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ABSTRACT

In this paper, a general framework for the inversion of adin@perator in the case where one seeks several components
from several observations is presented. The estimatioorie 8y minimizing a functional balancing discrepancy tebys
regularization terms. The regularization terms are adgbptems that enforce the desired properties of each componen

The main focus of this paper is the definition of the discregaerms. Classically, these are quadratic. We present
novel discrepancy terms adapt to the observations. Theynehdaptive projections that emphasize important inféiona
in the observations. Iterative algorithms to minimize thedtionals with adaptive discrepancy terms are derivediasid
convergence and stability is studied.

The methods obtained are compared for the problem of rewmtisin of astrophysical maps from multifrequency
observations of the Cosmic Microwave Background. We shanatiided flexibility provided by the adaptive discrepancy
terms.

Keywords: inverse problems, iterative algorithm, adaptive discnegderms, wavelets, multispectral astrophysical data.

1. INTRODUCTION

In a general inverse problem, the goal is to estimate an bljjdcom an observations whereG=T(F') (for example
looking for the original from a blurred picture). Here we aise thatT’, the linear operator modeling the observation
process, is known. Even so, the problem is often ill-posettherefore needs to be “regularized”. This amounts to figdin
an estimatd” which has the two following properties:

1. F should generate observations close to the dBt&'{~ G).

2. F should have properties we expect from a priori knowledgeth¢ example of the blurred picture, we expEdD
have sharp features.)

A number of classical methods for solving inverse problemyat balance the fitness to the dafa( ¢) ~ G), measured by
a discrepancy termiy;s., with the regularity of the solution (i.e. the properties/of measured a regularization terfp. g,
by minimizing a cost functional of the type:

J(F) = Jaise(T(F),G) + aJyeg(F) (1)

The main focus of this paper is the definition of the discregaerm. Generally, this term is chosen to be fife
norm of the residualy — T'(F) i.e. Juisc(T(F),G) = ||G — T(F)||3: = [|G(x) — T(F(z))|*dz or a similar quadratic
norm. Such a term treats uniformly all the element&i(for example all the pixels in an image). However, it is clésat
some part of7 carry more information than others and should thereforedmed differently. For example, in a blurred
picture, one is usually more interested in recovering wellface of a person than the uniform part of the sky. A simple
quadratic norm is not able to identify such important feasuand thus may be improved. J.-L. Starck and co-authors
in! present an iterative algorithm that focuses on these irapbfeatures in blurred astrophysical images by introdycin
projections on the “multiresolution support”. These argjg@ctions on a subspace defined by the wavelet transforneof th
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observations. They are adaptive and allow to consider empoitant features of the data and discard the noise in thee cas
of deconvolution of astrophysical data presentéd. iffollowing this idea, we propose the use of general prajestio
define adaptive discrepancy measures. The idea is that #geispace of the projection defines important features in the
observation - these should be well predicted by the estiofdte while the kernel of the projection defines information that
is less important or even not relevant (for example noishérobservation). Using the mathematical framework intoedu

in? , we study the mathematical properties of the resultingrilyns. We show that convergence is guaranteed and that
stability holds in a certain sense. However we point out thatuse of projections may result in a loss of information
that prevents to recover some parts of the data. We showttisatan be remedied by introducing the notion of “relaxed
projection”, which consists in only down-weighting the iortance of the non-feature space instead of cancelling it.

After the present introduction, this paper is organizedodiswis. In the second section we introduce the notations as
well as the variational framework we use, i.e. the class ntfionals we seek to minimize as well as an iterative alforit
to solve the minimization. The third section concerns theegalization of discrepancy terms via the use of projestion
and its mathematical study. The potential loss of infororathduced by the projections is remedied in section four by
the introduction of relaxed projections. Finally, sectfare is devoted to the application of the resulting algorishim the
estimation of astrophysical maps from multifrequency obs#ons.

2. ACLASSOF VARIATIONAL FUNCTIONAL TO REGULARIZE INVERSE PROBLEMS
2.1 Notations
2.1.1 Inverseproblem with several objects and observations

The most general problem we will consider is the case whergagk) objects or component§, .., fa; from L observa-
tionsgs, ..., gr.. In the case of the estimation of astrophysical maps frontifrequency observations, each objggts the
map of an astrophysical phenomena (ex: the map of galaxtech)sand each; is an observation of the sky at wavelength
V.

We make the following assumptions:

e Each object belongs to a Hilbert spaaé,: Vm = 1..M, f,, € H, .
e Each observation belongs to a Hilbert spatje Vi = 1..L, g; € H}.
e We know the linear bounded operat@ts ; : H:, — HY

such that the model for the observations is linear with additoise:

M
vl = 1La gr = Z Tm,lfm +ny (2)

wheren; are noise terms.

To estimate the object§y, .., fir from g1, ..., gz, we will minimize functionals composed of a sum of discrepan
terms (one per observation) and regularization terms (ene@nponent) such as:

J(f1, for e for) Zle S Totf— a1 H2 +27m|”fm”|xm, 3)

m=1

where they,, andp, are strictly positive scalars and the “nornjs| x,, are of the form:

X'm Z w/\ | f’ 7”

AEA

171

@

where for allm, o™ ={¢7"}rea is a generating family oft?,, wi* > 0 andl < p,, < 2.

The discrepancy terms (first sum in Eq.(3)) are classicaligii terms. The particular form of tHe| x,, is chosen
so that one can adapt the regularization terms (second sk (B)) to the properties of each object. Indeed, for each
one chooses the decomposition systeth= {1 }xca 0n which to measure the smoothness of the mth object, as svell a
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the type ofl, measure and weights needed. This gives a large panel o&lleaimoothness measures that can fit various
kind of data. For example, the Cosmic Microwave Backgrougdad, which is the relic radiation of our Universe, is well
modeled by a Gaussian process with known spectral pdwerhe Gaussianity leads to a quadratic measure, while the
power spectrum can be enforced in Fourier space. Thereforadapted measure}s, P(k)~!| (f,exp(—2mjk)) |*. As

for galaxy clusters, these being rare, small and intensectd)jthe wavelet transform of such a map is sparse (only a few
coefficients of large amplitude). Therefore, an adapted tetthel; norm of its wavelet coefficientsy , , | (f, ¥;x) |-

2.1.2 Simplifying notations: case of one object and observation

One can simplify greatly the notations by "vectorizing” {revious problem as follows:
find one objectt” = (fi, fa, ..., far)T from one observatio = (g1, g2, ..., 9.)", knowingT = {T, 1}, the linear
operator such that:

G=TF+N 5)

The functional in Eq.(3) is then:

J(F) = |TF = G|, +7IFI ; (6)

io =YL oGl

where the norm in Hilbert spade® is the weighted Euclidean norm(G|

oMM | Fl| = Sy Yull il = S Yon Conen Wi (£, 050} [P
Written this way, Eq.(6) is very close to Eq.(3) with M=L=1, izh reads:.

ae T > wal (foa) P (7)

AEA

2 . .
o and| F|| is the mixed

J(f) = Tf = gl50 +7IF1 = ||ITF 9|

It is true that the weighted norm induced Bff makes it a standard Hilbert space, hence the discrepamog twy match
perfectly. But the regularization terms do not match: forMwe get in Eq. (7) a simplg, sum (with a single exponent
p), which is not true for M>1.

However, the minimization of Eq.(6) can be done by slightlydifying the iterative algorithm that we use for Eq.(7)
and moreover, the proofs of convergence and stability dartlis more complicated case (3der details). Since in this
paper we are concerned with modifying the discrepancy temnyill only present the theory with a simple regularization
term as in Eq.(7) to alleviate the notations, keeping in ntiremixed regularization terms for the application.

Note that we will use the following notations:

the sequence of weight ist ={w) }xea-

the functional in Eq.(7) i, w.»(f) = || Tf — 9|
the scalar product isfy = (f, ©x)-

we call| - [lw,,—norm the quantity ., wal (-, x) [P

2
no T2 0eawal (froa) P

2.2 A classof functionalsand the study of their minimization

In this section, we summarize the finding$ jiwhich concern the minimization of Eq.(7), i.e. of the funogl J., v .

2.2.1 Iterativealgorithm
The authors propose the following iterative algorithm téadiba minimizer:

ALGORITHM 2.1.
{ fO  arbitrary
fn — S'yw,p(fn_l + T*(g _ Tfn—l))7 n > 1

At each iteration, one computes the Landweber itefate! + 7*(g — T'f"~') and modifies it with theS ., , function.
TheS,w ; treats independently each coefficient of the argumesm the decomposition systeg={¢ }rea:

Swp(h) =D Susp(h)er (8)
A
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with the functionsS,, , from R to itself given by

-1
Supl@) ™ (v 4+ sign() [o~) L for1<p<e, ©
where(.)~! denotes the inverse so that, S, ,(z + % sign(z) [z[P~!) = 2.
In particular, forp = 1, S,, 1 is the soft-thresholding operator: Sw,1(x ) sign(x )(|x\ w/2)*t
whereas fop = 2, one simply gets: Sw2(x) = re-

2.2.2 Convergence and stability

The two following theorems summarize the findings preseimedThe first theorem states that the iterative algorithm 2.1
converges strongly in the norm associated in the Hilbertespé for any initial guess®.

THEOREM 2.2 (CONVERGENCH. LetT be a bounded linear operator frofi’ to ¢, with | T|| < 1. Takep € [1,2], and
let Sy, , be the shrinkage operator defined (8), where the sequense = {w, } ey is such that there exists a constant
¢ > 0 such thatvA € A : wy > ¢. Then the sequence of iterates

["=Sqwp (P T (g~ Tf"Y), n=12..,

with O arbitrarily chosen inH?, converges strongly to a minimizer of the functiofiaky .

If the minimizerf* of J, v ;, is unique, (which is guaranteed e.g. py> 1 or ker(7") = {0}), then every sequence of
iteratesf™ converges strongly t¢*, regardless of the choice ¢f.

The second theorem is concerned with the stability of thehawkt It gives sufficient conditions to ensure that the
estimate recovered from a perturbed observatjor; 7'fy + e, will approximate the objecf; as the amplitude of the
perturbation|e||#. goes ta).

THEOREM 2.3 (STABILITY ). Assume thal” is a bounded operator fro(’ to H° with || T']| < 1, thaty > 0,1 < p <2
and that the entries in the sequenee={w, } »ca are bounded below by > 0.

Assume that eithes > 1 or ker(T") = {0}. For anyg € H° and anyy > 0, define
J w.p With observatiory. If v = v(e) satisfies

f3 w.p:g 10 be the minimizer of

2

. . €
ggr(l) v(e)=0 and gljr%) m =0, (20)

then we have, for anyj, € H,
lim sup Hf;(e),w,p;g - fTH'?'ﬁ =0 ) (ll)

€0 | lg=Tfollno <e

wherefT is the unique element of minimym ||w ,—normin the seS;, = {f;Tf = Tf,}.
Note that in particular wheff is invertible, T = f which means that Algorithm 2.1 provides a stable inversion.

So far, we have a convergent and regularizing iterativeritgo that converges to a minimizer of the functiodaly, ;.
Such a minimizer is an estimate of the objgahat compromises between generating an observation ddbe datay
in a quadratic sense and having the smallesf,, ,—norm. Note the the design of tlje | ,—norm is such that it will
preserve or enhance desirable propertieg.of he quadratic discrepancy termdy v, , is devoid of such considerations
and therefore does not enhance more important featureshbatd be matched in the observations. In the rest of this
paper, we will present adaptive discrepancy terms that afiriag this point.
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3. ADAPTIVE DISCREPANCY TERMS(l): USING PROJECTIONS
3.1 An Algorithm using Adaptive Projections
3.1.1 Original idea

Int, the authors are concerned with the deconvolution of anpisysical image. The observations of interest were blurred
and noisy pictures of galaxies. For these, denoising by wtgarinkage was already known to improve the quality of
noisy observations. The wavelet shrinkage procedurg @nnothing more than applying t¢ an adaptive projection:
the projection on the “multiresolution support” gfi.e. on the subspace defined by the largest wavelet coetfct g.

The fact that wavelet shrinkage improves the observatiowstthat the “multiresolution support” gfnaturally defines a
subspace that describes the important featurgs of

The authors df proposed to use this multiresolution support not onlydtself but also in the context of deblurring
by using it to evaluate how well an estimatdits the datay. They proposed an iterative algorithm very close to Alduorit
2.1, forp = wy = 1 except that the residuéy — 7' f"~1) is projected on the multiresolution supportgof(g — Tf"~1)
becomeV, (g — T f"~ ') whereM, is the projection.

We propose to extend this idea to any kind of adaptive prigjestand study the mathematical properties of the resulting
algorithm.
3.1.2 Iterative algorithm with adaptive projection

We first define the notion of adaptive projection: an adaptiggection defined by the datais the orthogonal projection
on a subspace defined by the fact that the coefficiengsoof an orthonormal basis are greater than predefined thosshol
Mathematically:

DEFINITION 3.1. Given an orthonormal basi§s, }ea0f H?, an elemeny in H° and a sequence of nonnegative thresh-
oldsT={7\}ea. the adaptive projectiodl, , is the map front{° into itself defined by:

VheH’, Mg.(h)= Y h\b
A st |ga|>Ta
(where, as usuah, denotes the scalar produck, 5,))
We propose the following algorithm:

ALGORITHM 3.2.

{ fO  arbitrary
mo= S'yw,p(.fni1 + 1™ Mgﬂ'(g - Tfnil))a n>1

Note that if7" is a convolution {3, } xeais @ wavelet basigy = 1 andV\ € A, w, = 1, this is what was proposedtin
From what we saw before, it is straightforward to infer thég@ithm 3.2 should converge to a minimizer of

3w (F) = Mg (TF = 9|30 + Y f s (12)

which is a functional with an adaptive discrepancy term.

3.2 Mathematical Properties
3.2.1 A convergent iterative algorithm

The strong convergence of Algorithm 3.2 to a minimizer of HG2) is guaranteed by Theorem 2.2 (under the same
conditions as in Theorem 2.2): apply this theroemp'te= M, - g andT” = M, , T to get the solution (this works because
M, -, is a self-adjoint projection).
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3.2.2 Diagonal case: a new kind of thresholding
To gain insight on this algorithm, we first study the case ofagdnal operatof’. We assume that
T(h) = Z t)\h)\ga)\
AeA
where thet), are scalars. As a reminder, for Algorithm 2.1, the minimizer

argmin (J wp) = Syw/e2p(T7Y9) = Z Sywn stz p(Gr/EX) @
AEA/tAF£0

Whenp = 1, this reduces to the soft-thresholded versioff'of g on the basigo={© } xea With the thresholdsw, /#3.
When the adaptive discrepancy term is introduced, we get:

2
Jywor(f) = |[Mer(Tf = 9|30 + M fllwop
= Z \(Tf—g),\|2+72w/\|f,\|p
A s.t. |ga|>Ta AEA
= > (|tAfA — gl +wa|fx|p) +y > wiAP (13)
A st |ga|>7a A st |ga|<7a

The equations for each, are now decoupled so that the minimizéris defined by:

f:\(:S'ywx/ti,P(g/\/t)\) if |g,\| > T and t,\;«éO (14)
=0 if [gx] <7a or ty=0
Introducing the hard-thresholding operator with threghal
_f oz if|zl>m
H () = { 0 otherwise, (15)
one can rewrite the preceding equation:
f)\: = S’y’u})/ti,p(HT)\/t)\(gk)) If t)\ 7é 0 (16)
f)\ =0 if £y =0.

Thus we obtain the previous shrinkage operétg;;k/ti _» composed with a hard-thresholding operatbr/, that we call
“adaptive thresholding operator”. The hard-thresholdapgration is known to be a way to enhance the solution after
application of the pseudo inverse. On the other hand thelsige operatob’wk/tiyp regularizes the same solution with
respect to a smoothness defined by [the]. ,—norm. We find here that the introduction of the discrepaeesntwith
adaptive projections is simply an intermediate solutioimeen both of these regularizations.

Whenp = 1 andt, = 1, we obtain a compromise between hard and soft-threshoifling> ~w,. To illustrate this,
we graph in Fig.1 the hard-thresholding function with thiald = (left), the soft-thresholding function with threshoijd
(right) and the function obtained in Eq.(16) (middle) in teser > ~ (herew = 1). We give a further illstration of the
diagonal case in Fig. 3, section 5.

3.2.3 Stability isan issue

The study on diagonal operators suggests that introdudiagteve projections gives flexibility by defining a new shwage
operator. In this section, we see that this flexibility corteea price: the resulting algorithm is not stable in the seafse
Theorem 2.3. There is stability in the sense that if the patant, w,..) are chosen properly as the noise level decreases
- i.e. when the observatiopgets closer to the true observatidif, - then the solutions converge to a well-defined limit.
However this limit is not necessarilfy,, even ifT' is invertible.

In a nutshell, what happens is that stability requires thatthresholds= {7, },ca are large enough compared to
[lg — Tf,||- This implies that the subspace defined by the indesssch thaf{ T'f, } » = 0 will necessarily be in the kernel
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-T -yoVY 1 -T -yoVY 1 -T -yoVY T
Figure 1. Left: hard-thresholding operatér,.; middle: adaptive thresholding operator; right: soft-thresholdingaipef. .

of the adaptive projectionsl, , as soon ag is close enough t@'f,. Therefore the information in this subspace will lost.
The result is then that as the observation becomes ideatlase toT’f,) the solution of Algorithm 3.2 will approach the
element of minimal| - |lw ,—norm in the setMr ; of elements ofH’ that have the same image undéms f, except
maybe on the coordinatessuch thai7f,), = 0.

Note that even i§" is one-to-one, this set is not necessarily reducefj to
ExAMPLE 1. If T is the identity,f; = (1,0) € R?, thenMy, = {(1,z), z € R} on the canonical basis.

In this case however the minimizer of tife || ,—norm is f; itself whatever the choices of the parameters, w =
{wx}xrea,-.. are. Algorithm 3.2 will therefore provide the desiredult. This is not the case in the following example,
whereT is also an invertible operator iR

EXAMPLE 2. ConsiderT : R? — R2, the bounded and linear operator defined by:

T:(fl) — }1<2f1+f2> and fa:(Z)forsomea;«éO.

fo fi—fa
e T has a bounded invers& 1 : ( ji; > — 4 ( §1f£}2 > and||T]|=5<1

3a

"= ( g ) and My, ={f: (T'f)1 = (Tfa)1} ={f : 2f1 + fo = 3a}.

3a

The element io\ ;, with minimal/* norm is: fi= g , and notf, itself. Thus the minimizers of E¢L2) do not

converge tof, as the observations convergefig, . In other words, information on the second coordinate ingenplane
has been lost that prevents the algorithm to in¥eelven with arbitrary accurate data.

We now formalize this result. We first definetr ;, and the se#’. , , of elements for which\M7 s, has a unique
minimizer of the|| - ||w ,—norm.
DEFINITION 3.3 (Mr,y,). Given two Hilbert space${’ and H°, an operatorT’ :_H*/ — H°, an orthonormal basis
{Bxr}ren0f H® and an elemenf, of H*. The setM 1 ¢ is the subset of elementsit that verify:

J € My, = May,o(Tf) =Tf, <= [{Tfo}x # 0= {Tf}x = {Tfo}x

DEFINITION 3.4 (Hf, ,, ). Given a Hilbert spacét’, 4. ,, ,, is the subset of elementsf that verify: f, is in 15, ,
if and only if the seI/\/lT fo ={f : Mry, oTf = Tfo} has a unlque element of minimuhy v ,-norm.

Whenp > 1, thenHTWp H¢, regardless of". This is not true ifp = 1, even ifker T = {0}. It turns out that
Algorithm 3.2 is regularizing for elemenysin HTW p» and that the minimizer obtained in the linfil’f, — g||». goes to
zero is exactly the minimizer of thg|lw ,-norm in M ;.. This is the object of the following theorem:

THEOREM 3.5. Assume that is a bounded operator frork(’ to H° with | 7| < 1, thaty > 0, p € [1,2] and that the
entries in the sequenae ={w, } e are bounded below uniformly by a strictly positive numher

Foranyg € H° and anyy > 0 and any nonnegative sequence: {7, } ca, definefs ., ., . to be a minimizer of
J5 w.p.r(f) with observatiory. If v = (¢) andT = 7(¢) satisfy:
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2
. €

2. VA €A, lirr(l)TA(ﬁ)ZO and 36 >0, s.t: [e<d=VA€EA, Tx(e) > €]

then we have, for any, € H7. ,, -

lim sup Hf;(ﬁ)w,p,‘r(ﬁ); g flli| =0,

€20 | lg—Tfo |l +0 <e

wheref] is the unique element of minimujnj|s, ,—norm in the setM ;. .
The detailed proof of this theorem is giver? inp.18-24 and is not reproduced here. It is based on two iigred

e The two lemmas provided in Appendix. A. show that conditiom Z’heorem 3.5 is needed to obtain the weak
convergence of the adaptive projection operadds. when||g — T'f,|| — 0.

e Using this weak convergence, one can then adapt the prodfedrém 2.3 provided fn

4. ADAPTIVE DISCREPANCY TERMS(I1): RELAXED PROJECTIONS

In the previous section, we showed that introducing adegtiejections in the discrepancy term allows to take int@ant
features that are more important in the data but results as& d¢f information that may be harmful to the estimation of
the object sought. The reason is that the projections usetetaome information. To fix this instability problem still
keeping the spirit of the previous method, one can imagirantp dampen the non-feature space defined by the adaptive
projections instead of cancelling it. As we see in the negtise, the resulting “relaxed projections” still emphasthe
same features but without losing any information; theretbe stability as defined in Theorem 2.3 is restored.

4.1 Relaxed Adaptive Projections

The “relaxed projection’M, -, with dampening parameter and corresponding to the orthogonal adaptive projection
M, - is

Mg 7 p = Mg - +p(Id — Mg ;) an
or more formally:

DEFINITION 4.1. Given an orthonormal basis if°, 8= {fx}.ca, an elemeny in H°, a sequence of nonnegative
thresholdsr= {7 },ca and a scalaru > 0, M, -, is the map front{° into itself defined by:

VREH®, Mg,u(h)= >  hbit+n Y, b

A st |ga|>Ta A st |ga|<7a

This operator is introduced in the discrepancy term so tleahow seek to minimize the functional

2
J%W,p-,T,u(f) = HMg,T,u(Tf - 9)| Ho + ’memw,pa (18)

via the following iterative algorithm:
ALGORITHM 4.2.

{ f° arbitrary

I" = Sqwp (T AT My 2 (g = TI"7Y), n>1

Note that in this case, one needs to square the relaxed poojexperator in the iterative algorithm. This is because
unlike Mg -, M, -, ” is not a self-adjoint projection. This equation can be gadlilecked by replacing@’ by M, ., T
and g by M, -, g in the original functionall, . ,, of Eq.(7) and in Algorithm 2.1. In practice, we use the facitth
Mg r..> = Mg, ,.2; SO the operator is still easy to compute.

The previous change of variable used in Theorem 2.2 alsoeprtwestrong convergence of Algorithm 4.2 to a
minimizer of Eq. (18) (under the same conditions as in Thaa2e?).
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4.2 Stability isrecovered

The introduction of the dampening factor ensures that allitfiormation in the data will be taken into account and we
recover the stability in the usual sense: if the data becal®a@ iy — Tf,) and the parameters 7= {7, },ca andu are
chosen accordingly, then the solution convergeg, tahen f, is the unique antecedent 6f,.

The conditions on the parameters are given in the followiregptem:

THEOREM 4.3. Assume thaf’ is a bounded operator frori(’ to H° with || 7] < 1 and that the entries in the sequence
w ={wjy }rea are bounded below uniformly by a strictly positive number

For anyg € H° and anyy > 0,0 < pu < 1 and nonnegative sequenee= {7} ca, define
minimizer of) w p, - . (f) with observatiory. If v = y(e), 7 = 7(e) and u = p(e) satisfy:

*
fiwparuig 0 bEA

2
1 lim 4() =0 and E%%:O

2. VA € A, lir% Ta(e) =0 and VAe A, 36(N) >0, sttt [e<d(A) = 7a(e) > €]

3. liH(l) w(e) = po, With0 < p, <1
then for anyf,, such that there is a unique minimizer of thd,, ,—norminthe sesf, = {f : Tf = Tf,}:

li x =Ml =0
b )o@ swpr@ners ~ Follx :

wheref] is the unique element of minimyp|,, ,—norm in the se&y, .

The proof of this theorem is detailecfinp.28-31 and is similar to that of Theorem 3.5. The weak cayerce of the
adaptive operators is ensured by conditions 2 and 3 of Thedrg and the corresponding lemma is provided in Appendix
B.

It is clear that in practice, by choosipgsmall, the properties af enhanced by both Algorithm 3.2 and 4.2 are similar.
The second algorithm is however more stable as it is guaedritemake a correct guess when the data is sufficiently close
to the image of an objedt.

5. APPLICATION
5.1 Multispectral Data

In this section we apply the algorithms described previptsithe problem of reconstructing maps of astrophysicat phe
nomena from multispectral observations. We consider sitedl multispectral observations of the Cosmic Microwave
Background (CMB) radiation with the observation condifigalative to the Atacama Cosmology Telescope (ACT). In this
case, we observe the same portion of sky at different wagtien;. The observations are blurred mixtures of the physical
phenomena we seef,..,fys that can be modeled by:

M
vl = 1L7 g(’/l) =g = bl * Z am,,lfm + ng. (19)

m=1

The blurringb; changes with the wavelength and is Gaussian. The mixture coefficients ; are called frequency
dependencies and give the contribution of phenomena observatiord. The noise terms,; have a known variance,
that also depend on the wavelengthNote that here, the operatdy, ; from Eq.(2) is a mixture followed by a convolution
Trna(-) = by Zﬁf:l am.i(-)m. For ACT, the observation wavelength are low:=145, 217 or 265GHz. (Details about
the noise and blur level can be found irp.88.)

Here, we seek to reconstruct two components:
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e the CMB (= f1): this is an electromagnetic radiation that fills the whadléhe Universe (see Figure 2, left panel).
Its existence and properties are considered one of the majdirmations of the Big Bang theory.

e the galaxy clusters, noted SZ(f,): the clusters can be seen through their Sunyaev-Zeldaffebt (SZ effect in
short) which is due to high energy electrons in the galaxgtels that interact with Cosmic Microwave Background
photons.

In fact, we focus on the detection and estimation of the gatdsters in observations such as can be done with ACT.

A complete model of the observations would have to includeioastrophysical phenomena such as infrared point
sources or our Galaxy dust. We will not consider them hereesiheir contribution at low wavelengths, such as the ones
considered here, are negligible.

CMB SZ Observed @145 GHz Observed @217 GHz

.

[ T [ T

-200 0 200 0 200 -200 0 200 -200 0 200

[ T

Figure 2. Multispectral data (unifsK); left to right: CMB map, galaxy clusters map, observation at 145GHgewvation at 217GHz

Figure 2 illustrates the simulated data we use. The two bafefs show the astrophysical map we seek to reconstruct
from the observations shown on the two right panels. (Theswfithe maps is the micro-Kelvin).
General parametersof the functional algorithms

In this multispectral case, the reconstruction methodpgsed earlier have one regularization term for each comyone
and one regularization term per observation (see Eq.(3)).

As can be seen from the observations, the contribution ofjtiaxy clusters (SZ) is negligible compared to this of
the CMB. We rely on the fact that these maps have very diftespatial properties to disentangle them. These properties
are reflected by the regularization terms. The CMB comporgerdggularized by a weighteld-norm in Fourier space,
the weights being proportional to its spectral power. ThecB#&ponent is regularized by dp-norm on its wavelets
coefficients. The wavelet transform used for regularizaisathe dual tree complex wavelet transfat.

We compare the results obtained with the classical diso@pi@rms of Eq.(3) to these obtained with various adaptive
projections, relaxed (Eqg.(18)) and not (Eq.(12)). In anyegdhe adaptive/relaxed projection is done on an orthoalorm
wavelet transform (Symmlet, 2 vanishing moments) and thestiold parameter are set to the noise standard deviation.

The general balancing parametgrare set tal. The~,, are learned from a database of simulations.

5.2 Denoising galaxy cluster maps

To illustrate the effect of introducing adaptive projeatio we took a one-dimensional slice of the galaxy cluster imap
Fig. 2 and added noise to it (top panels of Fig. 3) with a stethdaviation ofo.

We show in the four bottom panels of this figure the result®iefdenoising using

¢ hard-thresholding (Fig. 3, middle left panel) with threlshe = o;
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¢ soft-thresholding (Fig. 3, bottom right panel) with threkhy = o; This is obtained with the initial iterative algo-
rithm (Algo. 2.1).

o the adaptive thresholding (Fig. 3, middle right and bottefhpanels) seen in subsection 3.2.2. This is obtained with
the adaptive algorithm (Algo. 3.2) Note that there is no isitglissue in this example.

One can see that increasing the introduction of the softstiolding on top of the hard-thresholding smoothes thdisalu
The pure soft-thresholding however suffers from that faat it dampens peaks compared to the pure hard-thresholding
In the case of galaxy clusters, these peak of intensity spord to the central part of the cluster and indicate its age.
Therefore, the dampening obtained by soft-thresholdiretsmental. On the other hand, the lack of smoothness of the
hard-thresholded solution will induces false positiveha tletection of clusters. The introduction of the adaptivegh-
olding via the use of projections in the discrepancy terraved| to tune both effects. It gives an interesting compromise
keeping a bit of the advantages of the pure hard or softfibtded solutions (see Fig. 3, middle right and bottom left
panels).

Original
400 —— 400
v 200} - v 200
3 3
0 0
Hard thresh=2 o Hard thresh=2 o + Soft thresh= o
400 T T T T T 400 T T T T T T T T
v 200} - v 200} -
= =1
0 0
Hard thresh=2 o + Soft thresh=2 ?g Softthresh =2 o
400 " " " " " " " " " " 400 " " " " " "
v 200} - v 200} -
3 3

Figure 3. Denoising galaxy clusters map. Top left: 1D profile of a clusegp.nTop right: noisy 1D profile of a cluster map (noise
variances?). Middle left: noisy data hard-thresholded & 20). Middle right: noisy data soft/hard-thresholded £ 20, v = o).
Bottom left: noisy data soft/hard-thresholded= 20, v = v/2¢). Bottom right: noisy data soft-thresholded £ 20).
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5.3 Reconstruction of CMB and galaxy clusters maps from multispectral observations

The simultaneous reconstuction of both the CMB and galangtet maps from the multispectral observations as seen in
subsection 5.1 has been performed with the different iteraigorithms proposed in section 2, 3 and 4. All parameters
were described in 5.1 except for the relaxed projection canimg parameter (see Eq.(17)) which is fixed here o= 0.1
when using Algorithm 4.2.

Fig. 4 displays the results obtained for

¢ the initial algorithm (Algo. 2.1) with classicé) discrepancy terms. The results are labelled="1".

¢ the relaxed projection algorithm (Algo. 4.2) with stableaptive discrepancy terms. The results are labelled"
0.1".

The observed maps and the CMB and galaxy clusters maps thegekeo recover are in shwon on the left panels of Fig.
2. The reconstructed CMB maps are in the two left panels of #igrhe reconstructed galaxy maps are in the two right
panels of Fig. 4.

CMB - p=1 CMB - p=0.1 SZ -p=1 SZ -p=0.1
4 4
\ . ‘ .
’ »

-200 0 200 -200 0 200 0 200

Figure 4. Reconstructed maps; without projections: first and third im@ge- 1); with adaptive projections: second and fourth images
(1 = 0.1); far/middle left: CMB; far/middle right: galaxy clusters

The following analysis is illustrated by the results showrdibut is valid in a more general study with 24 similar
simulations.

5.3.1 Analysisof CMB reconstruction

All the reconstructed CMB maps are accurate to the micrakglvecision. The Root Mean Square Error of the different
reconstructions to the original (true) CMB map is not affeicby the introduction of the adaptive discrepancy term.

The precision obtained for this component is highly satisfey and allows to proceed to further treatment for astro-
physical purposes.

5.3.2 Analysis of the galaxy clustersreconstruction

All the reconstructed galaxy cluster maps have a low acgufaorst case 100 microKelvin). The Root Mean Square
Error of the different reconstructions to the original & lusters map is not affected by the introduction of theptida
discrepancy term. Hence as far as global measures are nedgcall the presented algorithms perform in the same manner
for galaxy clusters. These poor results are expected byttdHat the contribution of the galaxy clusters to the olmtern

is well below the CMB contribution and the noise level.

However, as explained thglobal measures are not satisfactory to evaluate the yurli reconstructed cluster map.
Indeed, the goal is to locate the presence of clusters amttifjusome of their statisical characteristics like sizeensity
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or age... Detailed study of the reliability of these quagsihas be done for Algorithm 2.and show that it actually gives
good results in this prospective. Here, we do not reprodoeeal study for Algorithm 3.2 and 4.2 but simply compare
them to Algorithm 2.1.

As can be inferred from Fig. 4, the results are very simildne Bntroduction of adaptive discrepancy terms yield a
slightimprovement in the estimation of the central intgnef a cluster (see the three clusters in the upper part afitbke

in Fig. 4). This improvement is not statistically signifitdrowever it illustrates how adaptive discrepancy termgipieoa
novel way of tuning the algorithm to the data.

APPENDIX A. ELEMENTS OF THE PROOF OF THE STABILITY OF (I)

To prove Theorem 3.5, we need to examine the behavior of hjegiionsM (. - () ase goes to zero. This is done in the
next two lemmas. The firstlemma (Lemma A.1) gives necessahsafficient conditions on the sequence {7} xea tO
that these projections converge in a weak sensegaes to zero. We will be interested in the case where the vietk |
operator isMry, 0. The second lemma (Lemma A.1) refines these conditions asartladdition, the sequencdd ) (.
converges strongly td/7y, o on the setT'(My, ).

LEMMA A.1. For f € H¢, let{g(e, f)}e>0 be an arbitrary family of elements iH° that satisfy||g(e, f) — Tf |3 < e,
Ve > 0.

1. VheH® Mgy -(h converges weakly asgoes to0 if and only if VA : 3 §()) such that either (a) or (b)
holds, with
(@) Ve € (0,6(N), |lg(e. HIa] > 7,
(b) Ve € (075()‘))' Hg(ea f)])\’ < Ta.
2. _Mg(e,fm(g) converges weakly, .independently of the choicé¢ ahd of the family (e, f), ase goes ta0 if and only
if VA :both (a) and (b) hold, with
(@) 3 d(N) suchthatVe € (0,6(X)), Tale) > €
(b) ling) Tx(e) =0

In that case, the weak-limit operator is necessabilyy .

3. When conditions 2.(a) and 2.(b) above hold,(i) converges weakly th, thenM . r) () h(e) converges weakly
to Mry o h ase goes ta).

Proof. [Proof of Lemma A.1] Let us examine the behavior &f, ) () coordinate by coordinate. Since

[Mg(e,p),7(e)h] , €quals eitheh, or 0, depending on whether or nffy(e, f)]| > 7a(e), it follows that M. 1) 7(c)(h)
will converge weakly as goes ta) if and only if for all coordinates\, one of the following holds:

Either there exists somé&(\) > 0 such thad [g(e,f)]A’ > Tx(€) for e < §(A). In this case,[M_,](€7f)7T(E)fL]A = hy for
€< d(N).

Or there exists som&\) > 0 such that[g(e, f)]x| < 7a(e) fore < §(A). Inthis case[ My ) -(oh], = 0fore <4(N).

This proves the first assertion.

Let us now consider how uniform this behavior is in the chaehe family g(e, f). Since|[g(e, f) — Tf]x| <
lg(e, ) = Tf|lxo < e the set of values that can be assumeddty, /)| is exactly [ Tf — ¢, Tf + ¢| (takeg =
Tf +rBx, v € [—¢, €] to reach all the values in this set). Therefore, for a fifedhe weak convergence of the op-
eratorsM . ¢ - (), regardless of which sequengg, f) is chosen, is equivalent to putting constraints on the secpie
{7(€), }ren that depend of the coordinatéEf) . These constraints depends on whetfigft), # 0 or (T)f), = 0:

o If Tfy # 0then{|g(e, f)rl} = [ ITfr| =€, |Tfr|+€ |. Therefore, one needs eithée: < §(\) = 7x(e) > [Tfx|+¢€]

or [e < 6(A) = ma(e) < |Tfx| — €]. Inthe first cased, will always be in the kernel oy (. ;) () Oncee < 5(A).
In the second case, will always in the range o/, f) () ONcee < 4(N).
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o If Tfy = 0then{|g(e, f)r]} = [0, ¢]. Therefore one needs < §(\) = 7x(€) > ¢]. In this case, will always be
in the kernel ofM (. r) () ONCeEe < 6(N).

Note that we do not know beforehand the valudf To be useful, we must derive requirements on the parametérs
that do not depend oji. The minimum requirements on(e) ensuring the operatom/, . s -, converge weakly as
goes ta) are:

e Y\, lim._,o 75 (€) = O: this ensures that if'f, # 0, we will haver, (¢) < |Tf\| — € for sufficiently smalle.
e VA, 35(N) such thak < 6(A) = 7a(e) < e this ensures that Tf, = 0, we will havery(¢) < |Tfx| + € = € for
sufficiently smalle.

If these conditions are satisfied, th€, . ) () converge weakly asgoes ta) and one can determine the weak limit:

o for A s.t. Tfy\ # 0: lim._,o 7a(€) = 0 hence there exist§ A, f) such thak < §(A, f) impliesty(e) < |Tfx| —e. It
follows that: |g(e, f)| > 7a(€) SO thatM (. 1) () (Br) = Ba for anyg(e, f) and anye < 6(A, f)

e for As.it. Tfy = 0: € < () impliesTy(e) > e. It follows that if e < §(\), then|g(e, f)x] > 7a(€) so that
Mg(e.5),7(e)(Br) = 0 foranyg(e, f) and anye < 6(\) .

This proves that the weak limit d¥/, . ) , () for any fixedf is M7y o and finishes the proof of the second part of Lemma
Al

Finally, assuming:(¢) converges weakly th, we havevA:

’ g(e, T(E ) - MTf,O h } )\’ (20)
= ’ a(e.f)r() (7€) = ) + (My(e,p).r(e) = My 0)h ]A’ (21)
- ’ ()0 (P€) = ‘ + ‘ gl —Mrroh |, ] (22)

The second term vanishes agoes to0 becauseVl,(. r),-() converges weakly tdlr; o when the conditions 2.(a) and
2.(b) hold. Moreover, we have seen in the proof of the secamtdqh the lemma that for anj:

o either there exists & \) such thatM (. 7) () (6x) = 0 for anye < 5(A) .
In that case} [My(e.f),7(e)(h(e) — h) ]A‘ =0, fore < §(\).

e orthere exists &(\) such thatM (. ¢) - (8x) = B for anye < 4(X) .
In that case‘ [Mgy(e.r).re)(h(e) —h) ]| = ’[h A‘, for e < §(\); and the weak convergence fofe) to i

allows to conclude th%t[Mg(eyf),T(E)(h(e) —h) A‘ —0

This proves thab/, . s) () h(e) converges weakly tdl7y o h and finishes the proof of Lemma A.1l
We shall now see how to ensure strong convergence aVifig sy - () (k) whenh is in M.

LEMMA A.2. If there exists a value of independent of such thatve < 6 andV\, 7,(e¢) > ¢, then the two following
properties hold:

1. For any choice of and of the family(e, f):

Ve < 51 Mg(e,f),r(e) = MTf,OMg(e,f),T(e) = Mg(e,f),ﬂ'(e)MTf,O = Z < '>ﬁ)\> 5)\-

A st TFr£0
and [gx|>7x
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2. In particular, for any choice of € H”T7w,p and of the family(e, f), (i.e. whenevemM ; has a unique minimizet?
of the||.||w,p-norm):
Ve <8, Mye,p).re)(TF1) = My(e.p),n (e (T)-

Proof. [Proof of Lemma A.2:] The first part of Lemma A.2 results frgnoperties of orthogonal projections.# and
P, are two orthogonal projections, then:

PP = PP
ker(Pg) Cker(Pl) & PP, =P

Hence, we already proveld . 1) r() M1r0 = Mrso My(c,f),7() @nd

My(e.pyr©Mrs0 = My(e.pyr() < (T = 0= |g(e. ), < ™a(6)] -

When f ande are fixed, the right hand side holds for agfy, f) if and only if [(T)f)» = 0 = € < 7 (e)] which proves the
first part of Lemma A.2.

For f in HiT7W,p, f1is well defined and verified/r; o TfT = T'f. Applying Mg (e~ (e)) to this equality and using the
previous result finishes the proof of Lemma AR2.

APPENDIX B. ELEMENTS OF THE PROOF OF THE STABILITY OF (I1)

LEMMA B.1. Suppose that = 7(¢) and u = u(e) verify conditions 2 and 3 of Theorem 4.3. Then the two fotigwi
properties hold:

i o 2 2
1. Foranyhin H® Mg ¢ - .l cOnverges weakly iz, , , h ase goes ta.

2. If h(e) converges weakly th ase goes ta0, thenM(f(e "
0. o

~(e).u(e)(€) converges weakly th17; ., h ase goes to

Proof. [ Proof of Lemma B.1:] In the proof of Lemma A.1, we have seleat tunder conditions imposed otfe)
(conditions 3 and 4 of Theorem 4.3), the following happens:

o for A s.t. Tfy # 0: lim._,o 7x(€) = 0 hence there exis& ), f) such thak < §(A, f) implies7y(e) < |Tfx| —e. It
follows that: |g(e, f) x| > Ta(€).

e for As.t.Tfy = 0: e < §(A\) impliesTy(e) > e. It follows that ife < §(\), then|g(e, f)al > 7a(e).

So that in the first caseMgQ(E’f)J(ﬁ))u(e)(ﬁx) = p, for any g(e, f) and anye < 4§(A, f); and in the second case:

M2 5y i) (Br) = n(€)?Bx for any g(e, f) and anye < §()). Sincep(e) converges to somg, by assumption
(condition 5 of Theorem 4.3), it follows thawg?(@f)ﬁ(g),”(e)h converges td‘/-’%fo,o,uoh as(e) goes to0. This proves the

first part of Lemma B.1.
To prove the second part of Lemma B.1, we use again the sglittick we used in A.1.(3):

2 2
M2 7 () = Mg, 1 ] (23)
_ 2 2 2
= ’ [Mgte.).rerute) (A(E) = 1)+ (Mgic, ) ey o) — Mip,0,,)P ]A‘ (24)
_ 2 2 2
= ’ [Mg(e.p).re) e (&) = 1) ]/\‘ + ’ [(Mg(e, .m0 = Myo,u,)0 ]A) (25)

And the same argument as we used in Lemma A.1.(3) allows tclwde. 0
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