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α-equivalence, the relation on λ-terms obtained by renaming bound variables, is central

in λ-calculus: it is crucially needed to define capture-avoiding substitution in a satisfac-

tory (i.e. total) manner, and thus β-reduction. Even though it has several well-known

treatments — via the classical “variable convention” [Bar84], or using “de Bruijn indices”

[dBru72] more suited to computer-assisted formalisations — the operation of quotienting

by α-equivalence was given a new canonicity by the introduction of nominal sets [GP02;

Pit13], which provide a categorical framework for renaming bound variables in terms.

In the infinitary λ-calculi [Ken+97; Ber96], the precise definition of α-equivalence is not

as standard and straightforward, in particular because some issues arise from the pos-

sibility to encounter terms containing free occurrences of all the available variables.

Applying nominal techniques to the study of infinitary terms led Kurz, Petrişan, Severi,

and de Vries to establish a canonical, abstract framework for defining α-equivalence in

a coalgebraic setting [Kur+12; Kur+13].
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They conclude their work by suggesting that this framework could be applied not only

to the “full” infinitary λ-calculus Λ111, but also to its “mixed” inductive-coinductive vari-

ants, e.g. Λ001 [Ken+97; Dal16; CV23]. Doing so is the point of this small fanfiction1. Our

contribution is twofold:

1. We provide an adapted framework for general “mixed” terms with binding by in-

troducingmixed binding signatures (MBS). The main difference in their categorical

treatment is that we replace 1-variable polynomial functors with 2-variable ones

(i.e. bifunctors).

2. We show that the proof of [Kur+13] can be easily adapted to this slightly more

general setting.

To do so, we start by recalling a few categorical notions, and we provide personal (if

not original) presentations of some basic results about bifunctors (section 1). Then we

present MBS as well as the term (co)algebras one can define on them; the two main kind

of operations we consider are metric completions (yielding infinitary terms) and quo-

tienting by α-equivalence, and unfortunately their commutation fails (section 2). This

is solved as in [Kur+13], by considering only infinitary terms with finitely many free

variables. α-equivalence classes of such terms enjoy a nominal (co)algebraic structure,

enabling us to formally define substitution by induction and coinduction (section 3).

1 Categorical preliminaries

We start with a few preliminaries, mostly about (co)algebras.

In all what follows and if not specified, the category 𝐂 is either the category 𝐒𝐞𝐭 of sets
and functions, or the category 𝐍𝐨𝐦 of nominal sets and equivariant maps (for a fixed

set 𝒱 of variables2). We choose not to recall any basic definitions and properties about

nominal sets since almost all the nominal machinery remains hidden in this paper; we

refer to the excellent summary in [Kur+13, Sec. 4], from which we take all our notations,

and to the standard literature on the subject [Pit13].
1By using that word, we want to make clear that we claim barely no originality in the leading ideas

of this work; we follow the very same path as [Kur+13], and only perform the necessary adaptions to lift

their results to an inductive-coinductive setting.
2So far, we do not precise the cardinality of𝒱 . In all what follows,𝒱 can be countable or uncountable,

if not specified.
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1.1 Reminders on algebras and coalgebras

Before starting, recall a few definitions and facts about (co)algebras.

■ Given an endofunctor 𝐹 ∶ 𝐂 → 𝐂, an 𝐹 -algebra (𝐴, 𝛼) is an object 𝐴 ∈ 𝐂 together

with an arrow 𝛼 ∶ 𝐹𝐴 → 𝐴. An algebra morphism (𝐴, 𝛼) → (𝐵, 𝛽) is an arrow

𝑓 ∶ 𝐴 → 𝐵 such that 𝛽 ∘ 𝐹𝑓 = 𝑓 ∘ 𝛼 in 𝐂. This defines a category of 𝐹 -algebras.
■ When this category has an initial object, it is called the initial algebra of 𝐹 and is

denoted by (𝜇𝑋 .𝐹𝑋 , fold𝐹 ), or only 𝜇𝑋 .𝐹𝑋 when there is no ambiguity3.

■ Dualising all these definitions, one obtains a notion of terminal coalgebra for an

endofunctor 𝐹 , denoted by 𝜈𝑋 .𝐹𝑋 when it exists.

■ A classical result called Lambek’s lemma [Lam68] states that the arrows supporting

initial algebras and terminal coalgebras are isomorphisms. This implies that an

initial algebra is a coalgebra, and that a terminal coalgebra is an algebra. As a

consequence, there is a canonical morphism 𝜇𝑋 .𝐹𝑋 ↣ 𝜈𝑋 .𝐹𝑋 .

Let us also recall a famous result, first proved in [Poh73; Adá74], formalising the idea

that initial algebras extend the notion of fix-point of a function on a lattice (thus the

𝜇 notation). We only state it for 𝜔-chains, but it holds for abitrary limit ordinals [for a

proof, see AMM18, Cor. 3.7]. Recall that 𝐹 is said to be cocontinuous if it preserves colimits

of 𝜔-chains.

Lemma 1 (Adámek’s fix-point theorem). If 𝐂 has colimits of 𝜔-chains and 𝐹 ∶ 𝐂 → 𝐂 is

cocontinous, then the colimit of the following diagram:

0 𝐹0 𝐹 20 ⋯←→! ←→𝐹 ! ←→𝐹 2!

carries a structure of initial 𝐹 -algebra. Informally, we write 𝜇𝑋 .𝐹𝑋 = colim𝑛∈ℕ 𝐹 𝑛0.

In 𝐒𝐞𝐭 and in 𝐍𝐨𝐦 all small limits and colimits exist, so the theorem (resp. its dual

statement) applies to any cocontinuous (resp. continuous) functor 𝐹 .

1.2 Tree powers of bifunctors

When we apply Lemma 1 to a bifunctor, iterated applications of the functor appear; we

need a notation for such expressions. To do so, we use a binary tree representation, as

3As an initial object, the initial algebra of a functor is only defined up to isomorphism. We will keep

this implicit throughout this paper, even though we will use some ≅ symbols to emphasize it from time

to time.
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𝐹

•
𝑋 •

𝑌•
𝑋 𝑍 = 𝐹 (𝑋 , 𝐹 (𝐹 (𝑋 , 𝑍) , 𝑌 ))

(a)

𝐺3(𝑋) = 𝐺

•
•
•
𝑋 = 𝐺 (𝐺 (𝐺 (𝑋)))

(b)

Figure 1. — Tree powers of (a) a binary functor 𝐹 , (b) an unary functor 𝐺.

𝐹

•
• •

••
• • (𝑋 , 𝑌 ) = 𝐹

•
𝑋 •

𝑌•
𝑋 𝑌 = 𝐹 (𝑋 , 𝐹 (𝐹 (𝑋 , 𝑌 ) , 𝑌 ))

Figure 2. —Notation 𝐹 𝑡(𝑋 , 𝑌 ) for tree powers with fixed left and right arguments

𝑋 and 𝑌 , as in fig. 1b in the unary case.

in fig. 1a (this may be standard, though we found no reference). By analogy, the usual

powers of a 1-variable functor are integers but can be seen as unary trees, see fig. 1b.

Binary trees with leaves in 𝐂 are inductively defined by:

𝑡 , 𝑢, … ∋ BTree(𝐂) ≔ leaf(𝑋) | node(𝑡, 𝑢) (𝑋 ∈ 𝐂)

and the tree powers are defined accordingly.

Notation 2 (tree powers, general version). Let 𝐹 ∶ 𝐂 × 𝐂 → 𝐂 be a bifunctor of a category

𝐂. For 𝑡 ∈ BTree(𝐂), the power 𝐹 𝑡 is defined by:

𝐹 leaf(𝑋) ≔ 𝑋 𝐹node(𝑡,𝑢) ≔ 𝐹 (𝐹 𝑡 , 𝐹 𝑢)

In practice, we will only be interested in powers where the left (resp. right) arguments,

or leaves, are all equal. This enables us to write the powers in a more usual fashion, as

in fig. 2. Formally, these powers are what we call sided binary trees.

Definition 3 (sided binary trees). Given subcategories 𝐃, 𝐄 of 𝐂, the set of sided binary

trees with left (resp. right) leaves in 𝐃 (resp. 𝐄) is defined by:

𝑡 , 𝑢, … ∋ SBTree(𝐃, 𝐄) ≔ leaf(𝑋) | SBTree′(𝐃, 𝐄) (𝑋 ∈ 𝐃)
𝑡′, 𝑢′, … ∋ SBTree′(𝐃, 𝐄) ≔ node(𝑡, leaf(𝑌 )) | node(𝑡, 𝑡′) (𝑌 ∈ 𝐄)

For 𝐂 being the boolean category 𝔹 = {0, 1}, we write SBTree ≔ SBTree({0}, {1}).
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Notation 4 (tree powers, sided version). For 𝑡 ∈ SBTree and 𝑋, 𝑌 ∈ 𝐂, we write:

𝐹 leaf(0)(𝑋 , 𝑌 ) ≔ 𝐹 leaf(𝑋) = 𝑋
𝐹 leaf(1)(𝑋 , 𝑌 ) ≔ 𝐹 leaf(𝑌 ) = 𝑌

𝐹node(𝑡,𝑢)(𝑋 , 𝑌 ) ≔ 𝐹 (𝐹 𝑡(𝑋 , 𝑌 ), 𝐹 𝑢(𝑋 , 𝑌 ))

as well as the shorthand 𝐹 𝑡𝑋 ≔ 𝐹 𝑡(𝑋 , 𝑋).

We consider the canonical inclusion order ⊑ on binary trees. For trees in BTree(𝐂), it is
inductively generated by leaf(𝑋) ⊑ node(leaf(𝑌 ), leaf(𝑍)), for all 𝑋, 𝑌 , 𝑍 ∈ 𝐂. For trees
in SBTree, this boils down to the two inclusions

leaf(0) ⊑ node(leaf(0), leaf(1)) ⊑ node(leaf(0), node(leaf(0), leaf(1))).

Notation 5 (directed colimits of tree powers). Take a directed set 𝐼 ⊆ SBTree and consider

a 𝐂-endofunctor 𝐹 . Then given images of the generators of ⊑, i.e. two generator arrows

𝑋 → 𝐹(𝑋 , 𝑌 ) → 𝐹(𝑋 , 𝐹(𝑋 , 𝑌 )) (5.1)

in 𝐂, tree powers define an 𝐼 -indexed directed diagram in 𝐂. Explicitely:

𝐼 → 𝐂
𝑡

𝑢

⊑ ↦
𝐹 𝑡(𝑋 , 𝑌 )

𝐹 𝑢(𝑋 , 𝑌 )

←→

When it exists (and assuming that the chosen gnerator arrows are clear from the context),

the corresponding colimit will be denoted by colim𝑡∈𝐼 𝐹 𝑡(𝑋 , 𝑌 ).

Remark 6. In 𝐒𝐞𝐭 (and in𝐍𝐨𝐦), if 𝐹 preserves inclusions and the generators are inclusions
𝑋 ↪ 𝐹(𝑋 , 𝑌 ) ↪ 𝐹(𝑋 , 𝐹(𝑋 , 𝑌 )), then all the arrows in the diagram are inclusions. In

particular, this is the case of all the functors we handle in this paper.

1.3 (Co)algebras of bifunctors

In this part, we consider a bifunctor 𝐹 ∶ 𝐂 × 𝐂 → 𝐂 cocontinuous in each variable. For

all 𝑌 ∈ 𝐂, Lemma 1 enables us to compute 𝜇𝑋 .𝐹(𝑋 , 𝑌 ) as the colimit of the following

diagram:

0 𝐹(0, 𝑌 ) 𝐹(𝐹(0, 𝑌 ), 𝑌 ) ⋯←→! ←→𝐹(!,𝑌 ) ← →𝐹(𝐹(!,𝑌 ),𝑌 )
(1)

Let us rewrite this using Notation 5.
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Definition 7. The set SBTree𝜔,1 ⊂ SBTree of all sided binary treeswith right depth bounded

by 𝑛 is defined by4:

𝑡 , 𝑢, … ∋ SBTree𝜔,1 ≔ leaf(0) | node(𝑡, leaf(1))

Consider the diagram SBTree𝜔,1 → 𝐂 generated by the unique arrow ! ∶ 0 → 𝐹(0, 𝑌 ).
The choice of another generator 𝐹(0, 𝑌 ) → 𝐹(0, 𝐹 (0, 𝑌 )) as in eq. (5.1) is not needed, since
𝐹(0, 𝐹 (0, 𝑌 )) ∉ SBTree𝜔,1. We obtain that

𝜇𝑋 .𝐹(𝑋 , 𝑌 ) = colim𝑡∈SBTree𝜔,1
𝐹 𝑡(0, 𝑌 ).

Then, given 𝑓 ∶ 𝑌 → 𝑌 ′, an arrow 𝜇𝑋 .𝐹(𝑋 , 𝑓 ) is defined by:

0 𝐹(0, 𝑌 ) 𝐹(𝐹(0, 𝑌 ), 𝑌 ) ⋯ 𝜇𝑋 .𝐹(𝑋 , 𝑌 )

0 𝐹(0, 𝑌 ′) 𝐹 (𝐹(0, 𝑌 ′), 𝑌 ′) ⋯ 𝜇𝑋 .𝐹(𝑋 , 𝑌 ′)

←→

⇐⇐

← →

←→ 𝐹(0,𝑓 )

←→
←→ 𝐹(𝐹(0,𝑓 ),𝑓 ) ←→ 𝜇𝑋 .𝐹(𝑋 ,𝑓 )

←→ ←→ ←→
One can easily check that this defines a functor 𝜇𝑋 .𝐹(𝑋 , −) ∶ 𝐂 → 𝐂.

Remark 8. In general, one does not need Lemma 1 and its cocontinuity assumption to

define 𝜇𝑋 .𝐹(𝑋 , 𝑓 ). The initiality of 𝜇𝑋 .𝐹(𝑋 , 𝑌 ) is sufficient:

𝐹(𝜇𝑋 .𝐹(𝑋 , 𝑌 ), 𝑌 ) 𝐹(𝜇𝑋 .𝐹(𝑋 , 𝑌 ′), 𝑌 )

𝐹(𝜇𝑋 .𝐹(𝑋 , 𝑌 ′), 𝑌 ′)

𝜇𝑋 .𝐹(𝑋 , 𝑌 ) 𝜇𝑋 .𝐹(𝑋 , 𝑌 ′)

←→

←

→

←→ 𝐹(𝜇𝑋 .𝐹(𝑋 ,𝑌 ′),𝑓 )

←→← →𝜇𝑋 .𝐹(𝑋 ,𝑓 )

This diagram does indeed define the same functor 𝜇𝑋 .𝐹(𝑋 , −).

Notation 9. When 𝐹 ∶ 𝐂 × 𝐂 → 𝐂 is a cocontinuous functor, we sometimes denote

𝜇𝑋 .𝐹(𝑋 , −) by 𝜇𝐹 , and its 𝑛th power by 𝜇𝐹 𝑛.

Since 𝐹 is cocontinuous and colimits commute, 𝜇𝑋 .𝐹(𝑋 , −) has an initial algebra (again

by Lemma 1). It is denoted by 𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 ), and enjoys the following crucial lemma.

The categorical version we present is due to Lehmann and Smyth [LS81, Cor. 1 of Th. 4.2].

During the preparation of this work, we came up with another proof, presented in ??.

Lemma 10 (diagonal identity). Given a cocontinuous functor 𝐹 ∶ 𝐂 × 𝐂 → 𝐂,

𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 ) = 𝜇𝑍 .𝐹(𝑍 , 𝑍)

in the category of 𝐹Δ-algebras, where Δ ∶ 𝑋 ↦ (𝑋 , 𝑋) is the diagonal functor.
4We could of course define SBTree𝜔,𝑛 for any 𝑛, see appendix A.
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2 Mixed binding signatures and mixed terms

In this section, we introducemixed binding signatures as well as the finite and infinitary

terms arising from such a signature. Then we extend to this setting all the metric and

nominal structures one considers when dealing with ordinary binding signatures, and

we describe a problem similar to what [Kur+13] solves in the ordinary setting.

2.1 MBS and raw terms

Binding signatures [Plo90; FPT99] provide a general description of term (co)algebras with

binding operators. Let us quickly recall their main properties.

■ A binding signature (BS) is a couple (Σ, ar) where Σ is a set at most countable of

constructors, and ar ∶ Σ → ℕ∗ is a function indicating the binding arity of each

input of each constructor.

■ Given a BS (Σ, ar), its term functor ℱΣ ∶ 𝐂 → 𝐂 is defined by

ℱΣ𝑋 ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=(𝑛1,…,𝑛𝑘)

𝑘
∏
𝑖=1

𝒱 𝑛𝑖 × 𝑋 .

■ The sets of raw (i.e. not quotiented by α-equivalence) finite and infinitary terms

on (Σ, ar) are then defined by 𝒯Σ ≔ 𝜇𝑋.ℱΣ𝑋 and 𝒯 ∞Σ ≔ 𝜈𝑋.ℱΣ𝑋 (in 𝐒𝐞𝐭). Notice
that these (co)algebras always exist, thanks to the polynomial shape of ℱΣ.

■ A typical example is the signature:

Σ𝜆 ≔ {𝜆,@} ar(𝜆) ≔ (1) ar(@) ≔ (0, 0)

such that 𝒯𝜆 is the algebra Λ of all finite λ-terms, and 𝒯 ∞𝜆 is the coalgebra Λ111 of
all (full) infinitary λ-terms.

Wewant to tweak this definition in order to be able to designmixed inductive-coinductive

data types with binding. An elementary example of such a mixing (with no binding) is

the type of right-infinitary binary trees: the set of all infinitary binary trees such that

each infinite branch contains infinitely many right edges. This type can be defined as

𝜈𝑌 .𝜇𝑋 .1 + 𝑋 × 𝑌 in 𝐒𝐞𝐭. Our aim is to be able to express such a construction when some

constructors bind variables (and then investigate the quotient by α-equivalence).

Definition 11 (mixed binding signature). Amixed binding signature (MBS) is a couple (Σ, ar)
where Σ is a set at most countable of constructors, and ar ∶ Σ → (ℕ × 𝔹)∗ is an arity

function.
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𝑥 ∈ 𝒱
𝑥 ∈ 𝒯 ∞Σ

𝑡 ∈ 𝒯 ∞Σ
▶0 𝑡 ∈ 𝒯 ∞Σ

𝑡 ∈ 𝒯 ∞Σ
▶1 𝑡 ∈ 𝒯 ∞Σ

̄𝑥1 ∈ 𝒱 𝑛1 ⋯ ̄𝑥𝑘 ∈ 𝒱 𝑛𝑘 ▶𝑏1 𝑡1 ∈ 𝒯 ∞Σ ⋯ ▶𝑏𝑘 𝑡𝑘 ∈ 𝒯 ∞Σ
cons ( ̄𝑥1.𝑡1, … , ̄𝑥𝑘 .𝑡𝑘) ∈ 𝒯 ∞Σ

for each cons ∈ Σ, having ar(cons) = ((𝑛1, 𝑏1), … , (𝑛𝑘 , 𝑏𝑘))
Figure 3. — Formal system defining 𝒯 ∞Σ for a MBS (Σ, ar). The simple rules are

inductive, the double one is coinductive; for similar systems, see [Dal16; CV23].

𝑥 ∈ 𝒱
𝑥 ∈ Λ001

𝑀 ∈ Λ001

▶ 𝑀 ∈ Λ001
𝑥 ∈ 𝒱 𝑀 ∈ Λ001

𝜆(𝑥.𝑀) ∈ Λ001
𝑀 ∈ Λ001 ▶ 𝑁 ∈ Λ001

@(𝑀,𝑁 ) ∈ Λ001

Figure 4. — A simplified mixed formal system defining Λ001.

𝔹 denotes the set of booleans: each input of each constructor is marked with a boolean

describing its (co)inductive behaviour. This intuition is driving the following definitions,

that allow to define mixed terms on a MBS.

Definition 12 (term functor of a MBS). The polynomial term functor associated to (Σ, ar) is
the 𝐂-bifunctor ℱΣ defined by:

ℱΣ(𝑋 , 𝑌 ) ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=((𝑛1,𝑏1),…,(𝑛𝑘 ,𝑏𝑘))

𝑘
∏
𝑖=1

𝒱 𝑛𝑖 × 𝜋𝑏𝑖(𝑋 , 𝑌 ).

Lemma 10 ensures that there is a unique notion of “fully initial” algebra on a bifunctor,

hence the definition of raw terms on a MBS.

Definition 13 (raw terms on a MBS). The sets 𝒯Σ of raw finite terms and 𝒯 ∞Σ of raw mixed

terms on (Σ, ar) are defined by:

𝒯Σ ≔ 𝜇𝑍.ℱΣ(𝑍 , 𝑍) 𝒯 ∞Σ ≔ 𝜈𝑌 .𝜇𝑋 .ℱΣ(𝑋 , 𝑌 ).

Existence of such (co)algebras is guaranteed by the polynomial shape ofℱΣ, and will be
formally justified by Lemma 28.

Notation 14. We can describe 𝒯 ∞Σ by means of a (mixed) formal system of derivation

rules, as proposed in fig. 3. We use the symbols ▶0 and ▶1 to distinguish between the

inductive and coinductive calls. ▶1 is usually called the later modality [Nak00; App+07];

a derivation of ▶1 𝑃 is a derivation of 𝑃 under an additional coinductive guard. The

modality ▶0 could be omitted, but we write it to keep the notations symmetric.
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Example 15 (mixed infinitary λ-terms). For 𝑎, 𝑏, 𝑐 ∈ 𝔹, the MBS (Σ𝜆, ar𝑎𝑏𝑐) is defined by:

Σ𝜆 ≔ {𝜆,@} ar𝑎𝑏𝑐(𝜆) ≔ ((1, 𝑎)) ar𝑎𝑏𝑐(@) ≔ ((0, 𝑏), (0, 𝑐)).
For any 𝑎, 𝑏, 𝑐, 𝒯𝜆𝑎𝑏𝑐 is the algebra Λ of finite λ-terms and 𝒯 ∞𝜆𝑎𝑏𝑐 is the coalgebra of 𝑎𝑏𝑐-
infinitary λ-terms. For instance, the 001-infinitary λ-terms are described by fig. 4.

2.2 Metric completion

Take 𝐂 to be 𝐒𝐞𝐭. Following a standard path, we define the Arnold-Nivat metric [AN80]

on both 𝒯Σ and 𝒯 ∞Σ . To do so, we use the following notion of truncation, adapted to a

mixed inductive-coinductive setting.

Definition 16 (truncation). Given an integer 𝑛 ∈ ℕ and a term 𝑡 in either 𝒯Σ or 𝒯 ∞Σ , the

mixed truncation at depth 𝑛 of 𝑡 is the object ⌊𝑡⌋𝑛 defined by induction by:

⌊𝑡⌋0 ≔ ∗
⌊𝑥⌋𝑛+1 ≔ 𝑥

⌊cons ( ̄𝑥1.𝑡1, … , ̄𝑥𝑘 .𝑡𝑘)⌋𝑛+1 ≔ cons ( ̄𝑥1. ⌊𝑡1⌋𝑛+1−𝑏1 , … , ̄𝑥𝑘 . ⌊𝑡𝑘⌋𝑛+1−𝑏𝑘)
where 𝑏𝑖 = 𝜋1ar(cons)𝑖.

Notice that the definition is by double induction, on 𝑛 and on 𝑡 (even if the latter is taken

in 𝒯 ∞Σ ): in the inductive inputs of cons we proceed by induction on 𝑡 , in its coinductive

inputs we proceed by induction on 𝑛.

Remark 17. We demurely called ⌊𝑡⌋𝑛 an “object”: it can contain ∗, hence it is not really a

term in 𝒯Σ. When possible, we will implicitely keep considering truncations as terms

with an additional constant, and we will manipulate them in a way that should have an

obvious meaning. However, to be rigorous, ⌊𝑡⌋𝑛 should be described as an element of

(𝜇𝑋 .ℱΣ(𝑋 , −))𝑛1.

Definition 18 (Arnold-Nivat metric). The Arnold-Nivat metric on 𝒯Σ and 𝒯 ∞Σ is the map-

ping 𝕕 ∶ 𝒯 ∞Σ × 𝒯 ∞Σ → ℝ+ defined by

𝕕(𝑡, 𝑢) ≔ inf { 2−𝑛 | 𝑛 ∈ ℕ, ⌊𝑡⌋𝑛 = ⌊𝑢⌋𝑛 } .

The unique notation is unambiguous, since the canonical inclusion𝒯Σ ↣ 𝒯 ∞Σ preserves

the truncations.

The following fact is a translation of [Bar93, Th. 3.2], using Lemma 10. It expresses the

equivalence of our coinductive definition of 𝒯 ∞Σ and the historical topological point of

view [Ken+97].
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Lemma 19. 𝒯 ∞Σ is the Cauchy completion of 𝒯Σ with respect to 𝕕. Furthermore, the

completion is carried by the canonical arrow 𝒯Σ ↣ 𝒯 ∞Σ .

Example 20. The eight Arnold-Nivat metrics 𝕕𝑎𝑏𝑐 corresponding to the signatures from

Example 15 are exactly those considered in the original definition of infinitary λ-calculi

[Ken+97]. Hence our coinductive definition of Λ𝑎𝑏𝑐 coincides with the historical, topo-

logical definition.

2.3 α-equivalence

α-equivalence is the equivalence relation generated on some term (co)algebra by renam-

ing all bound variables. Let us recall how this can be reformulated in a nominal setting

(for finite terms only, for the moment).

Given a BS or a MBS (Σ, ar), the finite term algebra 𝒯Σ can be endowed with a 𝔖(𝒱 )-
action ⋅ inductively defined by:

𝜎 ⋅ 𝑥 ≔ 𝜎(𝑥)
𝜎 ⋅ cons ( ̄𝑥1.𝑡1, … ) ≔ cons (𝜎( ̄𝑥1).𝜎 ⋅ 𝑡1, … ) , (1)

where permutations act pointwise on the sequences ̄𝑥𝑖. This defines a nominal set (𝒯Σ, ⋅).
The α-equivalence relation is then defined by:

𝑥 =𝛼 𝑥
(( ̄𝑥𝑖 ̄𝑧𝑖) ⋅ 𝑡𝑖 =𝛼 ( ̄𝑦𝑖 ̄𝑧𝑖) ⋅ 𝑢𝑖 for fresh ̄𝑧𝑖)𝑘𝑖=1
cons ( ̄𝑥1.𝑡1, … ) =𝛼 cons ( ̄𝑦1.𝑢1, … )

where the permutation ( ̄𝑥𝑖 ̄𝑧𝑖) is the composition of the transpositions (𝑥𝑖 𝑧𝑖). This equiv-
alence relation is compatiblewith ⋅, thus there is an induced nominal structure (𝒯Σ/=𝛼 , ⋅).
Given a BS (Σ, ar), one defines its quotient term functor by

𝒬Σ𝑋 ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=(𝑛1,…,𝑛𝑘)

𝑘
∏
𝑖=1

[𝒱 ]𝑛𝑖𝑋,

where [𝒱 ] ∶ 𝐍𝐨𝐦 → 𝐍𝐨𝐦 is the nominal abstraction functor. A key theorem by Gab-

bay and Pitts [GP02; Pit13, Th. 8.15] then entails that (𝒯Σ/=𝛼 , ⋅) is the nominal algebra

𝜇𝑋 .𝒬Σ𝑋 . This can be straightforwardly transported to our mixed setting.

Definition 21 (quotient term functor of a MBS). The polynomial quotient term functor asso-

ciated to (Σ, ar) is the 𝐍𝐨𝐦-bifunctor 𝒬Σ defined by:

𝒬Σ(𝑋 , 𝑌 ) ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=((𝑛1,𝑏1),…,(𝑛𝑘 ,𝑏𝑘))

𝑘
∏
𝑖=1

[𝒱 ]𝑛𝑖𝜋𝑏𝑖(𝑋 , 𝑌 ).
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Theorem 22 (nominal algebraic types on a MBS). Given a MBS (Σ, ar), the following identi-

ties hold in 𝐍𝐨𝐦:

𝒯Σ = 𝜇𝑍.ℱΣ(𝑍 , 𝑍) 𝒯Σ/=𝛼 = 𝜇𝑍.𝒬Σ(𝑍 , 𝑍).

The first identity might seem tautologic because of the overloaded notation ℱΣ; if we
distinguish between ℱ 𝐒𝐞𝐭Σ and ℱ 𝐍𝐨𝐦Σ it becomes (𝜇𝑍 .ℱ 𝐒𝐞𝐭Σ (𝑍 , 𝑍), ⋅) = 𝜇𝑍 .ℱ 𝐍𝐨𝐦Σ (𝑍 , 𝑍).

2.4 Towards commutation (or not)

For now, we have built the following diagram (in 𝐒𝐞𝐭):

𝑈 (𝜇𝑍 .ℱΣ(𝑍 , 𝑍))
𝜇𝑍 .ℱΣ(𝑍 , 𝑍)

𝒯Σ
𝜈𝑌 .𝜇𝑋 .ℱΣ(𝑋 , 𝑌 )

𝒯 ∞Σ

𝒯Σ/=𝛼
𝑈 (𝜇𝑍 .𝒬Σ(𝑍 , 𝑍))

↢ →compl.

←↠ (1)

The sets are annotated with their descriptions as (co)algebras in 𝐒𝐞𝐭 and in𝐍𝐨𝐦 (𝑈 is the

forgetful functor 𝐍𝐨𝐦 → 𝐒𝐞𝐭). The horizontal arrow is the metric completion given by

Lemma 19, the vertical surjection is the quotient by α-equivalence given by Theorem 22.

Our goals are:

1. to complete the diagram into a commutative square,

2. to provide a concrete description of the nominal coalgebra 𝜈𝑌 .𝜇𝑋 .𝒬Σ(𝑋 , 𝑌 ).
Let us keep applying the definitions of [Kur+13] to our mixed setting:

■ 𝒯 ∞Σ can be equipped with a 𝔖(𝒱 )-action in the same way as we did in eq. (1) for

the finitary setting, by just making the definition coinductive; however, this does

not define a nominal set any more since some infinitary terms are not finitely

supported (the support of a term being the set of the variables occurring in it).

■ As a consequence, we cannot directly use a nominal set structure to extend the

definition of α-equivalence to 𝒯 ∞Σ . Instead, we lift the α-equivalence of 𝒯Σ by

using the truncations: two mixed terms 𝑡 , 𝑢 ∈ 𝒯 ∞Σ are then said to be α-equivalent

if ∀𝑛 ∈ ℕ, ⌊𝑡⌋𝑛 =𝛼 ⌊𝑢⌋𝑛.
■ We also define a metric on 𝒯Σ/=𝛼 as we did in Definition 18:

𝕕𝛼 (𝑡, 𝑢) ≔ inf { 2−𝑛 | 𝑛 ∈ ℕ, ⌊𝑡⌋𝑛 =𝛼 ⌊𝑢⌋𝑛 } .

Then (𝒯Σ/=𝛼 )∞ is the metric completion of 𝒯Σ/=𝛼 with respect to 𝕕𝛼 .
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These constructions extend diag. (1) as follows:

𝑈 (𝜇𝑍 .ℱΣ(𝑍 , 𝑍))
𝜇𝑍 .ℱΣ(𝑍 , 𝑍)

𝒯Σ
𝜈𝑌 .𝜇𝑋 .ℱΣ(𝑋 , 𝑌 )

𝒯 ∞Σ

𝒯 ∞Σ /=𝛼

𝒯Σ/=𝛼
𝑈 (𝜇𝑍 .𝒬Σ(𝑍 , 𝑍))

(𝒯Σ/=𝛼 )∞

↢ →compl.

←

↠

←↠

↩→ ?

↢ →compl.

(2)

The existence of an inclusion
?↪ is straightforward, but we would like an isomorphism

instead. Unfortunately, it is the case in general, unless the signature is trivial in the

following meaning.

Definition 23 (non-trivial MBS). A MBS (Σ, ar) is non-trivial if there are constructors lam,

node, dig ∈ Σ such that:

1. lam has a binding input, i.e. 𝜋0(ar(lam)𝑖) ⩾ 1 for some index 𝑖;
2. node has at least two inputs, i.e. ar(node) is of length greater than 2;

3. dig has a coinductive input, i.e. 𝜋1(ar(dig)𝑖) = 1 for some index 𝑖.
Without loss of generality, the required inputs are considered to be the first (i.e. 𝑖 = 1 in
the conditions).

If the signature is trivial, it does not make sense to consider all the machinery defined

here: if there is no binder then =𝛼 amounts to equality, if there are only unary and

constant constructors then there is at most one variable in each term, and if there is

no coinductive constructor then the metric is discrete. In all three cases, (𝒯 ∞Σ /=𝛼 ) ≅
(𝒯Σ/=𝛼 )∞ for degenerate reasons.

Otherwise, the cardinality of 𝒱 is determining, as Theorem 25 shows. Before stating it,

let us formally define the notion of free variable, that will be of use in the proof.

Definition 24 (free variables). Given a term 𝑡 in 𝒯Σ, the set fv(𝑡) ⊆ 𝒱 of its free variables

is defined by induction by:

fv(𝑥) ≔ {𝑥} fv(cons( ̄𝑥1.𝑡1, … , ̄𝑥𝑘 .𝑡𝑘)) ≔
𝑘
⋃
𝑖=1

fv(𝑡𝑖) ⧵ ̄𝑥𝑖. (24.1)

For 𝑡 ∈ 𝒯 ∞Σ , fv(𝑡) ≔ ⋃𝑛∈ℕ fv(⌊𝑡⌋𝑛).

Theorem 25. Let (Σ, ar) be a non-trivial MBS. Then (𝒯 ∞Σ /=𝛼 ) ≅ (𝒯Σ/=𝛼 )∞ iff 𝒱 is un-

countable.
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Proof. When 𝒱 = { 𝑥𝑖 | 𝑖 ∈ ℕ } is countable, a counter-example for (Σ𝜆, ar111) is the Cauchy
sequence of α-equivalence classes ([𝜆𝑥𝑛.(𝑥0) … (𝑥𝑛−1)𝑥𝑛]𝛼 )𝑛∈ℕ, which has no limit in 𝒯 ∞Σ /=𝛼
[Kur+13, Ex. 5.20]. It can be generalised to any non-trivial (Σ, ar): by non-triviality, there are

constructors lam, node, dig ∈ Σ as in Definition 23, and we translate each 𝜆𝑥𝑛.(𝑥0) … (𝑥𝑛−1)𝑥𝑛
into a term 𝑡𝑛 ∈ 𝒯 ∞Σ as follows:

■ 𝜆𝑥𝑛.𝑀 is replaced with lam( ̄𝑥𝑛.𝑀,… ) where the length of ̄𝑥𝑛 ≔ (𝑥𝑛, … , 𝑥𝑛) is indicated
by ar(lam), and the other inputs of lam are filled arbitrarily,

■ (𝑥𝑖)𝑀 is replaced with node ( ̄𝑥𝑛.𝑥𝑖, dig( ̄𝑥𝑛.𝑀,… ), … ) where the length of the ̄𝑥𝑛 are in-
dicated by ar(node) and ar(dig), and the omitted inputs are filled arbitrarily.

Again, ([𝑡𝑛]𝛼 )𝑛∈ℕ is a Cauchy sequence with no limit in 𝒯 ∞Σ /=𝛼 .

Conversely, assume 𝒱 is uncountable and consider a Cauchy sequence (𝔱𝑛)𝑛∈ℕ in 𝒯 ∞Σ /=𝛼 .
For 𝑝, 𝑞 ∈ ℕ big enough, 𝕕𝛼 (𝔱𝑝 , 𝔱𝑞) < 1 so the top-level constructor (or variable) of all terms

in 𝔱𝑛 is ultimately constant. By mixed induction and coinduction:

■ If it is a variable 𝑥 , then lim 𝔱𝑛 = [𝑥]𝛼 .
■ Otherwise it is some cons ∈ Σ with ar(cons) = ((𝑛𝑖, 𝑏𝑖))1⩽𝑖⩽𝑘 . Notice that if 𝑡 =𝛼 𝑢

then fv(𝑡) = fv(𝑢), so that the notation fv(𝔱𝑛) is unambiguous. From Lemma 1 we

can deduce that each fv(𝔱𝑛) is countable, hence so is⋃𝑛∈ℕ fv(𝔱𝑛). Thus we can choose

distinct variables 𝑥𝑖,𝑗 ∉ ⋃𝑛∈ℕ fv(𝔱𝑛), where 𝑖 ranges over [1, 𝑘] and 𝑗 over [1, 𝑛𝑖], so that
𝔱𝑛 = [cons(𝑥1,1, … , 𝑥1,𝑛1 .𝑢𝑛,1, … , 𝑥𝑘,1, … , 𝑥𝑘,𝑛𝑘 .𝑢𝑛,𝑘)]𝛼 for some terms 𝑢𝑛,1, … , 𝑢𝑛,𝑘 .
Take 𝑖 ∈ [1, 𝑘]. By construction, for all 𝑝, 𝑞 ∈ ℕ we have 𝕕([𝑢𝑝,𝑖]𝛼 , [𝑢𝑞,𝑖]𝛼 ) ⩽ 2𝕕(𝔱𝑝 , 𝔱𝑞),
hence ([𝑢𝑛,𝑖]𝛼 )𝑛∈ℕ is a Cauchy sequence. By induction (if 𝑏𝑖 = 0) or coinduction (if

𝑏𝑖 = 1), it has a limit [𝑢𝑖]𝛼 ∈ 𝒯 ∞Σ /=𝛼 .

Finally, lim 𝔱𝑛 = [cons(𝑥1,1, … , 𝑥1,𝑛1 .𝑢1, … , 𝑥𝑘,1, … , 𝑥𝑘,𝑛𝑘 .𝑢𝑘)]𝛼 . ◆

Our first goal is only partially fulfilled: we have a commutative square only if 𝒱 is un-

countable, which is not satisfactory in practice since implementation concerns suggest

to consider contably many variables. Our second goal (to describe 𝜈𝑌 .𝜇𝑋 .𝒬Σ(𝑋 , 𝑌 )) is
still to be addressed.

3 A coalgebra of α-equivalence classes

3.1 Nominal mixed types

The following structure is, once again, extended to the setting of mixed terms:

■ Given a set 𝑋 equipped with a𝔖(𝒱 )-action, 𝑋fs is the subset of finitely supported
elements of 𝑋 . It carries a nominal set structure. In particular (𝒯 ∞Σ )fs is the nom-
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inal set of the finitely supported raw terms in 𝒯 ∞Σ , and (𝒯Σ/=𝛼 )∞fs is the nominal

set of finitely supported α-equivalence classes in (𝒯Σ/=𝛼 )∞.
■ (𝒯 ∞Σ )ffv denotes the set of infinitary terms having finitely many free variables:

(𝒯 ∞Σ )ffv ≔ { 𝑡 ∈ 𝒯 ∞Σ || fv(𝑡) is finite } .

Recall also that given a nominal metric space (i.e. a nominal space equipped with an

equivariant metric), its nominal metric completion is built by adding the limits of all

finitely supported Cauchy sequences (i.e. sequences of terms such that their supports

are all contained in a common finite set).

Let us state the main theorem of our fanfiction without delay, as well as its crucial corol-

lary.

Theorem 26 (nominal mixed terms on a MBS). Let MBS (Σ, ar) be a MBS. Then:
1. The nominal set (𝒯 ∞Σ )fs is the nominal metric completion of 𝒯Σ, as well as the

terminal coalgebra 𝜈𝑌 .𝜇𝑋 .ℱΣ(𝑋 , 𝑌 ).
2. Similarly, the nominal set (𝒯Σ/=𝛼 )∞fs is the nominal metric completion of 𝒯Σ/=𝛼 ,

as well as the terminal coalgebra 𝜈𝑌 .𝜇𝑋 .𝒬Σ(𝑋 , 𝑌 ).
3. The following diagram commutes in 𝐒𝐞𝐭:

𝑈 (𝜇𝑍 .ℱΣ(𝑍 , 𝑍))
𝜇𝑍 .ℱΣ(𝑍 , 𝑍)

𝒯Σ
𝑈 (𝜈𝑌 .𝜇𝑋 .ℱΣ(𝑋 , 𝑌 ))

(𝒯 ∞Σ )fs (𝒯 ∞Σ )ffv
𝜈𝑌 .𝜇𝑋 .ℱΣ(𝑋 , 𝑌 )

𝒯 ∞Σ

𝒯Σ/=𝛼
𝑈 (𝜇𝑍 .𝒬Σ(𝑍 , 𝑍))

(𝒯Σ/=𝛼 )∞fs
𝑈 (𝜈𝑌 .𝜇𝑋 .𝒬Σ(𝑋 , 𝑌 ))

(𝒯 ∞Σ )ffv/=𝛼 (𝒯Σ/=𝛼 )∞

←→nom.
compl.

←↠

↢ →
compl.

↩ →

←→

↩ →

←↠ ←→

← →nom.
compl.↢ →

compl.

⇐⇐ ↩ →

⌟

Corollary 27. The nominal set (𝒯 ∞Σ )ffv/=𝛼 is the terminal coalgebra 𝜈𝑌 .𝜇𝑋 .𝒬Σ(𝑋 , 𝑌 ).

These results are direct counterparts to Remark 5.30, Theorem 5.34 and Corollary 5.35

from [Kur+13], and the diagram we provide is exactly the same as their diagram 5.20.

The only difference here is that we take the terminal coalgebra of 𝜇𝑋 .ℱΣ(𝑋 , −) and
𝜇𝑋 .𝒬Σ(𝑋 , −), instead of ℱΣ and 𝒬Σ themselves. What we need to show is that all the

technical developments of [Kur+13] remain applicable.

Lemma 28. Let 𝐹 ∶ 𝐍𝐨𝐦 × 𝐍𝐨𝐦 → 𝐍𝐨𝐦 be polynomial in the following sense: there

are a countable set 𝐼 and families { 𝑘𝑖 ∈ ℕ | 𝑖 ∈ 𝐼 }, { 𝑚𝑖𝑗 ∈ ℕ || 𝑖∈𝐼1⩽𝑗⩽𝑘𝑖 } and { 𝑏𝑖𝑗 ∈ 𝔹 || 𝑖∈𝐼1⩽𝑗⩽𝑘𝑖 },
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where 𝔹 = {0, 1}, such that

𝐹 = 𝐾 +∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗

where 𝜋0 and 𝜋1 denote the projections,𝑀 ∶ 𝐍𝐨𝐦 → 𝐍𝐨𝐦 is a fixed functor commuting

to directed colimits, and 𝐾 is a fixed constant functor. Then 𝜇𝑋 .𝐹(𝑋 , −) exists and can

be obtained from the following grammar (up to isomorphism):

𝐺 ≔ id | 𝐾 | 𝑀𝐺 | ∐𝐺 | 𝐺 × 𝐺 (Γ1)

where∐ denotes at most countable coproducts.

Proof. Remember that the forgetful functor 𝑈 ∶ 𝐍𝐨𝐦 → 𝐒𝐞𝐭 creates all colimits and finite

limits, so that all the proof can be worked out as in 𝐒𝐞𝐭.
A functor 𝐹 of the given shape commutes to directed colimits, so Lemma 1 ensures that

𝜇𝑋 .𝐹(𝑋 , −) exists and can be described as a colimit. More precisely, 𝜇𝑋 .𝐹(𝑋 , −) = colim𝑡∈SBTree𝜔,1 𝐹 𝑡(0, −).
In addition, it easy to show that for any directed diagram

𝐷 ∶ 𝐉 → 𝐒𝐞𝐭
𝑖 ⩽ 𝑗 ↦ 𝑋𝑖 ⊆ 𝑋𝑗

there is an isomorphism colim𝑖∈𝐉 𝑋𝑖 ≅ ∐𝑖∈𝐉 (𝑋𝑖 ⧵ ⋃𝑗<𝑖 𝑋𝑗). Here 𝐉 is just isomorphic to 𝜔, so
we can simplify the expression:

𝜇𝑋 .𝐹(𝑋 , −) ≅ ∐
𝑡∈SBTree𝜔,1

(𝐹 node(𝑡,leaf(1))(0, −) ⧵ 𝐹 𝑡(0, −)) . (28.1)

Let us show by induction on 𝑡 ∈ SBTree𝜔,1 that the terms of this coproduct can be obtained

from grammar Γ1. For the base case,

𝐹 node(leaf(0),leaf(1))(0, −) ⧵ 𝐹 leaf(0)(0, −) = (𝐾 +∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗) ⧵ 0

= 𝐾 +∐
𝑖∈𝐼

⎛
⎜
⎜
⎝

𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=0

0
⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=1

𝑀𝑚𝑖𝑗 (−)
⎞
⎟
⎟
⎠
. (28.2)

For the inductive step, take 𝑡 = node(𝑢, leaf(1)), then

𝐹 node(𝑡,leaf(1))(0, −) ⧵ 𝐹 𝑡(0, −)

= (𝐾 +∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗 (𝐹 𝑡(0, −), −)) ⧵ (𝐾 +∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗 (𝐹 𝑢(0, −), −))

=∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗 (𝐹 node(𝑢,leaf(1))(0, −) ⧵ 𝐹 𝑢(0, −), −) (28.3)

and we can conclude by induction. ◆
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Using the lemma, the proof of Theorem 26 and Corollary 27 is straightforward: taking

𝐾 to be the constant functor 𝒱 , and 𝑀 to be either 𝒱 × − or [𝒱 ], we just showed

that 𝜇𝑋 .ℱΣ(𝑋 , −) and 𝜇𝑋 .𝒬Σ(𝑋 , −) fulfill the requirements of [Kur+13, Prop. 5.6]. All the

expected results follow.

During the writing of this paper, we came up with an explicit construction of our mixed

terms as purely coinductive terms on a modified binding signature. Even if it is not

useful for our purposes, we provide this constuction in appendix B, just in case.

3.2 (Co)inductive substitution on mixed types

We fix a MBS (Σ, ar), and we write 𝒯 ∞𝛼 for 𝜈𝑌 .𝜇𝑋 .𝒬Σ(𝑋 , 𝑌 ). We want to define capture-

avoiding substitution as a map subst ∶ 𝒯 ∞𝛼 × 𝒱 × 𝒯 ∞𝛼 → 𝒯 ∞𝛼 in 𝐍𝐨𝐦.

As in [Kur+13, Def. 6.2], we whall use the corecursion principle of [Mos01, Lem. 2.1].

However, this is not enough any more: we also have to scan the inductive structure

separating two coinductive constructors and, since this structure may contain variables

(in fact it contains them all), perform substitution recursively on it too.

Notation 29. When we consider a coproduct 𝐴 + 𝐵, we write inl and inr for the left and

right injections. Similary, we write invar and incons the injections in initial algebras of

the form 𝜇𝑋 .𝒬Σ(𝑋 , 𝑌 ). We omit the composition by fold for the sake of readability.

Notation 30. 𝜏𝐴,𝐵 ∶ [𝒱 ]𝐴 × 𝐵 → [𝒱 ](𝐴 × 𝐵) is the strength defined by (⟨𝑥⟩𝑎, 𝑏) ↦
⟨𝑧⟩(⟨𝑥⟩@ 𝑧, 𝑏), see [Pit13, § 4.3] for the notations. In particular we write 𝜏 for 𝜏𝒯 ∞𝛼 ,𝒱 ×𝒯 ∞𝛼
and 𝜏𝑛 ∶ [𝒱 ]𝑛𝒯 ∞𝛼 × 𝒱 × 𝒯 ∞𝛼 → [𝒱 ]𝑛(𝒯 ∞𝛼 × 𝒱 × 𝒯 ∞𝛼 ) for its iteration.

Definition 31 (capture-avoiding substitution). The capture-avoiding substitution is the map

subst defined by:

𝒯 ∞𝛼 × 𝒱 × 𝒯 ∞𝛼 𝒯 ∞𝛼

𝜇𝑋 .𝒬Σ(𝑋 , 𝒯 ∞𝛼 ) × 𝒱 × 𝒯 ∞𝛼

𝜇𝑋 .𝒬Σ(𝑋 , 𝒯 ∞𝛼 + 𝒯 ∞𝛼 × 𝒱 × 𝒯 ∞𝛼 ) 𝜇𝑋 .𝒬Σ(𝑋 , 𝒯 ∞𝛼 )

← →subst

←→unfold×𝒱 ×𝒯 ∞𝛼 ←

→

unfold

←→ℎ

← →𝜇𝑋 .𝒬Σ(𝑋 ,id+subst)

where ℎ is recursively defined by:

(invar(𝑥), 𝑥, 𝑢) ↦ 𝜇𝑋 .𝒬Σ(𝑋 , inl)(unfold(𝑢))
(invar(𝑦), 𝑥, 𝑢) ↦ invar(𝑦) for 𝑦 ≠ 𝑥
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(incons (⟨𝑦0,1⟩… ⟨𝑦0,𝑛0⟩𝑡0,
⟨𝑦1,1⟩… ⟨𝑦1,𝑛1⟩𝑡1

) , 𝑥, 𝑢) ↦ 𝜇𝑋.𝒬Σ(𝑋 , inr) (incons ( ⟨𝑦0,1⟩… ⟨𝑦0,𝑛0⟩ℎ(𝑡0, 𝑥, 𝑢),
𝜏𝑛1(⟨𝑦1,1⟩… ⟨𝑦1,𝑛1⟩𝑡1, 𝑥, 𝑢)

))

under the condition that ∀𝑗 ∈ [1, 𝑛0], 𝑦0,𝑗 ≠ 𝑥 and 𝑦0,𝑗 ∉ fv(𝑢), and where 𝑡0 (resp. 𝑡1)
stands for any subterm in an inductive (resp. coinductive) position of cons, i.e. 𝜋1(ar(cons)𝑖) =
𝑖.

The validity of the recursive definition is a consequence of Pitts’ recursion theorem for

nominal algebras [Pit06, Thm. 5.1] (see also [Pit13, § 8.5] for lighter presentation). The

condition on the variables 𝑦0,𝑗 expresses exactly the “freshness condition for binders”,

i.e. the fact that these variables must not occur somewhere else in the definition of ℎ.
Pitts’ theorem states that this is enough to define a (total) finitely supported function ℎ.

Example 32. Let us describe what ℎ looks like when 𝒯 ∞𝛼 is Λ001
ffv /=𝛼 :

(𝑥, 𝑥, 𝑁 ) ↦ 𝜇𝑋 .𝒬𝜆001(𝑋 , inl)(unfold(𝑁 ))
(𝑦, 𝑥, 𝑁 ) ↦ 𝑦 for 𝑦 ≠ 𝑥

(𝜆(𝑦.𝑀), 𝑥, 𝑁 ) ↦ 𝜇𝑋.𝒬𝜆001(𝑋 , inr)(𝜆(𝑦.ℎ(𝑀, 𝑥, 𝑁 ))) for 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑁 )
(@(𝑀0, 𝑀1), 𝑥, 𝑁 ) ↦ 𝜇𝑋.𝒬𝜆001(𝑋 , inr) (@ (ℎ(𝑀0, 𝑥, 𝑁 ), (𝑀1, 𝑥, 𝑁 ))) ,

where we ommitted the injections. Finally we obtain the expected recursive-corecursive

definition of capture-avoiding substitution:

subst(𝑥, 𝑥, 𝑁 ) ≔ 𝑁
subst(𝑥, 𝑦, 𝑁 ) ≔ 𝑦 for 𝑦 ≠ 𝑥

subst(𝜆(𝑦.𝑀), 𝑥, 𝑁 ) ≔ 𝜆(𝑦.subst(𝑀, 𝑥, 𝑁 )) for 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑁 )
subst(@(𝑀0, 𝑀1), 𝑥, 𝑁 ) ≔ @(subst(𝑀0, 𝑥, 𝑁 ), subst(𝑀1, 𝑥, 𝑁 )).
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A A pedestrian proof of the Diagonal identity

In this appendix, we give a fix-point-based proof of the Diagonal identity. It seems quite

natural, but we could not find any reference for this proof.

As already exposed, the categorical Diagonal identity is due to Lehmann and Smyth

[LS81, Cor. 1 of Th. 4.2] whose proof relies on Bekić’s lemma [Bek84]. The identity also

corresponds to the “double-dagger property” in the setting of iteration and Conway the-

ories [BÉ93]. We take the name “Diagonal identity” from [SP00], where a categorical

account of these theories is given.

Let us start with an elementary example.

Example 33. Consider the endofunctor of 𝐒𝐞𝐭 defined by 𝐹(𝑋 , 𝑌 ) = 1 + 𝑋 × 𝑌 . The initial
algebra 𝜇𝑋 .𝐹(𝑋 , 𝑌 ) is usually described as the set list(𝑌 ) of lists of element of 𝑌 ; such a list
is either the empty list [], or some ℎ∶∶𝑡 with ℎ ∈ 𝑌 and 𝑡 ∈ list(𝑌 ). Hence 𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 )
is the (smallest) set of lists of elements of itself; but this is a description of the set of all

binary trees, which in turn is usually defined as 𝜇𝑋 .𝐹(𝑋 , 𝑋).
The isomorphism relies on the following observation. Thinking of 𝐹 as of the constructor

of trees, lists of elements of 𝑌 can be seen as left combs with right leaves in 𝑌 :
•

𝑦1•
𝑦2•

𝑦𝑛∗

and every binary tree can be seen as such a comb where the leaves 𝑦𝑖 are themselves

binary trees. This amounts to the conversion between the depth-first and breadth-first

searches of the tree. Formally, the isomorphism is:

𝜙∶ BTree(1) → 𝜇𝑌 .list(𝑌 )
leaf(∗) ↦ []

node(𝑡, 𝑢) ↦ 𝜙(𝑢)∶∶𝜙(𝑡)

𝜙−1∶𝜇𝑌 .list(𝑌 ) → BTree(1)
[] ↦ leaf(∗)

ℎ∶∶𝑡 ↦ node (𝜙−1(𝑡), 𝜙−1(ℎ))
This shows that 𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 ) ≅ 𝜇𝑋 .𝐹(𝑋 , 𝑋). It easy to see that they are not only

isomorphic as sets, but also as algebras, i.e. the isomorphism preserves the inductive

structure of the sets – which is what is interesting, since two countable sets are always

isomorphic!

Notice that left combs,i.e. elements of 𝜇𝑋 .𝐹(𝑋 , 𝑌 ), are exactly the same thing as the

elements of the set SBTree𝜔,1(1, 𝑌 ) from Definition 7. This observation motivates an

extended definition, as well as the following lemma.
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Definition 34. For 𝑛 ∈ ℕ, the SBTree𝜔,𝑛 ⊂ SBTree of all sided binary trees with right depth

bounded by 𝑛 is defined by:

𝑡0, 𝑢0, … ∋ SBTree𝜔,0 ≔ leaf(0),
𝑡1, 𝑢1, … ∋ SBTree𝜔,1 ≔ leaf(0) | node(𝑡1, leaf(1)),

𝑡𝑛+2, 𝑢𝑛+2, … ∋ SBTree𝜔,𝑛+2 ≔ leaf(0) | node(𝑡𝑛+2, leaf(1)) | node(𝑡𝑛+2, 𝑢𝑛+1).

Lemma 35. SBTree ≅ colim𝑛∈ℕ SBTree𝜔,𝑛.

Proof. Reformulating Example 33,

SBTree ≅ 𝜇𝑌 .SBTree𝜔,1(1, 𝑌 )
= colim𝑛∈ℕ (SBTree𝜔,1(1, −))𝑛 0 using Lemma 1

= colim𝑛∈ℕ SBTree𝜔,𝑛(1, 0) by an easy induction

= colim𝑛∈ℕ SBTree𝜔,𝑛(1, 1) by shifting the index

≅ colim𝑛∈ℕ SBTree𝜔,𝑛. ◆

We also need the following definition, providing a notation for the tree powers arising

when applying Lemma 1 to some 𝜇𝑍 .𝐹(𝑍 , 𝑍).

Definition 36. The set CSBTree ⊂ SBTree of all complete sided binary trees is defined by:

𝑡 , 𝑢, … ∋ CSBTree ≔ leaf(0) | node(leaf(0), leaf(1)) | node(𝑡, 𝑡).

This leads us to the desired identity.

Lemma 10 (diagonal identity). Given a cocontinuous functor 𝐹 ∶ 𝐂 × 𝐂 → 𝐂,

𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 ) = 𝜇𝑍 .𝐹(𝑍 , 𝑍)

in the category of 𝐹Δ-algebras, where Δ ∶ 𝑋 ↦ (𝑋 , 𝑋) is the diagonal functor.
Proof. Denote by 𝐺 the functor 𝜇𝑋 .𝐹(𝑋 , −). It is cocontinuous because 𝐹 is cocontinuous

and colimits comute, so we can apply Lemma 1 and obtain 𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 ) = 𝜇𝑌 .𝐺𝑌 =
colim𝑛∈ℕ 𝐺𝑛0.
Then, we show by induction on 𝑛 that 𝐺𝑛0 = colim𝑡∈SBTree𝜔,𝑛 𝐹 𝑡0. Indeed:

■ 𝐺00 = 0 = 𝐹 leaf(0)0 = colim𝑡∈SBTree𝜔,0 𝐹 𝑡0,
■ if 𝐺𝑛0 = colim𝑡∈SBTree𝜔,𝑛 𝐹 𝑡0 then:

𝐺𝑛+10 = 𝜇𝑋 .𝐹(𝑋 , 𝐺𝑛0) = 𝜇𝑋 .𝐹 (𝑋 , colim𝑡∈SBTree𝜔,𝑛
𝐹 𝑡0)

= colim𝑡∈SBTree𝜔,𝑛
𝜇𝑋 .𝐹 (𝑋 , 𝐹 𝑡0)
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= colim𝑡∈SBTree𝜔,𝑛
colim𝑡′∈SBTree𝜔,1

𝐹 𝑡′ (0, 𝐹 𝑡0)

= colim𝑢∈SBTree𝜔,𝑛+1
𝐹 𝑢0.

Hence, 𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 ) = colim𝑛∈ℕ colim𝑡∈SBTree𝜔,𝑛 𝐹 𝑡0. Recall the final remark of Example 33:

colim𝑛∈ℕ SBTree𝜔,𝑛 ≅ SBTree. Thus, we finally obtain 𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 ) = colim𝑡∈SBTree 𝐹 𝑡0.
On the other hand, 𝜇𝑋 .𝐹(𝑋 , 𝑋) = colim𝑡∈CSBTree 𝐹 𝑡0, again by Lemma 1. Writing colim𝑡∈CSBTree 𝐹 𝑡0
is made possible by Notation 5 applied to the unique

0 𝐹(0, 0) 𝐹(0, 𝐹 (0, 0))←→! ←→𝐹(0,!) .

The injections corresponding to these colimits are denoted by 𝑖𝑡 ∶ 𝐹 𝑡0 → colim𝑡∈CSBTree 𝐹 𝑡0
and 𝑗𝑡 ∶ 𝐹 𝑡0 → colim𝑡∈SBTree 𝐹 𝑡0. Since CSBTree ⊂ SBTree, there is a unique 𝜙 such that for

all 𝑡 ∈ CSBTree, the diagram:

𝜇𝑋 .𝐹(𝑋 , 𝑋)

𝐹 𝑡0

𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 )

←

→

𝜙

← →𝑖𝑡

←

→𝑗𝑡

(10.1)

commutes. However, observe that for all 𝑡 ∈ SBTree, there is a 𝑢 ∈ CSBTree such that 𝑡 ⊑ 𝑢;
hence, since the colimits are directed, 𝜙 is in fact an isomorphism.

To show that this isomorphism (in 𝐂) carries an isomorphism of 𝐹Δ-algebras, we have to

check that the diagram:

𝐹Δ(𝜇𝑋 .𝐹(𝑋 , 𝑋)) 𝐹Δ(𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 ))

𝜇𝑋 .𝐹(𝑋 , 𝑋) 𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 )

←→ 𝛼

←→𝐹Δ𝜙

←→ 𝛽

← →𝜙
(10.2)

commutes. Let us recall the construction of the arrows 𝛼 and 𝛽 carrying the 𝐹Δ-algebra
structure of the types. We have:

𝐹Δ(𝜇𝑋 .𝐹(𝑋 , 𝑋)) = 𝐹Δ ( colim𝑡∈CSBTree𝐹
𝑡0) = colim𝑡∈CSBTree𝐹Δ𝐹

𝑡0 = colim𝑡∈CSBTree𝐹
node(𝑡,𝑡)0

with the injections 𝐹Δ𝑖𝑡 . Since { node(𝑡, 𝑡) | 𝑡 ∈ CSBTree } ⊂ CSBTree, there is a cone

(𝐹 node(𝑡,𝑡)0 𝜇𝑋 .𝐹(𝑋 , 𝑋)← →𝑖node(𝑡,𝑡) )
𝑡∈CSBTree

,

so there is a unique 𝛼 such that for all 𝑡 ∈ CSBTree,

𝑖node(𝑡,𝑡) = 𝛼 ∘ 𝐹Δ𝑖𝑡 . (10.3)

Similarly there is a unique 𝛽 such that for all 𝑡 ∈ SBTree,

𝑗node(𝑡,𝑡) = 𝛽 ∘ 𝐹Δ𝑗𝑡 . (10.4)
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Now, on the diagonal of the square above, observe that { node(𝑡, 𝑡) | 𝑡 ∈ CSBTree } ⊂ SBTree

so there is also a unique ℎ making the following diagram commute for all 𝑡 ∈ CSBTree:

𝐹Δ(𝜇𝑋 .𝐹(𝑋 , 𝑋))

𝐹 node(𝑡,𝑡)0

𝜇𝑌 .𝜇𝑋 .𝐹(𝑋 , 𝑌 )

←

→

ℎ

← →𝐹Δ𝑖𝑡

←

→𝑗node(𝑡,𝑡)

However, we already have two such arrows:

𝜙 ∘ 𝛼 ∘ 𝐹Δ𝑖𝑡 = 𝜙 ∘ 𝑖node(𝑡,𝑡) by (10.3)

= 𝑗node(𝑡,𝑡) by (10.1)

𝛽 ∘ 𝐹Δ𝜙 ∘ 𝐹Δ𝑖𝑡 = 𝛽 ∘ 𝐹Δ𝑗𝑡 by (10.1)

= 𝑗node(𝑡,𝑡) by (10.4)

hence 𝜙 ∘ 𝛼 = 𝛽 ∘ 𝐹Δ𝜙, that is to say diag. (10.2) commutes and 𝜙 is an isomorphism of

𝐹Δ-algebras. ◆

B Mixed terms as purely coinductive terms

In this appendix we build, from any MBS (Σ, ar), an “auxiliary” signature (Σ†, ar†). This
signature is almost a BS and is such that the α-equivalence classes ofmixed terms on Σ are
exactly the α-equivalence classes of coinductive terms on Σ†, the latter being computed

as in [Kur+13].

Recall Lemma 28: from a polynomial bifunctor 𝐹 , we were able to show that 𝜇𝑋 .𝐹(𝑋 , −)
is obtained from grammar grammar Γ1. The following corollary enables us to turn it

into a (1-variable) polynomial.

Corollary 37. Given a functor 𝐹 depending on a functor𝑀 ∶ 𝐍𝐨𝐦 → 𝐍𝐨𝐦 as in Lemma 28,

any natural transformation 𝛿 ∶ 𝑀(𝜋0 × 𝜋1) ⇒ (𝑀𝜋0) × (𝑀𝜋1) induces a natural transfor-
mation

̄𝛿 ∶ 𝜇𝑋 .𝐹(𝑋 , −) ⇒ 𝐾 +∐
𝑖∈𝐼 ′

𝑘′𝑖
∏
𝑗=1

𝑀𝑚′𝑖𝑗𝜋𝑏′𝑖𝑗 (𝐾, −)

for some countable set 𝐼 ′ and families (𝑘′𝑖 ), (𝑚′𝑖𝑗) and (𝑏′𝑖𝑗) not depending on 𝑀 . In addi-

tion, this operation is natural in 𝑀 .

Proof. Given eq. (28.1) as in the proof of Lemma 28, we show by induction that for all 𝑡 ∈
SBTree𝜔,1, there are a countable set 𝐼𝑡 and families (𝑙𝑝), (𝑛𝑝𝑞) and (𝑐𝑝𝑞) such that there is a

natural transformation

𝛿 𝑡 ∶ 𝐹 node(𝑡,leaf(1))(0, −) ⧵ 𝐹 𝑡(0, −) ⇒ ∐
𝑝∈𝐼𝑡

𝑙𝑝
∏
𝑞=1

𝑀𝑛𝑝𝑞𝜋𝑐𝑝𝑞 (𝐾, −). (37.1)
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We proceed by induction on 𝑡 . The base case is immediate from eq. (28.2). For the inductive

case, take 𝑡 = node(𝑢, leaf(1)) and assume that eq. (37.1) holds for 𝑢. We start again from

eq. (28.3) and build 𝛿 𝑡 as follows:

𝐹 node(𝑡,leaf(0))(0, −) ⧵ 𝐹 𝑡(0, −)

=∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗 (𝐹 node(𝑢,leaf(1))(0, −) ⧵ 𝐹 𝑢(0, −), −) (28.3)

=∐
𝑖∈𝐼

⎛
⎜
⎜
⎝

𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=0

𝑀𝑚𝑖𝑗 (𝐹 node(𝑢,leaf(1))(0, −) ⧵ 𝐹 𝑢(0, −))
𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=1

𝑀𝑚𝑖𝑗 (−)
⎞
⎟
⎟
⎠

⇒∐
𝑖∈𝐼

⎛
⎜
⎜
⎝

𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=0

𝑀𝑚𝑖𝑗 (∐
𝑝∈𝐼𝑢

𝑙𝑝
∏
𝑞=1

𝑀𝑛𝑝𝑞𝜋𝑐𝑝𝑞 (𝐾, −))
𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=1

𝑀𝑚𝑖𝑗 (−)
⎞
⎟
⎟
⎠

(37.2)

=∐
𝑖∈𝐼𝑝∈𝐼𝑢

⎛
⎜
⎜
⎝

𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=0

𝑀𝑚𝑖𝑗 (
𝑙𝑝
∏
𝑞=1

𝑀𝑛𝑝𝑞𝜋𝑐𝑝𝑞 (𝐾, −))
𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=1

𝑀𝑚𝑖𝑗 (−)
⎞
⎟
⎟
⎠

⇒∐
𝑖∈𝐼𝑝∈𝐼𝑢

⎛
⎜
⎜
⎜
⎜
⎝

∏
1⩽𝑗⩽𝑘𝑖
1⩽𝑞⩽𝑙𝑝
𝑏𝑖𝑗=0

𝑀𝑚𝑖𝑗+𝑛𝑝𝑞𝜋𝑐𝑝𝑞 (𝐾, −)
𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=0

𝑀𝑚𝑖𝑗𝜋1(𝐾, −)

⎞
⎟
⎟
⎟
⎟
⎠

(37.3)

where eq. (37.2) results from a single application of 𝛿𝑢 and eq. (37.3) results from 𝑙𝑝 applica-

tions of 𝛿 for each 𝑖, 𝑝 and 𝑗 such that 𝑏𝑖𝑗 = 0.
In addition, the term 𝐹 node(leaf(0),leaf(1)) contains a term 𝐾 , so ̄𝛿 ≔ ∐𝑡∈SBTree𝜔,1 𝛿 𝑡 has the ex-
pected shape. It is easy to verify that all this construction is furthermore natural in 𝑀 . ◆

Remark 38. The lemma and its corollary can be easily extended to any 𝐹 built from the

following grammar:

𝐺 ≔ 𝜋0 | 𝜋1 | 𝐾 | 𝑀𝐹 | ∐𝐹 | 𝐹 × 𝐹 . (Γ2)
In this case, the construction of ̄𝛿 from 𝛿 can be represented by the set of rules of fig. 5.

What Corollary 37 states in particular is that, starting from the term functor ℱΣ asso-

ciated to a MBS, we can turn 𝜇𝑋 .ℱΣ(𝑋 , −) into a polynomial functor that almost looks

like the term functor associated to some BS. The only difference with the behaviour of

a regular BS is that some constructors can only bind variables (instead of subterms). We

give a formal meaning to this observation by introducing auxiliary signatures.

Exactly as each input of each constructor of a MBS is endowed with a boolean 𝑏 ∈ 𝔹 de-

scribing its (co)inductive behaviour and appearing in the term functors through a pro-
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id = id 𝐾 = 𝐾

𝑀 id = 𝑀 id 𝑀𝐾 = 𝑀𝐾
𝑀𝐺0 × 𝑀𝐺1 ⇒ 𝐺′

𝑀(𝐺0 × 𝐺1) =⇒𝛿 𝑀𝐺0 × 𝑀𝐺1 ⇒ 𝐺′

∐
𝑖∈𝐼

𝑀𝐺𝑖 ⇒ 𝐺′

𝑀 ∐
𝑖∈𝐼

𝐺𝑖 = ∐
𝑖∈𝐼

𝑀𝐺𝑖 ⇒ 𝐺′

∀𝑖 ∈ 𝐼 , 𝐺𝑖 ⇒ 𝐺′𝑖
∐
𝑖∈𝐼

𝑀𝐺𝑖 ⇒ ∐
𝑖∈𝐼

𝑀𝐺′𝑖

𝐺0 ⇒ ∐
𝑖∈𝐼

𝐺0,𝑖 𝐺1 ⇒ ∐
𝑗∈𝐽

𝐺1,𝑗 ∐
𝑖∈𝐼 ,𝑗∈𝐽

𝐺0,𝑖 × 𝐺1,𝑗 ⇒ 𝐺′

𝐺0 × 𝐺1 ⇒ ∐
𝑖∈𝐼

𝐺0,𝑖 × ∐
𝑗∈𝐽

𝐺1,𝑗 = ∐
𝑖∈𝐼 ,𝑗∈𝐽

𝐺0,𝑖 × 𝐺1,𝑗 ⇒ 𝐺′

𝐺0 ⇒ 𝐺′0 𝐺1 ⇒ 𝐺′1
𝐺0 × 𝐺1 ⇒ 𝐺′0 × 𝐺′1

(neither 𝐺′0 nor 𝐺′1 is a coproduct)

Figure 5. — Given a natural transformation 𝛿 ∶ 𝑀(𝜋0 × 𝜋1) ⇒ (𝑀𝜋0) × (𝑀𝜋1) and
a functor 𝐺 inductively built from grammar Γ1, we construct a natural transfor-
mation ̄𝛿 ∶ 𝐺 ⇒ 𝐻 where 𝐻 is polynomial.

jection 𝜋𝑏 , booleans and the according projections appear in the following definition

of auxiliary signatures; but here they are used to distinguish between actual input and

variables.

Definition 39 (auxiliary binding signature). An auxiliary binding signature (ABS) is a couple
(Σ†, ar†) where Σ† is a set at most countable of constructors, and ar† ∶ Σ† → (ℕ × 𝔹)∗
is an arity function.

As for BS and MBS, on defines term and quotient term functors for an ABS:

ℱΣ†(𝑌 ) ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=((𝑛1,𝑏1),…,(𝑛𝑘 ,𝑏𝑘))

𝑘
∏
𝑖=1

𝒱 𝑛𝑖 × 𝜋𝑏𝑖(𝒱 , 𝑌 )

𝒬Σ†(𝑌 ) ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=((𝑛1,𝑏1),…,(𝑛𝑘 ,𝑏𝑘))

𝑘
∏
𝑖=1

[𝒱 ]𝑛𝑖𝜋𝑏𝑖(𝒱 , 𝑌 )

as well as types of finite terms 𝒯Σ† ≔ 𝜇𝑌 .ℱΣ†𝑌 and of infinite terms 𝒯 ∞
Σ† ≔ 𝜈𝑌 .ℱΣ†𝑌 ,

truncations, an Arnold-Nivat metric, and α-equivalence. The “auxiliary” counterparts

to Lemma 19 and Theorem 22 follow:

■ 𝒯 ∞
Σ† is the metric completion of 𝒯Σ† ,

■ the nominal set 𝒯Σ†/=𝛼 is the initial algebra 𝜇𝑌 .𝒬Σ†𝑌 .
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Lemma 40. Given a MBS (Σ, ar), there exist an ABS (Σ†, ar†) and a commutative square

𝜇𝑋 .ℱΣ(𝑋 , −) ℱΣ†

𝜇𝑋 .𝒬Σ(𝑋 , −) 𝒬Σ†

↩→̄𝛿

←↠ ̄𝜃 ←↠ ̄𝜃†

⇐⇐∼

of natural transformations of 𝐍𝐨𝐦 → 𝐍𝐨𝐦 functors.

Proof. Consider the commutative square

𝒱 × (𝜋0 × 𝜋1) (𝒱 × 𝜋0) × (𝒱 × 𝜋1)

[𝒱 ](𝜋0 × 𝜋1) [𝒱 ]𝜋0 × [𝒱 ]𝜋1

↩→𝛿
←↠𝜃𝜋0×𝜋1 ←↠ 𝜃𝜋0×𝜃𝜋1

⇐ ⇐∼

of natural transformations of 𝐍𝐨𝐦 × 𝐍𝐨𝐦 → 𝐍𝐨𝐦 functors, where

■ 𝛿 ≔ (id𝒱 × 𝜋0) × (id𝒱 × 𝜋1),
■ 𝜃 ∶ (𝒱 × −) ⇒ [𝒱 ] is defined by a quotient as in [Kur+13, Def. 4.9 and eq. 5.14],

■ the isomorphism is given by the fact that [𝒱 ] preserves limits.

By Lemma 28 and Corollary 37 there are a countable set 𝐼† and families (𝑘†𝑖 ), (𝑚†
𝑖𝑗 ) and (𝑏†𝑖𝑗 )

such that the induced square of 𝐍𝐨𝐦 → 𝐍𝐨𝐦 functors

𝜇𝑋 .ℱΣ(𝑋 , −) 𝒱 +∐𝑖∈𝐼† ∏𝑘†𝑖
𝑗=1𝒱 𝑚†

𝑖𝑗 × 𝜋𝑏†𝑖𝑗 (𝒱 , −)

𝜇𝑋 .𝒬Σ(𝑋 , −) 𝒱 +∐𝑖∈𝐼† ∏𝑘†𝑖
𝑗=1[𝒱 ]𝑚†

𝑖𝑗 𝜋𝑏†𝑖𝑗 (𝒱 , −)

↩→̄𝛿

←

↠ ̄𝜃 ←↠ ̄𝜃†

⇐⇐∼

commutes, where ̄𝜃 and ̄𝜃† are inductively generated from 𝜃 as in [Kur+13, eq. 5.15]. The result
follows by taking Σ† ≔ 𝐼† and ∀𝑖 ∈ 𝐼†, ar†(𝑖) ≔ ((𝑚†

𝑖,1, 𝑏†𝑖,1), … , (𝑚†
𝑖,𝑘†𝑖

, 𝑏†𝑖,𝑘†𝑖 )). ◆

Fromnowon, take a fixedMBS (Σ, ar) and the associated ABS (Σ†, ar†) given by Lemma 40.

Lemma 41. There is a commutative square as follows in 𝐍𝐨𝐦:

𝒯Σ 𝒯Σ†

𝒯Σ/=𝛼 𝒯Σ†/=𝛼

↩ →𝑖

←↠𝑞 ←↠ 𝑞†

⇐⇐
Proof. We recall Notation 9, using which we define the following data:

■ ̄𝛿 , ̄𝜃 and ̄𝜃† as given by Lemma 40,

■ 𝑖0 ≔ id0 and 𝑖𝑛+1 ≔ ̄𝛿ℱ 𝑛
Σ†0 ∘ 𝜇ℱΣ𝑖𝑛,

■ 𝑞0 ≔ id0 and 𝑞𝑛+1 ≔ ̄𝜃𝜇𝒬𝑛Σ0 ∘ 𝜇ℱΣ𝑞𝑛,
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■ 𝑞†0 ≔ id0 and 𝑞†𝑛+1 ≔ ̄𝜃†𝒬𝑛
Σ†0

∘ ℱΣ†𝑞†𝑛 .
These arrows can be represented in the left part of the following diagram:

0 𝜇ℱΣ0 𝜇ℱ 2Σ 0 𝒯Σ

0 ℱΣ†0 ℱ 2
Σ†0 𝒯Σ†

0 𝜇𝒬Σ0 𝜇𝒬2Σ0 𝒯Σ/=𝛼

0 𝒬Σ†0 𝒬2
Σ†0 𝒯Σ†/=𝛼

⇐

⇐ 𝑞0
⇐⇐𝑖0

←→

←

↠ 𝑞1
↩→𝑖1

← →

←
↠ 𝑞2

↩→𝑖2

← →

←

↠ 𝑞

↩→𝑖← → ← → ← →

←

↠
𝑞†

⇐⇐

←→ ⇐⇐

← → ⇐⇐

← → ⇐⇐
⇐

⇐

𝑞†0

← →

←

↠

𝑞†1

← →

←

↠

𝑞†2

← →

(41.1)

All the top, bottom, front and rear squares commute by construction. The “transversal”

squares commute too, as we can show by induction on 𝑛:

𝜇ℱ 𝑛+1Σ 0 𝜇ℱΣ(ℱ 𝑛
Σ†0) ℱ 𝑛+1

Σ† 0

𝜇ℱΣ(𝜇𝒬𝑛Σ0) 𝜇ℱΣ(𝒬𝑛
Σ†0) ℱΣ†(𝒬𝑛

Σ†0)

𝜇𝒬𝑛+1Σ 0 𝜇𝒬Σ(𝒬𝑛
Σ†0) 𝒬𝑛+1

Σ† 0

↩ →𝜇ℱΣ𝑖𝑛

←↠𝜇ℱΣ𝑞𝑛 induction

↩ →
̄𝛿ℱ 𝑛
Σ† 0

←↠𝜇ℱΣ(𝑞†𝑛 ) naturality of ̄𝛿 ←↠ ℱΣ†𝑞
†𝑛

⇐ ⇐

←↠̄𝜃𝜇𝒬𝑛Σ0 naturality of ̄𝜃
↩ →̄𝛿𝒬𝑛Σ† 0

←↠ ̄𝜃𝒬𝑛Σ† 0 Lemma 40 ←↠ ̄𝜃†𝒬𝑛Σ† 0

⇐ ⇐ ⇐ ⇐

Thus, taking the colimits along the 𝜔-chains in diag. (41.1) gives rise to the desired term

algebras (by Lemma 1) and to arrows 𝑖, 𝑞 and 𝑞† forming the expected commutative square.

The injectivity of 𝑖 is a due to the preservation of injections by 𝜇ℱΣ. The surjectivity of 𝑞
and 𝑞† is shown in [Kur+13, § 5.4] (under the denotation [−]𝛼 , while 𝑞 denotes what we call
̄𝜃). ◆

Lemma 42. There are commutative squares as follows in 𝐒𝐞𝐭:

𝒯Σ 𝒯 ∞Σ

𝒯Σ† 𝒯 ∞
Σ†

↢→compl.

↩→𝑖 ↩→ 𝑖∞

↢→compl.

𝒯Σ/=𝛼 (𝒯Σ/=𝛼 )∞

𝒯Σ†/=𝛼 (𝒯Σ†/=𝛼 )∞

↢→compl.

⇐⇐ ⇐⇐

↢→compl.

Proof. Take again ̄𝛿 from Lemma 40 and define a sequence of injective arrows 𝑖∞0 ≔ id1 and
𝑖∞𝑛+1 ≔ ℱΣ† 𝑖∞𝑛 ∘ ̄𝛿𝜇ℱ 𝑛Σ 1 (injectivity follows from injectivity of ̄𝛿 and preservation throughℱΣ† ).
This gives rise to a sequence of commutative squares as in the left part of the following

diagram:

1 𝜇ℱΣ1 𝜇ℱ 2Σ 1 𝒯 ∞Σ 𝒯Σ

1 ℱΣ†1 ℱ 2
Σ†1 𝒯 ∞

Σ† 𝒯Σ†

⇐⇐ 𝑖∞0 ↩→ 𝑖∞1
←→

↩→ 𝑖∞2
←→

↩→ 𝑖∞
←→

↩→ 𝑖
↢→

←→ ←→ ←→ ↢→

The two 𝜔op-sequences have the given term coalgebras as limits (again by Lemma 1), from

the universal property of which we obtain an arrow 𝑖∞. It is injective: any 𝑥, 𝑥′ ∶ 𝑋 → 𝒯 ∞Σ
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such that 𝑖𝑥 = 𝑖𝑥′ induce identical cones over the ℱ 𝑛
Σ†1, thus over the ℱ 𝑛Σ 1 by injectivity of

the arrows 𝑖∞𝑛 , and we conclude to 𝑥 = 𝑥′ by universality of the limit.

What remains to prove is the commutativity of the right square. Notice that the projections

𝒯 ∞Σ → 𝜇ℱ 𝑛Σ 1 are the truncations ⌊−⌋𝑛, and they are preserved through the canonical isometry

𝒯Σ ↣ 𝒯 ∞Σ so that we also denote by ⌊−⌋𝑛 ∶ 𝒯Σ → 𝜇ℱ 𝑛Σ 1 the composed projections. Similarly,

the projections 𝒯Σ† → ℱ 𝑛
Σ†1 are the truncations ⌊−⌋

†
𝑛 of terms in 𝒯Σ† .

Thus, by the universal property of 𝒯 ∞
Σ† , it is enough to show that 𝑖∞𝑛 ∘ ⌊−⌋𝑛 = ⌊−⌋†𝑛 ∘ 𝑖 for all 𝑛.

We proceed by induction. For 𝑛 = 0 the commutation is immediate. For the inductive step,

let us show that the diagram

𝜇ℱ 𝑛+1Σ 1 𝒯Σ

𝜇ℱΣ𝒯Σ

ℱΣ†𝒯Σ†

ℱ 𝑛+1
Σ† 1 𝒯Σ†

↩

→

𝑖∞𝑛+1

↩

→

𝑖

←→ ⌊−⌋𝑛+1

←

→

𝜇ℱΣ⌊−⌋𝑛 ← →𝜉

←→ ̄𝛿𝒯Σ† ∘𝜇ℱΣ𝑖

←→ℱΣ† ⌊−⌋
†
𝑛

←

→𝜉†
←→

⌊−⌋†𝑛+1

commutes, where 𝜉 and 𝜉† denote the carrier arrows of the initial algebras.

Consider the following categorical presentation of the truncations:

𝜇ℱΣ𝒯Σ 𝜇ℱ 𝑛+1Σ 1

𝒯Σ 𝜇ℱ 𝑛Σ 1

← →𝜇ℱΣ⌊−⌋𝑛

←→𝜉 ←→ 𝜇ℱ 𝑛Σ !

← →⌊−⌋𝑛

and observe that 𝜇ℱ 𝑛+1Σ ! ∘ 𝜇ℱΣ(𝜇ℱΣ ⌊−⌋𝑛 ∘ 𝜉−1) = (𝜇ℱΣ ⌊−⌋𝑛 ∘ 𝜉−1) ∘ 𝜉 , thus by initiality

⌊−⌋𝑛+1 = 𝜇ℱΣ ⌊−⌋𝑛 ∘ 𝜉−1 i.e. the upper triangle commutes. A similar property holds for the

lower triangle. The left square commutes by the induction hypothis. To see that the right

square commutes too, translate the upper side of diag. (41.1) to the right and conclude by

initiality of 𝒯Σ and 𝒯Σ† .

This concludes the proof for the first desired diagram. The proof for the second is analogous

(or one can apply Lemma 41, using the fact that 𝑞 and 𝑞† are isometries). ◆

Lemma 43. There are commutative squares as follows in 𝐒𝐞𝐭:

𝒯Σ (𝒯 ∞Σ )fs

𝒯Σ† (𝒯 ∞
Σ†)fs

↢ →nom. compl.

↩→𝑖 ↩→

↢ →nom. compl.

𝒯Σ/=𝛼 (𝒯Σ/=𝛼 )∞fs

𝒯Σ†/=𝛼 (𝒯Σ†/=𝛼 )∞fs

↢ →nom. compl.

⇐⇐ ⇐⇐

↢ →nom. compl.

Proof. To prove Lemma 42, we showed that 𝑖 preserves the truncations, so it is an isometry.

Thus we can rewrite Lemma 41 as a commutative square of isometries in 𝐍𝐨𝐦, and perform
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nominal metric completion. From 𝑖we obtain the first desired square, and projecting through
𝑞 and 𝑞† produces the second one. ◆

Recall Definition 24 about free variables. It enjoys the following useful characterisation:

fv(𝑡) = ⋃𝑛∈ℕ fv𝑛(⌊𝑡⌋𝑛), where the fv𝑛 are defined by:

fv0 ∶ 1 → 𝒱
∗ ↦ 0

ℱΣ(𝜇ℱ 𝑛+1Σ 1, 𝜇ℱ 𝑛Σ 1) ℱΣ(𝒱 , 𝜇ℱ 𝑛Σ 1)

ℱΣ(𝒱 ,𝒱 )

𝜇ℱ 𝑛+1Σ 1 𝒱

←
→

←→

←→ ℱΣ(id,fv𝑛)

←→ f

← →fv𝑛+1

with the shorthand defined in Notation 9, as well as 𝒱 ≔ 𝒫fin(𝒱 ), and

f ∶ ℱΣ(𝒱 ,𝒱 ) → 𝒱
𝑥 ↦ {𝑥}

cons( ̄𝑥1.𝑉1, … , ̄𝑥𝑘 .𝑉𝑘) ↦ ⋃𝑘
𝑖=1 𝑉𝑖 ⧵ ̄𝑥𝑖.

Observe that fv𝑛+1 = ̄f ∘ 𝜇ℱΣ(fv𝑛), where ̄f is defined by the lower right square of the

following diagram:

ℱΣ(𝜇ℱ 𝑛+1Σ 1, 𝜇ℱ 𝑛Σ 1) ℱΣ(𝜇ℱΣ(𝒱 ), 𝜇ℱ 𝑛Σ 1) ℱΣ(𝒱 , 𝜇ℱ 𝑛Σ 1)

ℱΣ(𝜇ℱΣ(𝒱 ), 𝒱 ) ℱΣ(𝒱 ,𝒱 )

𝜇ℱ 𝑛+1Σ 1 𝜇ℱΣ(𝒱 ) 𝒱

←

→
← →ℱΣ(𝜇ℱΣ(fv𝑛),id)

←→ ℱΣ(id,fv𝑛)

←→ℱΣ( ̄f,id)

←→ ℱΣ(id,fv𝑛)

←→

← →ℱΣ( ̄f,id)

←→ f

← →𝜇ℱΣ(fv𝑛) ← →̄f

The upper right square commutes immediately, and the commutation of the left square

is a classical consequence of Lemma 1. The observation follows by initiality of 𝜇ℱ 𝑛+1Σ 1.
Notice that all this construction was performed in 𝐍𝐨𝐦, since it only involves finitely

supported 𝔖(𝒱 )-sets and equivariant maps5.

Similarly, free variables of terms in 𝒯 ∞
Σ† can be defined by the following construction

(which is much simpler, because there is only a 1-variable functor to deal with):

fv†(𝑡) ≔ ⋃
𝑛∈ℕ

fv†𝑛 (⌊𝑡⌋†𝑛 ),

5Also, replacing fwith s ∶ cons( ̄𝑥1.𝑉1, … , ̄𝑥𝑘 .𝑉𝑘) ↦ ⋃𝑘
𝑖=1 𝑉𝑖 yields another function supp ∶ 𝒯 ∞Σ → 𝒫 (𝒱 )

mapping a term to the set of all its variables, i.e. its support in the 𝔖(𝒱 )-set 𝒯 ∞Σ .
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where fv†𝑛 ∶ ℱ 𝑛
Σ† → 𝒱 is given by fv†0 ∶ ∗ ↦ 0 and fv†𝑛+1 ≔ ̄f† ∘ ℱΣ†(fv†𝑛 ), and

̄f† ∶ ℱΣ†𝒱 → 𝒱
𝑥 ↦ {𝑥}

cons( ̄𝑥1.𝑉1, … , ̄𝑥𝑘 .𝑉𝑘) ↦ ⋃𝑘
𝑖=1 𝑉𝑖 ⧵ ̄𝑥𝑖.

Lemma 44. fv = fv† ∘ 𝑖∞.
Proof. Thanks to Lemma 42 we only have to show that for all 𝑛, fv𝑛 = fv†𝑛 ∘ 𝑖∞𝑛 . We proceed

by induction on 𝑛. The base case is immediate. For the inductive step, consider the following

decomposition of our goal:

𝜇ℱ 𝑛+1Σ 1 𝜇ℱΣ𝒱 𝒱

𝜇ℱΣ(ℱ 𝑛
Σ†1) 𝜇ℱΣ𝒱 𝒱

ℱ 𝑛+1
Σ† 1 ℱΣ†𝒱 𝒱

← →𝜇ℱΣ(fv𝑛)

← →
fv𝑛+1

↩→ 𝜇ℱΣ𝑖∞𝑛
↩

→

𝜇ℱΣ𝑖∞𝑛+1

← →̄f

⇐⇐ ⇐⇐

← →𝜇ℱΣ(fv†𝑛 )

↩→ ̄𝛿ℱ 𝑛
Σ† 1

← →̄f

↩→ ̄𝛿𝒱

⇐⇐

← →ℱΣ† (fv
†
𝑛 )

← →
fv†𝑛+1

← →̄f†

The upper left square is the induction hypothesis. The upper right and lower left squares

commute immediately. The commutation of the lower right square can be showed by an

easy induction on 𝜇ℱΣ, using the rules of fig. 5. ◆

Now we have all the material to relate Theorem 26 to the similar result about Σ†, pro-
viding a more explicit proof of the theorem.

Theorem 45. The diagram of fig. 6 commutes.

Proof. We know from [Kur+13] that the rear face does, from which we can deduce that:

■ the big round “cube” commutes by Lemmas 41 and 42,

■ the left cube commutes by Lemmas 41 and 43, hence also the parallelepiped formed

by the two right cubes,

■ the top face of the right cube commutes by Lemma 44.

What remains to show is that (𝒯 ∞Σ )ffv/=𝛼 is equal to the three other vertices of the bottom

face of the middle cube. We can prove this:

■ Semantically, by straightforwardly applying [Kur+13, Thm. 5.34].

■ Syntactically, by showing the two inclusions (𝒯Σ/=𝛼 )∞fs ↪ (𝒯 ∞Σ )ffv/=𝛼 ↪ (𝒯 ∞
Σ† )ffv/=𝛼 .

For the first one, consider a finitely supported Cauchy sequence (𝔱𝑛)𝑛∈ℕ in 𝒯Σ/=𝛼 to-
gether with its limit 𝔱. There is a Cauchy sequence (𝑡𝑛)𝑛∈ℕ in 𝒯Σ such that 𝔱𝑛 = [𝑡𝑛]𝛼 ,
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𝒯Σ† (𝒯 ∞
Σ†)fs (𝒯 ∞

Σ†)ffv 𝒯 ∞
Σ†

𝒯Σ (𝒯 ∞Σ )fs (𝒯 ∞Σ )ffv 𝒯 ∞Σ

𝒯Σ†/=𝛼 (𝒯Σ†/=𝛼 )∞fs (𝒯 ∞
Σ†)ffv/=𝛼 (𝒯Σ†/=𝛼 )∞

𝒯Σ/=𝛼 (𝒯Σ/=𝛼 )∞fs (𝒯 ∞Σ )ffv/=𝛼 (𝒯Σ/=𝛼 )∞

← →
←

↠
↢ →

↩ →

←

→

↩ →

←

↠

←

→

← →

←

↠

↩→𝑖↢ →

↩ →
↩→ ↩ →

↩ →
↩ →𝑖∞

← →

↢ →

⇐ ⇐ ↩ →

← →

⇐ ⇐

↢ →

←

→

⇐ ⇐

⇐ ⇐

←

↠
↩ →

⇐ ⇐

←

→ ⇐ ⇐

Figure 6. —Commutation of metric completion and quotient by α-equivalence for

terms coming from a MBS are related to the same property for the associated ABS.

and a finite 𝑉 ⊂ 𝒱 such that ∀𝑛 ∈ ℕ, fv(𝑡𝑛) = fv(𝔱𝑛) = supp(𝔱𝑛) ⊆ 𝑉 . We obtain

𝑡 ≔ lim 𝑡𝑛 ∈ (𝒯 ∞Σ )ffv, and ∀𝑛 ∈ ℕ, 𝕕𝛼 (𝔱𝑛, [𝑡]𝛼 ) ⩽ 𝕕(𝑡𝑛, 𝑡) so 𝔱 = [𝑡]𝛼 ∈ (𝒯 ∞Σ )ffv/=𝛼 . The
second inclusion is straightforward.

In addition, (𝒯 ∞Σ )ffv being the desired pullback is due to the two-pullback lemma applied to

the faces of the right square: the rear face is a pullback by [Kur+13, Prop. 5.33], the top face is

a pullback too by an immediate verification, hence the front face is a pullback. ◆
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