β -reduction is defined by the following set of coinductive rules:

$$\frac{M \longrightarrow_{\beta}^{*} x}{M \longrightarrow_{\beta}^{\infty} x} \qquad \frac{M \longrightarrow_{\beta}^{*} \lambda x.P \quad P \longrightarrow_{\beta}^{\infty} P'}{M \longrightarrow_{\beta}^{\infty} \lambda x.P'} \qquad \frac{M \longrightarrow_{\beta}^{*} (P)Q \quad P \longrightarrow_{\beta}^{\infty} P' \quad Q \longrightarrow_{\beta}^{\infty} Q'}{M \longrightarrow_{\beta}^{\infty} (P')Q'}$$

The sets Λ_{\perp} and Λ_{\perp}^{∞} of (finite and infinitary) $\lambda \perp$ -terms are defined by adding a constant \perp to eq. (1). Given a set $\mathcal{U} \subseteq \Lambda_{\perp}^{\infty}$, a reduction $\longrightarrow_{\perp \mathcal{U}}$ is defined on Λ_{\perp}^{∞} by $M \longrightarrow_{\perp \mathcal{U}} \perp$ for all $M \in \mathcal{U}$, and by lifting to contexts. We also define $\longrightarrow_{\beta \perp \mathcal{U}} := \longrightarrow_{\beta} \cup \longrightarrow_{\perp \mathcal{U}}$, and $\longrightarrow_{\beta \perp \mathcal{U}}^{\infty}$ by replacing $\longrightarrow_{\beta}^{*}$ with $\longrightarrow_{\beta \perp \mathcal{U}}^{*}$ in the rules above. In particular for \mathcal{U} we may consider the following sets:

$$\overline{\mathcal{HN}} \coloneqq \{M \in \Lambda^{\infty} \mid M \text{ has no HNF}\} \qquad \overline{\mathcal{WN}} \coloneqq \{M \in \Lambda^{\infty} \mid M \text{ has no WHNF}\}.$$

Theorem 1 ([Ken+97]). $\longrightarrow_{\beta \perp \overline{\mathcal{HN}}}^{\infty}$ and $\longrightarrow_{\beta \perp \overline{\mathcal{MN}}}^{\infty}$ are confluent.

Corollary 2. BT(M) and LLT(M) are the unique normal forms of any $M \in \Lambda^{\infty}_{\perp}$ through $\longrightarrow_{\beta \perp \overline{\mathcal{HN}}}^{\infty}$ and $\longrightarrow_{\beta \perp \overline{\mathcal{HN}}}^{\infty}$, respectively.

In the following, $\longrightarrow_{\beta\perp}^{\infty}$ will denote $\longrightarrow_{\beta\perp}^{\infty}\overline{WN}$.

Continuous approximation The approximation order \sqsubseteq is defined on Λ_{\perp} by $\perp \sqsubseteq M$ for all $M \in \Lambda_{\perp}$, and by monotonicity of contexts. The ideal completion of $(\Lambda_{\perp}, \sqsubseteq)$ is isomorphic (as a set) to Λ_{\perp}^{∞} , and we denote by \sqsubseteq^{∞} the order induced on Λ_{\perp}^{∞} . \sqsubseteq and \sqsubseteq^{∞} coincide on Λ_{\perp} . We define the set $\mathcal{A}_{wh} \subseteq \Lambda_{\perp}$ of weak head approximants as follows:

$$\mathcal{A}_{\mathrm{wh}} \quad \ni \quad P, Q, \dots \quad \coloneqq \quad \perp \mid \lambda x.P \mid (y)P_1 \dots P_n,$$

and the set $\mathcal{A}_{wh}(M) := \left\{ P \in \mathcal{A}_{wh} \mid \exists M' \in \Lambda^{\infty}_{\perp}, M \longrightarrow^{*}_{\beta} M' \text{ and } P \sqsubseteq^{\infty} M' \right\}$ of the weak head approximants of any term $M \in \Lambda^{\infty}_{\perp}$.

Theorem 3 (continuous approximation). For any $M \in \Lambda^{\infty}_{+}$, $(\mathcal{A}_{wh}(M), \sqsubseteq^{\infty})$ is directed, and

$$LLT(M) = \bigsqcup^{\infty} \mathcal{A}_{wh}(M).$$

¹As often in our rapidly developped field of research, we have to deal with unfortunate historical namings of objects. In the following, "lazy", "weak head" and even "Lévy-Longo" should be taken as synonyms. The author wonders whether these may eventually be unified.

2 A lazy linear approximation

In the resource λ -calculus, that is the target of the usual Taylor expansion associated to head reduction, head approximants (different from \perp) are in bijection with normal affine resource λ -terms. The bijection is as follows:

$$\phi(x) \coloneqq x \qquad \phi(\lambda x.P) \coloneqq \lambda x.\phi(P) \qquad \phi((P)Q) \coloneqq (\phi(P))[\phi(Q)] \qquad \phi((P)\bot) \coloneqq (\phi(P))[[\phi(Q)]]$$

This is the reason why the linear approximation refines the continuous one in this setting, allowing for efficient and simple proofs of various important results [BM19]. What we want is to adapt the resource λ -calculus so that this property holds with respect to weak head approximants. To do so, we need to treat one more case in the definition of ϕ , namely to define $\phi(\lambda x.\perp)$. We introduce a constant o in the syntax of the resource λ -calculus, which will play the role of an "empty abstraction".

Definition 4. The set $\Lambda_{\ell r}$ of lazy resource λ -terms (resource terms in short) is defined inductively by:

$$\begin{array}{rcl} \Lambda_{\ell \mathbf{r}} & \ni & s, t, \dots & \coloneqq & x \mid \mathbf{o} \mid \lambda x.s \mid (s)\overline{t} & (x \in \mathcal{V}) \\ !\Lambda_{\ell \mathbf{r}} & \ni & \overline{t}, \overline{u}, \dots & \coloneqq & [t_1, \dots, t_n] & (n \in \mathbf{N}) \end{array}$$

We write $(!)\Lambda_{\ell r}$ to denote $\Lambda_{\ell r}$ or $!\Lambda_{\ell r}$.

We denote by $\mathbf{N}[(!)\Lambda_{\ell r}]$ the **N**-semimodule of finitely supported formal sums of lazy resource λ -terms (finite resource sums in short). We denote by boldface **s**, **t**, etc. its elements and by **0** the empty sum. As usual in resource λ -calculus, we assimilate resource terms to one-element resource sums and we extend the constructors of the above inductive definitions by linearity (*e.g.*, $\lambda x.(s + \mathbf{t}) \coloneqq \lambda x.s + \lambda x.\mathbf{t}$ or (**0**) $\bar{t} \coloneqq$ **0**). See [Vau19; Cer24] for a detailed presentation.

Definition 5. Substitution in resource terms is defined as usual, namely

$$s\langle [t_1, \dots, t_n]/x \rangle \coloneqq \begin{cases} \sum_{\sigma \in \mathfrak{S}(n)} s[t_{\sigma(1)}/x_1, \dots, t_{\sigma(n)}/x_n] & \text{if } \deg_x(s) = n \\ \mathbf{0} & \text{otherwise,} \end{cases}$$

where $\deg_x(s)$ is the number of free occurrences of x in s (in particular, $\deg_x(\mathbf{o}) \coloneqq 0$), x_1, \ldots, x_n is an arbitrary enumeration of these free occurrences, and $s[t_{\sigma(1)}/x_1, \ldots, t_{\sigma(n)}/x_n]$ is the resource term obtained by substituting the t_i to the occurrences x_i .

Definition 6. The relation $\longrightarrow_{\ell r}$ of resource reduction is defined as a subset of $(!)\Lambda_{\ell r} \times \mathbf{N}[(!)\Lambda_{\ell r}]$ by $(\lambda x.s)\bar{t} \longrightarrow_{\ell r} s\langle \bar{t}/x \rangle$, $(\mathbf{o})\bar{t} \longrightarrow_{\ell r} \mathbf{0}$, and by lifting to contexts. It is extended to a relation on $\mathbf{N}[\Lambda_{\ell r}]$ by saying that $s + \mathbf{t} \longrightarrow_{\ell r} \mathbf{s}' + \mathbf{t}'$ whenever $s \longrightarrow_{\ell r} \mathbf{s}'$ and $\mathbf{t} \longrightarrow_{\ell r}^{?} \mathbf{t}' (\longrightarrow_{\ell r}^{?}$ denoting the reflexive closure).

Lemma 7. $\longrightarrow_{\ell r}$ is confluent and strongly normalising.

As usual, $\longrightarrow_{\ell r}$ even enjoys a way stronger confluence property: $\longrightarrow_{\ell r}^{?}$ has the diamond property.

Definition 8. A relation $\sqsubseteq_{\mathcal{T}_{\ell}}$ is defined as a subset of $\Lambda_{\ell r} \times \Lambda_{\perp}^{\infty}$ by the following inductive rules:

$$\frac{s \sqsubseteq_{\mathcal{T}_{\ell}} M}{x \sqsubseteq_{\mathcal{T}_{\ell}} x} \quad \frac{s \sqsubseteq_{\mathcal{T}_{\ell}} M}{\mathsf{o} \sqsubseteq_{\mathcal{T}_{\ell}} \lambda x.M} \quad \frac{s \sqsubseteq_{\mathcal{T}_{\ell}} M}{\lambda x.s \sqsubseteq_{\mathcal{T}_{\ell}} \lambda x.M} \quad \frac{s \sqsubseteq_{\mathcal{T}_{\ell}} M \quad t_1 \sqsubseteq_{\mathcal{T}_{\ell}} N \quad \dots \quad t_n \sqsubseteq_{\mathcal{T}_{\ell}} N}{(s)[t_1, \dots, t_n] \sqsubseteq_{\mathcal{T}_{\ell}} (M)N}$$

The (qualitative) lazy Taylor expansion of any $M \in \Lambda^{\infty}_{\perp}$ is defined by $\mathcal{T}_{\ell}(M) \coloneqq \{s \in \Lambda_{\ell r} \mid s \sqsubseteq_{\mathcal{T}_{\ell}} M\}.$

Since our Taylor expansion maps λ -terms to sets of resource terms, we need to explain how to lift the resource reduction to such sets. Let us denote by $|\mathbf{s}|$ the support of any finite sum $\mathbf{s} \in \mathbf{N}[(!)\Lambda_{\ell r}]$. Then for all $S, T \subseteq (!)\Lambda_{\ell r}$ we write $S \longrightarrow_{\ell r} T$ whenever there is a set I such that $S = \bigcup_{i \in I} \{s_i\}, T = \bigcup_{i \in I} |\mathbf{t}_i|$ and for all $i \in I, s_i \longrightarrow_{\ell r}^* \mathbf{t}_i$.

Thanks to lemma 7, we can also define $\mathrm{nf}_{\ell r}(\mathbf{s})$ to be the unique normal form through $\longrightarrow_{\ell r}$ of any $\mathbf{s} \in \mathbf{N}[(!)\Lambda_{\ell r}]$, and $\mathrm{nf}_{\ell r}(S) \coloneqq \{\mathrm{nf}_{\ell r}(s) \mid s \in S\}$ for all set $S \subseteq (!)\Lambda_{\ell r}$. In particular, $S \longrightarrow_{\ell r} \mathrm{nf}_{\ell r}(S)$.

Our main result is the following approximation theorem.

Theorem 9 (simulation). For all $M, N \in \Lambda^{\infty}_{\perp}$, if $M \longrightarrow_{\beta \perp}^{\infty} N$ then $\mathcal{T}_{\ell}(M) \longrightarrow_{\ell r} \mathcal{T}_{\ell}(N)$.

The proof of this qualitative version can be adapted from the one published in [CV23]. In general, a quantitative version of the theorem (with a somehow more canonical proof) can be found in [Cer24]. As an immediate consequence, we obtain a commutation theorem in the style of Ehrard and Regnier's celebrated result.

Corollary 10 (commutation). For all $M \in \Lambda^{\infty}_{\perp}$, $\operatorname{nf}_{\ell r}(\mathcal{T}_{\ell}(M)) = \mathcal{T}_{\ell}(\operatorname{LLT}(M))$.

Let us mention other important consequences of theorem 9.

- $\operatorname{nf}_{\ell r}(\mathcal{T}_{\ell}(M))$ being non-empty characterises the fact that M has a WHNF, and equivalently that $\longrightarrow_{\mathrm{wh}}$ terminates on M. This can be read as a consequence of the correspondence between resource approximants of M and typing derivations of M in a given non-idempotent intersection type system characterising weak head normalising terms.
- The confluence of $\longrightarrow_{\beta\perp}^{\infty}$ (theorem 1) can be straightforwardly deduced from theorem 9.
- Our linear approximation subsumes the continuous one, and as a conquence the continuous approximation theorem 3 is also a corollary of the simulation theorem 9.
- As a consequence, the work of [BM19] can be adapted to show that the equivalence relation generated on λ -terms by equality of Lévy-Longo trees is a λ -theory.

This last observation justifies that both Böhm and Lévy-Longo are described as "normal form models". In the last part of this paper, we investigate the other existing such models.

3 What about other normal form models?

In our exposition, we defined a reduction $\longrightarrow_{\perp \mathcal{U}}$ collapsing any subset $\mathcal{U} \subseteq \Lambda_{\perp}^{\infty}$ to \perp , but only used it for the two subsets $\overline{\mathcal{HN}}$ and $\overline{\mathcal{WN}}$. This can in fact be seen as a general construction for restoring confluence of the infinitary β -reduction, as expressed by the following extension of theorem 1. It relies on a notion of "meaningless set" defined by a certain list of axioms (see [KOV99; SV11b]), such that in particular $\overline{\mathcal{HN}}$ and $\overline{\mathcal{WN}}$ are meaningless sets.

Theorem 11 ([KOV99; SV11b]). For all meaningless set $\mathcal{U} \subseteq \Lambda^{\infty}_{\perp}$, the reduction $\longrightarrow_{\beta \perp \mathcal{U}}^{\infty}$ is confluent. In addition, each $M \in \Lambda^{\infty}_{\perp}$ has a unique normal form through $\longrightarrow_{\beta \perp \mathcal{U}}^{\infty}$.

In particular, if we denote by $T_{\mathcal{U}}(-)$ the map taking λ -terms to their normal form through $\longrightarrow_{\beta \perp \mathcal{U}}^{\infty}$ (so that in particular $T_{\overline{\mathcal{HN}}} = BT$ and $T_{\overline{\mathcal{WN}}} = LLT$), the equivalence relation generated by equating M and N whenever $T_M = T_N$ induces a λ -model, called "normal form model". These models form a lattice of cardinality 2^c , where c is the cardinality of the continuum [SV11a].

However, exploiting the semantic properties of these models, Severi and de Vries were able to distinguish BT and LLT from all other normal form models:

Theorem 12 ([SV05a]). $\overline{\mathcal{HN}}$ and $\overline{\mathcal{WN}}$ are the only meaningless sets \mathcal{U} such that $T_{\mathcal{U}} : \Lambda_{\perp}^{\infty} \to \Lambda_{\perp}^{\infty}$ is Scott-continuous (with respect to \sqsubseteq^{∞}).

Notice that the approximation order on λ -terms corresponds to inclusion of Taylor expansions (both in the traditionnal setting and in our lazy setting). This means that Taylor expansion is Scott-continuous in both settings; with the notations from the previous part:

Lemma 13. For all directed subset D of $(\Lambda^{\infty}_{\perp}, \sqsubseteq^{\infty}), \mathcal{T}_{\ell}(\bigsqcup^{\infty} D) = \bigcup_{M \in D} \mathcal{T}_{\ell}(M).$

This is the key property of Taylor approximation, that explains the powerful simplifications it allows in the proofs of many standard λ -calculus results, as exemplified above (and more in detail in [BM19]). In particular, it can be used to deduce the content of theorem 12 for \overline{WN} (and similarly for \overline{HN}):

Corollary 14. LLT : $\Lambda^{\infty}_{\perp} \to \Lambda^{\infty}_{\perp}$ is Scott-continous.

Thus, a consequence of theorem 12 is that for all meaningless set \mathcal{U} different from $\overline{\mathcal{HN}}$ and $\overline{\mathcal{WN}}$, there cannot be a Taylor expansion continuous with respect to \sqsubseteq^{∞} and characterising the normal form model associated to \mathcal{U} , *i.e.* enjoying a commutation theorem with respect to $T_{\mathcal{U}}$. In particular the other standard notion of infinite normal form for λ -terms, namely Berarducci trees [Ber96], does not enjoy such a Taylor expansion.

A possible workaround would be to consider another ordering on Λ^{∞}_{\perp} , as introduced in [SV05b], which makes $T_{\mathcal{U}}$ monotonous as soon as \mathcal{U} is "quasi-regular" (which is the case in particular for Berarducci trees): one could wonder whether a linear approximation compatible with such an ordering can be constructed.

References

- [Abr90] Samson Abramsky. "The lazy lambda calculus". In: Research Topics in Functional Programming. 1990, pp. 65– 116. URL: https://www.cs.ox.ac.uk/people/samson.abramsky/lazy.pdf.
- [Ber96] Alessandro Berarducci. "Infinite λ-calculus and non-sensible models". In: Logic and Algebra (Pontigano, 1994).
 Ed. by M. Dekker. Routledge, 1996, pp. 339–377. DOI: 10.1201/9780203748671-17.
- [BM19] Davide Barbarossa and Giulio Manzonetto. "Taylor subsumes Scott, Berry, Kahn and Plotkin". In: Proceedings of the ACM on Programming Languages 4.POPL (2019), pp. 1–23. DOI: 10.1145/3371069.
- [Cer24] Rémy Cerda. "Taylor Approximation and Infinitary λ-Calculi". Theses. Aix-Marseille Université, 2024. URL: https://hal.science/tel-04664728.
- [CV23] Rémy Cerda and Lionel Vaux Auclair. "Finitary Simulation of Infinitary β-Reduction via Taylor Expansion, and Applications". In: Logical Methods in Computer Science 19 (4 2023). DOI: 10.46298/LMCS-19(4:34)2023.
- [ER06] Thomas Ehrhard and Laurent Regnier. "Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms". In: Logical Approaches to Computational Barriers (CiE 2006). Ed. by Arnold Beckmann et al. 2006, pp. 186–197. DOI: 10.1007/11780342_20.
- [ER08] Thomas Ehrhard and Laurent Regnier. "Uniformity and the Taylor expansion of ordinary lambda-terms". In: Theoretical Computer Science 403.2 (2008), pp. 347–372. DOI: 10.1016/j.tcs.2008.06.001.
- [Ken+97] Richard Kennaway et al. "Infinitary lambda calculus". In: Theoretical Computer Science 175.1 (1997), pp. 93– 125. DOI: 10.1016/S0304-3975(96)00171-5.
- [KOV99] Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries. "Meaningless Terms in Rewriting". In: The Journal of Functional and Logic Programming 1999.1 (1999). URL: https://www.cs.le.ac.uk/people/ fdevries/fdv1/Distribution/meaningless.pdf.
- [Kur+13] Alexander Kurz et al. "Nominal Coalgebraic Data Types with Applications to Lambda Calculus". In: Logical Methods in Computer Science 9.4 (2013). DOI: 10.2168/lmcs-9(4:20)2013.
- [Lon83] Giuseppe Longo. "Set-theoretical models of λ-calculus: theories, expansions, isomorphisms". In: Annals of Pure and Applied Logic 24.2 (1983), pp. 153–188. DOI: 10.1016/0168-0072(83)90030-1.
- [SV05a] Paula Severi and Fer-Jan de Vries. "Continuity and Discontinuity in Lambda Calculus". In: Typed Lambda Calculi and Applications (TLCA 2005). 2005, pp. 369–385. DOI: 10.1007/11417170_27.
- [SV05b] Paula Severi and Fer-Jan de Vries. "Order Structures on Böhm-Like Models". In: Computer Science Logic (CSL 2005). 2005, pp. 103–118. DOI: 10.1007/11538363_9.
- [SV11a] Paula Severi and Fer-Jan de Vries. "Decomposing the Lattice of Meaningless Sets in the Infinitary Lambda Calculus". In: Logic, Language, Information and Computation (WoLLIC 2011). 2011, pp. 210–227. DOI: 10. 1007/978-3-642-20920-8_22.
- [SV11b] Paula Severi and Fer-Jan de Vries. "Weakening the Axiom of Overlap in Infinitary Lambda Calculus". In: 22nd International Conference on Rewriting Techniques and Applications (RTA 2011). 2011, pp. 313–328. DOI: 10.4230/LIPICS.RTA.2011.313.
- [Vau19] Lionel Vaux. "Normalizing the Taylor expansion of non-deterministic λ-terms, via parallel reduction of resource vectors". In: Logical Methods in Computer Science 15 (3 2019). DOI: 10.23638/LMCS-15(3:9)2019.