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a-equivalence, the relation on A-terms obtained by renaming bound variables, is central
in A-calculus: it is crucially needed to define capture-avoiding substitution in a satisfac-
tory (i.e. total) manner, and thus B-reduction. Even though it has several well-known
treatments — via the classical “variable convention” [Bar84], or using “de Bruijn indices”
[dBru72] more suited to computer-assisted formalisations — the operation of quotienting
by a-equivalence was given a new canonicity by the introduction of nominal sets [GP02;

Pit13], which provide a categorical framework for renaming bound variables in terms.

In the infinitary A-calculi [Ken+97; Ber96], the precise definition of a-equivalence is not
as standard and straightforward, in particular because some issues arise from the pos-
sibility to encounter terms containing free occurrences of all the available variables.
Applying nominal techniques to the study of infinitary terms led Kurz, Petrisan, Severi,
and de Vries to establish a canonical, abstract framework for defining a-equivalence in

a coalgebraic setting [Kur+12; Kur+13].



They conclude their work by suggesting that this framework could be applied not only
to the “full” infinitary A-calculus A1 but also to its “mixed” inductive-coinductive vari-
ants, e.g. AL01 [Ken+97; Dal16; CV23]. Doing so is the point of this small fanfiction!. Our

contribution is twofold:

1. We provide an adapted framework for general “mixed” terms with binding by in-
troducing mixed binding signatures (MBs). The main difference in their categorical
treatment is that we replace 1-variable polynomial functors with 2-variable ones

(i.e. bifunctors).

2. We show that the proof of [Kur+13] can be easily adapted to this slightly more

general setting.

To do so, we start by recalling a few categorical notions, and we provide personal (if
not original) presentations of some basic results about bifunctors (section 1). Then we
present MBs as well as the term (co)algebras one can define on them; the two main kind
of operations we consider are metric completions (yielding infinitary terms) and quo-
tienting by a-equivalence, and unfortunately their commutation fails (section 2). This
is solved as in [Kur+13], by considering only infinitary terms with finitely many free
variables. a-equivalence classes of such terms enjoy a nominal (co)algebraic structure,

enabling us to formally define substitution by induction and coinduction (section 3).

Categorical preliminaries

We start with a few preliminaries, mostly about (co)algebras.

In all what follows and if not specified, the category C is either the category Set of sets
and functions, or the category Nom of nominal sets and equivariant maps (for a fixed
set 7 of variables?). We choose not to recall any basic definitions and properties about
nominal sets since almost all the nominal machinery remains hidden in this paper; we
refer to the excellent summary in [Kur+13, Sec. 4], from which we take all our notations,

and to the standard literature on the subject [Pit13].

By using that word, we want to make clear that we claim barely no originality in the leading ideas
of this work; we follow the very same path as [Kur+13], and only perform the necessary adaptions to lift

their results to an inductive-coinductive setting.
2S0 far, we do not precise the cardinality of 7°. In all what follows, 7" can be countable or uncountable,

if not specified.
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1.

1.2

Reminders on algebras and coalgebras

Before starting, recall a few definitions and facts about (co)algebras.

® Given an endofunctor F : C — C, an F-algebra (A, «) is an object A € C together
with an arrow ¢ : FA — A. An algebra morphism (A,@) — (B, ff) is an arrow
f + A— Bsuchthat fo Ff = f o in C. This defines a category of F-algebras.

m  When this category has an initial object, it is called the initial algebra of F and is
denoted by (uX.FX, foldp), or only uX.FX when there is no ambiguity”.

m Dualising all these definitions, one obtains a notion of terminal coalgebra for an

endofunctor F, denoted by vX.FX when it exists.

m A classical result called Lambek’s lemma [Lam68] states that the arrows supporting
initial algebras and terminal coalgebras are isomorphisms. This implies that an
initial algebra is a coalgebra, and that a terminal coalgebra is an algebra. As a

consequence, there is a canonical morphism pX.FX = vX.FX.

Let us also recall a famous result, first proved in [Poh73; Ada74], formalising the idea
that initial algebras extend the notion of fix-point of a function on a lattice (thus the
4 notation). We only state it for w-chains, but it holds for abitrary limit ordinals [for a
proof, see AMM18, Cor. 3.7]. Recall that F is said to be cocontinuous if it preserves colimits

of w-chains.

Lemma 1 (Adamek’s fix-point theorem). If C has colimits of w-chains and F : C — C is

cocontinous, then the colimit of the following diagram:

! F! F2!

0 —— F0 ——— F20

carries a structure of initial F-algebra. Informally, we write uX.FX = colim,y F"0.

In Set and in Nom all small limits and colimits exist, so the theorem (resp. its dual

statement) applies to any cocontinuous (resp. continuous) functor F.

Tree powers of bifunctors

When we apply Lemma 1 to a bifunctor, iterated applications of the functor appear; we

need a notation for such expressions. To do so, we use a binary tree representation, as

3As an initial object, the initial algebra of a functor is only defined up to isomorphism. We will keep
this implicit throughout this paper, even though we will use some = symbols to emphasize it from time

to time.



X/.\- I
S :
F¥ 7 = F(X,F(F(X,2),Y)) G3(X) = G* = G(G(G (X))
(a) (b)

Figure 1. — Tree powers of (a) a binary functor F, (b) an unary functor G.

/ N\ 7\
. . X .
/ N\ /N
. . .y
/ \ /7 \
F (X,Y) = F* ' = F(X,F(F(X,Y),Y))

Figure 2. — Notation F'(X,Y) for tree powers with fixed left and right arguments
X and Y, as in fig. 1b in the unary case.

in fig. 1a (this may be standard, though we found no reference). By analogy, the usual

powers of a 1-variable functor are integers but can be seen as unary trees, see fig. 1b.

Binary trees with leaves in C are inductively defined by:
t,u,... > BTree(C) := leaf(X) |node(t,u) (XeO)
and the tree powers are defined accordingly.

Notation 2 (tree powers, general version). Let F : Cx C — C be a bifunctor of a category
C. For t € BTree(C), the power F' is defined by:

Fleaf(X) =X Fnode(t,u) = F (Ft,Fu)

In practice, we will only be interested in powers where the left (resp. right) arguments,
or leaves, are all equal. This enables us to write the powers in a more usual fashion, as

in fig. 2. Formally, these powers are what we call sided binary trees.

Definition 3 (sided binary trees). Given subcategories D,E of C, the set of sided binary
trees with left (resp. right) leaves in D (resp. E) is defined by:

t,u,... > SBTree(D,E)
t',u’,... > SBTree’(D,E)

leaf(X) | SBTree’ (D, E) (X eD)
node(t, leaf(Y)) | node(t,t") (Y €E)

For C being the boolean category B = {0, 1}, we write SBTree := SBTree({0}, {1}).




1.3

Notation & (tree powers, sided version). For t € SBTree and X,Y € C, we write:

Fleaf(O)(X, Y) — Fleaf(X) =X
Fleaf(l)(X, Y) — Fleaf(Y) =Y
Frodet(x y) .= F (F(X,Y), F(X,Y))

as well as the shorthand F'X := F/(X, X).

We consider the canonical inclusion order C on binary trees. For trees in BTree(C), it is
inductively generated by leaf(X) C node(leaf(Y), leaf(Z)), for all X,Y,Z € C. For trees

in SBTree, this boils down to the two inclusions
leaf(0) C node(leaf(0), leaf(1)) C node(leaf(0), node(leaf(0), leaf(1))).

Notation 5 (directed colimits of tree powers). Take a directed set I C SBTree and consider

a C-endofunctor F. Then given images of the generators of C, i.e. two generator arrows
X — F(X,Y) - F(X,F(X,Y)) (5.1)

in C, tree powers define an [-indexed directed diagram in C. Explicitely:

I - C
t F{(X,Y)
n l
u FY(X,Y)

When it exists (and assuming that the chosen gnerator arrows are clear from the context),

the corresponding colimit will be denoted by colim,¢; F/(X,Y).

Remark 6. In Set (and in Nom), if F preserves inclusions and the generators are inclusions
X o F(X,Y) - F(X,F(X,Y)), then all the arrows in the diagram are inclusions. In

particular, this is the case of all the functors we handle in this paper.

(Co)algebras of bifunctors

In this part, we consider a bifunctor F : C x C — C cocontinuous in each variable. For
allY € C, Lemma 1 enables us to compute pX.F(X,Y) as the colimit of the following

diagram:

F(LY)

0 — F0.Y) =2 F(FO,Y),Y) ——2,

(1)

Let us rewrite this using Notation 5.



Definition 7. The set SBTree,, ; C SBTree of all sided binary trees with right depth bounded
by n is defined by*:

t,u,... > SBTree,; := leaf(0)|node(t, leaf(1))
Consider the diagram SBTree, ; — C generated by the unique arrow ! : 0 — F(0,Y).

The choice of another generator F(0,Y) — F(0, F(0,Y)) as in eq. (5.1) is not needed, since
F(0,F(0,Y)) ¢ SBTree,, ;. We obtain that

X.F(X,Y)= colim F0,Y).
a ( ) teSBTree,, ; ( )

Then, given f : Y = Y’, an arrow pX.F(X, f) is defined by:

0 —— F(0,Y) —— F(F(0,Y),Y) —— - uX.F(X,Y)
“ lF(O,f) lF(F(O,f),f) LHXFOC)
0 —— F(0,Y’) —— F(F(0,Y’),Y) —— - uX.F(X,Y")

One can easily check that this defines a functor uX.F(X,—) : C - C.

Remark 8. In general, one does not need Lemma 1 and its cocontinuity assumption to

define pX.F(X, f). The initiality of uX.F(X,Y) is sufficient:

F(uX.F(X,Y),Y) ----» F(uX.F(X,Y"),Y)
JFGXFCCY").f)
F(uX.F(X,Y"),Y’)

!
uX FX,Y) 22D X rox v

This diagram does indeed define the same functor pX.F(X, —).

Notation9. When F : C x C — C is a cocontinuous functor, we sometimes denote

uX.F(X,—) by pF, and its nth power by pF".

Since F is cocontinuous and colimits commute, uX.F(X, —) has an initial algebra (again
by Lemma 1). It is denoted by pY.uX.F(X,Y), and enjoys the following crucial lemma.
The categorical version we present is due to Lehmann and Smyth [LS81, Cor. 1 of Th. 4.2].

During the preparation of this work, we came up with another proof, presented in ??.

Lemma 10 (diagonal identity). Given a cocontinuous functor F : Cx C — C,
WY uX.F(X,Y) = uZ.F(Z,Z)

in the category of FA-algebras, where A : X — (X, X) is the diagonal functor.

*We could of course define SBTree,,, for any n, see appendix A.
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2.

Mixed binding signatures and mixed terms

In this section, we introduce mixed binding signatures as well as the finite and infinitary
terms arising from such a signature. Then we extend to this setting all the metric and
nominal structures one considers when dealing with ordinary binding signatures, and

we describe a problem similar to what [Kur+13] solves in the ordinary setting.

MBS and raw terms

Binding signatures [Plo90; FPT99] provide a general description of term (co)algebras with

binding operators. Let us quickly recall their main properties.

m A binding signature (Bs) is a couple (2, ar) where X is a set at most countable of
constructors, and ar : ¥ — N is a function indicating the binding arity of each

input of each constructor.
= Given a Bs (2, ar), its term functor 5 : C — C is defined by

k
FsX =V + H H‘W"ixX.

consey i=1
ar(cons)=(ny,...,n;)
m  The sets of raw (i.e. not quotiented by a-equivalence) finite and infinitary terms
on (2, ar) are then defined by I3 := pX.#y X and I5° := vX.%s X (in Set). Notice
that these (co)algebras always exist, thanks to the polynomial shape of Fs.

m A typical example is the signature:

=L@y ar():=(1)  ar(@):=(0,0)

such that ) is the algebra A of all finite A-terms, and ;" is the coalgebra A of
all (full) infinitary A-terms.

We want to tweak this definition in order to be able to design mixed inductive-coinductive
data types with binding. An elementary example of such a mixing (with no binding) is
the type of right-infinitary binary trees: the set of all infinitary binary trees such that
each infinite branch contains infinitely many right edges. This type can be defined as
vY.uX.1+4 X xY in Set. Our aim is to be able to express such a construction when some

constructors bind variables (and then investigate the quotient by a-equivalence).

Definition 11 (mixed binding signature). A mixed binding signature (MBs) is a couple (Z, ar)
where X is a set at most countable of constructors, and ar : ¥ — (N x B)” is an arity

function.



x €Ty ot €Ty » eIy

X, € 7™M X € VM >y, 1 € 9200 >, Ik € 9200

cons (Xy.ty, ..., X.ty) € Ty

for each cons € 3, having ar(cons) = ((ny, b,), ..., (ng, b))

Figure 3. — Formal system defining J5 for a MBs (2, ar). The simple rules are

inductive, the double one is coinductive; for similar systems, see [Dal16; CV23].

xeV MeA™® e MeA®  pMeA®l N e A
x € AT M e A0 A(x.M) e A%1 @(M,N) e A%1

Figure 4. — A simplified mixed formal system defining A%?.

B denotes the set of booleans: each input of each constructor is marked with a boolean
describing its (co)inductive behaviour. This intuition is driving the following definitions,

that allow to define mixed terms on a MBS.

Definition 12 (term functor of a mBs). The polynomial term functor associated to (, ar) is
the C-bifunctor %5 defined by:

k
Fs(X,Y) =7 + 11 17" x m(x. 7).
consex i=1
ar(cons)=((ny,b);....(ngbr))

Lemma 10 ensures that there is a unique notion of “fully initial” algebra on a bifunctor,

hence the definition of raw terms on a MBs.

Definition 13 (raw terms on a MBs). The sets I of raw finite terms and I of raw mixed

terms on (2, ar) are defined by:

gz = ,uZBVZ(Z, Z) gzoo = VY,UXLG}z(X, Y)

Existence of such (co)algebras is guaranteed by the polynomial shape of Fy, and will be
formally justified by Lemma 28.

Notation 14. We can describe J5° by means of a (mixed) formal system of derivation
rules, as proposed in fig. 3. We use the symbols »; and »; to distinguish between the
inductive and coinductive calls. »; is usually called the later modality [Nak00; App+07];
a derivation of »{ P is a derivation of P under an additional coinductive guard. The

modality », could be omitted, but we write it to keep the notations symmetric.




2.2

Example 15 (mixed infinitary A-terms). For a,b, c € B, the MmBs (2, ary,) is defined by:

Zp={h@r  arg(D)=(1a)  arg(@) = ((0,b),(0,0)).

For any a, b, ¢, 7). is the algebra A of finite A-terms and F,  is the coalgebra of abc-
infinitary A-terms. For instance, the 001-infinitary A-terms are described by fig. 4.

Metric completion

Take C to be Set. Following a standard path, we define the Arnold-Nivat metric [AN8O]
on both 5 and J5°. To do so, we use the following notion of truncation, adapted to a

mixed inductive-coinductive setting.

Definition 16 (truncation). Given an integer n € N and a term ¢ in either I3 or I3, the

mixed truncation at depth n of ¢ is the object [t],, defined by induction by:
t]o = *
[xJn+1 =X
lcons (.41, ..., Xl ) ],41 = cons (fl- [ )by 5o X lthnH—bk)

where b; = mar(cons);.

Notice that the definition is by double induction, on n and on t (even if the latter is taken
in 95°): in the inductive inputs of cons we proceed by induction on ¢, in its coinductive

inputs we proceed by induction on n.

Remark 17. We demurely called |t], an “object”: it can contain =, hence it is not really a
term in 5. When possible, we will implicitely keep considering truncations as terms
with an additional constant, and we will manipulate them in a way that should have an
obvious meaning. However, to be rigorous, |t],, should be described as an element of
(uX.F(X, ).

Definition 18 (Arnold-Nivat metric). The Arnold-Nivat metric on 5 and T ° is the map-
pingd : I3° x I5° — R, defined by

d(t,u) =inf{2™"|neN, |t], = |ul,}.

The unique notation is unambiguous, since the canonical inclusion Iy > J5° preserves

the truncations.

The following fact is a translation of [Bar93, Th. 3.2], using Lemma 10. It expresses the
equivalence of our coinductive definition of 75~ and the historical topological point of

view [Ken+97].

10



2.3

Lemma19. J5° is the Cauchy completion of J5 with respect to d. Furthermore, the

completion is carried by the canonical arrow Iy > J5°.

Example 20. The eight Arnold-Nivat metrics debe corresponding to the signatures from
Example 15 are exactly those considered in the original definition of infinitary A-calculi
[Ken+97]. Hence our coinductive definition of A% coincides with the historical, topo-

logical definition.

a-equivalence

a-equivalence is the equivalence relation generated on some term (co)algebra by renam-
ing all bound variables. Let us recall how this can be reformulated in a nominal setting

(for finite terms only, for the moment).
Given a Bs or a MBS (2, ar), the finite term algebra J5 can be endowed with a &(7")-

action - inductively defined by:

o-x = o(x) )
o-cons(x.ty,...) = cons(o(x)).0-t,...),
where permutations act pointwise on the sequences x;. This defines a nominal set (I, -).
The a-equivalence relation is then defined by:

o o _\k
(% 2) - t; =¢ (3 Z) - u; for fresh z),_;

X =g X cons (x;.t1, ... ) =4 cons (y;.uy,...)

where the permutation (%; Z;) is the composition of the transpositions (x; z;). This equiv-

alence relation is compatible with -, thus there is an induced nominal structure (75 /=, -).
Given a Bs (2, ar), one defines its quotient term functor by

k

Qs X =V + 11 [Tz 1x.

consex i=1
ar(cons)=(ny,...,n;)

where [7°] : Nom — Nom is the nominal abstraction functor. A key theorem by Gab-
bay and Pitts [GP02; Pit13, Th. 8.15] then entails that (75 /=,,-) is the nominal algebra
uX.@x X. This can be straightforwardly transported to our mixed setting.

Definition 21 (quotient term functor of a MmBs). The polynomial quotient term functor asso-
ciated to (2, ar) is the Nom-bifunctor @s defined by:

k
Qx(X.Y) =7 + 11 [ 11771, G0,
consex i=1
ar(cons)=((ny,b;),....(ng,br))

11



2.4

Theorem 22 (nominal algebraic types on a mBs). Given a mBs (3, ar), the following identi-

ties hold in Nom:
Iy, = pZ.Fs(2,2) Is/=a = 1Z.Q5(Z,2).

The first identity might seem tautologic because of the overloaded notation Fy; if we
distinguish between gget and 972N°m it becomes (,uZ.gzset(Z, Z),) = ,uZ.gzNom(Z, Z).

Towards commutation (or not)

For now, we have built the following diagram (in Set):

}IZAQ‘\X(Z. Z)
uZ. Fs(Z,72) VWouX.F5(X,Y)
‘72 9'200

l (1)

Ts/=a
,UZ.OX(Z, Z)

compl.

The sets are annotated with their descriptions as (co)algebras in Set and in Nom (U is the
forgetful functor Nom — Set). The horizontal arrow is the metric completion given by
Lemma 19, the vertical surjection is the quotient by a-equivalence given by Theorem 22.

Our goals are:

1. to complete the diagram into a commutative square,

2. to provide a concrete description of the nominal coalgebra vY.uX.0x(X,Y).
Let us keep applying the definitions of [Kur+13] to our mixed setting:

m Iy can be equipped with a €(7")-action in the same way as we did in eq. (1) for
the finitary setting, by just making the definition coinductive; however, this does
not define a nominal set any more since some infinitary terms are not finitely

supported (the support of a term being the set of the variables occurring in it).

m  As a consequence, we cannot directly use a nominal set structure to extend the

(&)

definition of a-equivalence to J5°. Instead, we lift the a-equivalence of J5 by

using the truncations: two mixed terms ¢, u € I are then said to be a-equivalent

ifvn e N, [t], =4 lul,.

= We also define a metric on 5 /=, as we did in Definition 18:
dg(t,u) :==inf{27™"|neN, |t], =, lul,}.
Then (75 /=,)" is the metric completion of Ty /=, with respect to d,,.

12



These constructions extend diag. (1) as follows:

uZ.Fs(Z,7)
(o774 L
,uZ.JGZ‘EZ, Z) compl. vYA,uXGAi'g(EX, Y)
Iy —> I

‘L (2)

gE/:a — (572/:0{)00
nz.Qs(Z,72)

?
The existence of an inclusion < is straightforward, but we would like an isomorphism
instead. Unfortunately, it is the case in general, unless the signature is trivial in the

following meaning.

Definition 23 (non-trivial MBs). A MBs (2, ar) is non-trivial if there are constructors lam,

node, dig € X such that:

1. lam has a binding input, i.e. y(ar(lam);) > 1 for some index i;
2. node has at least two inputs, i.e. ar(node) is of length greater than 2;

3. dig has a coinductive input, i.e. 7r;(ar(dig);) = 1 for some index i.

Without loss of generality, the required inputs are considered to be the first (i.e. i = 1 in

the conditions).

If the signature is trivial, it does not make sense to consider all the machinery defined
here: if there is no binder then =, amounts to equality, if there are only unary and

constant constructors then there is at most one variable in each term, and if there is

no coinductive constructor then the metric is discrete. In all three cases, (75" /=,) =

(T5/=¢)” for degenerate reasons.

Otherwise, the cardinality of 7" is determining, as Theorem 25 shows. Before stating it,

let us formally define the notion of free variable, that will be of use in the proof.

Definition 24 (free variables). Given a term t in T, the set fv(t) C 7" of its free variables

is defined by induction by:
k
fv(x) = {x} fv(cons(xy.ty, ..., Xi.by)) = U tv(t) \ . (24.1)
i=1
Fort € I5°, fv(t) := Upen TV (12]0)-

Theorem 25. Let (X, ar) be a non-trivial MBs. Then (75°/=,) = (I5/=,)" iff 7" is un-

countable.

13



3.1

Proof. When 7" = {x;|i € N} is countable, a counter-example for (2,,ar;;;) is the Cauchy
sequence of a-equivalence classes ([Ax;,.(xg) ... (%,_1)%,] 4 )nen Which has no limit in 757 /=,
[Kur+13, Ex. 5.20]. It can be generalised to any non-trivial (¥, ar): by non-triviality, there are
constructors lam, node, dig € X as in Definition 23, and we translate each Ax,.(x;) ... (x,_1)x,

into a term t, € I5° as follows:

m  Ax,.M is replaced with lam(x,.M, ... ) where the length of X, := (x,,, ..., x,,) is indicated
by ar(lam), and the other inputs of lam are filled arbitrarily,

m (%)M is replaced with node (%,.x;, dig(x,.M, ... ), ...) where the length of the X, are in-
dicated by ar(node) and ar(dig), and the omitted inputs are filled arbitrarily.

Again, ([t,],)nen is @ Cauchy sequence with no limit in 75°/=,.

Conversely, assume 7" is uncountable and consider a Cauchy sequence (t,) ey in I3 /=,.
For p,q € N big enough, d,(t,,t,) < 1 so the top-level constructor (or variable) of all terms

in t,, is ultimately constant. By mixed induction and coinduction:

m Ifitis a variable x, then limt, = [x],.

m Otherwise it is some cons € X with ar(cons) = ((n;,b;)),<i<x- Notice that if t =, u
then fv(t) = fv(u), so that the notation fv(t,) is unambiguous. From Lemma 1 we
can deduce that each fv(t,) is countable, hence so is |, fv(t,). Thus we can choose
distinct variables x; ; ¢ [, fv(t,), where i ranges over [1,k] and j over [1, 1], so that
£y = [cons(oy g5 oo s Xy Uy 1500 s X 15 o0 5 Xy Un )| fOT sSOME terms w3, ..., hy .

Take i € [1,k]. By construction, for all p,q € N we have d([u;], [ug;],) < 2d(t,, 1),
hence ([t,;],)nen is @ Cauchy sequence. By induction (if b; = 0) or coinduction (if
b; = 1), it has a limit [y], € I5°/=,,.

Finally, limt,, = [cons(xq 1, .., X1, U1 oo s X 15 -0 » Xy Ui ] *

Our first goal is only partially fulfilled: we have a commutative square only if 7" is un-
countable, which is not satisfactory in practice since implementation concerns suggest
to consider contably many variables. Our second goal (to describe vY.uX.0x(X,Y)) is
still to be addressed.

A coalgebra of a-equivalence classes

Nominal mixed types

The following structure is, once again, extended to the setting of mixed terms:

m Given a set X equipped with a &(7")-action, X is the subset of finitely supported

elements of X. It carries a nominal set structure. In particular (75" ) is the nom-
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inal set of the finitely supported raw terms in I5°, and (I3 /=, )s is the nominal

set of finitely supported a-equivalence classes in (T3 /=,).

m (I3 ) denotes the set of infinitary terms having finitely many free variables:
(T )ty = {t €Iy’ ’fv(t) is ﬁnlte}

Recall also that given a nominal metric space (i.e. a nominal space equipped with an
equivariant metric), its nominal metric completion is built by adding the limits of all
finitely supported Cauchy sequences (i.e. sequences of terms such that their supports

are all contained in a common finite set).

Let us state the main theorem of our fanfiction without delay, as well as its crucial corol-

lary.

Theorem 26 (nominal mixed terms on a MBs). Let mBs (2, ar) be a mBs. Then:

1. The nominal set (75 )ss is the nominal metric completion of I, as well as the

terminal coalgebra vY.uX.F(X,Y).

2. Similarly, the nominal set (I3 /=,)s; is the nominal metric completion of I3 /=,

as well as the terminal coalgebra vY.uX.0Qx(X,Y).

3. The following diagram commutes in Set:

compl.
uZ.Fs(Z,72) / ‘\
uz. JZ(Z 2) VY X F5(X,Y) VY. pX L/«Z(X Y)

c?;?;l (T — (T )y —
l | l l
Jz/ ¢ — (Jz/ a)fs T3t/ =0 — (Ts/=2)™

com }I
compl.

Corollary 27. The nominal set (75" )y /= is the terminal coalgebra vY.uX.Qx(X,Y).

These results are direct counterparts to Remark 5.30, Theorem 5.34 and Corollary 5.35
from [Kur+13], and the diagram we provide is exactly the same as their diagram 5.20.
The only difference here is that we take the terminal coalgebra of pX.#5(X,—) and
uX.0x(X,—), instead of F5 and @y, themselves. What we need to show is that all the

technical developments of [Kur+13] remain applicable.

Lemma28. Let F : Nom x Nom — Nom be polynomial in the following sense: there

are a countable set I and families {k; e N|i € I}, {m,l € N| 1<j<k, }and{bij € [B’ i1€<lj<k,» },
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where B = {0, 1}, such that

k
F=k+]]]] My,

iel j=1

where 7 and ; denote the projections, M : Nom — Nom is a fixed functor commuting
to directed colimits, and K is a fixed constant functor. Then pX.F(X, —) exists and can

be obtained from the following grammar (up to isomorphism):
G = id|K|MG|[[G|GxG T,
where | | denotes at most countable coproducts.

Proof. Remember that the forgetful functor U : Nom — Set creates all colimits and finite

limits, so that all the proof can be worked out as in Set.

A functor F of the given shape commutes to directed colimits, so Lemma 1 ensures that
pX .F(X,—) exists and can be described as a colimit. More precisely, uX.F(X, —) = colimcgpryee, , F'(0, ).

In addition, it easy to show that for any directed diagram

D : J - Set
i<j » XCX

there is an isomorphism colim;ey X; = [ ],y <X, \Uiai XJ) Here ] is just isomorphic to w, so

we can simplify the expression:

pXFX,—)= ] (Frecetieio, )\ F'(0,-)). (28.1)

teSBTree,, ;

Let us show by induction on t € SBTree,,; that the terms of this coproduct can be obtained

from grammar T';. For the base case,

ki
Fnode(leaf(o),leaf(l))(0’ _) \ Fleaf(O)(O’ _) — (K + H H Mmij”b,-,) \ 0

el j=1
k k
=k+]] of| [Tmm™i-)|. (28.2)
iel | j=1 =1
by=0 ) \b;=1

2

For the inductive step, take t = node(u, leaf(1)), then

prode(tleaf(D)(g )\ F'(0,-)

k; k;
= (K + H HMmifyrbij (F'(0,-), —)) \ (K + H H M™im, (F*(0,-), _)>

i€l j=1 iel j=1
ki
— H H Mm,-/-ﬂbij (Fnode(u,leaf(l))(o, —)\ F¥(0,-), _) (28.3)
iel j=1
and we can conclude by induction. *
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3.2

Using the lemma, the proof of Theorem 26 and Corollary 27 is straightforward: taking
K to be the constant functor 7, and M to be either 7" x — or [7’], we just showed
that uX.%5(X, —) and pX.Qx (X, —) fulfill the requirements of [Kur+13, Prop. 5.6]. All the

expected results follow.

During the writing of this paper, we came up with an explicit construction of our mixed
terms as purely coinductive terms on a modified binding signature. Even if it is not

useful for our purposes, we provide this constuction in appendix B, just in case.

(Co)inductive substitution on mixed types

We fix a MBs (2, ar), and we write J,;° for vY.uX.Q5(X,Y). We want to define capture-

avoiding substitution as a map subst : J,° x 7 x J,° — J,° in Nom.

As in [Kur+13, Def. 6.2], we whall use the corecursion principle of [Mos01, Lem. 2.1].
However, this is not enough any more: we also have to scan the inductive structure
separating two coinductive constructors and, since this structure may contain variables

(in fact it contains them all), perform substitution recursively on it too.

Notation 29. When we consider a coproduct A + B, we write inl and inr for the left and
right injections. Similary, we write invar and incons the injections in initial algebras of

the form pX.Qx(X,Y). We omit the composition by fold for the sake of readability.

Notation30. 745 : [7]A x B — [7](A x B) is the strength defined by ((x)a,b) ~
(z)({x) @z, D), see [Pit13, § 4.3] for the notations. In particular we write 7 for 7ge 3\ ge
and 1, : [V "I xV x Ty = V(T xV xT,°) for its iteration.

Definition 31 (capture-avoiding substitution). The capture-avoiding substitution is the map
subst defined by:

unfoldx%x%‘x’l
pX.Qs(X, T2 )XV xTy° unfold

d

X.0x(X,id+subst)
UX.Os(X, TS+ TE XY x T) A2

IUX'@Z(Xi 570(00)
where h is recursively defined by:

(invar(x), x,u) — pX.Qs(X, inl)(unfold(u))

(invar(y), x,u) + invar(y)

17
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(incons ((Yo,l) <y0’n°>t0’) ) X, u) > pX.Qx(X, inr) (incons ( (30,00 -+ {Yo.ny Mlto, X, ), ))
Y1) Yin T, ((V1,1) -+ Y10 )15 X, 1)

under the condition that Vj € [1,n9], yp; # x and y,; ¢ fv(u), and where ¢, (resp. t;)
stands for any subterm in an inductive (resp. coinductive) position of cons, i.e. 7;(ar(cons);) =

i

The validity of the recursive definition is a consequence of Pitts’ recursion theorem for
nominal algebras [Pit06, Thm. 5.1] (see also [Pit13, § 8.5] for lighter presentation). The
condition on the variables y ; expresses exactly the “freshness condition for binders”,
i.e. the fact that these variables must not occur somewhere else in the definition of h.

Pitts’ theorem states that this is enough to define a (total) finitely supported function A.

Example 32. Let us describe what h looks like when 7,7 is A?«fo 1=,

(x,x,N) = pX.Q001(X, in)(unfold(N))
(. x,N) =y fory # x
(A(y-M), x, N) = pX.Q001(X,inr)(A(y.h(M, x, N))) for y # x and y ¢ fv(N)
(@(Mp, My), x, N) = pX.@)001(X, inr) (@ (h(My, x, N), (My, x,N))) ,

where we ommitted the injections. Finally we obtain the expected recursive-corecursive

definition of capture-avoiding substitution:

subst(x,x,N) := N
subst(x, y,N) :== y fory # x
subst(A(y.M), x, N) := A(y.subst(M, x, N)) for y # x and y ¢ fv(N)
subst(@(M,, M;), x, N) := @(subst(M,, x, N), subst(My, x, N)).
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A pedestrian proof of the Diagonal identity

In this appendix, we give a fix-point-based proof of the Diagonal identity. It seems quite

natural, but we could not find any reference for this proof.

As already exposed, the categorical Diagonal identity is due to Lehmann and Smyth
[LS81, Cor. 1 of Th. 4.2] whose proof relies on Beki¢’s lemma [Bek84]. The identity also
corresponds to the “double-dagger property” in the setting of iteration and Conway the-
ories [BE93]. We take the name “Diagonal identity” from [SP00], where a categorical

account of these theories is given.

Let us start with an elementary example.

Example 33. Consider the endofunctor of Set defined by F(X,Y) = 1+ X x Y. The initial
algebra uX.F(X,Y)is usually described as the set list(Y) of lists of element of Y; such a list
is either the empty list [], or some h:t with h € Y and ¢ € list(Y). Hence pY.uX.F(X,Y)
is the (smallest) set of lists of elements of itself; but this is a description of the set of all

binary trees, which in turn is usually defined as uX.F(X, X).

The isomorphism relies on the following observation. Thinking of F as of the constructor

of trees, lists of elements of Y can be seen as left combs with right leaves in Y:

/N
. N

v Vo

and every binary tree can be seen as such a comb where the leaves y; are themselves
binary trees. This amounts to the conversion between the depth-first and breadth-first

searches of the tree. Formally, the isomorphism is:

¢: BTree(1) — puY.list(Y) ¢~ pY list(Y) — BTree(1)
leaf(%) — [] [l ~ leaf(x)
node(t,u) — ¢(u):=¢(t) h:t — node(¢7'(t), ¢~ '(h))

This shows that pY . uX.F(X,Y) = pX.F(X,X). It easy to see that they are not only
isomorphic as sets, but also as algebras, i.e. the isomorphism preserves the inductive
structure of the sets — which is what is interesting, since two countable sets are always

isomorphic!

Notice that left combs,i.e. elements of uX.F(X,Y), are exactly the same thing as the
elements of the set SBTree,, ;(1,Y) from Definition 7. This observation motivates an

extended definition, as well as the following lemma.
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Definition 34. Forn € N, the SBTree,,,, C SBTree of all sided binary trees with right depth
bounded by n is defined by:

to,up,... >  SBTree,, = leaf(0),
tj,uy,... >  SBTree,; := leaf(0)|node(t,leaf(1)),
th+2,Unigs... > SBTree, i = leaf(0) | node(t, s, leaf(1)) | node(t, s, tyiq).

Lemma 35. SBTree = colim,¢y SBTree,, ,.

Proof. Reformulating Example 33,

SBTree = pY.SBTree,,;(1,Y)

= cgliNm (SBTree, (1, —))n 0 using Lemma 1
= cg&m SBTree,, ,(1,0) by an easy induction
= cgliNm SBTree, ,(1,1) by shifting the index
= ngwm SBTree,, ,. *

We also need the following definition, providing a notation for the tree powers arising

when applying Lemma 1 to some pZ.F(Z, Z).

Definition 36. The set CSBTree C SBTree of all complete sided binary trees is defined by:

t,u,... > CSBTree := leaf(0)|node(leaf(0),leaf(1)) | node(t,t).

This leads us to the desired identity.

Lemma 10 (diagonal identity). Given a cocontinuous functor F : Cx C — C,
wY.uX F(X,Y)=pZ.F(Z,Z)

in the category of FA-algebras, where A : X — (X, X) is the diagonal functor.

Proof. Denote by G the functor uX.F(X,—). It is cocontinuous because F is cocontinuous
and colimits comute, so we can apply Lemma 1 and obtain pY.uX.F(X,Y) = pY.GY =

colim, ¢ G™0.
Then, we show by induction on n that G"0 = colimycsprree,,, F'0. Indeed:
s G0 =0 = F* 0 = colim,cspryee, , F'0,

= if G"0 = colimyespryree, , F'0 then:

G"10 = uX.F(X,G"0) = uX.F (X, colim Ft0>

teSBTree,, ,

= li X.F (X, Flo
Slm pX.F (X, F0)
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= colim colim F" (0,F0)
teSBTree,, , t’€SBTree,, ;

= colim F*0.
u€SBTree,, ;14

Hence, pY.uX.F(X,Y) = colim,ey colimyesprree, , F'0. Recall the final remark of Example 33:
colim,ey SBTree,,, = SBTree. Thus, we finally obtain pY.uX.F(X,Y) = colim;espryee F'0.

On the other hand, pX.F(X, X) = colim;ccsprree F'0, again by Lemma 1. Writing colim;ecsprree F'0
is made possible by Notation 5 applied to the unique

! F(0,})
0 —— F(0,0) — F(0, F(0,0)).

The injections corresponding to these colimits are denoted by i, : F'0 — colimccsprree F'0
and j, : F'0 — colimcsprree F'0. Since CSBTree C SBTree, there is a unique ¢ such that for
all t € CSBTree, the diagram:

uX.F(X, X)

/ (10.1)

1

I
Fio 9

1

1

x 4

pY uX.F(X,Y)
commutes. However, observe that for all ¢+ € SBTree, there is a u € CSBTree such that ¢t C u;
hence, since the colimits are directed, ¢ is in fact an isomorphism.

To show that this isomorphism (in C) carries an isomorphism of FA-algebras, we have to

check that the diagram:

FAGUX.F(X, X)) —22, FA(uY uX.F(X,Y))

l“ l s (10.2)
pX.F(X, X) — 1Y pX.F(X,Y)

commutes. Let us recall the construction of the arrows « and f carrying the FA-algebra
structure of the types. We have:
FA(uX.F(X, X)) = FA( colim Ffo) = colim FAF'0 = colim F"°%(tq

teCSBTree teCSBTree teCSBTree

with the injections FAi,. Since { node(t,t) |t € CSBTree } C CSBTree, there is a cone

(Fnode(t,t)o _M) ‘uXF(X, X)) 5
teCSBTree

so there is a unique « such that for all t € CSBTree,

inode(t) = @ © FA,. (10.3)
Similarly there is a unique f such that for all t € SBTree,

jnode(t,t) = ﬁ o FAj,. (10.4)

23



Now, on the diagonal of the square above, observe that { node(t,t) |t € CSBTree} C SBTree

so there is also a unique 4 making the following diagram commute for all t € CSBTree:

FA(uX.F(X, X))

I

Fnode(t,t)o i h
I
I

uY uX . F(X,Y)
However, we already have two such arrows:

Poae FAiy = Poinggers) DY (10.3) B o FApoFNi, = foFAj by (10.1)
= jnode(t,t) by (10.1) = jnode(t,t) by (10.4)

hence ¢ o ¢ = f o FA¢, that is to say diag. (10.2) commutes and ¢ is an isomorphism of
FA-algebras. *

Mixed terms as purely coinductive terms

In this appendix we build, from any MBs (2, ar), an “auxiliary” signature (3, ar"). This
signature is almost a Bs and is such that the a-equivalence classes of mixed terms on X are
exactly the a-equivalence classes of coinductive terms on =7, the latter being computed

as in [Kur+13].

Recall Lemma 28: from a polynomial bifunctor F, we were able to show that uX.F(X, —)
is obtained from grammar grammar I';. The following corollary enables us to turn it

into a (1-variable) polynomial.

Corollary 37. Given a functor F depending on a functor M : Nom — Nom as in Lemma 28,
any natural transformation § : M(sy x 17) = (M) x (M) induces a natural transfor-

mation
k!

5 uX.F(X,—) =K+ H HMm{fﬂb{j(K, -)
iel” j=1

for some countable set I’ and families (k}), (mi’j) and (b{j) not depending on M. In addi-

tion, this operation is natural in M.

Proof. Given eq. (28.1) as in the proof of Lemma 28, we show by induction that for all ¢ €
SBTree,, ;, there are a countable set I, and families (,), (n,4) and (c,,) such that there is a

natural transformation

lP
8t prodetiea o )\ F0,-) = [T M, (K,=). (37.1)
pel q=1
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We proceed by induction on t. The base case is immediate from eq. (28.2). For the inductive
case, take t = node(u, leaf(1)) and assume that eq. (37.1) holds for u. We start again from
eq. (28.3) and build & as follows:

Fnode(t,leaf(o))(o, _) N F[(O, _)

ki
= [T T mmim, (Frodetieato, -y \ F*(0,-), -) (28.3)
iel j=1
ki ki
— HM i (Fnode(u leaf(l))(o )\F”(O )) HMmU( )
iel | j=1 =1
B;=0 b=1
k
=11 H HHM"”” (K,-) HM’””( ) (37.2)
i€l | j=1 pel, g=1 Jj=1
=0 B=1
k; L k;
= H MM anqﬂcpq(K, _) H Mmz/( )
iel | j=1 g=1
Pel, \ b;=0
ki
=LI| T1 wmmm,, (K, [] Mo (k.- (373)
iel | 1<j<k; j=1
pel, 1<q<lp bi/-:()
;=0

where eq. (37.2) results from a single application of §“ and eq. (37.3) results from [, applica-
tions of § for each i, p and j such that b; = 0.

In addition, the term Fnode(teaf(OleafD) contains a term K, so § = [iesprree, , ¢ has the ex-

pected shape. It is easy to verify that all this construction is furthermore natural in M.

Remark 38. The lemma and its corollary can be easily extended to any F built from the

following grammar:
G := 7T0|7T1|K|MF|HF|FXF (rz)

In this case, the construction of § from § can be represented by the set of rules of fig. 5.

What Corollary 37 states in particular is that, starting from the term functor %y asso-
ciated to a MBs, we can turn pX.Fs(X,—) into a polynomial functor that almost looks
like the term functor associated to some Bs. The only difference with the behaviour of
a regular Bs is that some constructors can only bind variables (instead of subterms). We

give a formal meaning to this observation by introducing auxiliary signatures.

Exactly as each input of each constructor of a MBs is endowed with a boolean b € B de-

scribing its (co)inductive behaviour and appearing in the term functors through a pro-

25



id=1id K=K
HMGI = Gl
MG, x MG, = G’ iel
Mid = Mid MK = MK M(GyxGy)= MGy x MG, = G MIIG; = [IMG = G’
icl iel
G =11G,; G =116 I GixG =G
viel, G= G i€l jeJ icLje]
[IMG = [IMG  GyxG; =Gy x[1Gj= I GyixGj=G
icl icl il icJ icljeJ

Gy=Gy; Gy =G
Gy x Gy = Gy x G]

(neither Gj nor Gj is a coproduct)

Figure 5. — Given a natural transformation § : M(my x ;) = (M) x (M) and
a functor G inductively built from grammar I';, we construct a natural transfor-

mation § : G = H where H is polynomial.

jection m,, booleans and the according projections appear in the following definition
of auxiliary signatures; but here they are used to distinguish between actual input and

variables.

Definition 39 (auxiliary binding signature). An auxiliary binding signature (ABs) is a couple
(Z-'L, ar") where 31 is a set at most countable of constructors, and ar’ : =T — (N x B)*

is an arity function.

As for Bs and MBS, on defines term and quotient term functors for an ABs:

k
Fsr(Y) = + 11 [[7"xm7.v)
consex i=1
ar(cons)=((ny,by),....(n.,by))
k
05t (Y) =7 + 11 [Tz 1m,7.v)

conse 1

i=
ar(cons)=((ny,b);....(ng,by))

as well as types of finite terms Jy+ := pY.F5+Y and of infinite terms I3Y = vY.F51Y,
truncations, an Arnold-Nivat metric, and a-equivalence. The “auxiliary” counterparts

to Lemma 19 and Theorem 22 follow:

B I

ot is the metric completion of Js+,

m the nominal set I3+ /=, is the initial algebra pyY.Qs+Y.
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Lemma 40. Given a MBs (3, ar), there exist an aBs (X7, ar’) and a commutative square

X Fy(X,-) 2 Fy

1 b
pX.Q5(X,—) == Qs+
of natural transformations of Nom — Nom functors.

Proof. Consider the commutative square

YV x (my x m) 2 (¥ x 1) x (¥ x17)

eﬂoxnll i@,ﬂ <6,

(7 1(7y x ) ==—= [V, x |7 |y
of natural transformations of Nom x Nom — Nom functors, where

m = (idy x 1) x (dy x my),
m 0 : (7 x—)=[7]is defined by a quotient as in [Kur+13, Def. 4.9 and eq. 5.14],
m the isomorphism is given by the fact that [7"] preserves limits.

By Lemma 28 and Corollary 37 there are a countable set I and families (k:), (m;]r-) and (b;; )

such that the induced square of Nom — Nom functors

5 K 1
[JX.gZ(X, —) — 7 + HieIT Hj:l VALY ﬂb;(%’ —)

| Js

- Al .
/JX.@E(X, —) — 7+ Hieﬁ H];l[%] Un'b;(%', -)

commutes, where § and ' are inductively generated from 6 as in [Kur+13, eq. 5.15]. The result

follows by taking 27 := I and vi € I, arT(i) == ((mjl, b;rl), s (mTkh b_TkT)). .
’ > ik ik

From now on, take a fixed mBs (2, ar) and the associated ABS (ZT, arT) given by Lemma 40.

Lemma 41. There is a commutative square as follows in Nom:

i
T, —— Tt

b

'C]Z/:a '72*/:0(

Proof. We recall Notation 9, using which we define the following data:

= §,0and @' as given by Lemma 40,

| iO = ldO and in+1 = SgnTO ° ﬂgzin,
%

" o = idg and guy1 = Oug20 © HFsGns
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m g =idgand g,y = m;To ° gﬁqﬂ:-

These arrows can be represented in the left part of the following diagram:

0 — UF=0 ;19220 LTI > Ty .
L i i o i
N\ | N T
0 ———— F5+10 97;0 EUUUOUUPRPI o > Tyt
1 q
9 4 lql s 2 4 . i p (41.1)
0 —[[— p@s0 SN ,u@%O e | > Ty /=4 :
\ N AN D N
0 ————— @50 @;TO BT > 9‘2+/:a

All the top, bottom, front and rear squares commute by construction. The “transversal”

squares commute too, as we can show by induction on n:

; 8. o
petlo —— 20 WFS(F0) d F2i0
ﬂ%qnl induction 1 Fs(qh )l naturality of & l%*q’j
pFs(u@30) pF(@3:0) ¢ dazso Fsr(@3:0)
%gol naturality of 0 l%;jo Lemma 40 ié;&o
p@%o 1Q5(@2,0) @st'o

Thus, taking the colimits along the w-chains in diag. (41.1) gives rise to the desired term
algebras (by Lemma 1) and to arrows i, g and g* forming the expected commutative square.
The injectivity of i is a due to the preservation of injections by uFs. The surjectivity of g

and g is shown in [Kur+13, § 5.4] (under the denotation [—],, while ¢ denotes what we call

0). .

Lemma 42. There are commutative squares as follows in Set:

compl.

Ty —— Ty Ts/=a = (Ts/=a)”

(O ll
compl. compl.

'C]ZT “07207? 927/:0( ’ > (927/:05)00

Proof. Take again & from Lemma 40 and define a sequence of injective arrows iy’ := id; and
iny1 == Fxtiy © _'ugznl (injectivity follows from injectivity of § and preservation through F+).

This gives rise to a sequence of commutative squares as in the left part of the following

diagram:
1 /19721 ’ug,”gl D - 9‘2"0 — 9‘2
r
]llo IIT l’? :i°° [i
v
1 Fsil (0;22*1 G - 9”20;’ —— Tyt

The two w°P-sequences have the given term coalgebras as limits (again by Lemma 1), from

the universal property of which we obtain an arrow i. It is injective: any x,x" : X - J5°
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such that ix = ix” induce identical cones over the #;1, thus over the %51 by injectivity of

the arrows i;’, and we conclude to x = x” by universality of the limit.

What remains to prove is the commutativity of the right square. Notice that the projections
I5? — pFs1are the truncations | —|,,, and they are preserved through the canonical isometry
Is = T3 so that we also denote by |—|, : T3 — pF'1the composed projections. Similarly,

the projections I3+ — %1 are the truncations [—JZ of terms in Jy+.

Thus, by the universal property of 73, it is enough to show that i;? o -], = [—JZ oi for all n.

We proceed by induction. For n = 0 the commutation is immediate. For the inductive step,

let us show that the diagram

+1 o
:u'C}TZn 1 />, Is
. _— ¢ N
H El Jn — /
pFsTs,
i, lggz’f opFsi i
FstTst
Ftl=h £
/ > \
Fyi Tyt

e
commutes, where & and ¢7 denote the carrier arrows of the initial algebras.
Consider the following categorical presentation of the truncations:

.ugZ [_Jn

pFsTy ~==-===- > pFgH
¢ 1/1%" !
R S—

and observe that uF&™ o uFs(uFs, |—|, o 1) = (uF5 =], ° £1) o &, thus by initiality
|~ lps1 = pFs |=], o €' ie. the upper triangle commutes. A similar property holds for the
lower triangle. The left square commutes by the induction hypothis. To see that the right
square commutes too, translate the upper side of diag. (41.1) to the right and conclude by
initiality of 75 and J5+.

This concludes the proof for the first desired diagram. The proof for the second is analogous

(or one can apply Lemma 41, using the fact that ¢ and g are isometries). *

Lemma 43. There are commutative squares as follows in Set:

nom. compl. nom. compl.
——— (T Ty/meo—— (T3/=R

| | l|

nom. compl. nom. compl.
st >—————— g;?)fs 927‘/:0( —_ (9‘27/:(1)?;)

X

™

N

Proof. To prove Lemma 42, we showed that i preserves the truncations, so it is an isometry.

Thus we can rewrite Lemma 41 as a commutative square of isometries in Nom, and perform
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nominal metric completion. From i we obtain the first desired square, and projecting through

g and ¢ produces the second one. *

Recall Definition 24 about free variables. It enjoys the following useful characterisation:

tv(t) = Upen fvn(12],), where the fv, are defined by:

Fs (UFTH, pFL1) —=--> F (T, pFI1)
_ ld’z(lden)
vy 1 - 7 ~
* > 0 277
lf
‘ujn+11 ______f\i”il_____a %N

with the shorthand defined in Notation 9, as well as 7 = Pin(7"), and

f o F (V) N 7
X - {x}

k
cons(X.Vy, ..., 5. Vi) = Uiz Vi \ %

Observe that fv,; = fo uFs(fv,), where f is defined by the lower right square of the

following diagram:

Fy(pgt11, ) ZEEEND g (g ), prer) 2D g (7, )
l%(id,fv,,) lgz(id,fvn)
F (s (), 7) - 200, g T T
l f
P 200 1T (F) —mmmmme A > F

The upper right square commutes immediately, and the commutation of the left square
is a classical consequence of Lemma 1. The observation follows by initiality of ,ugznﬂ 1.
Notice that all this construction was performed in Nom, since it only involves finitely

supported &(%)-sets and equivariant maps°.

Similarly, free variables of terms in 37 can be defined by the following construction

(which is much simpler, because there is only a 1-variable functor to deal with):

@ = | (el

neN

> Also, replacing fwith s : cons(%,.V,, ..., %.V}) — UL V; yields another function supp : I3° — P(7")
mapping a term to the set of all its variables, i.e. its support in the &(7")-set T3°.
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where fv;r : 972”T — 7 is given by fvg : %+ 0and val i=fTo ng(fv:f), and
1?*- : 3‘721% - %N
x > {x}

cons(x1.Vy, ..., 5. Vi) = Uf;l Vi x.

Lemma 44. fv = fvT 0.

Proof. Thanks to Lemma 42 we only have to show that for all n, fv,, = fv:f o iy’. We proceed
by induction on n. The base case is immediate. For the inductive step, consider the following

decomposition of our goal:

4y
L 15 (£,) T : e
J# ll ll
nFsiva | pFs(Fh1) ﬂ WFY — 7
N
972”;'1 ) Fyi(fv,) 972T %-v = %

\HT

n+1
The upper left square is the induction hypothesis. The upper right and lower left squares
commute immediately. The commutation of the lower right square can be showed by an

easy induction on p%s, using the rules of fig. 5. *

Now we have all the material to relate Theorem 26 to the similar result about ZT, pro-

viding a more explicit proof of the theorem.

Theorem 45. The diagram of fig. 6 commutes.

Proof. We know from [Kur+13] that the rear face does, from which we can deduce that:

m the big round “cube” commutes by Lemmas 41 and 42,

m the left cube commutes by Lemmas 41 and 43, hence also the parallelepiped formed

by the two right cubes,

m the top face of the right cube commutes by Lemma 44.

What remains to show is that (75°)s, /=, is equal to the three other vertices of the bottom

face of the middle cube. We can prove this:

m Semantically, by straightforwardly applying [Kur+13, Thm. 5.34].

= Syntactically, by showing the two inclusions (75 /=) < (I3 )it /=a < (T3t ite/ =
For the first one, consider a finitely supported Cauchy sequence (t,),en in T3 /=, to-

gether with its limit t. There is a Cauchy sequence (t,),en in I3 such that t, = [t,],,
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] ) o

)

(T3 s ———— (I3 it Ty

[ TIsil/=a —— |— (Txt/=0)ss =—|=—= Ig)iw/=a« — |— (Txt/=a)™
/ 7\ 7 ~ e

(‘Cjzoo)ffv/:a - (‘072/:(1)00

Figure 6. — Commutation of metric completion and quotient by a-equivalence for

terms coming from a MBs are related to the same property for the associated ABs.

and a finite V. C 7 such that vn € N, fv(t,) = fv(t,) = supp(t,) € V. We obtain
t == lim t, € (‘%oo)ffv’ and Vn € N, d]a(tn: [t]a) < d](tmt) sot = [t](x € (%m)ffv/za' The

second inclusion is straightforward.

In addition, (J5" )¢, being the desired pullback is due to the two-pullback lemma applied to
the faces of the right square: the rear face is a pullback by [Kur+13, Prop. 5.33], the top face is

a pullback too by an immediate verification, hence the front face is a pullback. *
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