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Abstract

In this paper, we define a similarity measure to compare
images in the context of (indexing and) retrieval. We use the
Kullback-Leibler (KL) divergence to compare sparse mul-
tiscale image descriptions in a wavelet domain. The KL
divergence between wavelet coefficient distributions has al-
ready been used as a similarity measure between images.
The novelty here is twofold. Firstly, we consider the de-
pendencies between the coefficients by means of distribu-
tions of mixed intra/interscale neighborhoods. Secondly,
to cope with the high-dimensionality of the resulting de-
scription space, we estimate the KL divergences in the k-
th nearest neighbor framework, instead of using classical
fixed size kernel methods. Query-by-example experiments
are presented.

1. Introduction

Comparing two images in the context of (indexing and)
retrieval often relies on global descriptions such as domi-
nant colors or color distribution, or on extracted information
such as salient points/regions together with local features or
segmentation along with region arrangement [5, 12]. The
philosophy here is to use a synthetic, multiscale image de-
scription based on the sparse representation in a wavelet
domain. Such experiments have been conducted using the
marginal distributions of the wavelet coefficients at differ-
ent scales associated with the Kullback-Leibler (KL) di-
vergence as a similarity measure between distributions [3].
Nevertheless, independence between the coefficients was
assumed, preventing from taking into account local image
structures such as texture. In contrast, we propose to con-
sider dependency by means of distributions of mixed in-
tra/interscale neighborhoods of coefficients. However, this
approach implies to deal with a high-dimensional statistical
description space. The number of samples being too small

to reasonably fill this space, fixed size kernel options to es-
timate distributions or divergences fail. Alternatively, we
propose to estimate the KL divergence in the k-th nearest
neighbor (kNN) framework [2], i.e., adapting to the local
sample density and directly from the samples.

2. Similarity between images

A central question in content-based image indexing is to
define a similarity measure between images that matches -
or at least is close enough to - our perception of the similar-
ity of images. Once this is done, the images in the database
can be simply ranked in increasing order of their similarity
to the reference (or example) image for a query-by-example
task. Perceptual studies to understand how human perceive
the similarity between images are still a topic of ongoing
research. Therefore, content-based image indexing system
relying on such studies may be subjective and hard to im-
plement. Here, we focus on developing an objective and
mathematically defined measure that will be easily imple-
mentable.

2.1. Neighborhoods of wavelet coefficients

Let us denote byw(I)j,k the wavelet coefficient of image
I at scale j and location k. I.e. it is the scalar product
w(I)j,k = 〈ψj,k, I〉 of I with ψj,k, the mother wavelet ψ
translated at location k and dilated at scale j.

The wavelet transform enjoys several properties that
have made it quite successful in signal processing and that
are relevant for the definition of similarity between images.
Indeed, it provides a sparse representation of images, mean-
ing that it concentrates the informational content of an im-
age into few coefficients of large amplitude while the rest of
the coefficients are small. This combined with a fast trans-
form is what makes wavelet thresholding methods so pow-
erful: in fact just identifying large coefficients is sufficient
to extract where the information lies in the image. Thus
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it seems natural to define the feature space in the wavelet
domain.

Initial thresholding wavelet methods treated each coef-
ficient separately relying on the decorrelation of these co-
efficients. However, they are not independent and these
dependencies are the signature of structures present in the
image. For example, a discontinuity between smooth re-
gions at point k0 will give large coefficients at this point
at all scales j (w(I)j,k0 large for all j). The most signif-
icant dependencies are seen between a wavelet coefficient
w(I)j,k and its closest neighbors in scale (w(I)j−1,k) or
space (w(I)j,k±(0,1), w(I)j,k±(1,0)). Several models us-
ing these dependencies have been proposed and used in
image enhancement [8, 9]. Here we use the concept of
wavelet neighborhoods introduced in [8]; these are vectors
of wavelets coefficients of the form:

w(I)j,k =
(
w(I)j,k, w(I)j−1,k,
w(I)j,k±(1,0), w(I)j,k±(0,1)

) . (1)

It was shown that the probability density function (pdf) of
such neighborhoods allow to characterize and estimate fine
spatial structures in images [8, 7]. Hence we will define
our feature space on the set of neighborhoods of wavelet
coefficients of the form of (1).

Critically sampled tensor wavelet transforms lack of
translation and rotation invariance and so would the neigh-
borhoods made of such coefficients. Since it is desirable to
find rotated and translated versions of an image to be simi-
lar to the original one, we prefer to use a slightly more re-
dundant transform, namely the steerable pyramid [8]. This
is the decomposition on the set of dilated, translated and
(Fourier-)rotated version of a mother wavelet. The image
I is then represented by a set of wavelet coefficients of
the form: {w(I)j,o,k}j∈Z,k∈Z2,o=1..No , o indexing the ori-
entations. Subsampling is not performed on the first level
of decomposition (but is done subsequently) thus allowing
that all subbands are aliasing-free (translation invariance in
each scale). Moreover the different orientations allow to
get some rotation invariance. Although this transform is re-
dundant (with a factor 4No/3), it is fast and enforces spar-
sity of image decomposition as do the critically sampled
wavelet transforms, but it also enjoys more invariance prop-
erties than the latter.

The sampling of orientations is rather coarse (usually
No = 4). Therefore dependencies between coefficients at
different orientations are less significant than across scale
or space. Thus we confine the neighborhoods to each orien-
tation, i.e the neighborhood of w(I)j,o,k is:

w(I)j,o,k =
(
w(I)j,o,k, w(I)j−1,k,o,
w(I)j,o,k±(1,0), w(I)j,o,k±(0,1)

) . (2)

Hence our feature space is the set of the neighborhoods as
in (2) for all scales j, orientations o and locations k. Let us
now turn to the measure of similarity on this space.

2.2. Similarity measure between images

Since geometrically modified or slightly degraded ver-
sions of the same image as well as images containing sim-
ilar objects should be close, one cannot define a mea-
sure comparing directly the neighborhoods one by one, but
rather their probability distribution. More specifically, we
consider the pdf of the neighborhoods of (2) for each scale
and orientation, i.e. we consider the pdf pwj,o(I) of the set
neighborhoods {w(I)j,o,k}k for each fixed j and o.

The considered pdf are those of coefficients that carry
the informational content of the signal. The natural way to
compare such pdf is to use measures derived from informa-
tion theory. Here we use the KL divergence between pdfs,
an approach that has also been successfully taken for other
applications [2]. This was also done in [3, 11] in the con-
text of evaluating the similarity between images using the
marginal pdf of the wavelet coefficients. We propose to use
this measure on the multidimensional pdf of the neighbor-
hoods of coefficients: the similarity between images I1 and
I2 is a weighted sum over orientations and scales of the KL
divergences between the pdf pwj,o(I1) and pwj,o(I2):

S(I1, I2) =
∑
j,o

αjDkl(pwj,o(I1)||pwj,o(I2)) (3)

with pwj,o(Ii) the pdf of the wavelet neighborhoods of im-
age Ii at scale j and orientation o and αj > 0 are weights
(chosen according to the redundancy of the transform).

Previous works on neighborhoods of wavelet coefficients
or indexation using marginal pdf of these coefficients all
assumed a parametric model for the pdf involved. In the
marginal case, efficient models (e.g. generalized Gaussians
[3, 11]) lead to an analytic expression of the KL divergence
as a function of the model parameter; but they are not eas-
ily generalizable to the multidimensional correlated case of
wavelet neighborhoods. On the other hand, efficients multi-
dimensional models accounting for correlations (e.g. Gaus-
sian mixtures [7]) fit a wide variety of multidimensional
pdf but impose to estimate the KL divergence after estimat-
ing the model parameters. Besides the heavy computational
cost of the consecutive estimations, the numerical stability
of such cascading estimates is difficult to obtain. We prefer
to make no hypothesis on the pdf at hand, hence sparing the
cost of fitting the model parameters but needing to estimate
the KL divergences in this non-parametric case.

2.3. Estimation of the Kullback-Leibler divergences

Let us first remind the reader that the KL divergence be-
tween two continuous pdf p1 and p2 is:

Dkl(p1||p2)=
∫
p1(x) log

p1(x)
p2(x)

dx = Hx(p1, p2)−H(p1)

(4)
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where H is the differential entropy and Hx is the cross en-
tropy.

The estimation of statistical measures in the multidimen-
sional case is hard. In particular, kernel-based methods such
as Parzen estimates become unadapted due to the sparsity
of samples in high dimension (curse of dimensionality): the
tradeoff between a kernel with a large bandwidth to perform
well in low local sample density (which oversmoothes the
estimator) and a kernel with a smaller bandwidth to preserve
local statistical variabilities (which results in an unstable es-
timator) cannot always be achieved. We use instead the kth
nearest neighbor (kNN) framework [10] to compute the KL
divergence. Indeed it follows the dual approach to the above
fixed size kernel: the bandwidth adapts to the local sample
density by letting the kernel contain exactly k neighbors of
a given sample. Moreover it allows direct estimation of the
divergence without explicitly estimating the pdf.

Assume that ε is a set of Nε samples w1, w2,..,wNε of
pdf pε. Fix a non-zero integer k. Denote by vd the vol-
ume of the unit sphere in Rd, and ψ the digamma function.
Denote by µε(g) the mean of g over ε:

µε(g) = 1
Nε

Nε∑
n=1

g(wn). (5)

ρk,ε(s) is the distance for s ∈ Rd to its kth nearest neighbor
in ε− {s}.

kNN balloon estimates are based on the principle that
pε(s) is inversely proportional to the volume of the sphere
containing the k nearest neighbors of s in ε [10]:

pε(s) ∼
k

vd ρdk,ε(s)
(6)

An unbiased estimator of the Ahmad-Lin approximation of
entropy [1]

Hal(pε) = − 1
Nε

Nε∑
n=1

log
[
pε(wn)

]
= −µε

(
log
[
pε
])

(7)

in the kNN framework was proposed in [4] by replacing
log k by ψ(k):

Ĥ(pε) = log[(Nε −1)vd]− ψ(k) + d µε(log[ρk,ε]) (8)

The cross entropy estimate is then [2]:

Ĥx(pε1 , pε2) = log[Nε2vd]−ψ(k)+dµε2(log[ρk,ε1 ]). (9)

And the KL divergence estimate is:

D̂kl(pε1 ||pε2) = log
[

Nε2
Nε1−1

]
+ d µε2(log[ρk,ε1 ])

−d µε1(log[ρk,ε1 ])
(10)

This expression is valid in any dimension and it is robust to
the choice of k.

3. Numerical experiments

3.1. Setting

The database used in our numerical experiments contains
twenty five 128x128 color images from the VisTex database
(available at [6]). Given the small size of the images, only
two levels of the decomposition with the steerable pyramid
were computed. The number of orientations is fixed to four
and the number of neighbors in the kNN procedure to ten.

So far, we have described the feature space and simi-
larity measure considering implicitly single channel images
(like gray level images). To extend them to the multichan-
nel case, we consider the luminance/chrominance space (Y,
Cb, Cr). Since the luminance and chrominance channels
are fairly well decorrelated, one can in first approximation
consider them independent. Hence, we simply sum the KL
divergences obtained for each channel separately.

3.2. Retrieval results

The results for 5 of the images in the database are dis-
played in Fig. 1. In this figure, each row displays the re-
trieval result for the example (or reference) image shown on
the leftmost column. From the second column on, one can
see the first three images in the database ranked by our sim-
ilarity distance (the leftmost, the most similar), excluding
the example image (which is always at a distance of zero).

In general, our method seems to perform very well. In
particular, images coming from the same scene (see rows 2
to 4 in Fig. 1) are ranked first. In this database such images
are usually translated versions of one another. Hence this
experiment shows that our method is robust to translation.
Similar textured images such as trees, grass, and grids are
also correctly classified (see the last row of Fig. 1).

3.3. Complexity and computation time

For one query image, the computational cost of the re-
trieval procedure is the number of image in the database
times the cost of computing a similarity between two im-
ages. Denoting by N the number of pixel in an image, the
similarity computation is made in three steps of complexity:
• O(

√
N) for the steerable transform,

• O(N) for the design of the wavelet neighborhoods,
• O(N logN) for the evaluation of kNN distances (via

a classical KD-tree implementation).
Accordingly, most of the computational effort is put in the
evaluation of the kNN distances. To improve this, we re-
duce our feature space by selecting a small proportion of
the neighborhoods to evaluate the KL divergences. We se-
lect those with the largest central coefficient, thus exploiting
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Image 1 Dist = 7.30 Dist = 8.62 Dist = 8.64

Image 8 Dist = 3.14 Dist = 3.21 Dist = 10.06

Image 9 Dist = 2.27 Dist = 2.62 Dist = 13.42

Image 10 Dist = 1.61 Dist = 1.94 Dist = 12.53

Image 24 Dist = 5.79 Dist = 6.76 Dist = 7.01

Figure 1. Retrieval results. Left to right: ref-
erence image; first 3 ranked images.

the sparsity of wavelet representation. Fig. 2. shows how
the computational time evolves then in O(M logM) where
M is the number of selected coefficients (green curve with
circles) while the similarity measure remains consistent (the
similarity between image 9 and its 3 closest matches are
displayed). Selecting only 1/32 of the coefficients leaves
us with results of the same accuracy as with all coefficients
while greatly reducing the computation time.

4. Conclusion

In this paper, we proposed a similarity measure between
images based on the KL divergence between multidimen-
sional pdf of wavelet coefficients grouped in coherent sets
called neighborhoods. The KL divergence is estimated non-
parametrically via a kNN approach.

Experiments on small images show good performances
of the proposed measure in the retrieval problem, partic-
ularly its robustness to simple geometric tranforms and to
the sparsity of the feature space. Future works will focus
on dataset with larger images as well as evaluation of the
performances through recall-precision curves.

Figure 2. Evolution of similarity and comput-
ing time with proportion of coefficients used.
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