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ABSTRACT

We present a new method for component separation aimed to extract Sunyaev-
Zeldovich (SZ) galaxy clusters from multifrequency maps of Cosmic Microwave Back-
ground (CMB) experiments. This method is designed to recover non-Gaussian, spa-
tially localized and sparse signals. We first characterize the cluster non-Gaussianity
by studying it on simulated SZ maps. We the apply our estimator on simulated ob-
servations of the Planck and Atacama Cosmology Telescope (ACT) experiments. The
method presented here outperforms multi-frequency Wiener filtering both in the recon-
structed average intensity for given input and in the associated error. In the absence
of point source contamination, this technique reconstructs the ACT (Planck) bright
(big) clusters central y parameter with an intensity which is about 84 (43) per cent
of the original input value. The associated error in the reconstruction is about 12 and
27 per cent for the 50 (12) ACT (Planck) clusters considered. For ACT, the error is
dominated by beam smearing. In the Planck case the error in the reconstruction is
largely determined by the noise level: a noise reduction by a factor 7 would imply
almost perfect reconstruction and 10 per cent error for a large sample of clusters. We
conclude that the selection function of Planck clusters will strongly depend on the
noise properties in different sky regions, as well as from the specific cluster extraction
method assumed.

Key words: cosmology: large-scale structure of Universe – cosmic microwave back-
ground – galaxies: clusters: general

1 INTRODUCTION

The study of the Cosmic Microwave Background (CMB)
has greatly improved our understanding of the universe in
the last decade. The measurement and interpretation of
the CMB power spectrum has determined the most im-
portant cosmological parameters with very high accuracy
(Spergel et al. 2003). More experiments, now planned or
underway, will produce higher resolution multi-frequency
maps of the sky in the 100–400 GHz frequency range. One
of the most important new scientific goals of these experi-
ments is the detection of clusters through their characteris-
tic Sunyaev-Zeldovich (SZ) signature (Sunyaev & Zeldovich
1980). Because the SZ signal is substantially independent
of redshift, SZ clusters above a mass threshold will be ob-
served at very high distances. Such clusters may be used
to infer cosmological information via number counts and
power spectrum analysis of SZ maps (Majumdar & Mohr
2003; Levine et al. 2002; Hu 2003; Battye & Weller 2003;

Weller & Battye 2003). These estimates, however, typically
assume that all clusters above a given flux are perfectly re-
constructed and detected in the CMB maps. In practice,
this may not be the case. SZ clusters have radio intensities
comparable to other intervening cosmological signals like the
CMB and point sources, so disentangling them is difficult.
Moreover, beam smearing and instrumental noise play a role
in our ability to adequately reconstruct the observed cluster.
For a given central comptonization parameter y (see below
for definition), the reconstructed value may also depend on
the cluster location and shape. Given experimental specifica-
tions and a reconstruction technique, the associated recon-
struction error needs to be assessed and accounted for when
relating cluster observables to cosmological models. This er-
ror is in addition to the one usually associated with clus-
ter scaling relations, which play a major role in the current
determination of σ8 from galaxy clusters (Pierpaoli et al.
2003).
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Given the observed maps at different frequencies, clus-
ters can be detected with two quite different approaches:

a) a formal component separation is applied to the map,
and the cluster map is reconstructed along with the maps
for all other processes.

This approach was initially developed to reconstruct
CMB maps. Most often it has been applied in Fourier space,
with and without assumptions on the Gaussianity of the sig-
nal (Tegmark & Efstathiou 1996; Stolyarov et al. 2002).

b) The maps at different frequencies are first combined
in an optimal way in order to enhance the cluster signal and
minimize the other ones. A spatial filter, (typically circularly
symmetric) is then applied to the final map (Herranz et al.
2002; Diego et al. 2002).

Clusters of galaxies maps present very specific features,
in particular: i) clusters are “rare” objects in the map—
they do not fill the majority of the space; ii) The cluster
signal is non-Gaussian on several scales (Zhang et al. 2002;
Diego et al. 2003), and we are most interested in the non-
Gaussianity on the scale of the typical cluster core size; iii)
the signal on different scales is correlated. Keeping these
characteristics in mind, in this paper we develop a method
for formal component separation of different signals that is
tailored to better reconstruct the SZ galaxy cluster signal
from multifrequency maps. Our map reconstruction method
is wavelet-based and it can take into account the specific
non-Gaussianity expected for a given signal (SZ clusters in
particular). We will see that the combination of these two
features enables us to better reconstruct the intensity of the
cluster center, which is essential to reliably relate the SZ sig-
nal to theoretical quantities in order to derive cosmological
parameters.

Wavelets have been applied to the analysis of multifre-
quency maps to characterize specific signals (Starck et al.
2004) and extract point sources (Cayón et al. 2000;
Vielva et al. 2001), to recover the CMB sky with Maxi-
mum Entropy methods (Vielva et al. 2001; Maisinger et al.
2004) and to assess statistics of the CMB (Tenorio et al.
1999; Hobson et al. 1999; Cayón et al. 2001; Aghanim et al.
2003). Here we focus on galaxy clusters, adopt a suitable
wavelet basis, and develop a new Bayesian estimator ap-
propriate to the reconstruction of the non-Gaussian signal
associated with cluster maps.

Future SZ surveys may be very different in nature.
Space-based Planck will cover the whole sky, seeing all the
most massive clusters but with relatively low resolution. A
number of ground-based experiments will cover a smaller
area with higher resolution. Because the performance of the
reconstruction method also depends on the experimental
characteristics, we apply our method to two different SZ ex-
periments, the Planck surveyor and the Atacama Cosmology
Telescope (ACT). The main purpose of this paper is to in-
troduce our new estimator, on which component separation
is based, and to test and compare it with standard tech-
niques. After reconstructing the SZ maps, we assess which
error is involved in the determination of SZ observables from
the map. The analysis of simulated maps allows us to design
observables suited to derive cosmological parameters for a
given experiment. We will also assess the impact of instru-
mental limitations in recovering the cluster maps. We then
assess the level of completeness and purity of the surveys for
different flux cuts. Throughout the paper we compare our

method with the standard multi-frequency Wiener filtering
technique applied in the same wavelet space.

This paper is organized as follows: in section 2 we de-
scribe the relevant signals at radio/infrared frequencies and
the characteristics of the experiments that we are going to
consider; we then describe our wavelet basis and reconstruc-
tion method in section 3; section 4 is dedicated to the results
and section 5 to the conclusions.

2 ASTROPHYSICAL SIGNALS AND

INSTRUMENT CHARACTERISTICS

We will consider experiments that will provide a map of the
sky in the frequency range 100–400 GHz. In this range we
expect to observe several galactic and extragalactic signals,
like the synchrotron and dust emission from the Galaxy,
the CMB, radio and infrared point sources and SZ galaxy
clusters. We are interested here in the reconstruction of the
cluster signal. Because the galactic signal has a very dif-
ferent spatial structure from SZ clusters, we assume here
that the Galaxy is not a fundamental limitation in recon-
structing SZ cluster maps, which is likely true in substantial
portions of the sky. Point sources, particularly dusty star-
forming galaxies at high-redshift which shine brightly at sub-
mm frequency, may be a potential concern. The modeling of
source number counts, frequency dependences, and spatial
correlations remain uncertain. We prefer to leave them out
of the analysis at the present time, and test our technique
in absence of point sources. For Planck this approach is jus-
tified by the presence of higher and lower frequency chan-
nels, which will hopefully allow modeling and subtraction of
point sources before component separation. For ACT, which
lacks these channels, this is probably a too optimistic as-
sumption (White & Majumdar 2004; Huffenberger & Seljak
2004). However, we use it for simplicity in testing our new
estimator, which in any case we find to be superior to Wiener
filtering techniques used previously. We will assess in future
work the contamination of such sources in the context of the
technique presented here.

We simulate the CMB with Gaussian random fields us-
ing a power spectrum derived from the best-fitting WMAP
parameters (Bennett et al. 2003).

In the following we review the SZ cluster signal and
describe the characteristics of the simulated maps and of
the experiments we are discussing here.

2.1 Clusters of Galaxies

CMB photons traveling from the last scattering surface to
the earth interact with the high energy electrons in inter-
vening massive galaxy clusters. As a consequence of this
scattering, the CMB temperature and intensity is modified
in the direction of a cluster. This is known as the thermal
and kinetic SZ effects. The effect related to the electron’s
thermal motion causes a change in the CMB intensity δI in
the direction n̂ of the cluster:

δI(n̂) = −2y(n̂)I0SI [x(ν)], (1)

where

SI =
x4 exp(x)

(exp(x) − 1)2

[
2 − x

2

exp(x) + 1

exp(x) − 1

]
(2)
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with x ≡ hν/kBTCMB = ν/57 GHz, I0 ≡
2(kBTCMB)3/(hc)2 and

y(n̂) =
σT

mec2

∫ L

0

ne(ln̂)kBTe(ln̂)dl =
σT

mec2

∫ L

0

Pe(ln̂)dl(3)

is the comptonization y-parameter which depends on tem-
perature (Te) number density (ne) through the pressure (Pe)
of free electrons. The integral is over the proper distance l.
The corresponding temperature change reads:

δTCMB

TCMB

= −2y(n̂)

[
2 − x

2

exp(x) + 1

exp(x) − 1

]
. (4)

Note that in the Rayleigh-Jeans limit (x ≪ 1) we have
δTCMB/TCMB = δIν/Iν = −2y(n̂). The thermal SZ sig-
nal causes a decrement (increment) of the intensity below
(above) the characteristic frequency of 217 GHz. The ther-
mal SZ is observable between 10 and 800 GHz, with a mini-
mum (maximum) around 145 (350) GHz. Because of this pe-
culiar frequency dependence, multi-frequency observations
will be crucial in recovering the cluster SZ signal. Massive
clusters have typical y parameters of the order of 10−4 cre-
ating an SZ signal of the same order of magnitude as that
of the CMB fluctuations.

The interaction of free electrons in galaxy clusters with
the CMB photons is also responsible for the kinetic SZ. Clus-
ters of galaxies have a peculiar motion with respect to the
Hubble flow. As a consequence, the scattered CMB photons
are subject to a Doppler effect due to the bulk cluster mo-
tion. The kinetic SZ is weaker than the thermal SZ and it
has a similar frequency dependence to the CMB, therefore it
is harder to detect and separate from the CMB. Very likely
the kinetic SZ will be measured after cluster positions have
been determined. We therefore ignore it in the component
separation technique developed in the following sections.

2.2 Characteristics of future CMB experiments

The performance of any component separation technique
also depends on the characteristics of the experiment in
hand. Future SZ surveys will have a broad spectrum of possi-
ble characteristics in term of frequency coverage, sensitivity
and resolution. For this reason we specify here our analysis
for two future CMB experiments very different in nature:
Planck and ACT1. The specifications for these experiments
most relevant for SZ surveys are summarized in table 1.

Planck is an all-sky experiment with a quite broad beam
(5 arcmin) if compared to the typical cluster size (1–10 ar-
cmin), therefore we expect Planck to detect the most mas-
sive (or extended) clusters only. The large area covered, how-
ever, will allow to detect a sizable number of them.

ACT is a higher resolution, ground based experiment
where most massive clusters are larger than the beam. At
this resolution, clusters appear aspherical (see fig. 5, first
panel) and the challenge here is also to be able to individ-
ually detect merging structures and resolve the outskirts of
massive clusters. Moreover, we want to find the many small
clusters which may be confused with noise (or other point
sources).

In our simulations of both experiments, the detection of

1 http://planck.esa.int/, http://www.hep.upenn.edu/act/index.html

Experiment ν (GHz) FWHM (arcmin) σ(µK)

Planck 143 7.1 6
– 217 5.0 13
– 353 5.0 40

ACT 145 1.7 2
– 217 1.1 3.3
– 265 0.93 4.7

Table 1. The characteristics of the Planck and ACT experi-
ments at the frequencies used in this work. The RMS detector
noise per full-width-half-maximum pixel, labeled σ, is given in
thermodynamic temperature units.

the cluster central emission is going to be challenged by the
following factors: i) smearing by the instrumental beam; ii)
instrumental noise iii) confusion with the CMB anisotropy
structure.

In the following we assess how precise the reconstruc-
tion of the central emission in these experiments is. In or-
der to do so, we constructed simulated maps of the sky at
different frequencies for both experiments with CMB and
SZ cluster maps. For Planck, the 10 × 10 square-degree SZ
cluster maps where taken from White (2003)2. For ACT we
use 1.19×1.19 degrees maps obtained from hydrodynamical
simulations by Zhang et al. (2002). For both experiments
the reconstruction was based on three frequency channels,
which are specified in table 1.

3 THE RECONSTRUCTION METHOD

In this section, we present the method used to reconstruct
the different processes from the observed maps. Instead of
the usual Fourier space decomposition of the signal, we
adopt here a wavelet decomposition. We perform a Bayesian
least square estimation of the different processes, modeling
the statistics of wavelet coefficients of the signals by Gaus-
sian scale mixtures. The estimation can be thought of a
weighted local Wiener filters on neighborhoods of wavelet
coefficients, where the weight is determined by the specific
non-Gaussianity under consideration. Below, we describe
the details of the wavelet choice, and of the reconstruction
method.

3.1 The wavelet decomposition used

Since we deal with sky maps, we are interested in two-
dimensional wavelets. In the choice of the wavelet to use for
our image processing, we have to balance the orthogonal-
ity of the wavelet (which is desirable in order to well-define
the statistics) with the compatibility of the wavelet with the
image at hand. Orthogonal wavelet bases, such as the 2-D
Daubechies wavelets, are typically heavily biased towards
horizontal and vertical directions; moreover, they are usu-
ally not very well concentrated in frequency. To avoid this,
we use an overcomplete wavelet representation inspired by
the work of Portilla et al. (2003) which is more adequate to
the analysis of astrophysical images.

2 http://pac1.berkeley.edu/tSZ/PlanckSZ/
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Figure 1. Top row: wavelets in space; Bottom row: wavelets in
Fourier plane. First column: wavelet at a fine scale j +1, centered
at location q0, oriented along the first diagonal. Second column:
wavelet at a coarser scale j, centered at location q1, oriented along
the first diagonal. Third column: wavelet at the same coarser
scale j, centered at location q2, oriented along the horizontal axis.
Fourth column: scaling function, centered at location q2.

The wavelet decomposition of a signal s in our case
reads:

s =
∑

q∈Z2

〈s, φq〉φq +

J∑

j=0

M∑

m=1

∑

q∈2−jZ2

〈s, ψj,m,q〉ψj,m,q (5)

where φq are the scaling functions, ψj,m,q are the wavelets
and 〈, 〉 are scalar products. The sum

∑
q
〈s, φq〉φq is the

projection of s on the coarsest scale, i.e. a low-pass version of
s. Each scaling coefficient 〈s, φq〉 contains information about
the signal s at the coarsest scale and at a specific location
in space q. For j fixed, the sum

∑
m

∑
q
〈s, ψj,m,q〉ψj,m,q is

the projection of s on the scale j, i.e. a band-pass version of
s. Each wavelet coefficient 〈s, ψj,m,q〉 contains information
about the signal s at the specific scale j, orientation m and
location in space q.

As usual with wavelet transforms, changing scale is done
by dilating, and changing location is done by translating the
wavelet:

ψj+1,m,q(x) = 2ψj,m,q(2x) ψj,m,q(x) = ψj,m,0(x− q) (6)

Hence, scale j + 1 corresponds to a spatial frequency band
that is twice as wide and for which the central frequency is
twice as large as that of scale j. On the other hand, in space,
the wavelets at scale j + 1 are better localized than at scale
j since they are more narrowly concentrated around their
center q (see Fig. 1, column 1 and 2).

Unlike the 2-D Daubechies wavelets, the wavelets (and
scaling function) we use here are defined in the Fourier plane.
This ensures that they are well concentrated in frequency.
Moreover, it enables us to introduce orientation by rotating
the Fourier transform of the wavelet (see Fig. 1, column 2
and 3). If f̃ is the Fourier transform of f and (r, θ) are polar
coordinates, then:

ψ̃j,m,q(r, θ) = ψ̃j,0,q(r, θ − mπ

M
) (7)

The transform is therefore close to rotation invariant and
computation is fast via FFT.

The Fourier transform of the wavelets and scaling func-
tions are

φ̃0(r, θ) = L(2r, θ) (8)
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Figure 2. Left: Power spectra in Fourier space of the wavelets

at different scales (dash-dot) and signals : CMB (plain), clusters
(dashed) and noise (plain with circles) for Planck at 143 GHZ.
Note: here we only index the scale of the wavelet. Right: corre-
sponding Power spectra in wavelet space for the CMB (crosses),
clusters (plus) and noise (circle) for Planck at 143 GHZ.

ψ̃j,m,0(r, θ) = L(
r

2j
)H(

2r

2j
)GM (θ − mπ

M
)

for j ≥ 0, and 0 ≤ m < M , where the low-pass filter L(r),
the high-pass filter H(r) and the oriented filters GM (θ) are

L(r) = cos (
π

2
log2(r))δ1<r<2 + δr<1 (9)

H(r) = sin (
π

2
log2(r))δ1<r<2 + δr>2

GM (θ) =
(M − 1)!√
M [2(M − 1)]!

|2 cos θ|M−1

The set of all wavelets and scaling functions determines a
redundant system (they are linearly dependent), however,
the Plancherel equation holds:

||s||2L2 =
∑

q∈Z2

|〈s, φq〉|2 +

J∑

j=0

M∑

m=1

∑

q∈2−jZ2

|〈s, ψj,m,q〉|2 (10)

This ensures perfect reconstruction (eq. 5).
Given an image s, it is possible to define a wavelet power

spectrum Pw, which is related to the Fourier based power
spectrum P (k) = |s̃(k)|2:

Pw(j) =
∑

m,q

|〈s, ψj,m,q〉|2
22j

=
∑

m

∫
P (k)

|ψ̃j,m,0(k)|2
22j

dk (11)

The Fourier power spectra (in µK2) for the relevant sig-
nals (CMB, SZ clusters and noise) are displayed in Fig. 2
(left panel) together with the windows of wavelets at differ-
ent scales. The right panel shows the corresponding wavelet
spectra.

3.2 The estimator

Formally, our goal is to estimate several processes (CMB
and SZ) from their contributions in observations at different
frequencies. We estimate the processes {x(p, ν0)}p from the
observations {y(ν)}ν given that:

y(ν) =
∑

p

f(p, ν)x(p, ν0) ∗B(ν) +N(ν) (12)

where x(p, ν0) is the template of the pth process at a given
frequency ν0, f(p, ν) is the frequency dependence of the pth
process, B(ν) is the beam (assumed to be a Gaussian with

c© 0000 RAS, MNRAS 000, 000–000
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given FWHM) and N(ν) is the frequency dependent white
noise.

In wavelet space, these equations look similar: the ob-
served wavelet coefficients 〈y(ν), ψj,m,q〉 = yj,m,q(ν) are lin-
ear combinations of the wavelet coefficients of the different
processes xj′,m′,q′(p, ν0).

Our estimation method will rely on two principles to
discriminate the contributions from different processes. The
first one is that we know some statistical properties of the
processes (e.g. the CMB and noise are Gaussian processes,
while the clusters are not). The second one is that some spa-
tial properties of the processes can be captured by modeling
the coherence of wavelet coefficients (Romberg et al. 2003).
For example, clusters can be described as spatially localized
structures with a high intensity peak. Hence if a cluster is
centered at location q0, one should see rather big wavelet
coefficients around this location through different scales. If
there is no cluster there, all these coefficients should be fairly
small. This would not be the case for the noise. We aim to a
local reconstruction which can take advantage of these corre-
lations. In order to estimate a particular wavelet coefficient
xj,m,q, we consider a neighborhood of coefficients around it:

x ≡ xj,m,q = ( xj,m,q , xj,m,q+1 , xj,m,q−1 , xj−1,m,q ), (13)

such neighborhood contains wavelet coefficients at the same
scale with close location, and at a close scale with the same
location.

Furthermore, we choose to statistically describe the sig-
nal as a Gaussian scale mixture (Portilla et al. 2003):

x ≡
√
zu (14)

where u is a centered Gaussian vector of the same covariance
as x (Cx = Cu), the multiplier z is a scalar random vari-
able (whose distribution we prescribe later) and the equality
holds in distribution. The variables u and z are independent
and E{z} = 1. The covariance of x captures the spatial co-
herence of the process, while the (non-)Gaussianity of the
signal is captured by the distribution of the multiplier z. We
will take the covariance Cx to be a function of the scale j
and orientation m. The convenience of this signal’s descrip-
tion will be more clear in the next section.

3.2.1 Step one: de-noising one observation of one process

To illustrate the idea for the reconstruction process, let us
first consider the simple case where we observe one process
polluted by noise: y(ν0) = x(ν0) +N(ν0). The equations for
each single wavelet coefficient and for the neighborhood of
wavelets coefficient read:

yj,m,q = xj,m,q +Nj,m,q (15)

y = x + N

where N is Gaussian and x is described with the Gaussian
mixture in eq. 14. The convenience of this representation is
that for a fixed multiplier z = z0, the Bayes least square
estimate of x given the observed vector y and z, would be
a Wiener filter on the neighborhood of wavelet coefficients:

E{x|y, z = z0} = z0Cx(z0Cx + CN)−1
y. (16)

However in our model z is not a constant, so E{x|y}, the
Bayes least square estimate of x, is a weighted average of
the Wiener filters above:

E{x|y} =

∫ ∞

0

p(z = z0|y)E{x|y, z = z0} dz0 (17)

The weights are determined by the probability of z given
the observation y, noted p(z = z0|y), which is computed via
Bayes rule:

p(z = z0|y) =
p(y|z = z0)pz(z0)∫
p(y|z = z′)pz(z′)dz′

(18)

where p(y|z = z′) is a centered Gaussian vector of covariance
z′Cx +CN, and pz is the probability distribution of z which
we will describe in 3.3.

Following this procedure, one gets an estimate E{x|y}
for each neighborhood of coefficients x. From this estimated
vector, we only keep the estimate of central coefficient xj,m,q.

3.2.2 Step two: de-blurring one observation of one process

Consider now the case where the observed signal is a blurred
version of the original: y(ν0) = x(ν0) ∗ B(ν0) +N(ν0). The
convolution with the beam correlates the signal spatially. As
a result, a single observed wavelet coefficient is dependent
on many wavelet coefficients in the signal. The equations do
not decouple any more:

yj,m,q =
∑

q′

B(
q′ − q

2j
)xj,m,q′ +Nj,m,q (19)

Since support of the beam is infinite, every wavelet co-
efficient xj,m,q′ contributes to yj,m,q. However the biggest
contribution come from the wavelet coefficients at a close lo-
cation (|q− q′| small). Hence if the size of the neighborhood
is big enough, one can make the following approximation:

yj,m,q = Bjxj,m,q
+ Nj,m,q (20)

where Bj is a matrix which depends on the beam B and
the scale. Eq. (17) and (18) hold with the modified Wiener
filter:

E{x|y, z = z0} = z0CxB
∗
j (z0BjCxB

∗
j + CN)−1

y (21)

and the covariance of p(y|z = z′) is now: z′BjCxB
∗
j + CN.

The matrix Bj is a truncated version of the matrix of
convolution by the beam projected at scale j. For eq. (20) to
be a good approximation, we allow the size of the neighbor-
hood of wavelet coefficients to vary with the scale. Specif-
ically, we extend the neighborhood of eq. (13) so that we
capture 90% of the power of the beam at each scale. To do
this, we simply include in xj,m,q the coefficients xj,m,q′ , with

|q′− q| < k, choosing k so that
∑

|q′|<k
|B( q′

2j )|2 > 0.9. Note

that the coarser the scale, the smaller k is.

3.2.3 Step three: de-mixing several processes from several
observations

One can extend this procedure to the case where several pro-
cesses contribute to signals observed at different frequencies,
as in equation (12).

For each process x(p, ν0), each neighborhood of wavelet
coefficients is modeled as a Gaussian scale mixture:

xj,m,q(p) ≡
√
zj,m,q(p)uj,m,q(p) (22)

c© 0000 RAS, MNRAS 000, 000–000
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where z(p) are scalars of mean 1, u(p) are Gaussian vectors,
and all these random variables are independent. The ap-
proximation in equation (20) for a neighborhood of wavelet
coefficients now reads:

yj,m,q(ν) =
∑

p

f(p, ν)Bj(ν)xj,m,q(p) + Nj,m,q(ν) (23)

Assuming we have K observations and P processes, we note
Y = (yj,m,q(ν1), . . . ,yj,m,q(νK)) and Z = (z(1), . . . , z(P )).
If Z is fixed, we obtain a multicomponent Wiener filter on
neighborhood of wavelet coefficients:

E{x(p)|Y,Z}= z(p)Cx(p)

K∑

k,k′=1

f(p,νk)B∗
j (νk)G−1

k,k′y(ν′k) (24)

where

Gk,k′ =

P∑

p=1

z(p)f(p,νk)f(p,νk′)Bj(νk)Cx(p)B
∗
j (νk′)

+δk=k′CN(νk) (25)

The Bayes least square estimate of the full model is:

E{x(p)|Y} =

∫

RP
+

p(Z|Y)E{x(p)|Y,Z} dz1 dz2.. dzP (26)

with the weights:

p(Z=(αi)i|Y) =
p(Y|Z=(α1, .., αP ))

∏
pzi

(αi)∫
p(Y|Z=(β1, .., βP ))

∏
pzi

(βi)dβi

(27)

where p(Y = y(νk)k|Z=(αi)i) is a centered Gaussian with
covariance matrix Gk,k′ .

In practice we compute the Bayes least square estimate
for each wavelet neighborhood x and only keep the central
coefficient xj,m,q for each process. We then reconstruct the
processes by inverting the wavelet transform.

In order to compute the estimate, we need the covari-
ance matrices CN(ν) and Cx(p). Note that these matrices
depend on the scale and orientation . Since the level of noise
is assumed to be known, the covariances CN(ν) can be com-
puted. The covariances for the different processes Cx(p) are
estimated from simulated input maps. We use the wavelet
transform described in (3.1) with 4 orientations and 5 scales
for the ACT experiment, with 4 orientations and 6 scales
for the Planck experiment. The size of the neighborhoods is
chosen adaptively at each scale so that the approximation
in equation (23) is valid (as explained in 3.2.2). Finally, we
choose the probability distributions pzi

to capture the prop-
erties of the process x(i, ν0), as noted in the next section.

3.3 Statistical properties of the signals

We now must decide which distribution pz we intend to use
for each signal. In the case where z ≡ 1, the Gaussian scale
mixture described in eq. (14) reduces to a Gaussian process.
We are considering here the CMB to be Gaussian, and will
consistently assume z ≡ 1 at all scales for this signal.

The cluster signal however is typically non-Gaussian. In
order to model such non-Gaussianity, we will need a more
elaborate distribution for z, which could in principle be cho-
sen with or without any particular link to the true distribu-
tion. In the following we will consider different cases for the

cluster’s z distribution (with and without a physical signifi-
cance) and we will compare the results.

In order to compute a physically based model for the
cluster non-Gaussianity, we analyzed the simulated SZ map.
For the Gaussian scale mixture model of the signal, it is dif-
ficult to solve the closed form equation for pz, (the proba-
bility of z) given the probabilities of x and u. We will in-
stead study the probability of its logarithm: pln z and refer
to it as the prior. Note that pz can then be easily recov-
ered: pz(v)dv = pln z(u)e

udu for u = ln v. Taking the the
logarithm of eq. (14), one obtains the following equation:

pln |x|(v) =

∫ ∞

0

2 pln z(2y) pln |u|(y − v) dy (28)

which we solve given that u is Gaussian and pln |x| is esti-
mated from the SZ input maps (details will be given in an
upcoming paper (Anthoine, . in prep.).

Together with the physical prior described above, we
will also consider two other non-physical ones. These are: i)
the Gaussian prior, which corresponds to assuming z ≡ 1,
or equivalently pln z(v) = δD(v − 0); ii) the non-informative
prior, i.e. the uniform probability distribution on ln z,
pln z(v) = constant. The latter has been used for recover-
ing non-Gaussian signals in digital image processing. We
will compare the performances of the non informative and
Gaussian prior to the one that we derived from the input
maps.

We plot the distributions described above in Fig. 3 for
the scale where the SZ signal is most pronounced. The be-
haviour of pln z for small (resp. large) values influences the
probability of finding small (resp. large) values of |x|. In
our model, px describes the statistics of wavelet coefficients.
Hence, the higher the probability px for small values of |x|,
the sparser we expect the signal to be. The more pronounced
the tails of px for large |x| are, the more intense we expect
the non-zero signal (i.e. the clusters) to be.

In Fig. 4, we plot the marginal distribution of the
wavelet coefficients for SZ clusters as computed from the
map, and show how the different z priors in fig. 3 would fit
the actual distribution. The right panel shows that the tails
of the clusters’ distribution is much broader than the one of
the Gaussian. As a consequence, the Gaussian prior tends
to underestimate the amplitude of clusters. The left panel
shows that the Gaussian prior underestimates the number
of wavelets coefficients with small amplitude, while the non
informative prior and to some extent the profile prior over-
estimate them. This means that the sparsity of the cluster
signal is not well described by these distributions. The Gaus-
sian prior will tend to create more clusters than necessary
while the non informative prior or the profile will miss clus-
ters.

We will also discuss another case that is derived from
the physical one: a truncated version of the pln z estimated
from the input maps (which we refer to as profile d). This
version is a trade-off between the profile computed from the
data and the Gaussian prior.

To summarize: in the rest of the paper we will compare
the results given by these four priors:

a) Gaussian prior, pln z(v) = δD(v − 0), referred to as
Gaussian.

b) Non informative prior, pln z(v) = constant, referred
to as Uniform.

c© 0000 RAS, MNRAS 000, 000–000
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−4 0
0

.5

 p lnz

ln z

Figure 3. Examples of probability distribution for ln z for a par-
ticular scale of the wavelet decomposition. Here z is the multi-
plier in the Gaussian scale mixture model. Plain: Gaussian prior,
pln z(v) = δD(v − 0), z ≡ 1. Dash-dot: non-informative prior,
pln z ≡ constant. Dashed: profile computed from the data. Dashed
and stars: profile computed from the data truncated (profile d).

c) Profile computed from the data, referred to as Profile.
d) Truncated profile computed from the data, referred

to as Profile d.

4 RESULTS

4.1 The reconstructed maps

We applied the method described above to the ACT and
Planck simulated maps with realistic beam and noise prop-
erties (see table 1), with different assumptions on the prior
pln z. In figure 5 and 6 we show the input and reconstructed
y maps for ACT and Planck respectively.

In these figures we notice that, even using a wavelet ba-
sis which allows for a local reconstruction, the Gaussian prior
for pln z (which causes the estimator to reduce to Wiener fil-
tering on the neighborhood of wavelet coefficients) underes-
timates the high-intensity peaks. On the contrary, the profile
and uniform prior perform (equally) better reconstruct the
central intensity of the bright clusters, indicating that the
specific shape of the tail of the prior distribution of multi-
pliers for high z is not particularly relevant, as long as it
provides enough power at sufficiently high z values.

As for the low-intensity clusters, they seem better re-
constructed in the Wiener filtered maps than by using the
real profile (or uniform) prior for pln z. This indicates that
our estimate of the true pln z, the profile, may be weighing
too heavily low-intensity points. This effect could be caused
by the procedure we adopt in computing pln z from the in-
put maps. Because of our deconvolution technique (see sec-
tion 3.3, eq. 28), it may well be that if the true pln z had a
very sharp drop at some low-z value, we wouldn’t be able
to model it accurately. For this reason, we also tried a pro-

−3 0 3
0

.5

1

1.5
 px

x

−15 −5 5 15
−10

−4

2
 ln(p x)

x

Figure 4. Top panel: px, the distribution of x ≡ √
zu. Bottom

panel: the logarithm of this distribution: ln(px). In order of in-
creasing value of px at x = 0 (left) and increasing value of |x|
for ln(px) = −10 (right). Plain: Gaussian prior, x is Gaussian.
Dashed and stars: px corresponding to the profile computed from
the data truncated (profile d). Plus: distribution px as numerically
computed from the input maps. Dashed: px corresponding to the
profile computed from the data. Dash-dot: px corresponding to
the non-informative prior.

file that corresponds to the true one truncated at z’s lower
than the peak point (see fig. 3, profile d case). The trun-
cated profile performs as well as Wiener filtering in recov-
ering low-intensity clusters, still improving the results on
high-intensity ones.

4.2 The central y parameter

When it comes to infer cosmological parameters from num-
ber counts in other wavebands (e.g. X-ray and optical) the
common practice is to retain only the brightest clusters
which are less affected by selection effects and have a bet-
ter characterized scaling function. We shall adopt the same

c© 0000 RAS, MNRAS 000, 000–000
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Figure 5. The simulated (top panel) and reconstructed ACT
cluster maps. The second panel correspond to the Gaussian prior,
the third to the actual cluster prior profile, and the fourth to the
truncated cluster prior profile d. The maps is 1.2 deg on a side.
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Figure 6. The original and reconstructed Planck cluster maps.
The distributions are the same as corresponding ACT panels.
Note that the color scale here is in the logarithm of the luminosity.
Border effects are visible: the areas at the edges are disregarded
in the analysis. The map is 10 deg on a side.
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Figure 7. The input and output y parameters for bright clusters
in the ACT experiment. Top plain line: line of perfect reconstruc-
tion. Gaussian prior: circle, bottom plain line; Profile prior: plus,
dash-dot line; Profile d prior: cross, dashed line.

Gaussian Uniform Profile Profile d

Slope ACT 0.69 0.84 0.84 0.83
Planck 0.07 0.41 0.43 0.27

Spread ACT 0.15 0.12 0.12 0.11
Planck 0.35 0.27 0.27 0.31

Table 2. The slope and the spread of the the lines in figs 7 and
8, obtained with different priors pln z .

strategy with SZ clusters, also motivated by the fact that
they are less affected by reconstruction errors. For these
clusters it is appropriate to assess how the input y param-
eter relates to the reconstructed one. In figs. 7 and 8 we
show the reconstructed y parameter versus the input one
for ACT and Planck respectively, smoothed over a scale
which is roughly the smallest beam size in each experi-
ment. In table 2, we quote the slope of the fitting line for
the different distributions considered, together with the av-
erage percentage departure from it, or spread, computed
as the mean of the ratio: |(input − predicted)/input| with
predicted = output/slope. In general, using either the uni-
form or the profile prior for pln z improves both the average
reconstruction (the slope of the curve) and the associated
error. The actual performance depends on the intensity cut
applied: here we plot the 50 brightest ACT clusters and the
12 Planck most extended clusters in the reconstructed maps
(see section 4.4 for a discussion on selection effects). In the
case of ACT the average reconstruction improves by about
20 per cent on the Gaussian prior case when our approach
is applied using any of the three other distributions. The
scatter is also reduced by a factor 2. In the case of Planck,
the improvement in the average reconstruction is roughly a
factor 5, and the error is also reduced.

The profile and uniform prior perform very similarly in
reconstructing the cluster centers, so that we only quote the

10
−4
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 Planck, y parameter, cluster averages (diameter 4.8 arcmin)
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R
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Figure 8. The input and output y parameters for bright clusters
in the Planck experiment. Top plain line: line of perfect recon-
struction. Gaussian prior: circle, bottom plain line; Profile prior:
plus, dash-dot line; Profile d prior: cross, dashed line.
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 ACT: ymax>3e−04, y.9>1.5e−04, y1.8>0.96e−04

Figure 9. The slope (plain) and spread (dashed) of the fitting
line for the input/output y parameter when averaged over dif-
ferent angles θc. This plot is constructed using the 50 brightest
clusters in 24 (1.2 deg)2 ACT maps.

reconstruction parameters for the profile prior. It is com-
forting, however, that the details in the shape of the non-
Gaussian profile play a minor role in the reconstruction per-
formance.

4.3 Performances in the y parameter

reconstruction

We now come to the relevant question: which observable
should be used in order to derive cosmological parameters?
In particular which should be the angle θc over which the y

c© 0000 RAS, MNRAS 000, 000–000



10 E. Pierpaoli, S. Anthoine, K. Huffenberger, I. Daubechies

0 1.2 2.4 3.6 4.8 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Diameter of the average in arcmin

 Planck: y max>2.3e−05, y3.6>2.2e−05, y6>2.1e−05

Figure 10. The slope (plain) and spread (dashed) of the fit-
ting line for the input/output y parameter when averaged over
different angles θc. This plot is constructed using the 12 biggest
clusters in (10 deg)2 Planck maps.
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Figure 11. The slope (plain) and spread (dashed) of the fit-
ting line for the input/output y parameter when averaged over
different angles θ. This plot is constructed using the 25 brightest
clusters in the 10 Planck maps. In this case, the noise has been
reduced by a factor 7 in all frequency bands.

parameter should be averaged? In general we expect the an-
swer to depend on the specific experiment in hand. In order
to answer this question, we smoothed the input and recon-
structed maps over several angles, and then we computed
the slope of the reconstruction and the spread of the points
around that slope.

In figures 9 and 10 we show the slope and spread of
the fitting as a function of the smearing angle for the ACT
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Cluster Average diameter 0.2 arcmin, ACT, limit beam to 0

Figure 12. Reconstruction of the y parameter in the ACT ex-
periment in the idealistic case where the beam is set to zero. The
profile prior (plus) significantly reduces the spread in the recon-
structed y parameter with respect to the Gaussian prior (circle).

and Planck experiments, when the clusters in figs. 7 and 8
are considered.

As for the ACT case, we notice a big improvement when
we reach the highest resolution of the instrument. At this θc

both the slope increases significantly (yielding almost per-
fect reconstruction: 0.8–0.9) and the spread is greatly re-
duced. Notice that for ACT the method proposed here re-
duces the spread by about a factor 2. The overall error in
the Reconstruction (10 per cent) should not present a major
impediment in deriving cosmological parameters from this
sample.

The beam size is also driving the spread associated with
the slope, which drops dramatically for θc ≃ 0.9. In order to
better understand the role of the beam, we studied the ide-
alistic case in which the beam is virtually zero (see fig. 12).
We find that in this limit, the Wiener filter reconstruction
still shows a spread, while in our proposed model the spread
is minimal. We conclude that should observational perfor-
mances improve in the upcoming years, this method would
become even more interesting.

Also in the case of Planck (fig. 10), we see a significant
improvement of this method on Wiener filtering in terms of
the slope and the spread. However, the spread is still about
30 per cent even for the most extended clusters considered
here. Note also that these clusters were selected by being
the biggest in the sample rather than the brightest, because
some of the very compact bright clusters get completely con-
fused with noise and do not get reconstructed at all. This
could be a potential problem when it comes to derive cos-
mological parameter from them. However, the real perfor-
mances of the Planck instrument may be better than the
ones used in this simulation. Moreover, the noise in the sky
will not be uniformly distributed, in fact some areas will be
better sampled than others. We assessed the relevance of the
noise level by performing a similar analysis on the Planck

maps with a reduced level of noise (about a factor 7 lower).
The results are displayed in fig. 11 for the 25 brightest clus-
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ters in the Planck reconstructed maps. Here we appreciate
that the noise is really the limiting factor for Planck: a sig-
nificantly reduced noise would allow to have almost perfect
reconstruction of bright clusters with a spread reduced to 10
per cent. The critical issue now is how big will be the area
of the sky where this performance will be achieved. Because
the scanning strategy and the instrument performances are
not settled yet, this is not a straightforward question to an-
swer. It is clear, however, that the selection function for the
Planck cluster catalog is also going to depend on the recon-
struction method and associated errors in different areas of
the sky.

4.4 Completeness and purity of the samples

Once a cluster map is reconstructed, it is sensible to ask
whether the structures found really correspond to clusters
in the input map or not. Furthermore one would like to
know if a given threshold in the reconstructed map can be
associated with an input cluster intensity with high confi-
dence. To this aim, we tried to assess the completeness and
purity of our samples for given output intensities. In order
to assess the purity/completeness in ACT, we smoothed the
maps to 0.9 arcmin and considered all local maxima in the
reconstructed map which would have a cluster counterpart
in the input one within a radius of 0.6 arcmin. We use the
term “purity” to indicate the fraction of the targeted clus-
ters which do have a counterpart in the input map. We found
that the purity is one for all relevant intensities, i.e. the re-
construction doesn’t create clusters out of nothing, at least
in the limit of the approximations applied here (i.e. no point
sources). We then considered a given intensity in the input
map, projected it into a reconstructed value using the slope
calculated before and counted the fraction of objects that
were effectively reconstructed above such threshold. We use
the term “completeness” to indicate the fraction of the ini-
tial clusters that make that threshold in the reconstructed
map. The sample is complete for clusters with y parameter
bigger than 3 × 10−4 (there are about 15 such clusters in a
100 deg2 ACT survey). However completeness drops to 50
per cent for y above 1.5×10−4 (about 150 such clusters in a
100deg2 ACT survey). This is because very compact clusters
are anyway mapped into less intense objects: they would be
accounted for if we consider the spread associated with the
reconstruction.

As for Planck, we still have a very good purity level.
However, the level of noise considered here prevents us from
assessing completeness. The dimension of the cluster (rather
than its intensity) seem to be the dominant factor in select-
ing the clusters that are reconstructed. This biases the re-
construction in favour of local clusters, rather than the most
intense. Hopefully the real noise level will be better than the
one used here in most areas of the sky, so that a selection
on the basis of brightness rather than size will be possible.

5 CONCLUSIONS

We investigated the issue of SZ cluster reconstruction in fu-
ture multi-frequency CMB experiments. We proposed a new
method for component separation that is specifically tai-
lored to reconstruct SZ galaxy clusters. Our approach takes

into account that clusters produce a non-Gaussian, local-
ized signal and they are non-spherical, sparse objects on
the sky. The reconstruction is based in the wavelet domain,
therefore is local and takes into account covariances between
different scales, positions and orientations. We studied the
performances of this estimator with different models of non-
Gaussianity, some corresponding to the one observed in SZ
simulated maps and others that are common in image re-
construction literature. We show that this method outper-
forms previous techniques like Wiener filtering in recover-
ing the cluster central intensity both in terms of average
reconstruction and of associated error. This result mainly
depends on the better characterization of the bright pixel
(corresponding to cluster’s centers) that we achieve with the
non-Gaussian prior assumed. The success of this strategy de-
pends on the combined effect of using a wavelet basis, a local
reconstruction and an adequate non-Gaussian model for the
signal.

We applied our method to two experiments, very dif-
ferent in nature: Planck and ACT. In the case of ACT, our
method allows to recover the 80–90 per cent of the central
intensity of our 50 brightest reconstructed clusters with a
reconstruction error of about 10 per cent (mainly caused by
the beam size). The 100 deg2 ACT survey should contain
about 150 of such clusters, and the subsample for with high
completeness level should contain approximately 50 clusters.
This is an adequate sample to constrain cosmology.

In the case of Planck we were able to better reconstruct
the most extended clusters, rather than the brightest. This
method allows a reconstruction of the 45 per cent of the
cluster intensity, improving on standard Wiener filtering by
about a factor five. The error associated with the reconstruc-
tion for the 12 targeted clusters is, however, still about 27
per cent. While this is an improvement on the Wiener fil-
tering, it is somewhat unsatisfactory for deriving cosmology.
Another limitation derives from the particular selection ef-
fect: most bright but compact clusters are not reconstructed
at all. We point out that the major limitation for Planck is
the noise level, and show that a reduced noise level would
allow almost perfect reconstruction with very little scatter
for a sample of intensity-selected clusters. The area of the
Planck sky where this will be possible depends upon the
final scan strategy and instrument performance, which are
not precisely defined yet. In general, we shall expect to have
very different selection functions which will depend on sky
positions: a detailed study like the present one will be nec-
essary to infer actual performance.

These results may depend heavily on our neglect of
point sources. It is important to point out, however, that
the localized and non-Gaussian nature of the point source
signal will almost certainly affect the standard Wiener-filter
techniques more adversely than the non-Gaussian estimator
presented here. We will pursue this more in future research.
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