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Abstract
Although the λI-calculus is a natural fragment of the λ-calculus, obtained by forbidding the erasure,
its equational theories did not receive much attention. The reason is that all proper denotational
models studied in the literature equate all non-normalizable λI-terms, whence the associated theory
is not very informative. The goal of this paper is to introduce a previously unknown theory of the
λI-calculus, induced by a notion of evaluation trees that we call ‘memory trees’. The memory tree of
a λI-term is an annotated version of its Böhm tree, remembering all free variables that are hidden
within its meaningless subtrees, or pushed into infinity along its infinite branches.

We develop the associated theories of program approximation: the first approach—more classic—
is based on finite trees and continuity, the second adapts Ehrhard and Regnier’s Taylor expansion.
We then prove a Commutation Theorem stating that the normal form of the Taylor expansion of a
λI-term coincides with the Taylor expansion of its memory tree. As a corollary, we obtain that the
equality induced by memory trees is compatible with abstraction and application. We conclude by
discussing the cases of Lévy-Longo and Berarducci trees, and generalizations to the full λ-calculus.

2012 ACM Subject Classification Theory of computation → Rewrite systems; Theory of computation
→ Lambda calculus; Theory of computation → Denotational semantics

Keywords and phrases λ-calculus, program approximation, Taylor expansion, λI-calculus, persistent
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1 Introduction

In the pioneering article “The calculi of lambda-conversion” [12] Alonzo Church introduced
the λ-calculus together with its fragment without weakening, called the λI-calculus, where each
abstraction must bind at least one occurrence of a variable. Historically, the λI-calculus has
proven to be a useful framework for establishing results such as the finiteness of developments
and standardization, which were successfully proven for the full λ-calculus only decades later.
Despite that, in the last forty years there are no groundbreaking advances in its study.

The study of models and theories of λ-calculus flourished in the 1970s [4] and remained
central in theoretical computer science for decades [5]. Although the equational theories of
λ-calculus, called λ-theories, form a complete lattice of cardinality 2ℵ0 [31], only a handful
are of interest to computer scientists. Most articles focus on λ-theories generated through
some notion of ‘evaluation tree’ of a λ-term, which means that two λ-terms are equated in
the theory exactly when their evaluation trees coincide. The definitions of evaluation trees
present in the literature follow the same pattern: they collect in a possibly infinite tree all
stable portions of the output coming out from the computation, and replace the subterms
that are considered meaningless by a constant ⊥, representing the lack of information. By
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modifying the notions of ‘stable’ and ‘meaningless’, one obtains Böhm trees [3], possibly
endowed with some form of extensionality [40, 25], Lévy-Longo trees [29, 30] and Berarducci
trees [7]. In the modern language of infinitary term rewriting systems, these trees can be
seen as the transfinite normal forms of infinitary λ-calculi [21, 13]. Another popular method
for defining λ-theories is via observational equivalences [35]: two λ-terms are equivalent if
they display the same behaviour whenever plugged in any context. For instance, the theory
of Scott’s D∞ model [39] captures the maximal consistent observational equivalence [24, 45].

Since the λ-calculus is a conservative extension of the λI-calculus, every theory of the
former is also a theory of the latter, namely a λI-theory, while the converse does not hold.
A typical example is the λI-theory HI generated by equating all λI-terms that are not β-
normalizing. The maximal consistent observational equivalence Hη

I is similar, except for the
fact that it is extensional. Note that equating all λ-terms without a β-normal form gives
rise to an inconsistent λ-theory, but in the context of λI-calculus it is consistent and arises
naturally: all ‘proper’ denotational models of the λI-calculus induce either HI or Hη

I [23]. This
is somewhat disappointing, since models and theories are most valuable when they capture
non-trivial operational properties of programs, and normalization is relatively elementary in
this setting. In this paper we are going to introduce a new (proper) λI-theory, induced by a
notion of evaluation trees inspired by Böhm trees, but explicitly designed for λI-terms.

Böhm trees and Taylor expansion for the λI-calculus. An important feature of Böhm
trees is that, because of their coinductive nature, they are capable of pushing some subterms
into infinity. Consider for instance a λI-term M satisfying

Mxf →→β f(Mxf) →→β f(f(Mxf)) →→β f(f(f(Mxf))) →→β fn(Mxf) →→β · · ·

then the Böhm tree of Mxf is the ‘limit’ of this infinite reduction: fω = f(f(f(· · · ))).
Observe that x is ‘persistent’ in the sense that it is never erased along any finite reduction,
but is forgotten at the limit. We say that x is pushed into infinity in the Böhm tree of Mxf .
To some extent, also the variable f is pushed into infinity, but it occurs infinitely often in fω.
The variable x can also disappear because it is hidden behind a meaningless term like Ω. For
instance, the Böhm tree of the λI-term N = Ωx is just ⊥ and we say that x is left behind.

As a consequence there are λI-terms, like λxf.M and λxy.y(Ωx), whose Böhm tree is
not a λI-tree [4, Def. 10.1.26] since the variable x is abstracted, but does not appear in the
tree. This shows that Böhm trees are not well-suited for the λI-calculus, and the question of
whether other notions of trees can model λI-terms in a more faithful way naturally arises.

In this paper we introduce a notion of Böhm trees keeping tracks of the variables
persistently occurring along each possibly infinite path, or left behind a meaningless subterm.
We call them memory trees as they remember all the variables present in the terms generating
them, even if these variables are never actually used in their evaluations. This is obtained by
simply annotating such variables on the branches of the Böhm tree, and on its ⊥-nodes, but
bares interesting consequences: since memory trees are invariant under β-conversion, showing
that two terms have distinct memory trees becomes a way of separating them modulo =β .

Once the coinductive definition of memory trees is given (Definition 10), we develop the
corresponding theory of program approximation based on finite trees. Perhaps surprisingly,
in the finite approximants, the only variable annotations that are actually required are those
on the constant ⊥, as all other labels can be reconstructed when taking their supremum.
Our main result in this setting is the Approximation Theorem 21 stating that the memory
tree of a λI-term is uniquely determined by the (directed) set of all its finite approximants.

Inspired by quantitative semantics of linear logics, Ehrhard and Regnier proposed a theory
of program approximation for regular λ-terms based on Taylor expansion [18, 20]. A λ-term
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is approximated by a possibly infinite power-series of programs living in a completely linear
resource calculus, where no resource can be duplicated or erased along the computation. This
theory is linked to Böhm trees by a Commutation Theorem [19] stating that the normal
form of the Taylor expansion of a λ-term is equal to the Taylor expansion of its Böhm tree.

The second part of our paper is devoted to explore the question of whether it is possible
to define a Taylor expansion for the λI-calculus capturing the memory tree equality. In
Section 4 we design a λI-resource calculus with memory, mixing linear and non-linear features.
Our terms are either applied to non-empty bags (finite multiset) of non-duplicable resources,
or to an empty bag 1X annotated with a set X of variables (the non-linear parts of the
terms). The reduction of a resource term t preserves its free variables fv(t): if the reduction
is valid then t consumes all its linear resources and each variable is recorded in some labels,
otherwise an exception is thrown and t reduces to an empty program 0X , where X = fv(t).

First we prove that the resource calculus so-obtained is confluent and strongly normalizing,
then we use it as the target language of a Taylor expansion with memory, capable of
approximating both λI-terms and memory trees. Our main result is that the Commutation
Theorem from [19] extends to this setting: the normal form of the Taylor expansion with
memory of a λI-term always exists and is equal to the Taylor expansion with memory of
its memory tree (Theorem 39). As consequences (Corollaries 45 and 46), we obtain that:
1) The equality induced on λI-terms by memory trees coincides with the equality induced
by the normalized Taylor expansion with memory; 2) The equality induced by memory
trees is compatible with application and abstraction, in the sense of the λI-calculus, and
it is therefore a λI-theory. We consider this work a first step in a broader line of research,
which we discuss further in the conclusion of the paper. In particular, we aim to extend our
formalism to the full λ-calculus and explore its applicability to other kinds of trees.

Related works

On the syntactic side, the λI-calculus can be translated into MELL proofnets without
weakening studied in [14, 15]. Our memory trees can be presented as labelled Böhm trees,
and therefore share similarities with Melliès’s (infinitary) λ-terms ‘with boundaries’, whose
branches are annotated by booleans [34]. However, our labels are describing additional points
occurring at transfinite positions, a phenomenon reminiscent of the non-monotonic pre-fixed
point construction defined in [6]. They can also be seen as an instances of the transfinite terms
considered in [28], but simpler, because no reduction is performed at transfinite positions.
Thus, memory trees should correspond to normal forms of an infinitary labelled λI-calculus,
just like Böhm trees are the normal forms of the infinitary λ-calculus [27]. We wonder
whether a clever translation of the λI-calculus into the process calculus in [16] would allow
us to retrieve the memory trees and the associated Taylor expansion, in which case our
Commutation Theorem might become an instance of their general construction.

Concerning denotational semantics, certain relevant intersection type systems [42, 22, 1]
can be used to represent models of the λI-calculus, as they describe reflexive objects in the
smcc of cpos and strict functions [26]. In [23], the authors show that the model introduced
in [17] is fully abstract for the λI-theory Hη

I . The results in [15] suggest that the relational
semantics, endowed with the comonad of finite non-empty multisets, contains models whose
theory is either HI or Hη

I . No filter model or relational graph model can induce the memory
tree equality, since they equate all λ-terms having the same Böhm tree [38, 8]. However, the
relational model E defined in [9] using the comonad of finite multisets with possibly infinite
coefficients, gives hope since it separates Mxf from Myf , and Ωx from Ωy, when x ̸= y.
This category appears to be the most promising for finding models capturing memory trees.
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2 Preliminaries

We recall some basic notions and results concerning the λ-calculus, and its fragment without
weakening known as the λI-calculus. For more information, we refer to Barendregt’s book [4].

2.1 The λ-calculus, in a nutshell
Let us fix an infinite set V of variables. The set Λ of λ-terms is defined by induction

Λ ∋ M, N ::= x | λx.M | MN (for x ∈ V)

We assume that application associates on the left, and has higher precedence than abstraction.
E.g., λx.λy.λz.xyz stands for λx.(λy.(λz.(xy)z)). We may write λx⃗.M for λx1. . . . λxn.M ,
and Mn(N) for M(M(· · · M(N) · · · )), n times. When n = 0, we get λx⃗.M = Mn(N) = M .

The set fv(M) of free variables of M is defined as usual, and we say that M is closed
whenever fv(M) = ∅. Hereafter, λ-terms are considered modulo α-conversion (see [4, §2.1]).

▶ Example 1. The λ-terms below are used throughout the paper to construct examples:

I := λx.x, K := λxy.x, F := λxy.y, B := λfgx.f(g(x)), D := λx.xx, Ω := DD.

The λ-term I is the identity, K, F are the projections, B is the composition, D is the diagonal
and Ω a looping term. The pairing of M, N is encoded as [M, N ] := λx.xMN , for x fresh.

The β-reduction →β is generated by the rule (λx.M)N → M [N/x], where (λx.M)N is called
a β-redex and M [N/x] stands for the capture-free substitution of N for all free occurrences
of x in M . We let →→β (resp. =β) be the reflexive-transitive (and symmetric) closure of →β .
We say that M is in β-normal form (β-nf) if M does not contain any β-redex, and that M

has a β-nf if M →→β N , for some N in β-nf. Since →β is confluent, such N must be unique.
▶ Remark 2. Any λ-term M can be written in one of the following forms: either M =
λx⃗.yM1 · · · Mk, in which case M is called a head normal form (hnf) and y its head variable;
or M = λx⃗.(λy.P )QM1 · · · Mk, where (λy.P )Q is referred to as its head redex.
The head reduction →h is the restriction of →β obtained by contracting the head redex.

▶ Definition 3. A λ-term Y is a fixed-point combinator (fpc) if it satisfies Y x =β x(Y x).

We recall Curry’s combinator Y and define, for all l ∈ V, Polonsky’s Θl and Klop’s L l [33].

Df := λx.f(xx), Y := λf.Df Df , V := λvlf.f(vvlf), Θl := VVl, L l := λe.BYBel. (1)

It is easy to check that Y and Θl are fpcs. Regarding the Bible L l, which owes its name to
its distinctive spelling, we get L lx =β BYBxl =β Y(Bx)l =β Bx(Y(Bx))l =β x(Y(Bx)l) =β

x(L lx). Note that the variable l remains in a passive position along the reduction of L l (and
of Θl), therefore LN := L l[N/l] (resp. ΘN := Θl[N/l]) remains an fpc, for all N ∈ Λ.

Although fpcs Y are not β-normalizable, they differ from Ω since they produce increasing
stable amounts of information along reduction: Y →→β λf.fY1 →→β λf.fn(Yn) →→β · · · .
Barendregt introduced a notion of ‘evaluation tree’ to capture this infinitary behaviour [3].

▶ Definition 4. The Böhm tree BT(M) of a λ-term M is coinductively defined as follows.
1. If M has a hnf, that is M →→h λx1 . . . xn.yM1 · · · Mk, then

BT(M) := λx1 . . . xn. y

BT(M1) . . . BT(Mk)
2. BT(M) := ⊥, otherwise. The constant ⊥ represents the absolute lack of information.
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▶ Example 5. Using the terms from Example 1 and (1), let us construct some Böhm trees.
(i) If M has a β-normal form N then, up to isomorphism, BT(M) = N . E.g., BT(DI) = I.
(ii) Since Ω and YK have no hnf, we get BT(Ω) = BT(YK) = ⊥.
(iii) If Y is an fpc, then BT(Y ) = λf.f(f(f(· · · ))). Thus, BT(Y) = BT(L l) = BT(Θl).
(iv) Using the fpc Y, one can define λ-terms Ex, Ox satisfying Ex =β [Ω, [Ωx, Ex]] and

Ox =β [Ωx, [Ω, Ox]]. These two λ-terms both construct a ‘stream’ [M1, [M2, [M3, [· · · ]]]],
but the former places Ωx at even positions and Ω at odd ones, while the latter does
the converse. This difference is however forgotten in their Böhm trees:

BT(Ex) = BT(Ox) = [⊥, [⊥, [⊥, [⊥, [ · · · ]]]]] (inline depiction of a tree)

(v) Check that, given R = λylx.x(y(xl)), we have BT(YRl) = λx0.x0(λx1.x1(λx2.x2(· · · ))).

The Böhm tree equality induces an equivalence on λ-terms: M =B N iff BT(M) = BT(N).
As shown in [29, 46], B is a λ-theory because it contains =β and is compatible with abstraction
and application: M =B M ′ entails λx.M =B λx.M ′, MN =B M ′N and NM =B NM ′.

2.2 The λI-calculus
The set ΛI of λI-terms is the subset of Λ consisting of those λ-terms in which every abstraction
binds at least one occurrence of the abstracted variable. Note that →β induces a reduction
on ΛI since M ∈ ΛI and M →β N entail N ∈ ΛI. In other words, the property of being a
λI-term is preserved by →β . Similarly, the λI-calculus inherits from λ-calculus all the notions
previously defined like head reduction, Böhm trees, etc. For convenience, we consider an
alternative definition of ΛI simultaneously defining λI-terms and their sets of free variables.

▶ Definition 6. (i) For all X ⊆ V, ΛI(X) is defined as the smallest subset of Λ such that:

x ∈ ΛI({x})
M ∈ ΛI(X) x ∈ X

λx.M ∈ ΛI(X − {x})
M ∈ ΛI(X) N ∈ ΛI(Y )

MN ∈ ΛI(X ∪ Y )

(ii) Finally, the set of all λI-terms is given by the disjoint union ΛI =
∐

X⊆V ΛI(X).

▶ Remark 7. (i) Note that M ∈ ΛI(X) means that M is a λI-term such that fv(M) = X.
As a consequence, if M ∈ ΛI(X) then the set X must be finite.

(ii) Each set ΛI(X) is closed under β-conversion.
(iii) Our examples I, B, D, Ω, Y,L l, Θl, Ex, Ox, YRl are λI-terms, while K, F, YK /∈ ΛI.

▶ Definition 8. A λI-theory T is given by an equivalence =T ⊆ Λ2
I containing β-conversion

and compatible with application and abstraction. In the context of λI-calculus, the compatibility
with abstraction becomes: M =T M ′ and x ∈ fv(M) ∩ fv(M ′) imply λx.M =T λx.M ′.

The only subtlety in the definition above stands in the side condition on the compatibility
with abstraction. However, this small difference has significant consequences: e.g., the theory
axiomatized by equating all terms without a β-nf is consistent as a λI-theory, but inconsistent
as a λ-theory. The following theorem collects the main properties of the λI-calculus.

▶ Theorem 9. (i) Every computable numerical function is λI-definable [4, Thm. 9.2.16].
(ii) Strong and weak β-normalization coincide for the λI-calculus [4, Thm. 11.3.4].
(iii) Every λ-theory is also a λI-theory, while the converse does not hold.

By (iii), Böhm trees induce a λI-theory, but we argue that this theory does not respect
the spirit of ΛI. E.g., the variable l is never erased along the reduction of, say, L l, but it
disappears in its Böhm tree. Using the terminology of [4], one says that l is pushed to infinity
in BT(L l). This shows that the Böhm tree of the λI-term λl.L l ∈ ΛI is not a λI-tree: the
outer λ-abstraction ‘λl’ does not bind any free occurrence of l in BT(L l) = λf.f(f(f( · · · ))).
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λx1.x1MT(Ex) =

⊥∅ λx2.x2

⊥{x} λx3.x3

⊥∅

∅ {x}

{x} {x}

∅ {x}

λx1.x1MT(Ox) =

⊥{x} λx2.x2

⊥∅ λx3.x3

⊥{x}

{x} {x}

∅ {x}

{x} {x}

λx0.x0MT(YRl) =

λx1.x1

λx2.x2

{l, x0}

{l, x0, x1}

{l, x0, x1, x2}

Figure 1 Examples of memory trees of λI-terms.

3 Memory trees

We have seen that Böhm trees are not well-suited for representing λI-terms faithfully, because
variables that are never erased along the reduction are forgotten (i.e., pushed into infinity).
We now introduce a notion of evaluation tree that records all variables that are pushed along
each path, ensuring that none are forgotten, whether they remain in passive position or not.

3.1 The coinductive definition
For every finite set X ⊆ V, written X ⊆f V, we introduce a constant ⊥X representing any
looping M ∈ ΛI(X). Intuitively, the memory tree of a λI-term M is obtained from BT(M)
by annotating each subtree (also ⊥) with the free variables of the λ-term that generated it.

▶ Definition 10. The memory tree of a term M ∈ ΛI(X) is coinductively defined as follows:
(i) If M →→h λx1 . . . xn.yM1 · · · Mk with y ∈ X ∪ {x⃗}, Mi ∈ ΛI(Xi) (for 1 ≤ i ≤ k), then

MT(M) := λx1 . . . xn.y

MT(M1) . . . MT(Mk)
X1 Xk

(ii) MT(M) := ⊥X , otherwise. Recall that X = fv(M), since M ∈ ΛI(X).

We sometimes use an inline presentation of memory trees, by introducing application
symbols annotated with the sets Xi, as in λx1 . . . xn.y ·X1 T1 · · ·Xk Tk.

▶ Example 11. (i) MT(I) = λx.x, MT(B) = λx.x ·{x} x, MT(B) = λfgx.f ·{g,x} (g ·{x} x).
(ii) MT(Ω) = MT(λy.Ωy) = ⊥∅, MT(Ωx) = ⊥{x}. More generally: MT(Ωx⃗) = ⊥{x1,...,xn}.
(iii) MT(Y) = λf.f ·{f} (f ·{f} (f ·{f} ( · · · ))). In MT(L l) the variable l becomes visible:
(iv) MT(L l) = MT(Θl) = λf.f ·{f,l} (f ·{f,l} (f ·{f,l} ( · · · ))).
(v) Other examples of memory trees are depicted in Figure 1. The justification behind

MT(YRl) is that YRl =β λx0.x0((YR)(x0l)) =β λx0.x0(λx1.x1((YR)(x1(x0l)))) =β · · · .

▶ Lemma 12. If M ∈ ΛI has a β-nf N , then there is an isomorphism MT(M) ∼= N .

Proof. Intuitively, since N is finite, it is possible to reconstruct all the labels in MT(M).
Formally, proceed by induction on the structure of MT(M) for (⇒), and of N for (⇐). ◀

▶ Remark 13. (i) For all closed fpcs Y ∈ ΛI, we have MT(Y ) = MT(Y) ∼= BT(Y).
(ii) We have seen MT(L l) = MT(Θl), while MT(Y) ̸= MT(L l) ̸= MT(Θx) when x ̸= l.
(iii) The memory trees of Ex and Ox are now distinguished: MT(Ex) ̸= MT(Ox).
(iv) The interest of MT(YR) is that it pushes into infinity an increasing amount of variables.

So—at the limit—infinitely many variables are pushed into infinity (but only l is free).

We are going to show that memory trees are invariant under β-reduction (Prop. 20 plus
Thm. 21), and that the equality induced on λI-terms is a λI-theory (Corollary 46).
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3.2 The associated approximation theory
We introduce a theory of program approximation that captures memory trees, by adapting the
well-established approach originally developed for Böhm trees [29, 46] (see also [4, Ch. 14]).
We start by defining the approximants with memory, corresponding to finite memory trees.

▶ Definition 14. (i) The set of approximants with memory is Am :=
∐

X⊆fV Am(X),
where Am(X) is defined by (for Ai ∈ Am(Xi), Xi ⊆ X, y ∈ X ∪ {x⃗} and x⃗ ∈

⋃k
i=1 Xi):

Am(X) ∋ A ::= ⊥X | λx1 . . . xn.yA1 · · · Ak

(ii) We define ⊑ ⊆ A2
m as the least partial order closed under the following rules:

A ∈ Am(X)
⊥X ⊑ A

Ai ⊑ A′
i Ai, A′

i ∈ Am(Xi) for all 1 ≤ i ≤ k x⃗ ∈ {y} ∪
( ⋃k

i=1 Xi

)
λx1 . . . xn.y A1 · · · Ak ⊑ λx1 . . . xn.y A′

1 · · · A′
k

Each (Am(X), ⊑) is a pointed poset (partially ordered set) with bottom element ⊥X ,
while the poset (Am, ⊑) is not pointed because it has countably many minimal elements.
Note that we do not annotate the application symbol in A ∈ Am, since the labels in its
⊥-nodes carry enough information to reconstruct the finite memory tree associated with A.

▶ Lemma 15. There is a bijection between Am and the set of finite memory trees of λI-terms.

We now give the recipe to compute the set of approximants with memory of a λI-term.

▶ Definition 16. (i) The direct approximant of M ∈ ΛI(X) is given by:

ωm(M) :=
{

λx1 . . . xn.y ωm(M1) · · · ωm(Mk), if M = λx1 . . . xn.yM1 · · · Mk,

⊥X , otherwise.

(ii) The set Appm(M) of approximants with memory of M ∈ ΛI is defined by:

Appm(M) := {A ∈ Am | ∃N ∈ ΛI . M →→β N and A ⊑ ωm(N)}

▶ Remark 17. For all M ∈ ΛI(X), we have ωm(M) ∈ Am(X) and Appm(M) ⊆ Am(X).

▶ Example 18. (i) Appm(D) = {⊥∅, λx.x⊥∅, D}, Appm(Ω) = {⊥∅}, Appm(Ωx) = {⊥{x}}.
(ii) Appm(Y) = {⊥∅}∪{λf.fn(⊥∅) | n ∈ N}, Appm(L l) = {⊥{l}}∪{λf.fn(⊥{l}) | n ∈ N}.
(iii) Appm(YRl) = {⊥{l}, λx0.x0(⊥{x0,l}), λx0.x0(λx1.x1(⊥{x0,x1,l})), . . .}.

▶ Lemma 19. (i) For every M, N ∈ ΛI, M →β N entails ωm(M) ⊑ ωm(N).
(ii) For all M ∈ ΛI(X), Appm(M) is an ideal of the poset (Am(X), ⊑). More precisely:

a. non-emptiness: ⊥X ∈ Appm(M);
b. downward closure: A ∈ Appm(M) and A′ ⊑ A imply A′ ∈ Appm(M);
c. directedness: ∀A1, A2 ∈ Appm(M), ∃A3 ∈ Appm(M) such that A1 ⊑ A3 ⊒ A2.

Proof. (i) By an easy induction on the structure of M ∈ ΛI(X), using Remarks 2 and 7.
(ii) (a) and (b) are trivial. For (c), define ⊔ by setting: ⊥X ⊔ A = A ⊔ ⊥X = A, x ⊔ x = x,

if A1, A′
1 and A2, A′

2 are compatible, then (λx.A1) ⊔ (λx.A′
1) = λx.(A1 ⊔ A′

1) and
A1A2 ⊔ A′

1A′
2 = (A1 ⊔ A′

1)(A2 ⊔ A′
2). Check that A3 = A1 ⊔ A2 is their supremum. ◀

The next result shows that β-convertible terms share the same the set of approximants.
▶ Proposition 20. Let M, N ∈ ΛI(X). If M →β N , then Appm(M) = Appm(N).

Proof. By confluence of →β , using Lemma 19(i). ◀
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▶ Theorem 21. There is a bijection A(·) between the set of memory trees and the set of
approximants of λI-terms satisfying A(MT(M)) = Appm(M), for all M ∈ ΛI.

Proof. From MT(M) to Appm(M). Let MT(M)⋆ be the set of all finite subtrees of MT(M),
where each truncated subtree T is replaced by ⊥fv(T ). By Lemma 15, MT(M)⋆ ∼= Appm(M).

From Appm(M) to MT(M). For every finite path σ in MT(M), there is an A ∈ Appm(M)
representing MT(M) along σ. Conclude since MT(M) is the supremum of all such σ. ◀

4 A resource calculus with memory

In this section we introduce the λI-resource calculus refining the (finite) resource calculus [18],
best known as the target language of Ehrhard and Regnier’s Taylor expansion [20]. So, the
resource calculus is not meant to be a stand-alone language, but rather another theory of
approximations for the λ-calculus. Before going further, we recall its main properties.

We consider here the promotion-free fragment of the resource calculus introduced in [37].
Its syntax is similar to the λ-calculus, except for the applications that are of shape st̄, where
t̄ = [t1, . . . , tn] is a multiset of resources called bag. The resources populating t̄ are linear as
they cannot be erased or copied by s, they must be used exactly once along the reduction.
When contracting a term of the form s = (λx.s′)[t1, . . . , tn] there are two possibilities.
1. If the number of occurrences of x in s′ is exactly n, then each occurrence is substituted by

a different ti. Since the elements in the bag are unordered, there is no canonical bijection
between the resources and the occurrences of x. The solution consists in collecting all
possibilities in a formal sum of terms, the sum representing an inner-choice operator.

2. If there is a mismatch between the number of occurrences and the amount of resources,
then s reduces to the empty-sum, 0. From a programming-language perspective, this can
be thought of as a program terminating abruptly after throwing an uncaught exception.

The first-class citizens of the resource calculus are therefore finite sums of resource terms,
that are needed to ensure the (strong) confluence of reductions. Another important property
is strong normalization, that follows from the fact that no resource can be duplicated.

4.1 λI-resource expressions and λI-resource sums
Our version of the resource calculus is extended with labels representing the memory of free
variables that were present in the λI-term they approximate. Just like in Definition 14(i) we
endowed the constant ⊥ with a finite set X of variables, here we annotate:

the empty bag 1 of resource terms, since an empty bag of approximants of M should
remember the free variables of M ;
the empty sum 0 of resource terms. Indeed, if a resource term vanishes during reduction
because of the mismatch described above, its free variables should be remembered.

▶ Definition 22. (i) For all X ⊆f V, the sets ∆I(X) and !∆I(X) are defined by induction:

x ∈ ∆I({x})
s ∈ ∆I(X) x ∈ X

λx.s ∈ ∆I(X − {x})
s ∈ ∆I(X) t̄ ∈ !∆I(Y )

st̄ ∈ ∆I(X ∪ Y )

1X ∈ !∆I(X)
t0 ∈ ∆I(X) · · · tn ∈ ∆I(X)

[t0, . . . , tn] ∈ !∆I(X)

(ii) The set ∆I of λI-resource terms and the set !∆I of bags are given by:

∆I :=
∐

X⊆fV

∆I(X) and !∆I :=
∐

X⊆fV

!∆I(X).
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As a matter of notation, we let (!)∆I denote either ∆I or !∆I, indistinctly but coherently.
We call resource expressions generic elements s, t ∈ (!)∆I. We denote the union of two bags
t̄, ū ∈ !∆I(X) multiplicatively by t̄ · ū, whose neutral element is the empty bag, 1X .

▶ Remark 23. (i) In every λI-resource term of the form λx.s, the variable x must occur
freely in s: it may appear in the undecorated underlying term, or in the ‘memory’ X

decorating 1X . Therefore, it makes sense to define fv(s) := X whenever s ∈ (!)∆I(X).
(ii) Each set !∆I(X) is isomorphic to the monoid of multisets of elements of ∆I(X). Notice

that !∆I is not the set of all bags of elements of ∆I, just its subset of bags whose
elements have the same free variables (and so inductively in the subterms).

▶ Example 24. (i) The identity I belongs to ∆I, whereas the projections do not: K, F /∈ ∆I.
(ii) Note that λxy.x1∅ /∈ ∆I since y /∈ fv(x1∅), but λxy.x1{y} ∈ ∆I because y ∈ {y}.
(iii) The terms D0 = λx.x1{x} and Dn+1 = λx.x[x, . . . , x], where the bag contains n + 1

occurrences of x, are λI-resource terms. By Remark 23(ii), we obtain:
(iv) [x, y] /∈ !∆I, while [x, x[x], x[λy.y, λy.y[y]], (λy.y)[x], λy.y1{x}] ∈ !∆I({x}) ⊆ !∆I.

We consider resource expressions up to α-equivalence, under the proviso that abstractions
bind linear occurrences of variables as well as occurrences in the memory of empty bags. For
instance, λxyz.x1{x}1{x,y,z} and λx′y′z.x′1{x′}1{x′,y′,z} are considered α-equivalent.

▶ Definition 25. For all X ⊆f V, the set N[(!)∆I(X)] of sums of λI-resource terms
(‘resource sums’, for short) is defined as the N-semimodule of finitely supported formal
sums of expressions in (!)∆I(X), with coefficients in N. Explicitly, it can be presented as:

N[(!)∆I(X)] ∋ s, t ::= 0X | r | r + s (for r ∈ (!)∆I(X))

quotiented by associativity and commutativity of +, as well as neutrality of 0X .

Note that resource expressions are assimilated to the corresponding one-element sum.
The constructors of the calculus are extended to resource sums by (bi)linearity, i.e. for
s ∈ ∆I(X), s ∈ N[∆I(X)], t̄ ∈ !∆I(Y ), t̄ ∈ N[!∆I(Y )], u ∈ ∆I(Y ) and u ∈ N[∆I(Y )], we have:

(s + s)t̄ := st̄ + st̄, 0X t̄ := 0X∪Y , λx.(s + s) := λx.s + λx.s, λx.0X := 0X−{x},

s(t̄ + t̄) := st̄ + st̄, s0Y := 0X∪Y , [u + u] · t̄ := [u] · t̄ + [u] · t̄, [0Y ] · t̄ := 0Y .

Therefore, if 0X occurs in s not as a summand but as a proper subterm, then s = 0fv(s).

4.2 Memory substitution and resource substitution
While the usual finite resource calculus is completely linear, the variables we store in the
memory of 1X and 0X are not. The memory X remembers the variables present in X

not their amounts, this is the reason why it is modelled as a set, not as a multiset. This
consideration leads us to define two kinds of substitutions.

The (non-linear) memory substitution of a set Y ⊆f V for a variable x in a λI-resource
term s does not interact with the linear occurrences of x in s (i.e., they remain unchanged),
it just replaces the ‘memory’ of x in the empty bags with the content of Y .

▶ Definition 26. (i) For all X, Y ⊆f V and x ∈ V, define

X {Y /x} :=
{

X − {x} ∪ Y, if x ∈ X,
X, otherwise.
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(ii) Given s ∈ (!)∆I(X), the memory substitution of x by Y ⊆f V in s is the resource term
s {Y /x} defined as follows (for x ̸= y and, in the abstraction case, y /∈ Y ):

x {Y /x} := x, 1X {Y /x} := 1X{Y /x}, (st̄) {Y /x} := (s {Y /x})(t̄ {Y /x}),
y {Y /x} := y, (λy.s) {Y /x} := λy.s {Y /x} , ([s] · t̄) {Y /x} := [s {Y /x}] · (t̄ {Y /x}).

We now define the resource substitution of a bag ū for x in s, whose effect is twofold.
1) It non-deterministically replaces each linear occurrence of x with a resource from the bag
(as usual). 2) It applies the memory substitution of x by fv(ū) to the resulting sum of terms.

▶ Definition 27. Given s ∈ (!)∆I(X), x ∈ V and ū ∈ !∆I(Y ), the resource substitution of x

by ū in s is the resource sum s ⟨ū/x⟩ ∈ N[(!)∆I(X {Y /x})] defined as follows:

x ⟨ū/x⟩ :=
{

u, if ū = [u],
0Y , otherwise,

(st̄) ⟨ū/x⟩ :=
∑

ū=v̄·w̄
(s ⟨v̄/x⟩)(t̄ ⟨w̄/x⟩),

y ⟨ū/x⟩ :=
{

y, if ū = 1Y ,
0{y}, otherwise,

1X ⟨ū/x⟩ :=
{

1X{Y /x}, if ū = 1Y ,

0X{Y /x}, otherwise,

(λy.s) ⟨ū/x⟩ := λy.s ⟨ū/x⟩ , ([s] · t̄) ⟨ū/x⟩ :=
∑

ū=v̄·w̄
[s ⟨v̄/x⟩] · (t̄ ⟨w̄/x⟩).

with x ̸= y and in the abstraction case y /∈ Y . We extend it to sums in N[(!)∆I(X)] by setting:

0X ⟨ū/x⟩ := 0X{Y /x} (s + s) ⟨ū/x⟩ := s ⟨ū/x⟩ + s ⟨ū/x⟩
s ⟨0Y /x⟩ := 0X{Y /x} s ⟨(ū + ū)/x⟩ := s ⟨ū/x⟩ + s ⟨ū/x⟩ .

It is easy to verify that the definition above does indeed define a resource sum in
N[(!)∆I(X {Y /x})], and that it is stable under the quotients of Definition 25.

▶ Definition 28. The linear degree degx(s) of x ∈ V in some s ∈ (!)∆I is defined by:

degx(x) := 1, degx(λy.s) := degx(s), wlog. x ̸= y, degx(1X) := 0,

degx(y) := 0, degx(st̄) := degx(s) + degx(t̄), degx([s] · t̄) := degx(s) + degx(t̄).

The next lemma is not strictly needed, but helps understanding resource substitution.

▶ Lemma 29. Consider s ∈ (!)∆I(X), x ∈ V and ū ∈ !∆I(Y ), and write n := degx(s). Then

s ⟨ū/x⟩ =


∑

σ∈S(n)
s

[
uσ(1)/x(1), . . . , uσ(n)/x(n)] {Y /x} , if the cardinality of ū is n,

0X{Y /x}, otherwise,

where: S(n) is the set of permutations of {1, . . . , n}; u1, . . . , un is any enumeration of the ele-
ments in ū; x(1), . . . , x(n) enumerate the occurrences of x in s; and s

[
uσ(1)/x(1), . . . , uσ(n)/x(n)]

is the λI-resource term obtained by substituting each element uσ(i) for the occurrence x(i).

Proof. Straightforward induction on s. ◀

The next Substitution Lemma concerns the commutation of resource substitutions, and is
the analogous of [4, Lemma 2.1.16]. Notice that the assumptions on the substituted variables
are stronger than in the usual resource calculus [20, Lemma 2], where only x /∈ Y is required.

▶ Lemma 30. Given s ∈ (!)∆I(X), ū ∈ !∆I(Y ), v̄ ∈ !∆I(Z), and x ∈ X − Z, y ∈ X ∪ Y ,

s ⟨ū/x⟩ ⟨v̄/y⟩ =
∑

v̄=v̄′·v̄′′

s ⟨v̄′/y⟩ ⟨ū ⟨v̄′′/y⟩/x⟩ .

Proof. By structural induction on s, using Lemma 29 in order to apply the induction
hypothesis only to those subterms where the hypotheses are actually satisfied. ◀
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4.3 The operational semantics
We finally endow resource expressions and resource sums with a notion of reduction →r.

▶ Definition 31. (i) For each X ⊆f V, define the resource reduction as a relation between
λI-resource terms and resource sums, i.e. →r ⊆ (!)∆I(X) × N[(!)∆I(X)]:

(λx.s)t̄ →r s
〈
t̄
/

x
〉 s →r s′

λx.s →r λx.s′
s →r s′

st̄ →r s′t̄

t̄ →r t̄′

st̄ →r st̄′
s →r s′

[s] · t̄ →r [s′] · t̄

(ii) We denote by →?
r the reflexive closure of →r and by →→r its reflexive-transitive closure.

(iii) We extend the reduction relation →r to resource sums N[(!)∆I(X)] × N[(!)∆I(X)] by
saying that s →r s′ and t →?

r t′ entail s + t →r s′ + t′.

Observe that →r is well-defined because fv((λx.s)t̄) = fv(s
〈
t̄
/

x
〉
). Indeed fv((λx.s)t̄) =

fv(s) − {x} ∪ fv(t̄) with x ∈ fv(s), whence fv(s
〈
t̄
/

x
〉
) = fv(s)

{
fv(t̄)

/
x

}
= fv(s) − {x} ∪ fv(t̄).

▶ Example 32. We use the resource λI-terms I and Dn from Example 24.
(i) D0[z] →r (x1{x})⟨[z]/x⟩ = (x⟨[z]/x⟩)(1{z}) + (x⟨1{z}/x⟩)(1{x}⟨[z]/x⟩) = z1{z} + 0{z} =

z1{z}. Similarly, D0[I] →r I1∅ → 0∅, while D1[I, I] →r I[I] →r I is a non-zero reduction.
(ii) (λx.D0[x])[z] has two redexes. Contracting the outermost first gives (λx.D0[x])[z] →r

D0[z] →r z1{z}. Contracting the innermost (λx.D0[x])[z] →r (λx.x1{x})[z] →r z1{z}.
(iii) D1[I, I] →r I[I] + I[I] →r I + I[I] →r I + I = 2.I. Thus, sums can arise from single terms.

We show that →r enjoys the properties of strong confluence and strong normalisation.

▶ Theorem 33. (i) The reduction →r is strongly normalising.
(ii) →r is strongly confluent in the following sense: for all s, t1, t2 ∈ N[(!)∆I(X)] such that

s →r t1 and s →r t2, there exists u ∈ N[(!)∆I(X)] such that t1 →?
r u and t2 →?

r u.

Proof. (i) The size size(s) ∈ N of a resource expression s ∈ (!)∆I is defined by structural
induction as usual, with base cases size(x) = 1 and size(1X) = 0, so that size(1X · t̄) =
size(t̄). The sum-size of a resource sum s is the finite multiset defined by ssize(0X) = []
and ssize(s+t) = [size(s)] ·ssize(t). Sum-sizes are well-ordered by the usual well-founded
ordering ≺N on finite multisets over N (see [41, §A.6]).
Now, assume that s →r s′. Since the contraction of a redex suppresses an abstraction and
there is no duplication, we get ssize(s) ≺N ssize(s′). Conclude since ≺N is well-founded.

(ii) The sequence of lemmas leading to the result follows a well-trodden path in the resource
calculus [44, 10]. It is sufficient to check that they generalize to our setting. We give
some details in the appendix. ◀

By (ii) above every s ∈ N[(!)∆I(X)] has a unique r-normal form which is denoted nf(s).

5 Taylor approximation for memory trees

In its original formulation, Ehrhard and Regnier’s Taylor expansion translates a λ-term as a
power series of iterated derivatives [19]. We now introduce a qualitative Taylor expansion [32]
specifically designed for the λI-calculus, having as target the λI-resource calculus.

5.1 The Taylor approximation
Intuitively, a qualitative Taylor expansion should associate each term M ∈ ΛI(X) with a
set of resource approximants Tm(M) ⊆ ∆I(X). Therefore the codomain of Tm(−) should be∐

X⊆fV 2∆I(X), and what we actually define is Tm(M) := (X, T •
m (M)) with T •

m (M) ⊆ ∆I(X).
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Notice that, whereas all previous constructions of disjoint unions
∐

X⊆fV were formed from
genuinely disjoint sets, this is no longer the case here, as ∅ ∈ 2∆I(X), for all X.

▶ Notation 34. (i) For X ⊆f V and X ∈ 2∆I(X), we write fv(X, X ) := X.
(ii) We let ⊆• denote the order relation on

∐
X⊆fV 2∆I(X) such that (X, X ) ⊆• (Y, Y)

whenever X = Y and X ⊆ Y. We write ∪• for the corresponding least upper bounds.
(iii) We write s ∈• (X, X ) to mean that s ∈ X .
(iv) Given X ∈ 2∆I(X), Y ∈ 2!∆I(Y ) − {∅} and x ∈ X, we write:

λx.(X, X ) := (X −{x}, {λx.s | s ∈ X }), (X, X )Y := (X ∪Y, {st̄ | s ∈ X , t̄ ∈ Y}).

▶ Definition 35. (i) The Taylor expansion Tm(M) ∈
∐

X⊆fV 2∆I(X) of a λI-term M , is
defined together with T !

m(M) ⊂ !∆I(fv(M)) by mutual induction:

Tm(x) := ({x}, {x}), Tm(λx.M) := λx.Tm(M), Tm(MN) := Tm(M)T !
m(N),

T !
m(M) := {1fv(M)} ∪ {[t0, . . . , tn] | n ∈ N, t0, . . . , tn ∈• Tm(M)}.

(ii) The above definition is extended to memory trees by setting, for all M ∈ ΛI,

Tm(MT(M)) :=
⋃•

A∈Appm(M)

Tm(A), together with
{

Tm(⊥X) := (X,∅),
T !

m(⊥X) := {1X}.

▶ Remark 36. For all M , we have fv(Tm(M)) = fv(M). Similarly, fv(Tm(MT(M))) = fv(M),
due to Remark 17 and the way we ordered

∐
X⊆fV 2∆I(X).

▶ Example 37. (i) Tm(I) = (∅, {I}), Tm(D) = (∅, {Dn | n ∈ N}).
(ii) Tm(MT(Yf)) = ({f}, XYf ) and Tm(MT(L lf)) = ({f, l}, XL lf ), where the sets of

approximants can be described as the smallest (in fact, unique) subsets of ∆I such that:

XYf = {f1{f}} ∪ {f [t0, . . . , tn] | n ∈ N, t0, . . . , tn ∈ XYf },

XL lf = {f1{f,l}} ∪ {f [t0, . . . , tn] | n ∈ N, t0, . . . , tn ∈ XL lf }.

We now describe how resource reduction acts on Taylor expansions, i.e. on potentially
infinite sets of resource expressions.

▶ Notation 38. (i) Given s ∈ N[(!)∆I(X)], we denote by |s| ∈
∐

X⊆fV 2∆I(X) its support,
defined by |0X | := (X,∅) and |s + t| := (X, {s}) ∪• |t|. Notice that s ∈• |t| whenever s

bears a non-zero coefficient in t (i.e. t = s + t′, for some t′).
(ii) Given X ∈ 2(!)∆I(X), we write nf(X, X ) :=

⋃•
s∈X |nf(s)|. Notice that fv(nf(X, X )) = X,

and that nf(X, X ) = (X,∅) if and only if s →→r 0X , for all s ∈ X .

This allows us to state the following theorem, adapting [19, Theorem 2].

▶ Theorem 39 (commutation). For all M ∈ ΛI, nf(Tm(M)) = Tm(MT(M)).

We outline a proof in the following sequence of lemmas, similar to the one in [2];
alternatively, the variants of [19, 20], [36] and [10, 11] could also be adapted.

▶ Lemma 40. For all resource sums s such that |s| ⊆• Tm(M), there exists a reduction
M →→β N such that |nf(s)| ⊆• Tm(N).

Proof. By induction on the length of the longest reduction s →→r nf(s). If it is 0, take
N := M . Otherwise, the longest reduction is s = t + u →r t′ + u →→r nf(s). By firing all
redexes in M and u at the same position as the redex fired in t →r t′ (formally we do this by
induction on this reduction), we obtain M →β M ′ and u →→r u′ such that |t′ +u′| ⊆• Tm(M ′).
By confluence, t′ + u′ →→r nf(s). We conclude by induction on this (shorter) reduction. ◀
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▶ Lemma 41. If t ∈• Tm(N) is in r-nf, then there exists A ∈ Appm(N) such that t ∈• Tm(A).

Proof. By induction on t. A r-nf is also a hnf, hence t = λx⃗.yt̄1 · · · t̄k and N = λx⃗.yN1 · · · Nk.
For 1 ≤ i ≤ k, t̄i ∈ T !

m(Ni). If t̄i = 1fv(Ni) define Ai := ⊥fv(Ni). If t̄i = [t1
i , . . . , tn

i ], each tj
i is in

r-nf, by induction there is Aj
i ∈ Appm(Ni), tj

i ∈• Tm(Aj
i ). Define Ai :=

⊔n
j=1 Aj

i ∈ Appm(Ni).
Finally, A := λx⃗.yA1 · · · Ak ∈ Appm(N) and t ∈• Tm(A). ◀

▶ Lemma 42 (monotonicity of Tm(−)). (i) Tm(A) ⊆• Tm(A′) if and only if A ⊑ A′.
(ii) For all N ∈ ΛI, we have Tm(ωm(N)) ⊆• Tm(N).

Proof. Immediate inductions (i) on A and A′, and (ii) on the head structure of N . ◀

▶ Lemma 43 (simulation of →β). If M →β N , then Tm(N) =
⋃•

s∈•Tm(M) |ts| for resource
sums ts ∈ N[∆I(fv(M))] such that ∀s ∈• Tm(M), s →→r ts.

Proof. One first shows by induction on P that for all P, Q ∈ ΛI and x ∈ fv(P ), Tm(P [Q/x]) =⋃•
s∈•Tm(P )

⋃•
t̄∈T !

m(Q) |s
〈
t̄
/

x
〉

|. Then the proof is an induction on M →β N , using the previous
equality in the base case. See the details of a similar proof in [11, Lemmas 4.1 and 4.2]. ◀

▶ Lemma 44. If A ∈ Am then all s ∈• Tm(A) are in r-nf.

Proof. Immediate induction on A. ◀

Everything is now in place to prove the Commutation Theorem 39.

Proof of Theorem 39. By Remark 36, fv(nf(Tm(M))) = fv(M) = fv(Tm(MT(M))). Thus, it
is sufficient to prove that, for t ∈ ∆I(fv(M)): t ∈• nf(Tm(M)) if and only if t ∈• Tm(MT(M)).

Take t ∈• nf(Tm(M)), i.e. t ∈ |nf(s)| for some s ∈• Tm(M). Then, by Lemma 40, there
exists a reduction M →→β N such that |nf(s)| ⊆• Tm(N). Hence t ∈• Tm(N) and t is in r-nf:
Lemma 41 ensures that t ∈• Tm(A) for some A ∈ Appm(N) = Appm(M) (by Proposition 20).
This means exactly that t ∈• Tm(MT(M)).

Conversely, take t ∈• Tm(MT(M)), i.e. t ∈• Tm(A) for some A ∈ Appm(M). By definition
there is a reduction M →→β N such that A ⊑ ωm(N). By Lemma 42, t ∈• Tm(A) ⊆•

Tm(ωm(N)) ⊆• Tm(N). By iterated applications of Lemma 43, there is an s ∈• Tm(M) such
that s →→r ts and t ∈ |ts|. By Lemma 44, t is in r-nf, therefore t ∈• |nf(s)| ⊆• nf(Tm(M)). ◀

5.2 The λI-theory of memory trees
Consider the equivalence M on ΛI, defined by M =M N if and only if MT(M) = MT(N).
Thanks to Theorem 39, we are now able to show that this equivalence is a λI-theory.

▶ Corollary 45. For M, N ∈ ΛI, M =M N if and only if nf(Tm(M)) = nf(Tm(N)).

Proof. (⇒) Immediate by Theorem 39. (⇐) Take M, N such that nf(Tm(M)) = nf(Tm(N)).
By Theorem 21, it is sufficient to prove Appm(M) = Appm(N). Take A ∈ Appm(M). If
A = ⊥X , then A ∈ Appm(N) is trivial since Appm(N) is downward closed. Otherwise, by
hypothesis and Theorem 39, Tm(A) ⊆• ⋃•

B∈Appm(N) Tm(B). There is a B ∈ Appm(N) such
that [[A]]r ∈• Tm(B), where [[A]]r ∈• Tm(A) is defined by

[[x]]r := x,

[[λx⃗.yA1 · · · Ak]]r := λx⃗.y[[A1]]!r · · · [[Ak]]!r,
[[A]]!r :=

{
1X , if A = ⊥X ,

[[[A]]r], otherwise.

By induction on A, one shows that [[A]]r ∈• Tm(B) implies A ⊑ B, hence A ∈ Appm(N) by
downward-closure (Lemma 19(ii)). This shows that Appm(M) ⊆ Appm(N). The converse
inclusion is symmetric. ◀
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▶ Corollary 46. M is a λI-theory.

Proof. The relation =M is clearly an equivalence. By Proposition 20 and Theorem 21, for
all M, N ∈ ΛI, M =β N entails M =M N .

For compatibility with abstraction, take M =M N and x ∈ fv(M) ∩ fv(N). By Corol-
lary 45, we get nf(Tm(λx.M)) = λx.nf(Tm(M)) = λx.nf(Tm(N)) = nf(Tm(λx.N)).

For compatibility with application, by Theorem 33 observe that for all M, N ∈ ΛI,
nf(Tm(MN)) = nf(Tm(M)T !

m(N)) = nf(nf(Tm(M))nf(T !
m(N))), where nf(T !

m(N)) is defined
by adapting Notation 38 to sets of resource bags. Therefore, nf(Tm(M)) = nf(Tm(M ′)) and
nf(Tm(N)) = nf(Tm(N ′)) imply nf(Tm(MN)) = nf(Tm(M ′N ′)), and we can conclude the
proof by Corollary 45. ◀

6 Conclusions and future work

In this paper we introduced the memory trees for the λI-calculus, together with two theories of
program approximations: the former based on finite trees, the latter on resource approximants
and Taylor expansion. Our pioneering results look encouraging, so we believe that this
approach deserves further investigations.

6.1 Further work on the λI-calculus
The memory trees introduced in Definition 10 are an adaptation of Böhm trees, since they
regard as meaningless the terms without hnf. By considering as meaningless the subset of zero-
terms1 one obtains Lévy-Longo trees [29, 30], and by taking mute terms2 as meaningless one
obtains Berarducci trees [7]. Our definition of memory trees can be readily adapted to both
settings by appropriately modifying the notion of meaningless. Preliminary investigations
indicate that all our results extend seamlessly to the Lévy-Longo version. Regarding the
Berarducci version, the direct approximants can be generalized without any issues (except
for the fact that an oracle is needed, see [43]). We are currently studying whether the
corresponding λI-resource calculus and Taylor expansion could also be designed.

Our investigation of memory trees started from semantical considerations. The relational
model with infinite multiplicities E , defined in [9], distinguishes Ω from Ωx, and Y from
L l, just like our memory trees. Unlike our memory trees, it equates λx.x(Ωy)(Ωz) and
λx.x(Ωz)(Ωy), thus the induced theory is different from memory trees equality (=M).

Finding a denotational model whose theory captures exactly the memory tree equality
would reinforce our belief that they are a natural notion of trees for the λI-calculus.

▶ Problem 1. Is there a denotational model of ΛI whose theory is exactly M?

We believe that finding a denotational model and studying its categorical properties
are important steps towards a deeper mathematical understanding of our Taylor expansion.
Currently, it is unclear whether our resource calculus stands on a solid notion of differentiation,
as it is the case for the usual resource calculus [18], or if it is an ad hoc adaptation.

▶ Problem 2. Is the λI-resource calculus with memory representing some notion of derivative?

We now discuss more speculative extensions, going beyond the setting of λI-calculus.

1 I.e., terms without an hnf that never reduce to an abstraction.
2 Also called root active, mute terms have the property that all their reducts can reduce to a redex.
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6.2 What about the full λ-calculus?
We have seen that the model E from [9] distinguishes some meaningless terms having different
free variables, but equates some λI-terms having different memory trees. Characterizing its
theory seems a very natural question that has been completely overlooked in the literature.

▶ Problem 3. Is there an operational characterization of the λ-theory induced by E?

The fact that E is a model of the full λ-calculus witnesses the existence of consistent
λ-theories that remember variables that are pushed into infinity in the Böhm tree semantics.
It is then natural to wonder whether it makes sense to extend the definition of memory trees
to arbitrary λ-terms. The idea is to consider the set of permanent free variables of M ∈ Λ:

pfv(M) = {x | ∀N ∈ Λ . M →→β N implies x ∈ fv(N)}

Intuitively, pfv(M) is the set of free variables of M that are never erased along a reduction.

▶ Definition 47. The memory tree of a λ-term M can be then defined by setting:
MT(M) = λx⃗.y ·pfv(M1) MT(M1) · · ·pfv(Mk) MT(Mk), if M →→h λx1 . . . xn.yM1 · · · Mk;
⊥pfv(M), otherwise.

For M ∈ ΛI the definition above is equivalent to Definition 10, since pfv(M) = fv(M). For
an arbitrary M ∈ Λ, one needs an oracle to compute pfv(M), but an oracle is already needed
to determine whether M has an hnf, therefore the logical complexity does not increase.

Preliminary investigations show that the above notion of memory tree remains invariant
by →β . The key property which is exploited to prove this result is that pfv(λx⃗.yM1 · · · Mk) =
{y}∪pfv(M1)∪· · ·∪pfv(Mk). The main problem of Definition 47 is that the equality induced
on λ-term is not a λ-theory because it is not compatible with application. The following
counterexample exploits the fact that, in general, pfv(MN) ̸= pfv(M) ∪ pfv(N). Define:

W = λxy.yxy, M = λz.W(zv1v2)W, N = λz.W(zv2v1)W, for v1, v2 ∈ V.

We have M →h λz.(λy.y(zv1v2)y)W →h M and N →h λz.(λy.y(zv2v1)y)W →h N , whence
MT(M) = MT(N) = ⊥{v1,v2}. By applying the 1st projection K, we obtain MK →→β Wv1W
and NK →→β Wv2W, therefore MT(MK) = ⊥{v1} ̸= ⊥{v2} = MT(NK). We conclude
that the equality induced on Λ is not a λ-theory, because it is not compositional. This
counterexample is particularly strong because it shows that this is independent from the fact
that memory trees are generalizations of Böhm trees and not, say, Berarducci trees. Indeed,
the M, N constructed above have the same Böhm tree, Lévy-Longo tree and Berarducci tree.

A natural question is whether memory trees can be used as a meaningful notion of
observation, in the sense of Morris’s observational equivalences [35].

▶ Problem 4. Is there a denotational model inducing the following λ-theory?

M ≡ N ⇐⇒ ∀C[] . MT(C[M ]) = MT(C[N ])

where C[] denotes a λ-calculus context (namely, a λ-term containing a hole []), and C[M ] the
λ-term obtained by replacing M for the hole [] in C[], possibly with capture of free variables.
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A Proofs of Section 3

▶ Lemma 15 (recalled from Page 7). There is a bijection between Am and the set of finite
memory trees of λI-terms.

Proof. Given A ∈ Am, define a λI-term MA by structural induction on A:
if A = ⊥{x1,...,xn} then MA := Ωx1 · · · xn.
if A = λx⃗.yA1 · · · Ak then MA := λx⃗.y(MA1) · · · (MAk

).
Define a map ι associating to A the memory tree MT(MA), i.e. ι(A) := MT(MA).

Conversely, let M ∈ ΛI be such that T := MT(M) is finite. Since T is finite, we can
construct an approximant ι−(T ) by structural induction on T . There are two cases:

T = ⊥X , with X = fv(M). In this case, define ι−(T ) := ⊥X .
If T = λx⃗.y ·X1 T1 · · ·Xk Tk then M →→h λx⃗.yM1 · · · Mk with Ti = MT(Mi) and X =
fv(Mi), for all i (1 ≤ i ≤ k). In this case, define ι−(T ) = λx⃗.y(ι−(T1)) · · · (ι−(Tk)).

A straightforward induction shows ι(ι−(T )) = T and ι−(ι(A)) = A. ◀

▶ Lemma 19 (recalled from Page 7).
(i) For every M, N ∈ ΛI, M →β N entails ωm(M) ⊑ ωm(N).
(ii) For all M ∈ ΛI(X), Appm(M) is an ideal of the poset (Am(X), ⊑). More precisely:

a. non-emptiness: ⊥X ∈ Appm(M);
b. downward closure: A ∈ Appm(M) and A′ ⊑ A imply A′ ∈ Appm(M);
c. directedness: ∀A1, A2 ∈ Appm(M), ∃A3 ∈ Appm(M) such that A1 ⊑ A3 ⊒ A2.

Proof. (i) By induction on a derivation of M →β N . By Remark 2, either M has a head
redex or it has a head variable. If M = λx⃗.(λy.M ′)M0M1 · · · Mk then ωm(M) = ⊥fv(M).
By Remark 7(ii), M →β N entails fv(N) = fv(M), whence ωm(N) ∈ Am(fv(M)). This
case follows since ⊥fv(M) is the bottom of Am(fv(M)).
If M = λx⃗.yM1 · · · Mk then ωm(M) = λx⃗.y ωm(M1) · · · ωm(Mk). The β-reduction must
occur in some Mi →β Ni, whence ωm(N) = λx⃗.y ωm(M1) · · · ωm(Ni) · · · ωm(Mk). We
conclude since ωm(Mi) ⊑ ωm(Ni) holds, from the induction hypothesis.

(ii) To prove that Appm(M) is an ideal, we need to check three conditions.
a. non-emptiness: since ⊥X ⊑ ωm(M) for all M ∈ Am(X), we get ⊥X ∈ Appm(M).
b. downward closure: by definition of Appm(M).
c. directedness: let us take A1, A2 ∈ Appm(M) and prove that A1 ⊔ A2 ∈ Appm(M).

We proceed by structural induction on, say, A1.
Case A1 = ⊥X . Then A2 ∈ Am(X) and A1 ⊔ A2 = A2 ∈ Appm(M).
Case A1 = λx1 . . . xn.y A′

1 · · · A′
k. If A2 = ⊥X then proceed as before. Otherwise

A1 ∈ Appm(M) because there is a reduction M →→β λx1 . . . xn.y M ′
1 · · · M ′

k =: M1
with A′

i ∈ Appm(M ′
i). Similarly, A2 ∈ Appm(M) because there is a reduction

M →→β λx1 . . . xn′ .y M ′′
1 · · · M ′′

k′ =: M2 with A2 = λx1 . . . xn′ .y A′′
1 · · · A′′

k′ and A′′
j ∈

Appm(M ′′
j ). By confluence of →β , n = n′ and k = k′, and every M ′

i , M ′′
i have a

common reduct M ′′′
i . By Lemma 19(i), A′

i, A′′
i ∈ Appm(M ′′′

i ), so by HI A′
i ⊔ A′′

i ∈
Appm(M ′′′

i ). Conclude by taking A3 := λx1 . . . xn.y (A′
1 ⊔ A′′

1) · · · (A′
k ⊔ A′′

k). ◀

▶ Proposition 20 (recalled from Page 7). Let M, N ∈ ΛI(X). If M →β N , then Appm(M) =
Appm(N).

Proof. To prove Appm(M) = Appm(N), we show the two inclusions.
(⊆) Take A ∈ Appm(M), then there exists a reduction M →→β M ′, such that A ⊑ ωm(M ′).

We proceed by induction on A.
Case A = ⊥X . By Remark 17, since ⊥X ⊑ ωm(N), for all N ∈ ΛI(X).
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Case A = λx⃗.yA1 · · · Ak. Then M ′ = λx⃗.yM ′
1 · · · M ′

k with Ai ⊑ ωm(M ′
i), for all 1 ≤ i ≤ k.

Since M →β N , by confluence, N and M ′ have a common reduct N ′ = λx⃗.yN ′
1 · · · N ′

k with
M ′

i →→β N ′
i . By Lemma 19(i) we have ωm(M ′

i) ⊑ ωm(N ′
i) and, by transitivity, Ai ⊑ ωm(N ′

i).
We found a reduction N →→β N ′ such that A ⊑ ωm(N ′), whence A ∈ Appm(N).

(⊇) Straightforward, since every reduct of N is also a reduct of M . ◀

For the proof of Theorem 21, we introduce some definitions. First, given a memory tree
T = MT(M), one defines fv(T ) to be fv(M). If T = λx1 . . . xn.y ·X1 T1 · · ·Xk Tk. then fv(T ) =⋃k

i=1 Xi ∪ {y} − {x1, . . . , xn}}}. Moreover, in the following, we will consider the class of
head contexts, defined inductively by the following grammar: H ::= [] | λx1 . . . xn.yH1 · · · Hk.

Then, in order to relate memory trees with approximants, we extend the order on
approximants to memory trees and define the set of finite subtrees of a memory tree:

▶ Definition 48. Let M = {MT(M) | M ∈ ΛI}. We define ⊑ ⊆ M2 as the least partial
order on memory trees closed under the following rules:

fv(T ) = X

⊥X ⊑ T

Ti ⊑ T ′
i for all 1 ≤ i ≤ k

λx1 . . . xn.y ·X1 T1 · · ·Xk Tk ⊑ λx1 . . . xn.y ·X1 T ′
1 · · ·Xk T ′

k

▶ Definition 49. Given a memory tree T = MT(M), one defines T ⋆ to be {T ′ | T ′ ⊑
T and T ′ is finite}.

▶ Definition 50. We define inductively the set of positions of an approximant A, Pos(A) as
a subset of N⋆ such that:

If A = ⊥X , Pos(A) = ϵ;
If A = λx1 . . . xn.yA1 · · · Ak, Pos(A) = {i · p | 1 ≤ i ≤ k & p ∈ Pos(Ai)}.

Sets of positions are lifted to sets of approximants as expected and one can similarly define
Pos(M) = Pos(Appm(M)).

▶ Definition 51. Given an approximant A and p ∈ Pos(A), one defines A(p) by induction
on the length of p as follows:

If p = ϵ, then if A = ⊥X , A(p) = ⊥X , otherwise, A = λx1 . . . xn.yA1 · · · Ak and
A(p) = λx1 . . . xn.y;
If p = i · p′, then A = λx1 . . . xn.yA1 · · · Ak, with 1 ≤ i ≤ k and A(p) = Ai(p′).

▶ Theorem 21 (recalled from Page 8). There is a bijection A(·) between the set of memory
trees and the set of approximants of λI-terms satisfying A(MT(M)) = Appm(M), for all
M ∈ ΛI.

Proof of Theorem 21. Let us write T = {MT(M) | M ∈ ΛI} and A = {Appm(M) | M ∈ ΛI}
and let us build a bijection A : T → A such that for any M ∈ ΛI, A(MT(M)) = Appm(M).
Let us define A. Let M ∈ ΛI and T its memory tree. Since T ⋆ contains only finite "subtrees"
of T , which are all memory trees of λI-terms, one can consider a set of approximants A(T )
obtained as the direct image of T ⋆ by the mapping ι− defined in the proof of Lemma 15.

In other words, we define A(T ) := ι−(T ⋆). We now prove that A(T ) = Appm(M).
Let us prove that A(T ) ⊆ Appm(M). Let T ′ ∈ T ⋆, then there exist M1 ∈ ΛI(X1), . . . , Mn ∈

ΛI(Xn) and a head context H such that H[M1, . . . , Mn] ∈ ΛI with M →→β H[M1, . . . , Mn] and
T = MT(H[ΩX⃗1, . . . , ΩX⃗n]). Therefore ι−(T ′) = H[⊥X1 , . . . , ⊥Xn

] and since ⊥Xi
⊑ ωm(Mi),

ι−(T ′) ∈ Appm(M) which proves the inclusion.
For the converse inclusion, we prove by induction on the structure of A that, for any

M ∈ ΛI and A ∈ Appm(M), A ∈ A(MT(M)):
If A = ⊥X , then X = fv(M) and A ∈ ι−(MT(M)⋆);
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Otherwise, A = λx1 . . . xn.yA1 · · · Ak. In such a case, we have M →h λx1 . . . xn.yM1 · · · Mk

with Mi ∈ ΛI(Xi) and Ai ∈ Appm(Mi) for 1 ≤ i ≤ k. By induction hypothesis
we have some Ti ∈ MT(Mi)⋆ such that Ai ∈ ι−(Ti) for all i (1 ≤ i ≤ k). Since
λx1 . . . xn.y ·X1 T1 · · ·Xk Tk ∈ MT(M)⋆, we indeed have that A ∈ A(MT(M)).

Let us define T , the inverse of A. Let A, B ∈ Appm(M). By directedness of Appm(M)
(Lemma 19(ii)), there exists C ∈ Appm(M) such that A, B ⊑ C. From this, it follows that at
any position where two approximants of M are defined and different from ⊥X , they agree. We
define a (potentially) infinite tree T (Appm(M)) from Appm(M) as a pair of partial functions
(v, e), respectively labelling the edges and vertices of the tree, defined on Pos(Appm(M)) as
follows:

for every position p ∈ Pos(Appm(M)), either for every A ∈ Appm(M) such that p ∈
Pos(A), A(p) = ⊥X , in which case v(p) = ⊥X , or there is some A ∈ Appm(M) such that
p ∈ Pos(A), A(p) = λx1 . . . xn.y in which case v(p) := λx1 . . . xn.y.
for every non-empty position p ∈ Pos(Appm(M)), let A ∈ Appm(M) be such that
A(p) = ⊥X and set e(p) := X.

A simple coinduction gives us T (A(MT(M))) = MT(M) for any M ∈ ΛI. ◀

B Proofs of Section 4

B.1 Substitution lemma (Lemma 30)
▶ Lemma 52. Given s ∈ (!)∆I(X), ū ∈ !∆I(Y ) and x /∈ X,

s ⟨ū/x⟩ =
{

s if ū = 1Y ,
0X otherwise.

Proof. Straightforward induction on s. ◀

▶ Lemma 30 (recalled from Page 10). Given s ∈ (!)∆I(X), ū ∈ !∆I(Y ), v̄ ∈ !∆I(Z), x ∈ X−Z

and y ∈ X ∪ Y ,

s ⟨ū/x⟩ ⟨v̄/y⟩ =
∑

v̄=v̄′·v̄′′

s ⟨v̄′/y⟩ ⟨ū ⟨v̄′′/y⟩/x⟩ .

Proof. By induction on s.
Case s = x. (It is the only possible case of a variable because of the hypothesis x ∈ X.)
We have∑

v̄=v̄′·v̄′′

x ⟨v̄′/y⟩ ⟨ū ⟨v̄′′/y⟩/x⟩ = x ⟨1Z/y⟩ ⟨ū ⟨v̄/y⟩/x⟩ = x ⟨ū ⟨v̄/y⟩/x⟩ ,

hence if ū = [u], then both sides of the equality are equal to u ⟨v̄/y⟩, otherwise they are
equal to 0Y {Z/y}.
Case s = λy.s′. Immediate by the induction hypothesis on s′.
Case s = s′s̄′′. We have X = fv(s) = fv(s′) ∪ fv(s̄′′). There are several possible cases.

If x ∈ fv(s′) and x ∈ fv(s̄′′), then it is possible to apply the induction hypothesis in
both subterms. By the definition of resource substitution,

s ⟨ū/x⟩ ⟨v̄/y⟩ =
∑

ū=ūl·ūr

∑
v̄=v̄l·v̄r

s′ ⟨ūl/x⟩ ⟨v̄l/y⟩ s̄′′ ⟨ūr/x⟩ ⟨v̄r/y⟩

=
∑

ū=ūl·ūr

∑
v̄=(v̄′

l
·v̄′′

l
)·(v̄′

r·v̄′′
r )

s′ ⟨v̄′
l/y⟩ ⟨ūl ⟨v̄′′

l /y⟩/x⟩ s̄′′ ⟨v̄′
r/y⟩ ⟨ūr ⟨v̄′′

r /y⟩/x⟩
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by the induction hypotheses on s′ and s̄′′,

=
∑

v̄=v̄′·v̄′′

s ⟨v̄′/y⟩ ⟨ū ⟨v̄′′/y⟩/x⟩

by permuting the sums and re-arranging the indices (using associativity and commut-
ativity of the multiset union).
If x ∈ fv(s) and x /∈ fv(s̄′′), then again

s ⟨ū/x⟩ ⟨v̄/y⟩ =
∑

ū=ūl·ūr

∑
v̄=v̄l·v̄r

s′ ⟨ūl/x⟩ ⟨v̄l/y⟩ s̄′′ ⟨ūr/x⟩ ⟨v̄r/y⟩

=
∑

v̄=v̄l·v̄r

s′ ⟨ū/x⟩ ⟨v̄l/y⟩ s̄′′ ⟨1Y /x⟩ ⟨v̄r/y⟩

+
∑

ū=ūl·ūr
ūr ̸=1Y

∑
v̄=v̄l·v̄r

s′ ⟨ūl/x⟩ ⟨v̄l/y⟩ s̄′′ ⟨ūr/x⟩ ⟨v̄r/y⟩

=
∑

v̄=v̄l·v̄r

s′ ⟨ū/x⟩ ⟨v̄l/y⟩ s̄′′ ⟨v̄r/y⟩ + 0X{Y /x}{Z/y}

by Lemma 52,
=

∑
v̄=(v̄′

l
·v̄′′

l
)·v̄r

s′ ⟨v̄′
l/y⟩ ⟨ū ⟨v̄′′

l /y⟩/x⟩ s̄′′ ⟨v̄r/y⟩

by the induction hypothesis on s′,
=

∑
v̄=(v̄′

l
·v̄r)·v̄′′

l

s ⟨v̄′
l · v̄r/y⟩ ⟨ū ⟨v̄′′

l /y⟩/x⟩

by re-arranging the indices, and using again Lemma 52 together with the hypotheses
x /∈ Z and x /∈ fv(s̄′′). This is exactly the desired result.
The case x /∈ fv(s) and x ∈ fv(s̄′′) is symmetric.

Case s = 1X . If ū = 1Y and v̄ = 1Z , both sides of the equality are equal to 1X{Y /x}{Z/y}.
Otherwise, they are equal to 0X{Y /x}{Z/y}.
Case s = s′ · s̄′′ is similar to the case of application above. ◀

B.2 Strong confluence of →r (Theorem 33, item ii)
▶ Lemma 53. If s →r s′ then s

〈
t̄
/

x
〉

→?
r s′ 〈

t̄
/

x
〉
.

Proof. By induction on s →r s′. For the base case (λy.u)v̄ →r u ⟨v̄/y⟩,

((λy.u)v̄)
〈
t̄
/

x
〉

=
∑

t̄=t̄′·t̄′′

(
λy.u

〈
t̄′/x

〉)
v̄

〈
t̄′′/y

〉
→?

r
∑

t̄=t̄′·t̄′′

u
〈
t̄′/x

〉 〈
v̄

〈
t̄′′/x

〉/
y
〉

= u ⟨v̄/y⟩
〈
t̄
/

x
〉

by Lemma 30.

Notice that the reflexive closure →?
r of →r is necessary to handle the case where the two

sums are empty. The other cases are immediate applications of the induction hypotheses. ◀

▶ Lemma 54. If t̄ →r t̄′ then s
〈
t̄
/

x
〉

→?
r s

〈
t̄′/x

〉
.

Proof. By a straightforward induction on the different cases defining s
〈
t̄
/

x
〉
. ◀
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▶ Lemma 55. For all s ∈ (!)∆I(X) and s′, s′′ ∈ N[(!)∆I(X)] such that

s →r s′ and s →r s′′,

there exists t ∈ N[(!)∆I(X)] such that

s′ →?
r t and s′′ →?

r t.

Proof. Take s, s′ and s′′ as above. We proceed by induction on both reductions s →r s′ and
s →r s′′. The base case is when the first reduction comes from the first rule in Definition 31,
i.e. s = (λx.u)v̄ and s′ = u ⟨v̄/x⟩:

If the second reduction comes from the same rule, then s′′ = s′ and we set t := s′.
If the second reduction comes from the rule for left application, i.e. s′′ = (λx.u′′)v̄
with u →r u′′, then by Lemma 53 s′ = u ⟨v̄/x⟩ →?

r u′′ ⟨v̄/x⟩ and by Definition 31
s′′ →?

r u′′ ⟨v̄/x⟩. (The reflexive closure is needed in the latter case because u′′ may be
empty.)
If the second reduction comes from the rule for right application, then the proof is as in
the previous case, using Lemma 54 instead of Lemma 53.

In all other cases, the results immediately follows from the induction hypotheses. ◀

▶ Theorem 33 (Item ii, recalled from Page 11). For all s, s′, s′′ ∈ N[(!)∆I(X)] such that

s →r s′ and s →r s′′,

there exists t ∈ N[(!)∆I(X)] such that

s′ →?
r t and s′′ →?

r t.

Proof. We prove the result under the slightly more general hypothesis that s →?
r s′ and

s →?
r s′′. We proceed by induction on ssize(s). If ssize(s) = [], i.e. s is empty, then both

reductions must be equalities and the conclusion is trivial. Otherwise, suppose ssize(s) ≻N [].
Again, if any of the two reductions turns out to be an equality, the result is immediate.
Otherwise s →r s′ and s →r s′′, i.e.

s = s1 + s̸=1 and s′ = s′
1 + s′

̸=1, together with s1 →r s′
1 and s̸=1 →?

r s′
̸=1,

s = s2 + s̸=2 and s′′ = s′′
2 + s′′

̸=2, together with s2 →r s′′
2 and s̸=2 →?

r s′′
̸=2.

There are two possible cases.
If s1 = s2 and s ̸=1 = s ̸=2, then by Lemma 55 applied to s1 →r s′

1 and s1 →r s′′
2 , we obtain

t1 such that s′
1 →r t1 and s′′

2 →r t1. By the induction hypothesis on s ̸=1, we obtain t̸=1
such that s′

̸=1 →r t̸=1 and s′′
̸=2 →r t̸=1. Therefore we can set t := t1 + t̸=1.

If s1 ̸= s2, then we can write s = s1 + s2 + s̸=12, with:

s̸=1 = s2 + s ̸=12 s′
̸=1 = s′

2 + s′
̸=12 s2 →?

r s′
2 s̸=12 →?

r s′
̸=12

s̸=2 = s1 + s̸=12 s′′
̸=2 = s′′

1 + s′′
̸=12 s1 →?

r s′′
1 s̸=12 →?

r s′′
̸=12.

By Lemma 55 applied to s1 we obtain t1 such that s′
1 →?

r t1 and s′′
1 →?

r t1. By the same
lemma applied to s2 we obtain t2 such that s′

2 →?
r t2 and s′′

2 →?
r t2. By the induction

hypothesis on s̸=12 we obtain t ̸=12 such that s′
̸=12 →?

r t ̸=12 and s′′
̸=12 →?

r t̸=12. Finally,
we can set t := t1 + t2 + t ̸=12. ◀


	1 Introduction
	2 Preliminaries
	2.1 The -calculus, in a nutshell
	2.2 The -calculus

	3 Memory trees
	3.1 The coinductive definition
	3.2 The associated approximation theory

	4 A resource calculus with memory
	4.1 -resource expressions and -resource sums
	4.2 Memory substitution and resource substitution
	4.3 The operational semantics

	5 Taylor approximation for memory trees
	5.1 The Taylor approximation
	5.2 The -theory of memory trees

	6 Conclusions and future work
	6.1 Further work on the -calculus
	6.2 What about the full -calculus?

	A Proofs of Section 3
	B Proofs of Section 4
	B.1 Substitution lemma (Lemma 30)
	B.2 Strong confluence of →r (Theorem 33, item ii)


