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ABSTRACT

In this paper, a general framework for the inversion of a linear operator in the case where one seeks several components
from several observations is presented. The estimation is done by minimizing a functional balancing discrepancy termsby
regularization terms. The regularization terms are adapted norms that enforce the desired properties of each component.

The main focus of this paper is the definition of the discrepancy terms. Classically, these are quadratic. We present
novel discrepancy terms adapt to the observations. They rely on adaptive projections that emphasize important information
in the observations. Iterative algorithms to minimize the functionals with adaptive discrepancy terms are derived andtheir
convergence and stability is studied.

The methods obtained are compared for the problem of reconstruction of astrophysical maps from multifrequency
observations of the Cosmic Microwave Background. We show the added flexibility provided by the adaptive discrepancy
terms.
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1. INTRODUCTION

In a general inverse problem, the goal is to estimate an object F from an observationG whereG=T (F ) (for example
looking for the original from a blurred picture). Here we assume thatT , the linear operator modeling the observation
process, is known. Even so, the problem is often ill-posed and therefore needs to be “regularized”. This amounts to finding
an estimatẽF which has the two following properties:

1. F̃ should generate observations close to the data (T (F̃ )≈G).

2. F̃ should have properties we expect from a priori knowledge. (In the example of the blurred picture, we expectF̃ to
have sharp features.)

A number of classical methods for solving inverse problems try to balance the fitness to the data (T (F̃ )≈G), measured by
a discrepancy termJdisc, with the regularity of the solution (i.e. the properties ofF̃ ), measured a regularization termJreg,
by minimizing a cost functional of the type:

J(F ) = Jdisc

(
T (F ), G

)
+ αJreg(F ) (1)

The main focus of this paper is the definition of the discrepancy term. Generally, this term is chosen to be theL2

norm of the residualG − T (F ) i.e. Jdisc(T (F ), G) = ||G − T (F )||2L2 =
∫
|G(x) − T (F (x))|2dx or a similar quadratic

norm. Such a term treats uniformly all the elements inG (for example all the pixels in an image). However, it is clearthat
some part ofG carry more information than others and should therefore be treated differently. For example, in a blurred
picture, one is usually more interested in recovering well the face of a person than the uniform part of the sky. A simple
quadratic norm is not able to identify such important features and thus may be improved. J.-L. Starck and co-authors
in1 present an iterative algorithm that focuses on these important features in blurred astrophysical images by introducing
projections on the “multiresolution support”. These are projections on a subspace defined by the wavelet transform of the
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observations. They are adaptive and allow to consider only important features of the data and discard the noise in the case
of deconvolution of astrophysical data presented in1 . Following this idea, we propose the use of general projections to
define adaptive discrepancy measures. The idea is that the image space of the projection defines important features in the
observation - these should be well predicted by the estimateof F - while the kernel of the projection defines information that
is less important or even not relevant (for example noise in the observation). Using the mathematical framework introduced
in2 , we study the mathematical properties of the resulting algorithms. We show that convergence is guaranteed and that
stability holds in a certain sense. However we point out thatthe use of projections may result in a loss of information
that prevents to recover some parts of the data. We show that this can be remedied by introducing the notion of “relaxed
projection”, which consists in only down-weighting the importance of the non-feature space instead of cancelling it.

After the present introduction, this paper is organized as follows. In the second section we introduce the notations as
well as the variational framework we use, i.e. the class of functionals we seek to minimize as well as an iterative algorithm
to solve the minimization. The third section concerns the generalization of discrepancy terms via the use of projections
and its mathematical study. The potential loss of information induced by the projections is remedied in section four by
the introduction of relaxed projections. Finally, sectionfive is devoted to the application of the resulting algorithms to the
estimation of astrophysical maps from multifrequency observations.

2. A CLASS OF VARIATIONAL FUNCTIONAL TO REGULARIZE INVERSE PROBLEMS

2.1 Notations

2.1.1 Inverse problem with several objects and observations

The most general problem we will consider is the case where weseekM objects or componentsf1, .., fM from L observa-
tionsg1, ..., gL. In the case of the estimation of astrophysical maps from multifrequency observations, each objectfi is the
map of an astrophysical phenomena (ex: the map of galaxy clusters) and eachgl is an observation of the sky at wavelength
νl.

We make the following assumptions:

• Each object belongs to a Hilbert spaceHi
m: ∀m = 1..M, fm ∈ Hi

m.

• Each observation belongs to a Hilbert spaceHo
l : ∀l = 1..L, gl ∈ Ho

l .

• We know the linear bounded operatorsTm,l : Hi
m → Ho

l

such that the model for the observations is linear with additive noise:

∀l = 1..L, gl =
M∑

m=1

Tm,lfm + nl (2)

wherenl are noise terms.

To estimate the objectsf1, .., fM from g1, ..., gL, we will minimize functionals composed of a sum of discrepancy
terms (one per observation) and regularization terms (one per component) such as:

J(f1, f2, . . . , fM ) =
L∑

l=1

ρl

∥∥∥(
M∑

m=1

Tm,lfm − gl)
∥∥∥

2

Ho

l

+
M∑

m=1

γm|||fm|||Xm
; (3)

where theγm andρl are strictly positive scalars and the “norms”|||.|||Xm
are of the form:

|||f |||Xm
=

∑

λ∈Λ

wm
λ | 〈f, ϕm

λ 〉 |pm (4)

where for allm, ϕm ={ϕm
λ }λ∈Λ is a generating family ofHi

m, wm
λ > 0 and1 ≤ pm ≤ 2.

The discrepancy terms (first sum in Eq.(3)) are classical quadratic terms. The particular form of the|||.|||Xm
is chosen

so that one can adapt the regularization terms (second sum inEq.(3)) to the properties of each object. Indeed, for eachm,
one chooses the decomposition systemϕm ={ϕm

λ }λ∈Λ on which to measure the smoothness of the mth object, as well as
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the type oflp measure and weights needed. This gives a large panel of available smoothness measures that can fit various
kind of data. For example, the Cosmic Microwave Background signal, which is the relic radiation of our Universe, is well
modeled by a Gaussian process with known spectral powerP . The Gaussianity leads to a quadratic measure, while the
power spectrum can be enforced in Fourier space. Therefore,an adapted measure is

∑
k P (k)−1| 〈f, exp(−2πjk)〉 |2. As

for galaxy clusters, these being rare, small and intense objects, the wavelet transform of such a map is sparse (only a few
coefficients of large amplitude). Therefore, an adapted term is thel1 norm of its wavelet coefficients:

∑
j,k | 〈f, ψj,k〉 |.

2.1.2 Simplifying notations: case of one object and observation

One can simplify greatly the notations by ”vectorizing” theprevious problem as follows:
find one objectF = (f1, f2, . . . , fM )T from one observationG = (g1, g2, . . . , gL)T , knowingT = {Tm,l}m,l, the linear
operator such that:

G = TF + N (5)

The functional in Eq.(3) is then:
J(F ) =

∥∥TF − G
∥∥2

Ho
+ γ|||F ||| ; (6)

where the norm in Hilbert spaceHo is the weighted Euclidean norm:
∥∥G

∥∥2

Ho
=

∑L
l=1 ρl

∥∥Gl

∥∥2

Ho

l

and|||F ||| is the mixed

norm |||F ||| =
∑M

m=1 γm|||fm|||Xm
=

∑M
m=1 γm

∑
λ∈Λ wm

λ | 〈f, ϕm
λ 〉 |pm .

Written this way, Eq.(6) is very close to Eq.(3) with M=L=1, which reads:.

J(f) =
∥∥Tf − g

∥∥2

Ho
+ γ|||f ||| =

∥∥Tf − g
∥∥2

Ho
+ γ

∑

λ∈Λ

wλ| 〈f, ϕλ〉 |
p (7)

It is true that the weighted norm induced onHo makes it a standard Hilbert space, hence the discrepancy terms do match
perfectly. But the regularization terms do not match: for M=1, we get in Eq. (7) a simplelp sum (with a single exponent
p), which is not true for M>1.

However, the minimization of Eq.(6) can be done by slightly modifying the iterative algorithm that we use for Eq.(7)
and moreover, the proofs of convergence and stability carryto this more complicated case (see3 for details). Since in this
paper we are concerned with modifying the discrepancy term,we will only present the theory with a simple regularization
term as in Eq.(7) to alleviate the notations, keeping in mindthe mixed regularization terms for the application.

Note that we will use the following notations:

• the sequence of weight is:w ={wλ}λ∈Λ.

• the functional in Eq.(7) isJγ,w,p(f) =
∥∥Tf − g

∥∥2

Ho
+ γ

∑
λ∈Λ wλ| 〈f, ϕλ〉 |

p.

• the scalar product is:fλ = 〈f, ϕλ〉.

• we call||| · |||w,p–norm the quantity:
∑

λ∈Λ wλ| 〈· , ϕλ〉 |
p.

2.2 A class of functionals and the study of their minimization

In this section, we summarize the findings in2 , which concern the minimization of Eq.(7), i.e. of the functionalJγ,w,p.

2.2.1 Iterative algorithm

The authors propose the following iterative algorithm to obtain a minimizer:

ALGORITHM 2.1. {
f0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗(g − Tfn−1)

)
, n ≥ 1

At each iteration, one computes the Landweber iteratefn−1 + T ∗(g − Tfn−1) and modifies it with theSγw,p function.
TheSγw,p treats independently each coefficient of the argumenth on the decomposition systemϕ={ϕλ}λ∈Λ:

Sw,p(h) =
∑

λ

Swλ,p(hλ)ϕλ , (8)
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with the functionsSw,p from R to itself given by

Sw,p(x)
def
=

(
x +

wp

2
sign(x) |x|p−1

)−1

, for 1 ≤ p ≤ 2, (9)

where(.)−1 denotes the inverse so that∀x, Sw,p(x + wp
2 sign(x) |x|p−1) = x.

In particular, forp = 1, Sw,1 is the soft-thresholding operator: Sw,1(x) = sign(x)(|x| − w/2)+

whereas forp = 2, one simply gets: Sw,2(x) = x
1+w .

2.2.2 Convergence and stability

The two following theorems summarize the findings presentedin2 . The first theorem states that the iterative algorithm 2.1
converges strongly in the norm associated in the Hilbert spaceHi for any initial guessf0.

THEOREM 2.2 (CONVERGENCE). LetT be a bounded linear operator fromHi toHo, with |||T ||| < 1. Takep ∈ [1, 2], and
let Sw,p be the shrinkage operator defined by(8), where the sequencew = {wλ}λ∈Λ is such that there exists a constant
c > 0 such that∀λ ∈ Λ : wλ ≥ c. Then the sequence of iterates

fn = Sγw,p

(
fn−1 + T ∗(g − Tfn−1)

)
, n = 1, 2, . . . ,

with f0 arbitrarily chosen inHi, converges strongly to a minimizer of the functionalJγ,w,p.

If the minimizerf⋆ of Jγ,w,p is unique, (which is guaranteed e.g. byp > 1 or ker(T ) = {0}), then every sequence of
iteratesfn converges strongly tof⋆, regardless of the choice off0.

The second theorem is concerned with the stability of the method. It gives sufficient conditions to ensure that the
estimate recovered from a perturbed observation,g = Tf0 + e, will approximate the objectf0 as the amplitude of the
perturbation‖e‖Ho goes to0.

THEOREM 2.3 (STABILITY ). Assume thatT is a bounded operator fromHi to Ho with |||T ||| < 1, thatγ > 0, 1 ≤ p ≤ 2
and that the entries in the sequencew ={wλ}λ∈Λ are bounded below byc > 0.

Assume that eitherp > 1 or ker(T ) = {0}. For anyg ∈ Ho and anyγ > 0, definef⋆
γ,w,p;g to be the minimizer of

Jγ,w,p with observationg. If γ = γ(ǫ) satisfies

lim
ǫ→0

γ(ǫ) = 0 and lim
ǫ→0

ǫ2

γ(ǫ)
= 0 , (10)

then we have, for anyfo ∈ Hi,

lim
ǫ→0

[
sup

‖g−Tfo‖Ho≤ǫ

‖f⋆
γ(ǫ),w,p;g − f†‖Hi

]
= 0 , (11)

wheref† is the unique element of minimum||| · |||w,p–norm in the setSfo
= {f ;Tf = Tfo}.

Note that in particular whenT is invertible,f† = f which means that Algorithm 2.1 provides a stable inversion.

So far, we have a convergent and regularizing iterative algorithm that converges to a minimizer of the functionalJγ,w,p.
Such a minimizer is an estimate of the objectf that compromises between generating an observation close to the datag
in a quadratic sense and having the smallest||| · |||w,p–norm. Note the the design of the||| · |||w,p–norm is such that it will
preserve or enhance desirable properties off . The quadratic discrepancy term inJγ,w,p is devoid of such considerations
and therefore does not enhance more important features thatshould be matched in the observations. In the rest of this
paper, we will present adaptive discrepancy terms that aim at fixing this point.
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3. ADAPTIVE DISCREPANCY TERMS (I): USING PROJECTIONS

3.1 An Algorithm using Adaptive Projections

3.1.1 Original idea

In1 , the authors are concerned with the deconvolution of an astrophysical image. The observations of interest were blurred
and noisy pictures of galaxies. For these, denoising by wavelet-shrinkage was already known to improve the quality of
noisy observations. The wavelet shrinkage procedure ong is nothing more than applying tog an adaptive projection:
the projection on the “multiresolution support” ofg, i.e. on the subspace defined by the largest wavelet coefficients ofg.
The fact that wavelet shrinkage improves the observation shows that the “multiresolution support” ofg naturally defines a
subspace that describes the important features ofg.

The authors of1 proposed to use this multiresolution support not only ong itself but also in the context of deblurring
by using it to evaluate how well an estimatef fits the datag. They proposed an iterative algorithm very close to Algorithm
2.1, forp = wλ = 1 except that the residual(g − Tfn−1) is projected on the multiresolution support ofg: (g − Tfn−1)
becomesMg(g − Tfn−1) whereMg is the projection.

We propose to extend this idea to any kind of adaptive projections and study the mathematical properties of the resulting
algorithm.

3.1.2 Iterative algorithm with adaptive projection

We first define the notion of adaptive projection: an adaptiveprojection defined by the datag is the orthogonal projection
on a subspace defined by the fact that the coefficients ofg on an orthonormal basis are greater than predefined thresholds.
Mathematically:

DEFINITION 3.1. Given an orthonormal basis{βλ}λ∈Λof Ho, an elementg in Ho and a sequence of nonnegative thresh-
oldsτ={τλ}λ∈Λ, the adaptive projectionMg,τ is the map fromHo into itself defined by:

∀h ∈ Ho, Mg,τ (h) =
∑

λ s.t. |gλ|>τλ

hλβλ

(where, as usual,hλ denotes the scalar product〈h, βλ〉)

We propose the following algorithm:

ALGORITHM 3.2. {
f0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗ Mg,τ (g − Tfn−1)

)
, n ≥ 1

Note that ifT is a convolution,{βλ}λ∈Λis a wavelet basis,p = 1 and∀λ ∈ Λ, wλ = 1, this is what was proposed in1 .
From what we saw before, it is straightforward to infer that Algorithm 3.2 should converge to a minimizer of

Jγ,w,p,τ (f) =
∥∥Mg,τ (Tf − g)

∥∥2

Ho
+ γ|||f |||w,p (12)

which is a functional with an adaptive discrepancy term.

3.2 Mathematical Properties

3.2.1 A convergent iterative algorithm

The strong convergence of Algorithm 3.2 to a minimizer of Eq.(12) is guaranteed by Theorem 2.2 (under the same
conditions as in Theorem 2.2): apply this theroem tog′ = Mg,τ g andT ′ = Mg,τ T to get the solution (this works because
Mg,τ is a self-adjoint projection).
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3.2.2 Diagonal case: a new kind of thresholding

To gain insight on this algorithm, we first study the case of a diagonal operatorT . We assume that

T (h) =
∑

λ∈Λ

tλhλϕλ

where thetλ are scalars. As a reminder, for Algorithm 2.1, the minimizeris

argmin (Jγ,w,p) = Sγw/t2,p(T−1g) =
∑

λ∈Λ/tλ 6=0

Sγwλ/t2
λ

,p(gλ/tλ)ϕλ.

Whenp = 1, this reduces to the soft-thresholded version ofT−1g on the basisϕ={ϕλ}λ∈Λ with the thresholdsγwλ/t2λ.

When the adaptive discrepancy term is introduced, we get:

Jγ,w,p,τ (f) =
∥∥Mg,τ (Tf − g)

∥∥2

Ho
+ γ|||f |||w,p

=
∑

λ s.t. |gλ|>τλ

|(Tf − g)λ|
2 + γ

∑

λ∈Λ

wλ|fλ|
p

=
∑

λ s.t. |gλ|>τλ

(
|tλfλ − gλ|

2 + γwλ|fλ|
p
)

+ γ
∑

λ s.t. |gλ|≤τλ

wλ|fλ|
p (13)

The equations for eachfλ are now decoupled so that the minimizerf⋆ is defined by:
{

f⋆
λ = Sγwλ/t2

λ
,p(gλ/tλ) if |gλ| > τλ and tλ 6= 0

f⋆
λ = 0 if |gλ| ≤ τλ or tλ = 0

(14)

Introducing the hard-thresholding operator with threshold m:

Hτ (x) =

{
x if |x| > m
0 otherwise,

(15)

one can rewrite the preceding equation:
{

f⋆
λ = Sγwλ/t2

λ
,p(Hτλ/tλ

(gλ)) if tλ 6= 0

f⋆
λ = 0 if tλ = 0.

(16)

Thus we obtain the previous shrinkage operatorSγwλ/t2
λ

,p composed with a hard-thresholding operatorHτ/t that we call
“adaptive thresholding operator”. The hard-thresholdingoperation is known to be a way to enhance the solution after
application of the pseudo inverse. On the other hand the shrinkage operatorSγwλ/t2

λ
,p regularizes the same solution with

respect to a smoothness defined by the||| · |||w,p–norm. We find here that the introduction of the discrepancy term with
adaptive projections is simply an intermediate solution between both of these regularizations.

Whenp = 1 andtλ = 1, we obtain a compromise between hard and soft-thresholdingif τλ > γwλ. To illustrate this,
we graph in Fig.1 the hard-thresholding function with threshold τ (left), the soft-thresholding function with thresholdγ
(right) and the function obtained in Eq.(16) (middle) in thecaseτ > γ (herew = 1). We give a further illstration of the
diagonal case in Fig. 3, section 5.

3.2.3 Stability is an issue

The study on diagonal operators suggests that introducing adaptive projections gives flexibility by defining a new shrinkage
operator. In this section, we see that this flexibility comesto a price: the resulting algorithm is not stable in the senseof
Theorem 2.3. There is stability in the sense that if the parameter (τ , w,..) are chosen properly as the noise level decreases
- i.e. when the observationg gets closer to the true observationTfo - then the solutions converge to a well-defined limit.
However this limit is not necessarilyfo, even ifT is invertible.

In a nutshell, what happens is that stability requires that the thresholdsτ= {τλ}λ∈Λ are large enough compared to
||g − Tfo||. This implies that the subspace defined by the indexesλ such that{Tfo}λ = 0 will necessarily be in the kernel
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Figure 1. Left: hard-thresholding operatorHτ ; middle: adaptive thresholding operator; right: soft-thresholding operatorSγ,1.

of the adaptive projectionsMg,τ as soon asg is close enough toTfo. Therefore the information in this subspace will lost.
The result is then that as the observation becomes ideal (i.e. close toTfo) the solution of Algorithm 3.2 will approach the
element of minimal||| · |||w,p–norm in the setMT,fo

of elements ofHi that have the same image underT asfo except
maybe on the coordinatesλ such that(Tfo)λ = 0.

Note that even isT is one-to-one, this set is not necessarily reduced tofo:

EXAMPLE 1. If T is the identity,f1 = (1, 0) ∈ R
2, thenMf1

= {(1, x), x ∈ R} on the canonical basis.

In this case however the minimizer of the||| · |||w,p–norm isf1 itself whatever the choices of the parametersγ, τ , w =
{wλ}λ∈Λ,... are. Algorithm 3.2 will therefore provide the desired result. This is not the case in the following example,
whereT is also an invertible operator inR2:

EXAMPLE 2. ConsiderT : R
2 → R

2, the bounded and linear operator defined by:

T :

(
f1

f2

)
7→ 1

4

(
2 f1 + f2

f1 − f2

)
and fa =

(
a
a

)
for somea 6= 0.

• T has a bounded inverse:T−1 :

(
f1

f2

)
7→ 4

3

(
f1 + f2

f1 − 2f2

)
and|||T |||= 1

2 <1.

• Tfa =

(
3a
4
0

)
andMfa

= {f : (Tf)1 = (Tfa)1} = {f : 2f1 + f2 = 3a}.

The element inMfa
with minimall1 norm is:f†

a =

(
3a
2
0

)
, and notfa itself. Thus the minimizers of Eq.(12) do not

converge tofa as the observations converge toTfa. In other words, information on the second coordinate in image plane
has been lost that prevents the algorithm to invertT even with arbitrary accurate data.

We now formalize this result. We first defineMT,fo
and the setHi

T,w,p of elements for whichMT,fo
has a unique

minimizer of the||| · |||w,p–norm.

DEFINITION 3.3 (MT,fo
). Given two Hilbert spacesHi andHo, an operatorT : Hi → Ho, an orthonormal basis

{βλ}λ∈Λof Ho and an elementfo of Hi. The setMT,fo
is the subset of elements ofHi that verify:

f ∈ MT,fo
⇐⇒ MTfo,0(Tf) = Tfo ⇐⇒

[
{Tfo}λ 6= 0 ⇒ {Tf}λ = {Tfo}λ

]

DEFINITION 3.4 (Hi
T,w,p). Given a Hilbert spaceHi, Hi

T,w,p is the subset of elements ofHi that verify: fo is in Hi
T,w,p

if and only if the setMT,fo
= {f : MTfo,0Tf = Tfo} has a unique element of minimum|||.|||w,p-norm.

Whenp > 1, thenHi
T,w,p = Hi, regardless ofT . This is not true ifp = 1, even ifker T = {0}. It turns out that

Algorithm 3.2 is regularizing for elementsf in Hi
T,w,p, and that the minimizer obtained in the limit‖Tfo − g‖Ho goes to

zero is exactly the minimizer of the|||.|||w,p-norm inMT,fo
. This is the object of the following theorem:

THEOREM 3.5. Assume thatT is a bounded operator fromHi to Ho with |||T ||| < 1, thatγ > 0, p ∈ [1, 2] and that the
entries in the sequencew ={wλ}λ∈Λ are bounded below uniformly by a strictly positive numberc.

For any g ∈ Ho and anyγ > 0 and any nonnegative sequenceτ= {τλ}λ∈Λ, definef⋆
γ,w,p,τ ;g to be a minimizer of

Jγ,w,p,τ (f) with observationg. If γ = γ(ǫ) andτ = τ(ǫ) satisfy:
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1. lim
ǫ→0

γ(ǫ) = 0 and lim
ǫ→0

ǫ2

γ(ǫ)
= 0

2. ∀λ ∈ Λ, lim
ǫ→0

τλ(ǫ) = 0 and ∃ δ > 0, s.t: [ ǫ < δ ⇒ ∀λ ∈ Λ, τλ(ǫ) > ǫ ]

then we have, for anyfo ∈ Hi
T,w,p:

lim
ǫ→0

[
sup

‖g−Tfo‖Ho≤ǫ

‖f⋆
γ(ǫ),w,p,τ(ǫ); g − f†

o‖Hi

]
= 0 ,

wheref†
o is the unique element of minimum||| |||w,p–norm in the setMT,fo

.

The detailed proof of this theorem is given in3 , p.18-24 and is not reproduced here. It is based on two ingredients:

• The two lemmas provided in Appendix. A. show that condition 2in Theorem 3.5 is needed to obtain the weak
convergence of the adaptive projection operatorsMg,τ when||g − Tfo|| → 0.

• Using this weak convergence, one can then adapt the proof of Theorem 2.3 provided in2 .

4. ADAPTIVE DISCREPANCY TERMS (II): RELAXED PROJECTIONS

In the previous section, we showed that introducing adaptive projections in the discrepancy term allows to take into account
features that are more important in the data but results in a loss of information that may be harmful to the estimation of
the object sought. The reason is that the projections used cancel some information. To fix this instability problem still
keeping the spirit of the previous method, one can imagine toonly dampen the non-feature space defined by the adaptive
projections instead of cancelling it. As we see in the next section, the resulting “relaxed projections” still emphasize the
same features but without losing any information; therefore the stability as defined in Theorem 2.3 is restored.

4.1 Relaxed Adaptive Projections

The “relaxed projection”Mg,τ,µ with dampening parameterµ and corresponding to the orthogonal adaptive projection
Mg,τ is

Mg,τ,µ = Mg,τ +µ(Id−Mg,τ ) (17)

or more formally:

DEFINITION 4.1. Given an orthonormal basis ifHo, β= {βλ}λ∈Λ, an elementg in Ho, a sequence of nonnegative
thresholdsτ={τλ}λ∈Λ and a scalarµ > 0, Mg,τ,µ is the map fromHo into itself defined by:

∀h ∈ Ho, Mg,τ,µ(h) =
∑

λ s.t. |gλ|>τλ

hλβλ + µ
∑

λ s.t. |gλ|≤τλ

hλβλ

This operator is introduced in the discrepancy term so that we now seek to minimize the functional

Jγ,w,p,τ,µ(f) =
∥∥Mg,τ,µ(Tf − g)

∥∥2

Ho
+ γ|||f |||w,p, (18)

via the following iterative algorithm:

ALGORITHM 4.2. {
f0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗ Mg,τ,µ

2(g − Tfn−1)
)
, n ≥ 1

Note that in this case, one needs to square the relaxed projection operator in the iterative algorithm. This is because
unlike Mg,τ , Mg,τ,µ is not a self-adjoint projection. This equation can be easily checked by replacingT by Mg,τ,µ T
and g by Mg,τ,µ g in the original functionalJγ,w,p of Eq.(7) and in Algorithm 2.1. In practice, we use the fact that
Mg,τ,µ

2 = Mg,τ,µ2 ; so the operator is still easy to compute.

The previous change of variable used in Theorem 2.2 also proves thestrong convergence of Algorithm 4.2 to a
minimizer of Eq. (18) (under the same conditions as in Theorem 2.2).
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4.2 Stability is recovered

The introduction of the dampening factor ensures that all the information in the data will be taken into account and we
recover the stability in the usual sense: if the data become ideal (g → Tfo) and the parametersγ, τ= {τλ}λ∈Λ andµ are
chosen accordingly, then the solution converges tofo whenfo is the unique antecedent ofTfo.

The conditions on the parameters are given in the following theorem:

THEOREM 4.3. Assume thatT is a bounded operator fromHi to Ho with |||T ||| < 1 and that the entries in the sequence
w ={wλ}λ∈Λ are bounded below uniformly by a strictly positive numberc.

For any g ∈ Ho and anyγ > 0, 0 < µ ≤ 1 and nonnegative sequenceτ= {τλ}λ∈Λ, definef⋆
γ,w,p,τ,µ; g to be a

minimizer ofJγ,w,p,τ,µ(f) with observationg. If γ = γ(ǫ), τ = τ(ǫ) andµ = µ(ǫ) satisfy:

1. lim
ǫ→0

γ(ǫ) = 0 and lim
ǫ→0

ǫ2

γ(ǫ)
= 0

2. ∀λ ∈ Λ, lim
ǫ→0

τλ(ǫ) = 0 and ∀λ ∈ Λ, ∃ δ(λ) > 0, s.t: [ ǫ < δ(λ) ⇒ τλ(ǫ) > ǫ ]

3. lim
ǫ→0

µ(ǫ) = µo, with 0 < µo ≤ 1

then for anyfo such that there is a unique minimizer of the||| |||w,p–norm in the setSfo = {f : Tf = Tfo}:

lim
ǫ→0

[
sup

‖g−Tfo‖Ho≤ǫ

‖f⋆
γ(ǫ),w,p,τ(ǫ),µ(ǫ); g − f†

o‖Hi

]
= 0 ,

wheref†
o is the unique element of minimum||| |||w,p–norm in the setSfo

.

The proof of this theorem is detailed in3 , p.28-31 and is similar to that of Theorem 3.5. The weak convergence of the
adaptive operators is ensured by conditions 2 and 3 of Theorem 4.3 and the corresponding lemma is provided in Appendix
B.

It is clear that in practice, by choosingµ small, the properties ofg enhanced by both Algorithm 3.2 and 4.2 are similar.
The second algorithm is however more stable as it is guaranteed to make a correct guess when the data is sufficiently close
to the image of an objectf .

5. APPLICATION

5.1 Multispectral Data

In this section we apply the algorithms described previously to the problem of reconstructing maps of astrophysical phe-
nomena from multispectral observations. We consider simulated multispectral observations of the Cosmic Microwave
Background (CMB) radiation with the observation conditions relative to the Atacama Cosmology Telescope (ACT). In this
case, we observe the same portion of sky at different wavelengthsνl. The observations are blurred mixtures of the physical
phenomena we seekf1,..,fM that can be modeled by:

∀l = 1..L, g(νl) = gl = bl ∗

M∑

m=1

am,lfm + nl. (19)

The blurringbl changes with the wavelengthνl and is Gaussian. The mixture coefficientsam,l are called frequency
dependencies and give the contribution of phenomenam to observationl. The noise termsnl have a known varianceσl

that also depend on the wavelengthνl. Note that here, the operatorTm,l from Eq.(2) is a mixture followed by a convolution
Tm,l(·) = bl ∗

∑M
m=1 am,l(·)m. For ACT, the observation wavelength are low:ν =145, 217 or 265GHz. (Details about

the noise and blur level can be found in3 , p.88.)

Here, we seek to reconstruct two components:
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• the CMB (= f1): this is an electromagnetic radiation that fills the whole of the Universe (see Figure 2, left panel).
Its existence and properties are considered one of the majorconfirmations of the Big Bang theory.

• the galaxy clusters, noted SZ (= f2): the clusters can be seen through their Sunyaev-Zeldovicheffect (SZ effect in
short) which is due to high energy electrons in the galaxy clusters that interact with Cosmic Microwave Background
photons.

In fact, we focus on the detection and estimation of the galaxy clusters in observations such as can be done with ACT.

A complete model of the observations would have to include other astrophysical phenomena such as infrared point
sources or our Galaxy dust. We will not consider them here, since their contribution at low wavelengths, such as the ones
considered here, are negligible.

SZ

 

 

0  200  

CMB

 

 

−200  0  200

Observed @145 GHz

 

 

−200  0  200

Observed @217 GHz

 

 

−200  0  200

Figure 2. Multispectral data (units:µK); left to right: CMB map, galaxy clusters map, observation at 145GHz, observation at 217GHz

Figure 2 illustrates the simulated data we use. The two left panels show the astrophysical map we seek to reconstruct
from the observations shown on the two right panels. (The units of the maps is the micro-Kelvin).

General parameters of the functional algorithms

In this multispectral case, the reconstruction methods proposed earlier have one regularization term for each component
and one regularization term per observation (see Eq.(3)).

As can be seen from the observations, the contribution of thegalaxy clusters (SZ) is negligible compared to this of
the CMB. We rely on the fact that these maps have very different spatial properties to disentangle them. These properties
are reflected by the regularization terms. The CMB componentis regularized by a weightedl2-norm in Fourier space,
the weights being proportional to its spectral power. The SZcomponent is regularized by anl1-norm on its wavelets
coefficients. The wavelet transform used for regularization is the dual tree complex wavelet transform.4,5

We compare the results obtained with the classical discrepancy terms of Eq.(3) to these obtained with various adaptive
projections, relaxed (Eq.(18)) and not (Eq.(12)). In any case, the adaptive/relaxed projection is done on an orthonormal
wavelet transform (Symmlet, 2 vanishing moments) and the threshold parameterτ are set to the noise standard deviation.

The general balancing parametersρl are set to1. Theγm are learned from a database of simulations.

5.2 Denoising galaxy cluster maps

To illustrate the effect of introducing adaptive projections, we took a one-dimensional slice of the galaxy cluster mapin
Fig. 2 and added noise to it (top panels of Fig. 3) with a standard deviation ofσ.

We show in the four bottom panels of this figure the results of the denoising using

• hard-thresholding (Fig. 3, middle left panel) with threshold τ = σ;
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• soft-thresholding (Fig. 3, bottom right panel) with threshold γ = σ; This is obtained with the initial iterative algo-
rithm (Algo. 2.1).

• the adaptive thresholding (Fig. 3, middle right and bottom left panels) seen in subsection 3.2.2. This is obtained with
the adaptive algorithm (Algo. 3.2) Note that there is no stability issue in this example.

One can see that increasing the introduction of the soft-thresholding on top of the hard-thresholding smoothes the solution.
The pure soft-thresholding however suffers from that fact that it dampens peaks compared to the pure hard-thresholding.
In the case of galaxy clusters, these peak of intensity correspond to the central part of the cluster and indicate its age.
Therefore, the dampening obtained by soft-thresholding isdetrimental. On the other hand, the lack of smoothness of the
hard-thresholded solution will induces false positive in the detection of clusters. The introduction of the adaptive thresh-
olding via the use of projections in the discrepancy term allows to tune both effects. It gives an interesting compromise
keeping a bit of the advantages of the pure hard or soft-thresholded solutions (see Fig. 3, middle right and bottom left
panels).
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Figure 3. Denoising galaxy clusters map. Top left: 1D profile of a cluster map. Top right: noisy 1D profile of a cluster map (noise
varianceσ2). Middle left: noisy data hard-thresholded (τ = 2σ). Middle right: noisy data soft/hard-thresholded (τ = 2σ, γ = σ).
Bottom left: noisy data soft/hard-thresholded (τ = 2σ, γ =

√

2σ). Bottom right: noisy data soft-thresholded (γ = 2σ).
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5.3 Reconstruction of CMB and galaxy clusters maps from multispectral observations

The simultaneous reconstuction of both the CMB and galaxy cluster maps from the multispectral observations as seen in
subsection 5.1 has been performed with the different iterative algorithms proposed in section 2, 3 and 4. All parameters
were described in 5.1 except for the relaxed projection dampening parameterµ (see Eq.(17)) which is fixed here toµ = 0.1
when using Algorithm 4.2.

Fig. 4 displays the results obtained for

• the initial algorithm (Algo. 2.1) with classicall2 discrepancy terms. The results are labelled “µ = 1”.

• the relaxed projection algorithm (Algo. 4.2) with stable adaptive discrepancy terms. The results are labelled “µ =
0.1”.

The observed maps and the CMB and galaxy clusters maps that weseek to recover are in shwon on the left panels of Fig.
2. The reconstructed CMB maps are in the two left panels of Fig. 4. The reconstructed galaxy maps are in the two right
panels of Fig. 4.

CMB − µ=1

 

 

−200  0  200

SZ − µ=1

 

 

0  200  

CMB − µ=0.1

 

 

−200  0  200

SZ − µ=0.1

 

 

0  200  

Figure 4. Reconstructed maps; without projections: first and third images (µ = 1); with adaptive projections: second and fourth images
(µ = 0.1); far/middle left: CMB; far/middle right: galaxy clusters

The following analysis is illustrated by the results shown in 4 but is valid in a more general study with 24 similar
simulations.

5.3.1 Analysis of CMB reconstruction

All the reconstructed CMB maps are accurate to the microKelvin precision. The Root Mean Square Error of the different
reconstructions to the original (true) CMB map is not affected by the introduction of the adaptive discrepancy term.

The precision obtained for this component is highly satisfactory and allows to proceed to further treatment for astro-
physical purposes.

5.3.2 Analysis of the galaxy clusters reconstruction

All the reconstructed galaxy cluster maps have a low accuracy (worst case 100 microKelvin). The Root Mean Square
Error of the different reconstructions to the original (true) clusters map is not affected by the introduction of the adaptive
discrepancy term. Hence as far as global measures are concerned, all the presented algorithms perform in the same manner
for galaxy clusters. These poor results are expected by the fact that the contribution of the galaxy clusters to the observation
is well below the CMB contribution and the noise level.

However, as explained in,3 global measures are not satisfactory to evaluate the quality of a reconstructed cluster map.
Indeed, the goal is to locate the presence of clusters and quantify some of their statisical characteristics like size, intensity
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or age... Detailed study of the reliability of these quantities has be done for Algorithm 2.13 and show that it actually gives
good results in this prospective. Here, we do not reproduce the all study for Algorithm 3.2 and 4.2 but simply compare
them to Algorithm 2.1.

As can be inferred from Fig. 4, the results are very similar. The ontroduction of adaptive discrepancy terms yield a
slight improvement in the estimation of the central intensity of a cluster (see the three clusters in the upper part of thecircle
in Fig. 4). This improvement is not statistically significant however it illustrates how adaptive discrepancy terms provide a
novel way of tuning the algorithm to the data.

APPENDIX A. ELEMENTS OF THE PROOF OF THE STABILITY OF (I)

To prove Theorem 3.5, we need to examine the behavior of the projectionsMg(ǫ),τ(ǫ) asǫ goes to zero. This is done in the
next two lemmas. The first lemma (Lemma A.1) gives necessary and sufficient conditions on the sequenceτ={τλ}λ∈Λ to
that these projections converge in a weak sense asǫ goes to zero. We will be interested in the case where the weak limit
operator isMTfo,0. The second lemma (Lemma A.1) refines these conditions, so that in addition, the sequenceMg(ǫ),τ(ǫ)

converges strongly toMTfo,0 on the set:T (Mf0
).

LEMMA A.1. For f ∈ Hi, let {g(ǫ, f)}ǫ>0 be an arbitrary family of elements inHo that satisfy‖g(ǫ, f) − Tf‖Ho < ǫ,
∀ǫ > 0.

1. ∀h ∈ Ho, Mg(ǫ,f),τ(ǫ)h converges weakly asǫ goes to0 if and only if ∀λ : ∃ δ(λ) such that either (a) or (b)
holds, with

(a) ∀ǫ ∈ (0, δ(λ)),
∣∣[g(ǫ, f)]λ

∣∣ > τλ,

(b) ∀ǫ ∈ (0, δ(λ)),
∣∣[g(ǫ, f)]λ

∣∣ ≤ τλ.

2. Mg(ǫ,f),τ(ǫ) converges weakly, independently of the choice off and of the familyg(ǫ, f), asǫ goes to0 if and only
if ∀λ : both (a) and (b) hold, with

(a) ∃ δ(λ) such that∀ǫ ∈ (0, δ(λ)), τλ(ǫ) > ǫ

(b) lim
ǫ→0

τλ(ǫ) = 0

In that case, the weak-limit operator is necessarilyMTf,0.

3. When conditions 2.(a) and 2.(b) above hold, ifh(ǫ) converges weakly toh, thenMg(ǫ,f),τ(ǫ)h(ǫ) converges weakly
to MTf,0 h asǫ goes to0.

Proof. [Proof of Lemma A.1] Let us examine the behavior ofMg(ǫ,f),τ(ǫ) coordinate by coordinate. Since[
Mg(ǫ,f),τ(ǫ)h

]
λ

equals eitherhλ or 0, depending on whether or not
∣∣[g(ǫ, f)]λ

∣∣ > τλ(ǫ), it follows thatMg(ǫ,f),τ(ǫ)(h)
will converge weakly asǫ goes to0 if and only if for all coordinatesλ, one of the following holds:

Either there exists someδ(λ) > 0 such that
∣∣[g(ǫ, f)]λ

∣∣ > τλ(ǫ) for ǫ < δ(λ). In this case,
[
Mg(ǫ,f),τ(ǫ)h

]
λ

= hλ for
ǫ < δ(λ).

Or there exists someδ(λ) > 0 such that
∣∣[g(ǫ, f)]λ

∣∣ ≤ τλ(ǫ) for ǫ < δ(λ). In this case,
[
Mg(ǫ,f),τ(ǫ)h

]
λ

= 0 for ǫ < δ(λ).

This proves the first assertion.

Let us now consider how uniform this behavior is in the choiceof the family g(ǫ, f). Since
∣∣[g(ǫ, f) − Tf ]λ

∣∣ ≤

‖g(ǫ, f) − Tf‖Ho ≤ ǫ, the set of values that can be assumed by|g(ǫ, f)λ| is exactly
[

Tf − ǫ, Tf + ǫ
]

(take g =
Tf + rβλ, r ∈ [−ǫ, ǫ] to reach all the values in this set). Therefore, for a fixedf , the weak convergence of the op-
eratorsMg(ǫ,f),τ(ǫ), regardless of which sequenceg(ǫ, f) is chosen, is equivalent to putting constraints on the sequence
{τ(ǫ)λ}λ∈Λ that depend of the coordinates(Tf)λ. These constraints depends on whether(Tf)λ 6= 0 or (Tf)λ = 0:

• If Tfλ 6= 0 then
{
|g(ǫ, f)λ|

}
=

[
|Tfλ|−ǫ, |Tfλ|+ǫ

]
. Therefore, one needs either:

[
ǫ < δ(λ) ⇒ τλ(ǫ) > |Tfλ|+ǫ

]

or
[
ǫ < δ(λ) ⇒ τλ(ǫ) ≤ |Tfλ| − ǫ

]
. In the first case,βλ will always be in the kernel ofMg(ǫ,f),τ(ǫ) onceǫ < δ(λ).

In the second caseβλ will always in the range ofMg(ǫ,f),τ(ǫ) onceǫ < δ(λ).
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• If Tfλ = 0 then{|g(ǫ, f)λ|} = [0, ǫ]. Therefore one needs[ǫ < δ(λ) ⇒ τλ(ǫ) > ǫ]. In this case,βλ will always be
in the kernel ofMg(ǫ,f),τ(ǫ) onceǫ < δ(λ).

Note that we do not know beforehand the value ofTf . To be useful, we must derive requirements on the parametersτλ(ǫ)
that do not depend onf . The minimum requirements onτ(ǫ) ensuring the operatorsMg(ǫ,f),τ(ǫ) converge weakly asǫ
goes to0 are:

• ∀λ, limǫ→0 τλ(ǫ) = 0: this ensures that ifTfλ 6= 0, we will haveτλ(ǫ) < |Tfλ| − ǫ for sufficiently smallǫ.

• ∀λ, ∃δ(λ) such thatǫ < δ(λ) ⇒ τλ(ǫ) < ǫ: this ensures that ifTfλ = 0, we will haveτλ(ǫ) < |Tfλ| + ǫ = ǫ for
sufficiently smallǫ.

If these conditions are satisfied, theMg(ǫ,f),τ(ǫ) converge weakly asǫ goes to0 and one can determine the weak limit:

• for λ s.t. Tfλ 6= 0: limǫ→0 τλ(ǫ) = 0 hence there existsδ(λ, f) such thatǫ < δ(λ, f) impliesτλ(ǫ) < |Tfλ| − ǫ. It
follows that: |g(ǫ, f)λ| > τλ(ǫ) so thatMg(ǫ,f),τ(ǫ)(βλ) = βλ for anyg(ǫ, f) and anyǫ < δ(λ, f)

• for λ s.t. Tfλ = 0: ǫ < δ(λ) implies τλ(ǫ) > ǫ. It follows that if ǫ < δ(λ), then |g(ǫ, f)λ| > τλ(ǫ) so that
Mg(ǫ,f),τ(ǫ)(βλ) = 0 for anyg(ǫ, f) and anyǫ < δ(λ) .

This proves that the weak limit ofMg(ǫ,f),τ(ǫ) for any fixedf is MTf,0 and finishes the proof of the second part of Lemma
A.1.

Finally, assumingh(ǫ) converges weakly toh, we have∀λ:
∣∣∣
[
Mg(ǫ,f),τ(ǫ)h(ǫ) − MTf,0 h

]
λ

∣∣∣ (20)

=
∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h) + (Mg(ǫ,f),τ(ǫ) − MTf,0)h

]
λ

∣∣∣ (21)

=
∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h)

]
λ

∣∣∣ +
∣∣∣
[
Mg(ǫ,f),τ(ǫ)h − MTf,0 h

]
λ

∣∣∣ (22)

The second term vanishes asǫ goes to0 becauseMg(ǫ,f),τ(ǫ) converges weakly toMTf,0 when the conditions 2.(a) and
2.(b) hold. Moreover, we have seen in the proof of the second part of the lemma that for anyλ:

• either there exists aδ(λ) such thatMg(ǫ,f),τ(ǫ)(βλ) = 0 for anyǫ < δ(λ) .

In that case,
∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h)

]
λ

∣∣∣ = 0, for ǫ < δ(λ).

• or there exists aδ(λ) such thatMg(ǫ,f),τ(ǫ)(βλ) = βλ for anyǫ < δ(λ) .

In that case,
∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h)

]
λ

∣∣∣ =
∣∣∣
[
h(ǫ) − h

]
λ

∣∣∣, for ǫ < δ(λ); and the weak convergence ofh(ǫ) to h

allows to conclude that
∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h)

]
λ

∣∣∣ → 0

This proves thatMg(ǫ,f),τ(ǫ)h(ǫ) converges weakly toMTf,0 h and finishes the proof of Lemma A.1.

We shall now see how to ensure strong convergence of theMg(ǫ,f),τ(ǫ)(h) whenh is inMf .

LEMMA A.2. If there exists a value ofδ independent ofλ such that∀ǫ < δ and∀λ, τλ(ǫ) > ǫ, then the two following
properties hold:

1. For any choice off and of the familyg(ǫ, f):

∀ǫ < δ, Mg(ǫ,f),τ(ǫ) = MTf,0Mg(ǫ,f),τ(ǫ) = Mg(ǫ,f),τ(ǫ)MTf,0 =
∑

λ s.t. Tfλ 6=0
and |gλ|≥τλ

〈 ., βλ〉βλ.
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2. In particular, for any choice off ∈ Hi
T,w,p and of the familyg(ǫ, f), (i.e. wheneverMf has a unique minimizerf†

of the|||.|||w,p-norm):
∀ǫ < δ, Mg(ǫ,f),τ(ǫ)(Tf†) = Mg(ǫ,f),τ(ǫ)(Tf).

Proof. [Proof of Lemma A.2:] The first part of Lemma A.2 results fromproperties of orthogonal projections. IfP1 and
P2 are two orthogonal projections, then:

P1 P2 = P2 P1

ker(P2) ⊂ ker(P1) ⇔ P1P2 = P1.

Hence, we already provedMg(ǫ,f),τ(ǫ) MTf,0 = MTf,0 Mg(ǫ,f),τ(ǫ) and

Mg(ǫ,f),τ(ǫ)MTf,0 = Mg(ǫ,f),τ(ǫ) ⇔
[
(Tf)λ = 0 ⇒ |g(ǫ,f)λ

| ≤ τλ(ǫ)
]
.

Whenf andǫ are fixed, the right hand side holds for anyg(ǫ, f) if and only if
[
(Tf)λ = 0 ⇒ ǫ < τλ(ǫ)

]
which proves the

first part of Lemma A.2.

For f in Hi
T,w,p, f† is well defined and verifiesMTf,0Tf† = Tf . Applying Mg(ǫ,τ(ǫ)) to this equality and using the

previous result finishes the proof of Lemma A.2.

APPENDIX B. ELEMENTS OF THE PROOF OF THE STABILITY OF (II)

LEMMA B.1. Suppose thatτ = τ(ǫ) andµ = µ(ǫ) verify conditions 2 and 3 of Theorem 4.3. Then the two following
properties hold:

1. For anyh in Ho, M2
g(ǫ,f),τ(ǫ),µ(ǫ)h converges weakly toM2

Tf,0,µo
h asǫ goes to0.

2. If h(ǫ) converges weakly toh asǫ goes to0, thenM2
g(ǫ,f),τ(ǫ),µ(ǫ)h(ǫ) converges weakly toM2

Tf,0,µo
h asǫ goes to

0.

Proof. [ Proof of Lemma B.1:] In the proof of Lemma A.1, we have seen that under conditions imposed onτ(ǫ)
(conditions 3 and 4 of Theorem 4.3), the following happens:

• for λ s.t. Tfλ 6= 0: limǫ→0 τλ(ǫ) = 0 hence there existsδ(λ, f) such thatǫ < δ(λ, f) impliesτλ(ǫ) < |Tfλ| − ǫ. It
follows that: |g(ǫ, f)λ| > τλ(ǫ).

• for λ s.t.Tfλ = 0: ǫ < δ(λ) impliesτλ(ǫ) > ǫ. It follows that if ǫ < δ(λ), then|g(ǫ, f)λ| > τλ(ǫ).

So that in the first case:M2
g(ǫ,f),τ(ǫ),µ(ǫ)(βλ) = βλ for any g(ǫ, f) and anyǫ < δ(λ, f); and in the second case:

M2
g(ǫ,f),τ(ǫ),µ(ǫ)(βλ) = µ(ǫ)2βλ for any g(ǫ, f) and anyǫ < δ(λ). Sinceµ(ǫ) converges to someµo by assumption

(condition 5 of Theorem 4.3), it follows thatM2
g(ǫ,f),τ(ǫ),µ(ǫ)h converges toM2

Tfo,0,µo
h as(ǫ) goes to0. This proves the

first part of Lemma B.1.

To prove the second part of Lemma B.1, we use again the splitting trick we used in A.1.(3):
∣∣∣
[
M2

g(ǫ,f),τ(ǫ),µ(ǫ)h(ǫ) − M2
Tf,0,µo

h
]
λ

∣∣∣ (23)

=
∣∣∣
[
M2

g(ǫ,f),τ(ǫ),µ(ǫ)(h(ǫ) − h) + (M2
g(ǫ,f),τ(ǫ),µ(ǫ) − M2

Tf,0,µo
)h

]
λ

∣∣∣ (24)

=
∣∣∣
[
M2

g(ǫ,f),τ(ǫ),µ(ǫ)(h(ǫ) − h)
]
λ

∣∣∣ +
∣∣∣
[
(M2

g(ǫ,f),τ(ǫ),µ(ǫ) − M2
Tf,0,µo

)h
]
λ

∣∣∣ (25)

And the same argument as we used in Lemma A.1.(3) allows to conclude.
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