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Ten years ago, it was shown that nominal techniques can be used to design coalgebraic data types
with variable binding, so that α-equivalence classes of infinitary terms are directly endowed with a
corecursion principle [19]. We introduce “mixed” binding signatures, as well as the corresponding
type of mixed inductive-coinductive terms. We extend the aforementioned work to this setting.
In particular, this allows for a nominal description of the sets Λ𝑎𝑏𝑐 of 𝑎𝑏𝑐-infinitary λ-terms (for
𝑎, 𝑏, 𝑐 ∈ {0,1}) and of capture-avoiding substitution on α-equivalence classes of such terms.

α-equivalence, the relation on λ-terms obtained by renaming bound variables, is central in λ-calculus
(as in any syntax with binding): it is crucially needed in order to define capture-avoiding substitution in a
satisfactory (i.e. total) manner, and thus to define β-reduction. Even though there are several well-known
treatments of it — via the classical “variable convention” [6], or using “de Bruĳn indices” [9] more suited
to computer-assisted formalisations — giving abstract and canonical presentations of the operations of
quotient by α-equivalence and capture-avoiding substitution has been pursued by several lines of research
in the last decades. Such presentations have been proposed via the introduction of binding algebras [13],
nominal sets [14, 26] or more recently De Bruĳn algebras [15].

In infinitary λ-calculi [16, 8], the precise definition of α-equivalence is not as standard and straightfor-
ward as in a finite setting, in particular because some issues arise from the possibility to encounter terms
containing free occurrences of all the available variables. Applying nominal techniques to the study of
infinitary terms led Kurz, Petrişan, Severi, and de Vries to establish a canonical, abstract framework for
defining α-equivalence in a coalgebraic setting [18, 19].

They conclude their work by suggesting that this framework could be applied not only to the “full”
infinitary λ-calculus Λ111, but also to its “mixed” inductive-coinductive variants, e.g. Λ001 [16, 12].
Doing so is the point of this small fanfiction1. Our contribution is twofold:

1. We provide an adapted framework for general “mixed” terms with binding by introducing mixed
binding signatures (mbs). The main difference in their categorical treatment is that we replace
1-variable polynomial functors with 2-variable ones (i.e. bifunctors).

2. We show that the proof of [19] can be easily adapted to this slightly more general setting. As an
example, we define capture-avoiding substitution on Λ001 by mixed recursion and corecursion.

∗A long version of this abstract can be downloaded from the author’s webpage, and will appear as a part of [10].
†The author wishes to thank Dimitri Ara, whose categorical knowledge was a great help, as well as Léo Hubert, Étienne

Miquey and Lionel Vaux Auclair for helpful and stimulating discussions, and an anonymous referee who suggested several
highly pertinent references.

1By using that word, we want to make clear that we do not claim much originality in the leading ideas of this work; we follow
the very same path as [19], and we perform the necessary adaptions to lift their results to an inductive-coinductive setting.
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2 Nominal Algebraic-Coalgebraic Data Types

1 Mixed binding signatures and mixed terms

In this section, we introduce mixed binding signatures as well as the finite and infinitary terms arising
from such a signature. Then we extend to this setting all the metric and nominal structures one considers
when dealing with ordinary binding signatures, and we describe a problem similar to what [19] solves in
the ordinary setting.

1.1 Nominal preliminaries

Let us first recall a few basic definitions and properties about nominal sets. We remain quite superficial,
since most of the nominal machinery is hidden in this paper; we refer to the excellent summary in [19,
Sec. 4], from which we take all our notations, and to the standard literature on the subject [26].

Fix a set V of variables2 and denote by 𝔖fs(V) the group of the permutations of V that are
generated by transpositions (𝑥 𝑥′), i.e. such that { 𝑥 ∈ V |𝜎(𝑥) ≠ 𝑥 } is finite. A nominal set (𝐴, ·) is a
set 𝐴 equipped with a 𝔖fs(V)-action · such that each 𝑎 ∈ 𝐴 is finitely supported, i.e. there exists a least
finite set supp(𝑎) ⊂ V such that

∀𝜎 ∈𝔖fs(V), (∀𝑥 ∈ supp(𝑎), 𝜎(𝑥) = 𝑥) ⇒ 𝜎 · 𝑎 = 𝑎.

Intuitively, variables in supp(𝑎) are “free in 𝑎”. Nominal sets together with 𝔖fs(V)-equivariant maps
form a category Nom.

The key object in all what follows is the abstraction functor [V]− : Nom→Nom defined as follows.
Fix a nominal set (𝐴, ·). V× 𝐴 is equipped with an equivalence relation ∼ defined by

(𝑥, 𝑎) ∼ (𝑥′, 𝑎′) whenever ∃𝑦 ∉ supp(𝑎) ∪ supp(𝑎′) ∪ {𝑥, 𝑥′}, (𝑥 𝑦) · 𝑎 = (𝑥′ 𝑦) · 𝑎′.

The intuition behind ∼ is that it equates elements of 𝐴 modulo renaming of free occurrences of a single
given variable. We denote by ⟨𝑥⟩𝑎 the class of (𝑥, 𝑎) in (V × 𝐴)/∼, and we define a 𝔖fs(V)-action
on such classes by 𝜎 · ⟨𝑥⟩𝑎 ≔ ⟨𝜎(𝑥)⟩(𝜎 · 𝑎). The functor [V]− is defined by [V]𝐴 ≔ (V × 𝐴)/∼ on
objects, and [V] 𝑓 : ⟨𝑥⟩𝑎 ↦→ ⟨𝑥⟩ 𝑓 (𝑎) on morphisms.

The reverse construction is concretion, i.e. the partial equivariant map [V]𝐴×V → 𝐴 defined by
(⟨𝑥⟩𝑎, 𝑦) ↦→ ⟨𝑥⟩𝑎@ 𝑦 ≔ (𝑥 𝑦) · 𝑎 for 𝑦 ∉ supp(⟨𝑥⟩𝑎). In particular, given such a 𝑦 we can abstract again
on 𝑦 and form ⟨𝑦⟩ (⟨𝑥⟩𝑎@ 𝑦) = ⟨𝑥⟩𝑎.

1.2 Categorical preliminaries

In all what follows and if not specified, the category C is either Set or Nom.
Given an endofunctor 𝐹 : C→ C, an 𝐹-algebra (𝐴,𝛼) is an object 𝐴 ∈ C together with an arrow

𝛼 : 𝐹𝐴→ 𝐴. An algebra morphism (𝐴,𝛼) → (𝐵, 𝛽) is an arrow 𝑓 : 𝐴→ 𝐵 such that 𝛽 ◦𝐹 𝑓 = 𝑓 ◦𝛼 in
C. This defines a category of 𝐹-algebras. When this category has an initial object, it is called the initial
algebra of 𝐹 and is denoted by (µ𝑋.𝐹𝑋, fold𝐹), or only µ𝑋.𝐹𝑋 when there is no ambiguity. Dualising
all these definitions, one obtains a notion of terminal coalgebra for an endofunctor 𝐹, denoted by ν𝑋.𝐹𝑋
when it exists.

Lambek’s lemma [20] states that the arrows supporting initial algebras and terminal coalgebras are
isomorphisms. This implies that an initial algebra is a coalgebra, and that a terminal coalgebra is an
algebra. As a consequence, there is a canonical morphism µ𝑋.𝐹𝑋↣ ν𝑋.𝐹𝑋 .

2So far, we do not precise the cardinality ofV. In all what follows,V can be countable or uncountable, if not specified.
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All the functors that we will consider will have a polynomial shape that makes them 𝜔-cocontinuous,
i.e. they commute to colimits of 𝜔-chains3. This entails the existence of their initial algebra. Given an
𝜔-cocontinuous bifunctor 𝐹 : C×C→ C, one can take the initial algebra in the first variable: this gives
rise to an 𝜔-cocontinuous functor µ𝑋.𝐹 (𝑋,−) : C→ C.

Lemma 1 (diagonal identity) Given an 𝜔-cocontinuous functor 𝐹 : C×C→ C,

µ𝑌 .µ𝑋.𝐹 (𝑋,𝑌 ) = µ𝑍.𝐹 (𝑍, 𝑍)

in the category of 𝐹Δ-algebras, where Δ : 𝑋 ↦→ (𝑋, 𝑋) is the diagonal functor.

This lemma is standard, and has been first proved in a categorical setting by Lehmann and Smyth [21].
An alternative proof is proposed in the appendices of the long version of this abstract.

1.3 mbs and raw terms

Binding signatures [27, 13] provide a general description of term (co)algebras with binding operators.
Let us quickly recall their main properties. A binding signature (bs) is a couple (Σ,ar) where Σ is a
set at most countable of constructors, and ar : Σ→ N∗ is a function indicating the binding arity of each
argument of each constructor. Given a bs (Σ,ar), its term functor FΣ : C→ C is defined by

FΣ𝑋 ≔V+
∐

cons∈Σ
ar(cons)=(𝑛1,...,𝑛𝑘 )

𝑘∏
𝑖=1
V𝑛𝑖 × 𝑋.

The sets of raw (i.e. not quotiented by α-equivalence) finite and infinitary terms on (Σ,ar) are then
defined by TΣ ≔ µ𝑋.FΣ𝑋 and T∞

Σ
≔ ν𝑋.FΣ𝑋 (in Set). Notice that these (co)algebras always exist, thanks

to the polynomial shape of FΣ. A typical example is the signature: Σ𝜆 ≔ {𝜆,@} with ar(𝜆) ≔ (1) and
ar(@) ≔ (0,0), such that T𝜆 is the algebra Λ of all finite λ-terms, and T∞

𝜆
is the coalgebra Λ111 of all

(full) infinitary λ-terms.
We want to tweak this definition in order to be able to design mixed inductive-coinductive data types

with binding4. An elementary example of such a mixing (with no binding) is the type of right-infinitary
binary trees: the set of all infinitary binary trees such that each infinite branch contains infinitely many
right edges. This type can be defined as ν𝑌 .µ𝑋.1+ 𝑋 ×𝑌 in Set. Our aim is to be able to express such a
construction when some constructors bind variables (and then investigate the quotient by α-equivalence).

Definition 2 (mixed binding signature) A mixed binding signature (mbs) is a couple (Σ,ar) where Σ is
a set at most countable of constructors, and ar : Σ→ (N×B)∗ is an arity function.

B denotes the set of booleans: each argument of each constructor is marked with a boolean describing
its (co)inductive behaviour. This intuition is driving the following definitions, that allow to define mixed
terms on a mbs.

3What we have in mind is the naive notion of polynomial, as considered for instance by Adámek, Milius, and Moss [1] or
Métayer [22]. In particular, the broader notion known as polynomial functors encompasses functors with infinite powers, which
prevents 𝜔-cocontinuity in general. See Kock [17, § 1.7.3] for a discussion.

4Existing generalisations of binding signatures go way beyond our modest extension, that could certainly be reformulated in
a broader setting — see e.g. Power [28] (whose work subsumes both Fiore, Plotkin, and Turi’s binding algebras and Gabbay and
Pitts’ nominal sets), as well as Adámek, Milius, and Velebil [2] or Arkor [4]. However, it is not completely clear to us whether
these abstract frameworks encompass coinductive syntax in the way we want to construct it, without any further work.
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𝑥 ∈ V
𝑥 ∈ T∞

Σ

𝑡 ∈ T∞
Σ

▶0 𝑡 ∈ T∞Σ

𝑡 ∈ T∞
Σ

▶1 𝑡 ∈ T∞Σ
𝑥1 ∈ V𝑛1 · · · 𝑥𝑘 ∈ V𝑛𝑘 ▶𝑏1 𝑡1 ∈ T∞Σ · · · ▶𝑏𝑘

𝑡𝑘 ∈ T∞Σ
cons (𝑥1.𝑡1, . . . , 𝑥𝑘 .𝑡𝑘) ∈ T∞Σ

for each cons ∈ Σ, having ar(cons) = ((𝑛1, 𝑏1), . . . , (𝑛𝑘 , 𝑏𝑘))
Figure 1: Formal system defining T∞

Σ
for a mbs (Σ,ar). The simple rules are inductive, the double one

is coinductive; for similar systems, see [12, 11].

𝑥 ∈ V
𝑥 ∈ Λ001

𝑀 ∈ Λ001

▶ 𝑀 ∈ Λ001
𝑥 ∈ V 𝑀 ∈ Λ001

𝜆(𝑥.𝑀) ∈ Λ001
𝑀 ∈ Λ001 ▶ 𝑁 ∈ Λ001

@(𝑀,𝑁) ∈ Λ001

Figure 2: A simplified mixed formal system defining Λ001.

Definition 3 (term functor of a mbs) The polynomial term functor associated to (Σ,ar) is the C-bifunctor
FΣ defined by:

FΣ (𝑋,𝑌 ) ≔V+
∐

cons∈Σ
ar(cons)=( (𝑛1,𝑏1 ) ,..., (𝑛𝑘 ,𝑏𝑘 ) )

𝑘∏
𝑖=1
V𝑛𝑖 × 𝜋𝑏𝑖 (𝑋,𝑌 )

where 𝜋0 and 𝜋1 are the projections.

Lemma 1 ensures that there is a unique notion of “fully initial” algebra on a bifunctor, hence the
definition of raw terms on a mbs.

Definition 4 (raw terms on a mbs) The sets TΣ of raw finite terms and T∞
Σ

of raw mixed terms on
(Σ,ar) are defined by:

TΣ ≔ µ𝑍.FΣ (𝑍, 𝑍) T∞Σ ≔ ν𝑌 .µ𝑋.FΣ (𝑋,𝑌 ).

Notation 5 We can describe T∞
Σ

by means of a (mixed) formal system of derivation rules, as proposed
in fig. 1. We use the symbols ▶0 and ▶1 to distinguish between the inductive and coinductive calls. ▶1
is usually called the later modality [24, 3]; a derivation of ▶1 𝑃 is a derivation of 𝑃 under an additional
coinductive guard. The modality ▶0 could be omitted, but we write it to keep the notations symmetric.

Example 6 (mixed infinitary λ-terms) For 𝑎, 𝑏, 𝑐 ∈ B, the mbs (Σ𝜆,ar𝑎𝑏𝑐) is defined by:

Σ𝜆 ≔ {𝜆,@} ar𝑎𝑏𝑐 (𝜆) ≔ ((1, 𝑎)) ar𝑎𝑏𝑐 (@) ≔ ((0, 𝑏), (0, 𝑐)).

For any 𝑎, 𝑏, 𝑐, T𝜆𝑎𝑏𝑐 is the algebra Λ of finite λ-terms and T∞
𝜆𝑎𝑏𝑐

is the coalgebra of 𝑎𝑏𝑐-infinitary
λ-terms. For instance, the 001-infinitary λ-terms are described by fig. 2.

1.4 Metric completion

Take C to be Set. Following a standard path, we define the Arnold-Nivat metric [5] on both TΣ and T∞
Σ

.
To do so, we use the following notion of truncation, adapted to a mixed inductive-coinductive setting.
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Definition 7 (truncation) Given an integer 𝑛 ∈ N and a term 𝑡 in either TΣ or T∞
Σ

, the mixed truncation
at depth 𝑛 of 𝑡 is the object5 ⌊𝑡⌋𝑛 ∈ (µ𝑋.FΣ (𝑋,−))𝑛1 defined by induction by:

⌊𝑡⌋0 ≔ ∗
⌊𝑥⌋𝑛+1 ≔ 𝑥

⌊cons (𝑥1.𝑡1, . . . , 𝑥𝑘 .𝑡𝑘)⌋𝑛+1 ≔ cons
(
𝑥1. ⌊𝑡1⌋𝑛+1−𝑏1 , . . . , 𝑥𝑘 . ⌊𝑡𝑘⌋𝑛+1−𝑏𝑘

)
where 𝑏𝑖 = 𝜋1ar(cons)𝑖 .

Notice that the definition is by double induction, on 𝑛 and on 𝑡 (even if the latter is taken in T∞
Σ

): in
the inductive arguments of cons we proceed by induction on 𝑡, in its coinductive arguments we proceed
by induction on 𝑛.

Definition 8 (Arnold-Nivat metric) The Arnold-Nivat metric on TΣ and T∞
Σ

is the mapping d : T∞
Σ
×

T∞
Σ
→ R+ defined by d(𝑡, 𝑢) ≔ inf {2−𝑛 | 𝑛 ∈ N, ⌊𝑡⌋𝑛 = ⌊𝑢⌋𝑛 }.

The unique notation is unambiguous, since the canonical inclusion TΣ↣ T∞Σ preserves the trunca-
tions. The following fact is a translation of [7, Th. 3.2], using lemma 1. It expresses the equivalence of
our coinductive definition of T∞

Σ
and the historical topological point of view [16].

Lemma 9 T∞
Σ

is the Cauchy completion of TΣ with respect to d. Furthermore, the completion is carried
by the canonical arrow TΣ↣ T∞Σ .

Example 10 The eight Arnold-Nivat metrics d𝑎𝑏𝑐 corresponding to the signatures from example 6 are
exactly those considered in the original definition of infinitary λ-calculi [16]. Hence our coinductive
definition of Λ𝑎𝑏𝑐 coincides with the historical, topological definition.

1.5 α-equivalence

α-equivalence is the equivalence relation generated on some term (co)algebra by renaming all bound
variables. Let us recall how this can be reformulated in a nominal setting (for finite terms): given a bs or
a mbs (Σ,ar), the finite term algebra TΣ can be endowed with a 𝔖fs(V)-action · inductively defined by:

𝜎 · 𝑥 ≔ 𝜎(𝑥)
𝜎 · cons (𝑥1.𝑡1, . . . ) ≔ cons (𝜎(𝑥1).𝜎 · 𝑡1, . . . ) ,

(1)

where permutations act pointwise on the sequences 𝑥𝑖 . This defines a nominal set (TΣ, ·). The α-
equivalence relation is then defined by:

𝑥 =𝛼 𝑥

((𝑥𝑖 𝑧𝑖) · 𝑡𝑖 =𝛼 (𝑦𝑖 𝑧𝑖) ·𝑢𝑖 for fresh 𝑧𝑖)𝑘𝑖=1

cons (𝑥1.𝑡1, . . . ) =𝛼 cons (𝑦1.𝑢1, . . . )

where the permutation (𝑥𝑖 𝑧𝑖) is the composition of the transpositions (𝑥𝑖 𝑧𝑖). This equivalence relation
is compatible with ·, thus there is an induced nominal structure (TΣ/=𝛼, ·).

An important theorem by Gabbay and Pitts [14, 26, Th. 8.15] can be straightforwardly transported to
our mixed setting.

5We try not to be too formal here. In the following we manipulate truncations as if they were finite terms on Σ∪ {∗}, where
∗ is a new constant.
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Definition 11 (quotient term functor of a mbs) The polynomial quotient term functor associated to
(Σ,ar) is the Nom-bifunctor QΣ defined by:

QΣ (𝑋,𝑌 ) ≔V+
∐

cons∈Σ
ar(cons)=( (𝑛1,𝑏1 ) ,..., (𝑛𝑘 ,𝑏𝑘 ) )

𝑘∏
𝑖=1
[V]𝑛𝑖𝜋𝑏𝑖 (𝑋,𝑌 ).

Theorem 12 (nominal algebraic types on a mbs) Given a mbs (Σ,ar), then TΣ = µ𝑍.FΣ (𝑍, 𝑍) and
TΣ/=𝛼 = µ𝑍.QΣ (𝑍, 𝑍) in Nom.

The first identity might seem tautologic because of the overloaded the notation FΣ; if we distinguish
between F Set

Σ
and F Nom

Σ
it becomes (µ𝑍.F Set

Σ
(𝑍, 𝑍), ·) = µ𝑍.F Nom

Σ
(𝑍, 𝑍), where the former nominal

structure was built in eq. (1).

1.6 Towards commutation (or not)

For now, we have built the following diagram (in Set):

𝑈 (µ𝑍.FΣ (𝑍, 𝑍))
µ𝑍.FΣ (𝑍, 𝑍)
TΣ

ν𝑌 .µ𝑋.FΣ (𝑋,𝑌 )
T∞
Σ

TΣ/=𝛼
𝑈 (µ𝑍.QΣ (𝑍, 𝑍))

↢ →compl.

←↠

(2)

The sets are annotated with their descriptions as (co)algebras in Set and in Nom (𝑈 is the forgetful functor
Nom→ Set). The horizontal arrow is the metric completion given by lemma 9, the vertical surjection
is the quotient by α-equivalence given by theorem 12. Our goal is to close the square with an object
containing α-equivalence classes of mixed terms; we hope to obtain a nominal presentation of this object.
To do so, we keep adapting the definitions of [19] to our mixed setting:

• T∞
Σ

can be equipped with a 𝔖fs(V)-action in the same way as we did in eq. (1) for the finitary
setting, by just making the definition coinductive; however, this does not define a nominal set any
more since some infinitary terms are not finitely supported (the support of a term being the set of
the variables occurring in it).

• As a consequence, we cannot directly use a nominal set structure to extend the definition of α-
equivalence to T∞

Σ
. Instead, we lift the α-equivalence of TΣ by using the truncations: two mixed

terms 𝑡, 𝑢 ∈ T∞
Σ

are then said to be α-equivalent if ∀𝑛 ∈ N, ⌊𝑡⌋𝑛 =𝛼 ⌊𝑢⌋𝑛.
• We also define a metric on TΣ/=𝛼 as in definition 8: d𝛼 (𝑡, 𝑢) ≔ inf {2−𝑛 | 𝑛 ∈ N, ⌊𝑡⌋𝑛 =𝛼 ⌊𝑢⌋𝑛 }.

Then (TΣ/=𝛼)∞ is the metric completion of TΣ/=𝛼 with respect to d𝛼.
These constructions extend diagram 2 as follows:

𝑈 (µ𝑍.FΣ (𝑍, 𝑍))
µ𝑍.FΣ (𝑍, 𝑍)
TΣ

ν𝑌 .µ𝑋.FΣ (𝑋,𝑌 )
T∞
Σ

T∞
Σ
/=𝛼

TΣ/=𝛼
𝑈 (µ𝑍.QΣ (𝑍, 𝑍))

(TΣ/=𝛼)∞

↢ →compl.

←

↠
←↠

←
↪→

?

↢ →compl.

(3)
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The existence of an inclusion
?
↩→ is straightforward, but we would like an isomorphism instead. Unfortu-

nately, it is not the case in general, unless the signature is trivial in the following meaning.

Definition 13 (non-trivial mbs) A mbs (Σ,ar) is non-trivial if there are constructors lam, node, dig ∈ Σ
such that:

1. lam has a binding argument, i.e. 𝜋0(ar(lam)𝑖) ≥ 1 for some index 𝑖;

2. node has at least two arguments, i.e. ar(node) is of length greater than 2;

3. dig has a coinductive argument, i.e. 𝜋1(ar(dig)𝑖) = 1 for some index 𝑖.

If the signature is trivial, it does not make sense to consider all the machinery defined here: if there
is no binder then =𝛼 amounts to equality, if there are only unary and constant constructors then there is
at most one variable in each term, and if there is no coinductive constructor then the metric is discrete.
In all three cases, (T∞

Σ
/=𝛼) � (TΣ/=𝛼)∞ for degenerate reasons. Otherwise, the cardinality of V is

determining, as theorem 14 shows.

Theorem 14 Let (Σ,ar) be a non-trivial mbs. Then (T∞
Σ
/=𝛼) � (TΣ/=𝛼)∞ iffV is uncountable.

Our goal is not really fulfilled: we have a commutative square only ifV is uncountable, which is not
satisfactory in practice since implementation concerns suggest to consider contably many variables. In
addition, none of the sets involved can be endowed with a reasonable nominal structure.

2 The nominal coalgebra of α-equivalence classes of mixed terms

In this second part, we show that Kurz, Petrişan, Severi, and de Vries’ theorem has a mixed counterpart.
Then we use this result to define substitution on mixed terms by nested recursion and corecursion.

2.1 Nominal mixed types

The following structure is, once again, extended to the setting of mixed terms:

• Given a set 𝑆 equipped with a 𝔖fs(V)-action, 𝑆fs is the subset of finitely supported elements of 𝑆.
It carries a nominal set structure. In particular (T∞

Σ
)fs is the nominal set of the finitely supported

raw terms in T∞
Σ

, and (TΣ/=𝛼)∞fs is the nominal set of finitely supported α-equivalence classes in
(TΣ/=𝛼)∞.

• (T∞
Σ
)ffv denotes the set of infinitary terms having finitely many free variables.

Recall also that given a nominal metric space (i.e. a nominal space equipped with an equivariant
metric), its nominal metric completion is built by adding the limits of all finitely supported Cauchy
sequences (i.e. sequences of terms such that their supports are all contained in a common finite set).

Let us state the main theorem of our fanfiction without delay, as well as its crucial corollary.

Theorem 15 (nominal mixed terms on a mbs) Let mbs (Σ,ar) be a mbs. Then:

1. The nominal set (T∞
Σ
)fs is the nominal metric completion of TΣ, as well as the terminal coalgebra

ν𝑌 .µ𝑋.FΣ (𝑋,𝑌 ).
2. Similarly, the nominal set (TΣ/=𝛼)∞fs is the nominal metric completion of TΣ/=𝛼, as well as the

terminal coalgebra ν𝑌 .µ𝑋.QΣ (𝑋,𝑌 ).
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3. The following diagram commutes in Set:

𝑈 (µ𝑍.FΣ (𝑍, 𝑍))
µ𝑍.FΣ (𝑍, 𝑍)
TΣ

𝑈 (ν𝑌 .µ𝑋.FΣ (𝑋,𝑌 ))
(T∞

Σ
)fs (T∞

Σ
)ffv

ν𝑌 .µ𝑋.FΣ (𝑋,𝑌 )
T∞
Σ

TΣ/=𝛼
𝑈 (µ𝑍.QΣ (𝑍, 𝑍))

(TΣ/=𝛼)∞fs
𝑈 (ν𝑌 .µ𝑋.QΣ (𝑋,𝑌 ))

(T∞
Σ
)ffv/=𝛼 (TΣ/=𝛼)∞

←→nom.
compl.

←↠

↢ →

compl.

←↪ →

←→

←↪ →

←↠ ←→

←→nom.
compl.

↢ →

compl.

⇐⇐ ←↪ →

⌟

Corollary 16 The nominal set (T∞
Σ
)ffv/=𝛼 is the terminal coalgebra ν𝑌 .µ𝑋.QΣ (𝑋,𝑌 ).

These results are direct counterparts to Remark 5.30, Theorem 5.34 and Corollary 5.35 from [19],
and the diagram we provide is exactly the same as their diagram 5.20. The only difference here is that we
take the terminal coalgebra of µ𝑋.FΣ (𝑋,−) and µ𝑋.QΣ (𝑋,−), instead of FΣ and QΣ themselves. What
we need to show is that all the technical developments of [19] remain applicable6.
Lemma 17 Let 𝐹 : Nom×Nom→Nom be polynomial in the following sense: there are a countable set
𝐼 and families { 𝑘𝑖 ∈ N | 𝑖 ∈ 𝐼 },

{
𝑚𝑖 𝑗 ∈ N

�� 𝑖∈𝐼
1≤ 𝑗≤𝑘𝑖

}
and

{
𝑏𝑖 𝑗 ∈ B

�� 𝑖∈𝐼
1≤ 𝑗≤𝑘𝑖

}
such that

𝐹 = 𝐾 +
∐
𝑖∈𝐼

𝑘𝑖∏
𝑗=1
𝑀𝑚𝑖 𝑗𝜋𝑏𝑖 𝑗

where 𝜋0 and 𝜋1 denote the projections, 𝑀 : Nom→ Nom is a fixed functor commuting to directed
colimits, and 𝐾 is a fixed constant functor. Then µ𝑋.𝐹 (𝑋,−) exists and can be obtained from the
following grammar (up to isomorphism):

𝐺 ≔ id | 𝐾 | 𝑀𝐺 |∐𝐺 | 𝐺 ×𝐺 (Γ1)

where
∐

denotes at most countable coproducts.
Using the lemma, the proof of theorem 15 and corollary 16 is straightforward: taking 𝐾 to be the

constant functorV, and 𝑀 to be eitherV×− or [V], we just showed that µ𝑋.FΣ (𝑋,−) and µ𝑋.QΣ (𝑋,−)
fulfill the requirements of [19, Prop. 5.6].
Example 18 The nominal set Λ001

ffv /=𝛼 of α-equivalence classes of 001-infinitary λ-terms having finitely
many free variables is the terminal coalgebra ν𝑌 .µ𝑋.V+ [V]𝑋 + 𝑋 ×𝑌 .

2.2 Capture-avoiding substitution for mixed types

We fix a mbs (Σ,ar), and we write T∞𝛼 for ν𝑌 .µ𝑋.QΣ (𝑋,𝑌 ). We want to define capture-avoiding
substitution as a map subst : T∞𝛼 ×V×T∞𝛼 →T∞𝛼 in Nom.

As in [19, Def. 6.2], we whall use the corecursion principle of [23, Lem. 2.1]. However, this is not
enough any more: we also have to scan the inductive structure separating two coinductive constructors
and, since this structure may contain variables (in fact all the variables appear in these “inductive layers”),
perform substitution recursively on it too.

6During the writing of this paper, we came up with an explicit construction of our mixed terms as purely coinductive terms
on a modified binding signature. From this, one gets an alternative proof of the theorem. Even if it is not useful for our purposes,
we provide this constuction in the appendices of the long version of this abstract, just in case.
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Notation 19 When we consider a coproduct 𝐴+ 𝐵, we write inl and inr for the left and right injections.
Similary, we write invar and incons the injections in initial algebras of the form µ𝑋.QΣ (𝑋,𝑌 ). We omit
the composition by fold for the sake of readability.

Notation 20 It is easy to show that Nom-endofunctors obtained from (grammar Γ1) are strong, hence
we denote:

• by 𝜏𝐴,𝐵 : [V]𝐴×𝐵→ [V](𝐴×𝐵) the strength defined by (⟨𝑥⟩𝑎, 𝑏) ↦→ ⟨𝑧⟩(⟨𝑥⟩𝑎@ 𝑧, 𝑏),

• by 𝜏 the strength 𝜏T∞𝛼 ,V×T∞𝛼 and by 𝜏𝑛 : [V]𝑛T∞𝛼 ×V×T∞𝛼 → [V]𝑛 (T∞𝛼 ×V×T∞𝛼 ) its iteration,

• by 𝜏 the strength generated for µ𝑋.QΣ (𝑋,T∞𝛼 +−).

Using these notations, we are finally able to define capture-avoiding substitution.

Definition 21 (capture-avoiding substitution) Capture-avoiding substitution is the map subst defined
by:

T∞𝛼 ×V×T∞𝛼 T∞𝛼

µ𝑋.QΣ (𝑋,T∞𝛼 ) ×V ×T∞𝛼

µ𝑋.QΣ (𝑋,T∞𝛼 +T∞𝛼 ×V×T∞𝛼 ) µ𝑋.QΣ (𝑋,T∞𝛼 )

← →subst

←→unfold×V×T∞𝛼 ←

→

unfold

←→ℎ′
← →µ𝑋.QΣ (𝑋,id+subst)

where ℎ′ is recursively defined by:

(invar(𝑥), 𝑥,𝑢) ↦→ µ𝑋.QΣ (𝑋, inl) (unfold(𝑢))
(invar(𝑦), 𝑥,𝑢) ↦→ invar(𝑦) for 𝑦 ≠ 𝑥

©­­­­­­­­«
incons

©­­­­­­­­«

...

⟨𝑦𝑖,1⟩ . . . ⟨𝑦𝑖,𝑛𝑖 ⟩𝑡𝑖 ,
...

⟨𝑦 𝑗 ,1⟩ . . . ⟨𝑦 𝑗 ,𝑛 𝑗
⟩𝑡 𝑗

...

ª®®®®®®®®¬
, 𝑥,𝑢

ª®®®®®®®®¬
↦→ µ𝑋.QΣ (𝑋, inr)

©­­­­­­­­«

...

⟨𝑦𝑖,1⟩ . . . ⟨𝑦𝑖,𝑛𝑖 ⟩ℎ′(𝑡𝑖 , 𝑥,𝑢),
...

𝜏𝑛 𝑗
(⟨𝑦 𝑗 ,1⟩ . . . ⟨𝑦 𝑗 ,𝑛 𝑗

⟩𝑡 𝑗 , 𝑥,𝑢)
...

ª®®®®®®®®¬
where 𝑖 (resp. 𝑗) represents any index such that 𝑏𝑖 = 0 (resp. 𝑏 𝑗 = 1), i.e. any inductive (resp. coinductive)
position of cons), and where the representatives are taken so that ∀𝑘 ∈ [0, 𝑛𝑖], 𝑦𝑖,𝑘 # 𝑥 and 𝑦𝑖,𝑘 # 𝑢.

In fact the validity of the recursive definition of ℎ′ is not immediate; in particular, it is not straightforwardly
implied by Pitts’ recursion theorem for nominal algebras [25, Thm. 5.1] (see also [26, § 8.5] for lighter
presentation). This is due to the fact that ℎ′ is not purely inductive, it also inserts 𝜏𝑛 𝑗

’s in coinductive
positions (which amounts to modifying the constructors of the local induction step). This is why a
rigorous definition of ℎ′ relies on the following decomposition into a purely inductive ℎ, followed by
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some work on the coinductive structure of the terms:

ℎ′ ≔

µ𝑋.QΣ (𝑋,T∞𝛼 ) ×V ×T∞𝛼

µ𝑋.QΣ (𝑋,T∞𝛼 +T∞𝛼 ) ×V ×T∞𝛼

µ𝑋.QΣ (𝑋,T∞𝛼 +T∞𝛼 ) ×V ×T∞𝛼

µ𝑋.QΣ (𝑋,T∞𝛼 +T∞𝛼 ×V×T∞𝛼 )

←→µ𝑋.QΣ (𝑋,inr)×V×T∞𝛼

←→ℎ×V×T∞𝛼

←→𝜏̄

where ℎ : (𝑡, 𝑥,𝑢) ↦→ ℎ𝑥,𝑢 (𝑡) is uniquely defined by recursion by

invar(𝑥) ↦→ µ𝑋.QΣ (𝑋, inl) (unfold(𝑢))
invar(𝑦) ↦→ invar(𝑦) for 𝑦 ≠ 𝑥

incons

©­­­­­­­­«

...

⟨𝑦𝑖,1⟩ . . . ⟨𝑦𝑖,𝑛𝑖 ⟩𝑡𝑖 ,
...

⟨𝑦 𝑗 ,1⟩ . . . ⟨𝑦 𝑗 ,𝑛 𝑗
⟩𝑇𝑗

...

ª®®®®®®®®¬
↦→ incons

©­­­­­­­­«

...

⟨𝑦𝑖,1⟩ . . . ⟨𝑦𝑖,𝑛𝑖 ⟩ℎ𝑥,𝑢 (𝑡𝑖),
...

⟨𝑦 𝑗 ,1⟩ . . . ⟨𝑦 𝑗 ,𝑛 𝑗
⟩𝑇𝑗

...

ª®®®®®®®®¬
under the hypotheses and notations of definition 21, that ensure that the “freshness condition for binders”
of Pitt’s recursion theorem is satisfied, hence the well-definedness of ℎ.

Example 22 Let us describe what ℎ′ looks like when T∞𝛼 is Λ001
ffv /=𝛼:

(𝑥, 𝑥, 𝑁) ↦→ µ𝑋.Q𝜆001(𝑋, inl) (unfold(𝑁))
(𝑦, 𝑥, 𝑁) ↦→ 𝑦 for 𝑦 ≠ 𝑥

(𝜆(𝑦.𝑀), 𝑥, 𝑁) ↦→ µ𝑋.Q𝜆001(𝑋, inr) (𝜆(𝑦.ℎ(𝑀,𝑥, 𝑁))) for 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑁)
(@(𝑀0, 𝑀1), 𝑥, 𝑁) ↦→ µ𝑋.Q𝜆001(𝑋, inr) (@ (ℎ(𝑀0, 𝑥, 𝑁), (𝑀1, 𝑥, 𝑁))) ,

where we ommitted the injections. Finally we obtain the expected recursive-corecursive definition of
capture-avoiding substitution:

subst(𝑥, 𝑥, 𝑁) ≔ 𝑁

subst(𝑦, 𝑥, 𝑁) ≔ 𝑦 for 𝑦 ≠ 𝑥
subst(𝜆(𝑦.𝑀), 𝑥, 𝑁) ≔ 𝜆(𝑦.subst(𝑀,𝑥, 𝑁)) for 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑁)

subst(@(𝑀0, 𝑀1), 𝑥, 𝑁) ≔ @(subst(𝑀0, 𝑥, 𝑁),subst(𝑀1, 𝑥, 𝑁)).
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