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Abstract

We present a new method for component separation from multifrequency maps
aimed to extract Sunyaev-Zeldovich (SZ) galaxy clusters from Cosmic Microwave
Background (CMB) experiments. This method is best suited to recover non–Gaussian,
spatially localized and sparse signals. We apply our method on simulated maps of
the ACBAR experiment. We find that this method improves the reconstruction of
the integrated y parameter by a factor of three with respect to the Wiener filter
case. Moreover, the scatter associated with the reconstruction is reduced by 30 per
cent.
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1 Introduction

The study of the Cosmic Microwave Background (CMB) has greatly improved
our understanding of the Universe in the last decade. The measurement and
interpretation of the CMB power spectrum has allowed to determine the
most important cosmological parameters with very high accuracy. More ex-
periments, now planned or undeway, will produce higher resolution multi–
frequency maps of the sky in the 100–400 GHz frequency range. One of the
most important new scientific goals of these experiments is the detection of
clusters through their characteristic Sunyaev-Zeldovich (SZ) signature (Sun-
yaev & Zeldovich 1980). Because the SZ signal is substantially independent
of redshift, SZ clusters will be observed at very large distances, quite inde-
pendently from their mass. Such clusters may be used to infer cosmologi-
cal information via number counts and power spectrum analysis of SZ maps.
Many studies have shown the great potential of these new technique. These
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Table 1
The characteristics of the ACBAR experiment.

ν (GHz) FWHM (arcmin) noise (µK/beam)

150 5 6

220 5 10

280 5 12

estimates, however, typically assume that all clusters above a certain flux are
perfectly reconstructed and detected in the CMB maps. In practice, this may
not be the case. SZ clusters have radio intensities comparable to other in-
tervening cosmological signals like the CMB and point sources. Despite the
different frequency and spatial dependence of these signals, it is not so easy
to disentangle them. Moreover, beam smearing and instrumental noise play a
role in our ability to adequately reconstruct the observed cluster. These ar-
guments raise the necessity to assess how well a certain technique performs
in reconstructing the cluster signal given the experiment specifications. For a
given cluster Compton parameter y, the reconstructed value may also depend
on the cluster location and shape. Therefore, there is an error associated with
the reconstruction technique which needs to be assessed and accounted for
when it comes to relate cluster’s observables with cosmological models. More-
over, the specific observable to use may depend on the type of experiment
in hand. In this paper we address these issues for the ACBAR experiment
(see Pierpaoli et al. 2004 for a similar analysis applied to Planck and ACT).
Several techniques have been developed for image reconstruction in the multi–
component case (Herranz et al. 2002, Stolyarov et al. 2002). In most cases,
these techniques are optimal in reconstructing the CMB fluctuation signal,
which is Gaussian and well characterized in Fourier space. Clusters of galaxies
maps present very different features from CMB ones, in particular: i) clusters
are “rare” objects in the map, they don’t fill out the majority of the space;
ii) The cluster signal is non–Gaussian on several scales, and in particular on
scales associated with the typical core size; iii) Different scales are correlated
in Fourier space. Keeping these characteristics in mind, in this paper we de-
velop a method aimed to better reconstruct the SZ galaxy cluster signal from
multifrequency maps. Our map reconstruction method is wavelet based and is
best suited to reconstruct the specific non–Gaussian signal expected in galaxy
clusters maps. In this work we use the simulated cluster maps by Martin White
available at: http://pac1.berkeley.edu/tSZ/. These maps are not full hydrody-
namical simulations, the gas here has been introduced using the dark matter
as a tracer. However for the kind of experiment in hand which would not re-
solve the cluster structure anyway, this should not present a major problem.
The underlying cosmology corresponds to the concordance model. We used
ten maps of 10 × 10 degrees.
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2 The reconstruction method

2.1 The wavelet decomposition used

We use a two–dimensional overcomplete wavelet representation which is more
adequate to the analysis of astrophysical images. The wavelet decomposition
of a signal s in our case reads:

s =
∑

q∈N2

〈s, φq〉φq +
J∑

j=0

M∑

m=1

∑

q∈2−jN2

〈s, ψj,m,q〉ψj,m,q (1)

where φq are the scaling functions, ψj,m,q are the wavelets and 〈, 〉 are scalar
products. The sum

∑
q〈s, φq〉φq is the projection of s on the coarsest scale, i.e.

a low-pass version of s. Each scaling coefficient 〈s, φq〉 contains information
about the signal s at the coarsest scale and at a specific location in space q. For
j fixed, the sum

∑
m

∑
q〈s, ψj,m,q〉ψj,m,q is the projection of s on the scale j, i.e. a

band-pass version of s. Each wavelet coefficient 〈s, ψj,m,q〉 contains information
about the signal s at the specific scale j, orientation m and location in space
q. As usual with wavelet transforms, changing scale is done by dilating, and
changing location is done by translating the wavelet: ψj+1,m,q(x) = ψj,m,q(2x)
and ψj,m,q(x) = ψj,m,0(x−q) Hence, scale j+1 corresponds to a frequency band
that is twice as wide and for which the central frequencies are twice as large as
that of scale j. On the other hand, in space, the wavelets at scale j+1 are better
localized than at scale j since they are more narrowly concentrated around
their center q (see Fig.1, column 1 and 2). Unlike the 2-D Daubechies wavelets,
the wavelets (and scaling function) we use here are defined in the Fourier
plane. This ensures that they are well concentrated in frequency. Moreover, it
enables us to introduce orientation by rotating the Fourier transform of the
wavelet (see Fig.1, column 2 and 3). If f̃ is the Fourier transform of f and

(r, θ) are polar coordinates, then: ψ̃j,m,q(r, θ) = ψ̃j,0,q(r, θ− mπ

M
) The transform

is therefore close to rotation invariant and computation is fast via FFT. The
Fourier transform of the wavelets and scaling functions read:

L(r) = cos (
π

2
log2(r))δ1<r<2 + δr<1 low pass (2)

H(r)= sin (
π

2
log2(r))δ1<r<2 + δr>2 high pass (3)

GM(θ) =
(M − 1)!√
M [2(M − 1)]!

|2 cos θ|M−1
oriented (4)

φ̃0(r, θ) =L(2r, θ) (5)

ψ̃j,m,0(r, θ) =L(
r

2j
)H(

2r

2j
)GM(θ − mπ

M
) j≥0,

0≤m<M (6)
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Fig. 1. Top row: wavelets in space; Bottom row: wavelets in Fourier plane. Left to
right: wavelet at a fine scale j + 1, centered at location q0, oriented along the first
diagonal; wavelet at a coarser scale j, centered at location q1, oriented along the
first diagonal; wavelet at the same coarser scale j, centered at location q2, oriented
along the horizontal axis; scaling function, centered at location q2.

The set of all wavelets and scaling functions determines a redundant system
(they are linearly dependent), however, the Plancherel equation holds.

2.2 The estimator

Formally, our goal is to estimate several processes (CMB, SZ, point sources)
from their contributions in observations at different frequencies. We estimate
the processes {x(p, ν0)}p from the observations {y(ν)}ν given that: y(ν) =∑

p f(p, ν)x(p, ν0) ∗B(ν) +N(ν) where x(p, ν0) is the template of the pth pro-
cess at a given frequency ν0, f(p, ν) is the frequency dependence of the pth pro-
cess, B(ν) is the beam and N(ν) is the frequency dependent white noise. Our
estimation method will rely on two principles to discriminate the contributions
from different processes. The first one is that we know some statistical prop-
erties of the processes (e.g. the CMB and noise are Gaussian processes, while
the clusters are not). The second one is that some spatial properties of the
processes can be captured by modeling the coherence of wavelet coefficients.
For example, clusters can be described as spatially localized structures with
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a high intensity peak. To estimate a particular wavelet coefficient xj,m,q, one
describes the statistics of a neighborhood of coefficients around it by a Gaus-
sian scale mixture. For example, xj,m,q = (xj,m,q, xj,m,q+1, xj,m,q−1, xj−1,m,q) is
a neighborhood of coefficients around xj,m,q. It contains wavelet coefficients at
the same scale with close location, and at a close scale with the same location.
The Gaussian scale mixture is the model:

x ≡
√
zu (7)

where u is a centered Gaussian vector of the same covariance as x, the mul-
tiplier z is a scalar random variable and the equality holds in distribution. u

and z are independent and E{z} = 1. The covariance of x captures the spatial
coherence of the process. The (non-)Gaussianity of the signal is captured by
the distribution of the multiplier z. To illustrate the idea for the reconstruction
process, let us consider the simple case where we observe one process polluted
by noise: y = x + N (in wavelet space). x is a Gaussian mixture x ≡ √

zu,
with u a Gaussian vector. If z was a constant, z = z0, then E{x|y, z = z0},
the Bayes Least square estimate of xj,m,q given the observed vector yj,m,q and
z, would be the Wiener filter:

E{x|y, z = z0} = z0Cx(z0Cx + CN)−1y (8)

where Cv is the covariance matrix of the vector v. However in our model, z
is not a constant, so E{x|y}, the Bayes Least square estimate of xj,m,q, is a
weighted average of the Wiener filters above:

E{x|y} =

∞∫

0

p(z = z0|y)E{x|y, z = z0} dz0 (9)

The weights are determined by the probability of z given the observation
yj,m,q, noted p(z = z0|yj,m,q), which is computed via Bayes rule:

p(z = z0|y) =
p(y|z = z0)pz(z0)∫
p(y|z = z′)pz(z′)dz′

(10)

where p(y|z = z′) is a centered Gaussian vector of covariance z′Cx + CN,
and pz is the probability distribution of z. Following this procedure, one gets
an estimate E{xj,m,q|yj,m,q} for each neighborhood of coefficients xj,m,q. From
this estimated vector, we only keep the estimate of central coefficient xj,m,q.

In the case where p(z) = δD(z − 0), the Gaussian scale mixture described
in eq. (7) reduces to a Gaussian process, which is an accurate model for the
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CMB signal. Other signals, in particular the cluster signal, are typically non–
Gaussian. In order to model them, we will need a more elaborate distribution
for z. In this paper we use a distribution p(z) that we derived from the input
SZ maps with the technique described in Pierpaoli et al. (2004). The cluster’s
distribution p(z) has a tail for high z values which is caused by the high
intensity points in the cluster centers. By using this distribution instead of
the delta function (which would correspond to a Gaussian process) we are
suggesting to the reconstruction method that in the map there should be
more “high intensity” points than in the corresponding Gaussian case with
the same variance. In Pierpaoli et al. (2004) we also describe other choices
for p(z) and conclude that the final performance in reconstructing the cluster
center doesn’t depend on the specific shape of the distribution p(z) provided
that p(z) has enough power in the “high–intensity” tail.

3 Results

We applied the method described above to ACBAR simulated maps with
realistic beam and noise properties (see table 1). We ignored here the com-
plications in the noise correlation matrix, and assumed instead white noise.
We don’t expect this approximation to highly compromise the overall per-
formance. In figures 2 and 3 we show the performances of our method in
reconstructing the y parameter of the largest and most intense clusters in the
simulations. The reason for such distinction is the following: the method pro-
posed here make use of the spacial covariances of the cluster’s signal. Therefore
if the beam size of the experiment is comparable to the typical cluster size (as
is the case with ACBAR) clusters with similar intensities but different core
size may not be reconstructed equally well, since compact clusters are more
likely to be confused with noise. The actual performance in the reconstruction
largely depends on the noise level. For this reason we perform the two analysis
for “extended” and “intense” clusters separately.

We adopt the following procedure: first we compute the input and output y
parameter integrated over a given angle (specified on the x axis); we then
fit a line to the input/output values and calculate the average departure of
the output values from that line. The figures report the slope of the fitted
line (solid lines) and the scatter about it (dashed lines) for the p(z) cluster
distribution (blue) and for a delta function corresponding to an hypothetical
Gaussian signal (pink).

In these figures we notice that the Wiener filtering (which assumes the delta
function for the p(z) distribution) underestimates the high intensity peaks
corresponding to massive clusters. The estimator which uses the true p(z)
distribution performs on average a factor of three better in reconstructing
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Fig. 2. The integrated output y parameter versus the input one for the (12) largest
clusters in the simulations. These values are obtained by using the ACBAR specifi-
cations. The title indicates the y values of the less intense cluster considered: ymax,
y3.6 and y6 are the central intensities in the input map with no smoothing (the pixel
size of the simulation being 1.17 arcmin) and with a smootihng angle of 3.6 and 6
arcmin respectively.
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Fig. 3. The integrated output y parameter versus the input one for the (34) most
intense clusters in the reconstructed maps. The values at the top have the same
meaning as in fig. 2. These values are obtained by using the ACBAR specifications.

the central intensity of the clusters, quite independently from the integration
angle assumd. The error average departure of the output value from the fitted
line is also reduced by about 30 per cent. We conclude that the inclusion of
non–Gaussian information greatly improves the reconstruction of clusters SZ
signal from observed maps. Performances, however, depends on the specific
characteristics of the experiment in hand, as well as on the characteristics of
the clusters that we aim to reconstruct (i.e. total intensity and dimensions). In
the specific ACBAR case, by comparing figs 2 and 3 we notice that extended
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clusters are on average slightly better reconstructed and present a significantly
lower scatter.
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