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The advent of a linear approximation of the λ-calculus based on Taylor expansion allowed for a renewal
and a refinement of the classic approach based on continuous approximation. The major property of the
linear approximation, known as the Commutation theorem, relates the infinitary head normalisation
of a λ-term towards its Böhm tree to the (finitary) normalisation of its Taylor expansion, that is, the
sum of its multilinear approximants [ER08; ER06].
This approximation theory is therefore related to the standard evaluation of λ-terms, that retains head
normal forms as meaningful prefixes of information; in this work, we adapt it to the lazy evaluation
where weak head normal forms play this role. We introduce a lazy resource λ-calculus and the corre-
sponding Taylor expansion, and show that it simulates the 101-infinitary λ-calculus (theorem 9). In
particular, we obtain a Commutation theorem with respect to Lévy-Longo trees (corollary 10).
This shows that a second normal form model enjoys a linear approximation, out of the 2c existing
normal form models (where c is the cardinality of the continuum). We conclude by noticing that there
cannot be a similar linear approximation for all other such models, and in particular for Berarducci
trees.
This work has previously appeared as Chapter 6 in the author’s PhD thesis [Cer24], and a longer
version is to be submitted to a forthcoming conference.

1 Lazy evaluation of λ-terms

Recall the inductive definition of the (finite) λ-terms, given a countable set V of variables:

Λ ∋ M,N, . . . := x ∈ V | λx.M | (M)N. (1)

It is implicitely quotiented by α-equivalence, so that we can define M [N/x], that is the term obtained
by substituting all free occurrences of x in M with N . It is endowed with the relation −→β of
β-reduction, defined by (λx.M)N −→β M [N/x] and by lifting to contexts.

Weak head β-reduction and Lévy-Longo trees Remember that a λ-term is either a head normal
form (hnf), i.e. a term λx1. . . . λxm.(y)M1 . . .Mn, or a term λx1. . . . λxm.((λx.P )Q)M1 . . .Mn where
(λx.P )Q is called the head redex. As they are stable under β-reduction, hnf’s are usually taken as a
notion of “prefix of stable information”: if a λ-term β-reduces to a hnf, then it has produced some
information. According to this idea, the full information produced by a λ-term is usually described
by its Böhm tree, a potentially infinite tree coinductively defined by:

BT(M) :=

{
λx1. . . . λxm.(y)BT(M1) . . .BT(Mn) if M −→∗

h λx1. . . . λxm.(y)M1 . . .Mn,
⊥ otherwise,

where −→h denotes head reduction, i.e. the restriction of β-reduction where one only reduces head
redexes.
During the same years where Barendregt and Wadsworth popularised this idea of “information as
hnf’s”, Lévy [Lév75] carried out similar work using weak head normal forms instead, which rely on
the following refinement: a λ-term is either a term λx.M , or a term (y)M1 . . .Mn (two types of weak
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head normal forms, or whnf’s), or a term ((λx.P )Q)M1 . . .Mn where (λx.P )Q is called the weak
head redex. As pointed out by Abramsky [Abr90], whnf’s are a more reasonable notion of prefix of
stable information, in particular because it corresponds to the lazy evaluation of λ-terms (information
is looked for in the body of an abstraction only if it is given an argument), which is closer to the
way λ-calculus is implemented in the main programming languages or abstract machines1. In this
perspective, the full information produced by a λ-term is described by its Lévy-Longo tree [Lon83],
coinductively defined by:

LLT(M) :=


λx.LLT(M ′) if M −→∗

wh λx.M ′

(y)LLT(M1) . . .LLT(Mn) if M −→∗
wh (y)M1 . . .Mn,

⊥ otherwise,

where −→wh denotes weak head reduction, i.e. the restriction of β-reduction where one only reduces
weak head redexes.

Infinitary λ-calculus As we want to internalise Böhm and Lévy-Longo trees in the calculus, as
well as the dynamics leading to their constructions, we use the prowerful tool of infinitary λ-calculus
[Ken+97]. The set Λ∞ of infinitary λ-terms is defined by treating eq. (1) coinductively (we silently
quotient it by α-equivalence, which becomes subtle; a detailed treatment can be found in [Kur+13]).
The relation −→∞

β of infinitary β-reduction is defined by the following set of coinductive rules:

M −→∗
β x

M −→∞
β x

M −→∗
β λx.P P −→∞

β P ′

M −→∞
β λx.P ′

M −→∗
β (P )Q P −→∞

β P ′ Q −→∞
β Q′

M −→∞
β (P ′)Q′

The sets Λ⊥ and Λ∞
⊥ of (finite and infinitary) λ⊥-terms are defined by adding a constant ⊥ to eq. (1).

Given a set U ⊆ Λ∞
⊥ , a reduction −→⊥U is defined on Λ∞

⊥ by M −→⊥U ⊥ for all M ∈ U , and by lifting
to contexts. We also define −→β⊥U := −→β ∪ −→⊥U , and −→∞

β⊥U by replacing −→∗
β with −→∗

β⊥U in
the rules above. In particular for U we may consider the following sets:

HN := {M ∈ Λ∞ | M has no hnf} WN := {M ∈ Λ∞ | M has no whnf} .

Theorem 1 ([Ken+97]). −→∞
β⊥HN and −→∞

β⊥WN are confluent.

Corollary 2. BT(M) and LLT(M) are the unique normal forms of any M ∈ Λ∞
⊥ through −→∞

β⊥HN
and −→∞

β⊥WN , respectively.

In the following, −→∞
β⊥ will denote −→∞

β⊥WN .

Continuous approximation The approximation order ⊑ is defined on Λ⊥ by ⊥ ⊑ M for all
M ∈ Λ⊥, and by monotonicity of contexts. The ideal completion of (Λ⊥,⊑) is isomorphic (as a set)
to Λ∞

⊥ , and we denote by ⊑∞ the order induced on Λ∞
⊥ . ⊑ and ⊑∞ coincide on Λ⊥.

We define the set Awh ⊆ Λ⊥ of weak head approximants as follows:

Awh ∋ P,Q, . . . := ⊥ | λx.P | (y)P1 . . . Pn,

and the set Awh(M) :=
{
P ∈ Awh

∣∣∣ ∃M ′ ∈ Λ∞
⊥ , M −→∗

β M ′ and P ⊑∞ M ′
}

of the weak head ap-

proximants of any term M ∈ Λ∞
⊥ .

Theorem 3 (continuous approximation). For any M ∈ Λ∞
⊥ , (Awh(M),⊑∞) is directed, and

LLT(M) =
⊔∞

Awh(M).

1As often in our rapidly developped field of research, we have to deal with unfortunate historical namings of objects.
In the following, “lazy”, “weak head” and even “Lévy-Longo” should be taken as synonyms. The author wonders whether
these may eventually be unified.
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2 A lazy linear approximation

In the resource λ-calculus, that is the target of the usual Taylor expansion associated to head reduction,
head approximants (different from ⊥) are in bijection with normal affine resource λ-terms. The
bijection is as follows:

ϕ(x) := x ϕ(λx.P ) := λx.ϕ(P ) ϕ((P )Q) := (ϕ(P ))[ϕ(Q)] ϕ((P )⊥) := (ϕ(P ))[].

This is the reason why the linear approximation refines the continuous one in this setting, allowing
for efficient and simple proofs of various important results [BM19]. What we want is to adapt the
resource λ-calculus so that this property holds with respect to weak head approximants. To do so, we
need to treat one more case in the definition of ϕ, namely to define ϕ(λx.⊥). We introduce a constant
o in the syntax of the resource λ-calculus, which will play the role of an “empty abstraction”.

Definition 4. The set Λℓr of lazy resource λ-terms (resource terms in short) is defined inductively by:

Λℓr ∋ s, t, . . . := x | o | λx.s | (s)t̄ (x ∈ V)
!Λℓr ∋ t̄, ū, . . . := [t1, . . . , tn] (n ∈ N)

We write (!)Λℓr to denote Λℓr or !Λℓr.
We denote by N[(!)Λℓr] the N-semimodule of finitely supported formal sums of lazy resource λ-terms
(finite resource sums in short). We denote by boldface s, t, etc. its elements and by 0 the empty sum.
As usual in resource λ-calculus, we assimilate resource terms to one-element resource sums and we
extend the constructors of the above inductive definitions by linearity (e.g., λx.(s+ t) := λx.s+ λx.t
or (0)t̄ := 0). See [Vau19; Cer24] for a detailed presentation.

Definition 5. Substitution in resource terms is defined as usual, namely

s⟨[t1, . . . , tn]/x⟩ :=
{ ∑

σ∈S(n) s[tσ(1)/x1, . . . , tσ(n)/xn] if degx(s) = n

0 otherwise,

where degx(s) is the number of free occurrences of x in s (in particular, degx(o) := 0), x1, . . . , xn is
an arbitrary enumeration of these free occurrences, and s[tσ(1)/x1, . . . , tσ(n)/xn] is the resource term
obtained by substituting the ti to the occurrences xi.

Definition 6. The relation −→ℓr of resource reduction is defined as a subset of (!)Λℓr ×N[(!)Λℓr] by
(λx.s)t̄ −→ℓr s⟨t̄/x⟩, (o)t̄ −→ℓr 0, and by lifting to contexts. It is extended to a relation on N[Λℓr] by
saying that s+ t −→ℓr s

′ + t′ whenever s −→ℓr s
′ and t −→?

ℓr t
′ (−→?

ℓr denoting the reflexive closure).

Lemma 7. −→ℓr is confluent and strongly normalising.

As usual, −→ℓr even enjoys a way stronger confluence property: −→?
ℓr has the diamond property.

Definition 8. A relation ⊑Tℓ is defined as a subset of Λℓr × Λ∞
⊥ by the following inductive rules:

x ⊑Tℓ x o ⊑Tℓ λx.M

s ⊑Tℓ M

λx.s ⊑Tℓ λx.M

s ⊑Tℓ M t1 ⊑Tℓ N . . . tn ⊑Tℓ N

(s)[t1, . . . , tn] ⊑Tℓ (M)N

The (qualitative) lazy Taylor expansion of any M ∈ Λ∞
⊥ is defined by Tℓ(M) := {s ∈ Λℓr | s ⊑Tℓ M}.

Since our Taylor expansion maps λ-terms to sets of resource terms, we need to explain how to lift
the resource reduction to such sets. Let us denote by |s| the support of any finite sum s ∈ N[(!)Λℓr].
Then for all S, T ⊆ (!)Λℓr we write S −↠ℓr T whenever there is a set I such that S =

⋃
i∈I {si},

T =
⋃

i∈I |ti| and for all i ∈ I, si −→∗
ℓr ti.

Thanks to lemma 7, we can also define nfℓr(s) to be the unique normal form through −→ℓr of any
s ∈ N[(!)Λℓr], and nfℓr(S) := {nfℓr(s) | s ∈ S} for all set S ⊆ (!)Λℓr. In particular, S −↠ℓr nfℓr(S).

Our main result is the following approximation theorem.
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Theorem 9 (simulation). For all M,N ∈ Λ∞
⊥ , if M −→∞

β⊥ N then Tℓ(M) −↠ℓr Tℓ(N).

The proof of this qualitative version can be adapted from the one published in [CV23]. In general, a
quantitative version of the theorem (with a somehow more canonical proof) can be found in [Cer24].
As an immediate consequence, we obtain a commutation theorem in the style of Ehrard and Regnier’s
celebrated result.

Corollary 10 (commutation). For all M ∈ Λ∞
⊥ , nfℓr(Tℓ(M)) = Tℓ(LLT(M)).

Let us mention other important consequences of theorem 9.

• nfℓr(Tℓ(M)) being non-empty characterises the fact that M has a whnf, and equivalently that
−→wh terminates on M . This can be read as a consequence of the correspondence between
resource approximants of M and typing derivations of M in a given non-idempotent intersection
type system characterising weak head normalising terms.

• The confluence of −→∞
β⊥ (theorem 1) can be straightforwardly deduced from theorem 9.

• Our linear approximation subsumes the continuous one, and as a conquence the continuous
approximation theorem 3 is also a corollary of the simulation theorem 9.

• As a consequence, the work of [BM19] can be adapted to show that the equivalence relation
generated on λ-terms by equality of Lévy-Longo trees is a λ-theory.

This last observation justifies that both Böhm and Lévy-Longo are described as “normal form models”.
In the last part of this paper, we investigate the other existing such models.

3 What about other normal form models?

In our exposition, we defined a reduction −→⊥U collapsing any subset U ⊆ Λ∞
⊥ to ⊥, but only used

it for the two subsets HN and WN . This can in fact be seen as a general construction for restoring
confluence of the infinitary β-reduction, as expressed by the following extension of theorem 1. It relies
on a notion of “meaningless set” defined by a certain list of axioms (see [KOV99; SV11b]), such that
in particular HN and WN are meaningless sets.

Theorem 11 ([KOV99; SV11b]). For all meaningless set U ⊆ Λ∞
⊥ , the reduction −→∞

β⊥U is confluent.
In addition, each M ∈ Λ∞

⊥ has a unique normal form through −→∞
β⊥U .

In particular, if we denote by TU (−) the map taking λ-terms to their normal form through −→∞
β⊥U

(so that in particular THN = BT and TWN = LLT), the equivalence relation generated by equating
M and N whenever TM = TN induces a λ-model, called “normal form model”. These models form a
lattice of cardinality 2c, where c is the cardinality of the continuum [SV11a].
However, exploiting the semantic properties of these models, Severi and de Vries were able to distin-
guish BT and LLT from all other normal form models:

Theorem 12 ([SV05a]). HN and WN are the only meaningless sets U such that TU : Λ∞
⊥ → Λ∞

⊥ is
Scott-continuous (with respect to ⊑∞).

Notice that the approximation order on λ-terms corresponds to inclusion of Taylor expansions (both in
the traditionnal setting and in our lazy setting). This means that Taylor expansion is Scott-continuous
in both settings; with the notations from the previous part:

Lemma 13. For all directed subset D of (Λ∞
⊥ ,⊑∞), Tℓ(

⊔∞D) =
⋃

M∈D Tℓ(M).

This is the key property of Taylor approximation, that explains the powerful simplifications it allows
in the proofs of many standard λ-calculus results, as exemplified above (and more in detail in [BM19]).
In particular, it can be used to deduce the content of theorem 12 for WN (and similarly for HN ):

Corollary 14. LLT : Λ∞
⊥ → Λ∞

⊥ is Scott-continous.
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Thus, a consequence of theorem 12 is that for all meaningless set U different from HN and WN ,
there cannot be a Taylor expansion continous with respect to ⊑∞ and characterising the normal form
model associated to U , i.e. enjoying a commutation theorem with respect to TU . In particular the
other standard notion of infinite normal form for λ-terms, namely Berarducci trees [Ber96], does not
enjoy such a Taylor expansion.
A possible workaround would be to consider another ordering on Λ∞

⊥ , as introduced in [SV05b], which
makes TU monotonous as soon as U is “quasi-regular” (which is the case in particular for Berarducci
trees): one could wonder whether a linear approximation compatible with such an ordering can be
constructed.
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