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ABSTRACT

In this paper, we define a similarity measure between im-
ages in the context of (indexing and) retrieval. We use the
Kullback-Leibler (KL) divergence to compare sparse multi-
scale image representations. The KL divergence between pa-
rameterized marginal distributions of wavelet coefficients has
already been used as a similarity measure between images.
Here we use the Laplacian pyramid and consider the depen-
dencies between coefficients by means of non parametric dis-
tributions of mixed intra/interscale and interchannel patches.
To cope with the high-dimensionality of the resulting descrip-
tion space, we estimate the KL divergences in the k-th near-
est neighbor (kNN) framework (instead of classical fixed size
kernel methods). Query-by-example experiments show the
accuracy and robustness of the method.

Index Terms— Image retrieval, sparse wavelet descrip-
tion, intra/interscale dependency, Kullback-Leibler divergen-
ce, k-th nearest neighbors.

1. INTRODUCTION

A central question in content-based image indexing is to de-
fine a similarity measure between images that matches - or
at least is close enough to - our perception of their similarity.
Then, database images can be simply ranked in increasing
order of their similarity to the reference (or example) image
for a query-by-example task. Understanding how human per-
ceive the similarity between images via perceptual studies is
still a topic of active research. Thus, content-based image in-
dexing systems relying on such studies may be subjective and
very hard to implement. Here, we focus on developing an ob-
jective and mathematically defined measure that will be easily
implementable.

In this context, used measures often rely on global de-
scriptions such as dominant colors or color distribution, or on
extracted information such as salient points/regions together
with local features or segmentation along with region arrange-
ment [1, 2]. The philosophy here is to use a sparse multiscale
image description. The Kullback-Leibler (KL) divergence has
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already been used as a similarity measure between parameter-
ized marginal distributions of wavelet coefficients at different
scales [3, 4]. Nevertheless, independence between the coeffi-
cients was assumed, preventing from taking into account local
image structures such as texture. In contrast, we propose to
consider dependency by means of distributions of mixed in-
tra/interscale patches of the Laplacian pyramid coefficients.
In addition, for the case of color images, we take into account
the statistical dependencies amongst the three color channels;
hence patches of coefficients are also interchannel. This ap-
proach implies to deal with a high-dimensional statistical de-
scription space. The number of samples being too small to
reasonably fill this space, fixed size kernel options to estimate
distributions or divergences fail. Alternatively, we propose
to estimate the KL divergence in the k-th nearest neighbor
(kNN) framework [5], i.e., adapting to the local sample den-
sity and directly from the samples.

2. SIMILARITY BETWEEN IMAGES

In this section we define our similarity measure between im-
ages. It is a combination of Kullback-Leibler divergences in
a multiscale feature space. This feature space consists of in-
ter/intrascale and interchannel patches of Laplacian pyramid
coefficients for color images. We first describe the feature
space and then the use and estimation of the KL divergences.

2.1. Patches of Laplacian pyramid coefficients

Let us denote by w(I)j,k the coefficient for image I at scale j
and location in space k for a general multiresolution decom-
position.

The concept of patches of multiresolution coefficients was
introduced by [6] for the wavelet decomposition under the
name “neighborhoods of wavelet coefficients”. It stems from
the following ideas.

The wavelet domain provides a sparse representation of
images, meaning that it concentrates the information into a
few coefficients of large amplitude (the rest of the coefficients
being small) and enjoys a fast transform. This is what makes
wavelet thresholding methods such powerful tools in image
processing. Initial thresholding wavelet methods treat each

Preprint



Published in CBMI, 18-20/06/2008, London, UK - Copyright IEEE

coefficient separately relying on the fact that these coefficients
are decorrelated. However, they are not independent and these
dependencies are the signature of structures present in the im-
age. For example, a discontinuity between smooth regions at
point k0 will give large coefficients at this point at all scales j
(w(I)j,k0 large for all j). The most significant dependencies
are seen between a wavelet coefficient w(I)j,k and its clos-
est neighbors in scale: w(I)j−1,k, or in space: w(I)j,k±(0,1),
w(I)j,k±(1,0). Several models using these dependencies have
been proposed and used in image enhancement [6, 7]. The
concept of patches (or neighborhoods) of wavelet coefficients,
was introduced in [6]. These are vectors of the form:

w(I)j,k=
(
w(I)j,k, w(I)j,k±(1,0), w(I)j,k±(0,1), w(I)j−1,k

)
(1)

for a greyscale image.
The probability density function (pdf) of such patches was

shown to characterize and estimate fine spatial structures in
greyscale images [6, 8]. Hence such patches are expected to
be relevant features to represent the image content.

Critically sampled tensor wavelet transforms lack of ro-
tation and translation invariance and so would the neighbor-
hoods made of such coefficients. We prefer to use the Lapla-
cian pyramid [9] which shares with the wavelet transform the
sparsity and inter/intrascale dependencies properties and is
more robust to rotations. Hence we will define our feature
space from the set of patches of Laplacian pyramid coeffi-
cients of the form of (1).

Here, we consider colored images in the luminance - chro-
minances space: I = (IY , IU , IV ). Since the pyramid coef-
ficients are correlated through channels, we aggregate in the
patches the coefficients of the three channels (still noting the
patches w):

w(I)j,k =
(
w(IY )j,k,w(IU )j,k,w(IV )j,k

)
(2)

with

w(Ic)j,k =
(
w(Ic)j,k, w(Ic)j,k±(1,0),
w(Ic)j,k±(0,1), w(Ic)j−1,k

)
.

(3)

Hence our feature space is the set of the patches as in Eq. (2)
for all scales j and locations k. Fig. 1 illustrates how to build
one patch from two near subbands of the Laplacian pyramid
in the case of a single color component image (as in Eq. (1)).

The low-frequency subband is also considered in a similar
way. Namely, intrascale and interchannel patches (of dimen-
sion 27) are built by joining the spatial 3 × 3 neighborhoods
in the three channels. As a result, our feature space is the set
of Laplacian pyramid coefficients defined in Eq. (2) (of di-
mension 18), for all scales j and locations k in addition to the
low-frequency patches.

Let us now turn to the measure of similarity on this space.

Fig. 1. How to build a patch by grouping multiscale coeffi-
cients, for a single color channel.

2.2. Similarity measure between images

Since geometrically modified or slightly degraded versions of
the same image as well as images containing similar objects
should be close, one cannot define a measure comparing di-
rectly the neighborhoods one by one, but rather their proba-
bility distributions. More specifically, we consider the pdf of
the neighborhoods of Eq. (2) for each scale, i.e. we consider
the pdf pwj(I) of the set neighborhoods {w(I)j,k}k for each
fixed j.

The considered pdf are those of coefficients that carry the
informational content on the signal when they are large. The
natural way to compare such pdf is to use measures derived
from information theory. Here, we use the KL divergence be-
tween pdf, an approach that has also been successfully taken
for other applications [5, 10]. This was also done in [3, 4]
to evaluate the similarity between images using the marginal
pdf of the wavelet coefficients. We propose to use this mea-
sure on the multidimensional pdf of the neighborhoods of
coefficients: the similarity between images I1 and I2 is a
weighted sum over scales of the KL divergences between the
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pdf pwj(I1) and pwj(I2):

S(I1, I2) =
∑
j

αjDkl(pwj(I1)||pwj(I2)) (4)

where pwj(Ii) is the pdf of the pyramid patches (Eq.(2)) of
image Ii at scale j and αj > 0 are weights (chosen according
to the redundancy of the transform in each scale).

Previous works on neighborhoods of wavelet coefficients
or indexation using marginal pdf of the wavelet coefficients
all assumed a parametric model for the pdf involved. In the
marginal case, efficient models (e.g. generalized Gaussian
[3, 4]) lead to an analytic expression of the KL divergence
as a function of the model parameters; but they are not eas-
ily generalizable to the multidimensional correlated case of
multiscale patches. On the other hand, efficients multidimen-
sional models including correlations (e.g. Gaussian mixtures
[8]) fit a wide variety of multidimensional pdf but impose to
estimate the KL divergence after estimating the model param-
eters. Besides the heavy computational cost of the consecu-
tive estimations, the stability of such cascading estimates is
likely to be difficult to obtain numerically. We prefer to make
no hypothesis on the pdf at hand, hence sparing the cost of
fitting the model parameters but with the need of estimating
the KL divergences in this non-parametric case.

2.3. Estimation of the Kullback-Leibler (KL) divergence

Let us first remind that the expression of the KL divergence
between two continuous pdf p1 and p2 is:

Dkl(p1||p2)=
∫
p1(x) log

p1(x)
p2(x)

dx = Hx(p1, p2)−H(p1)

(5)
with H the differential entropy and Hx the cross entropy.

The estimation of statistical measures in the multidimen-
sional case is hard. In particular, kernel-based methods such
as Parzen estimates become unadapted due to the sparsity
of samples in high dimension (curse of dimensionality): the
tradeoff between a kernel with a large bandwidth to perform
well in low local sample density (which oversmoothes the es-
timator) and a kernel with a smaller bandwidth to preserve
local statistical variability (which results in an unstable esti-
mator) cannot always be achieved. We use instead the k-th
nearest neighbor (kNN) framework [11] to compute the KL
divergence. Indeed it follows the dual approach to the above
fixed size kernel: the bandwidth adapts to the local sample
density by letting the kernel contain exactly k neighbors of
a given sample. Moreover it allows direct estimation of the
divergence without explicitly estimating the pdf.

Fix ν, a set ofNν samples w1, w2,..,wNν of pdf pν and k,
a non-negative integer. kNN balloon estimates are based on
the principle that pν(s) is inversely proportional to the volume
of the sphere containing the k nearest neighbors of s in ν [11]:

pν(s) ∼
k

vd ρdk,ν(s)
(6)

with vd the volume of the unit sphere in Rd and ρk,ν(s) the
distance of s to its k-th nearest neighbor in ν − {s}.

Plugging this density estimator in Ahmad-Lin [12] en-
tropy estimator:

Hal(pν) = − 1
Nν

Nν∑
n=1

log
[
pν(wn)

]
(7)

we get a biased entropy estimate. This bias can be rid of by
replacing log(k) by the digamma function ψ(k), giving the
entropy estimate [13]:

Ĥ(pν) = log
[
(Nν−1)vd

]
− ψ(k) +

d

Nν

Nν∑
n=1

log
[
ρk,ν(wn)

]
(8)

The cross entropy estimate is then [5]:

Ĥx(pν1 , pν2)=log
[
Nν2vd

]
−ψ(k)+

d

Nν2

Nν2∑
n=1

log
[
ρk,ν1(w

2
n)
]

(9)
and the KL divergence estimate is:

D̂kl(pν1 ||pν2) = log
[

Nν2
Nν1−1

]
+

d

Nν2

Nν2∑
n=1

log
[
ρk,ν1(w

2
n)
]

−
d

Nν1

Nν1∑
n=1

log
[
ρk,ν1(w

1
n)
]

(10)

This expression is valid in any dimension and it is robust to
the choice of k.

3. NUMERICAL EXPERIMENTS

3.1. Settings

We used for our numerical experiments a database containing
images from the Recognition Benchmark collection, which
is a ground-truth dataset already used in [14]. The database
consists in 640x480 images grouped by sets of four images
of the same scene. Hence, for any query image, exactly three
other relevant images are to be retrieved. A subset of 100 im-
ages from this dataset was used to adjust some parameters of
our algorithm and compare its performance with a reference
method (section 3.2 and 3.5). The method we propose was
then validated on a larger dataset, containing 1,000 images
from the same collection (section 3.3 and 3.4).

In all experiments a Laplacian pyramid was computed for
each channel of the images (in the YUV color space) with a
5-points binomial filter. The first three high-frequency sub-
bands and the low-frequency image approximation were used
to build patches.

To perform the KL divergence estimations, we used a fast
kNN search algorithm of complexity O(N logN), N being
the number of sample points [15]. This algorithm was run on
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Image 1 Image 3 Image 2 Image 4 Image 9

Fig. 2. Evolution of the similarity measure with the propor-
tion of patches selected. Retrieval results shown for image
query 1 and its four most similar images (images 2, 3 and 4
are relevant for this query).

a CPU Pentium 4 3.4 GHz with 2GB of DDR memory. The
average time required to compute the distance between two
images was about 2.2 s.

In order to speed up the computing time for queries on a
large dataset, we used a parallel implementation of the kNN
searching on Graphic Processing Unit (GPU) [16]. This is
based on a brute-force approach and was written in the CUDA
development environment. It was run on a NVIDIA GeForce
8800 GTX graphic card and allowed to compute a single sim-
ilarity measure in less than 0.2 s on average.

The sparsity property of the multiresolution transform al-
lowed us to retain not all feature vectors but only a small
proportion of them in the high-frequency subbands, thus re-
ducing the number of operations required for kNN estima-
tions. For this purpose, only a certain proportion of patches
was taken into account, according to a significance criterion.
Namely, all subbands in the luminance channel were thresh-
olded based on either the energy (quadratic norm) of the whole
patch or the amplitude of the patch center, so that all coeffi-
cients being under the threshold do not contribute to entropy
estimation. Then, each significant patch in the luminance
channel and the corresponding ones in the two chrominance
channels were joined together as described in section 2.1.

With respect to the kNN estimation of the KL divergence,
we fixed k to ten and the weights αj of Eq.(4) to one, so that
all subbands contribute equally to the similarity measure.

3.2. Robustness to sparsity of multiscale features

The similarity measure we propose is robust with respect to
the sparsity of the subband image decomposition. Indeed, re-
trieval results are consistent with ground-truth, as we decrease
the number of subband patches contributing to distance esti-

mations. In order to select the most significant patches, (i.e.
those containing the most important information of the im-
age), we selected the largest ones (either in the sense of over-
all energy or in the sense of center amplitude). Given a subset
of the database containing both relevant and non relevant im-
ages for a given query, we computed the similarity measures
using different proportions of significant patches. Results are
generally consistent as sparsity increases (i.e. as the number
of selected patches decreases), in the sense that relevant im-
ages remain significantly closer to the query than others and
the rank order of retrieved images does not change. An exam-
ple is given in Fig. 2, where similarity between one query and
the first four retrieved images is shown for different propor-
tions of selected subband coefficients. This trend is general
for all pictures and confirms the suitability of the selection cri-
terion: it allows to reduce the computing time for the distance
estimation, while preserving its accuracy and sensitivity.

3.3. Retrieval results

Results for five queries in the database containing 1,000 im-
ages are displayed in Fig. 3. In this figure, each row displays
the retrieval result for the query image shown on the leftmost
column. From the second column on, one can see the first 3
retrieved images ranked in increasing order of their similarity
measure from the query. Hence the second leftmost image is
the most similar, excluding the reference image which is al-
ways ranked first with a distance of zero. The criterion we
adopted to select feature vectors was based on patch energy.
Proportions of selected patches in the three considered high-
frequency subbands were respectively: 1/64, 1/32, 1/16.

As shown by experimental results, the method we propose
seems to perform very well. In particular, images being rel-
evant for a given query are generally ranked first; this holds
in spite of the fact that images belonging to the same group
have been often subjected to different geometric transforma-
tions. Hence our method is robust to such transformations,
e.g. rotations (such as the third row in Fig. 3) or changes in
viewpoint (rows 2 and 5) and zoom (rows 1 and 4).

3.4. Evaluation of image retrieval performances

A wide variety of measures have been proposed to evaluate
image retrieval performance [17]. We adopt a standard crite-
rion in information retrieval, which has been also used in the
context of image retrieval [18]. It is based on the numberR of
expected results for a given query (relevant images), the num-
ber D of correct results (detected images) and the number W
of wrong results (false positive images), with respect to the
ground-truth relevance. Naturally, these measures depend on
the number C of retrieved images (cut-off ). Together, they
enable to define the standard measures of precision and recall
in the following way:

precision = D
C = D

D+W , recall = D
R . (11)
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Image 109 Dist = 20.86 Dist = 22.68 Dist = 24.14

Image 165 Dist = 21.50 Dist = 24.81 Dist = 29.64

Image 396 Dist = 61.51 Dist = 75.86 Dist = 78.17

Image 565 Dist = 31.70 Dist = 58.09 Dist = 61.38

Image 782 Dist = 21.05 Dist = 31.56 Dist = 39.20

Fig. 3. Retrieval results for 5 images of the database. For each
row, left to right: reference image; first 3 ranked images of
the database (excluding reference image). For each retrieved
image our distance to the query is also shown.

Varying the cut-off value, one obtains the ROC (Receiver Op-
erating Characteristic) curve, which gives the performance of
the retrieval system for each request. This curve is generally
shown as recall versus 1− precision, that represent, respec-
tively, the detection rate and the false positive rate. Hence the
larger are precision and recall values, the better is retrieval
performance.

To evaluate the overall performance of our method, we
used the curves obtained by querying the whole database with
each of the 1,000 images. The significance criterion for patch
selection was that based on patch energy, that showed the best
performance.

By averaging over all queries the individual values of pre-
cision and recall, we obtained one average curve. It is dis-
played in Fig. 4. This graph shows that the best trade-off
between precision and recall was reached when we retrieved
three images; in this case, cut-off value matches exactly the
number of relevant images or, in other words, there is a high
probability that retrieved images are all and only the relevant
ones.

3.5. Comparison with SIFT-based retrieval

Retrieval experiments were done by using a state-of-the-art
method as well; this is based on SIFT descriptors, that rep-
resent the gradient orientations at interest points. It uses a

Fig. 4. Receiver Operating Characteristic (ROC) from cut-off
variation.

matching criterion between the interest points of images to
measure their similarity. We used a Matlab implementation
of the SIFT algorithm [19]. Since it took about 4.8 s on av-
erage to compute the similarity between two images, exper-
iments on the whole database could not be performed in a
reasonable time. As a result, we compared the two methods
by querying a subset containing 100 images. The results are
shown in Fig. 5 in terms of the ROC curves. Namely, the
KL divergence between patch distributions and the number
of matched SIFT keypoints between images are compared as
similarity measures for image retrieval.

The performances of our method are shown to be very
close to that of the SIFT-based method, which is a reference
method for the task of content-based image retrieval.

4. CONCLUSION

In this paper, we proposed a new image retrieval method ba-
sed on multidimensional probability distributions of multi-
scale coefficients. These are grouped in coherent patches, that
are selected by a significance criterion in order to effectively
represent image features. The patches are build by taking into
account intrascale, interscale and interchannel dependencies
of subband coefficients for color images. The similarity mea-
sure we used is the sum over scales of the KL divergences
between probability distributions of the image features, and it
is estimated non-parametrically via a kNN approach. It was
proven to be consistent with respect to the sparsity of the sub-
band transform.

Query-by-example experiments on real images confirm
the suitability of the proposed measure in the context of image
retrieval. It is in particular robust to different geometric trans-
formations, such as change in viewpoint, rotation and zoom.
Moreover, retrieval performances are comparable to those of
a reference algorithm, based on local SIFT descriptors.

Further investigations are planned with larger databases
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Fig. 5. Performance of image retrieval for our method and
SIFT-based algorithm in terms of the ROC curve.

and others benchmark image collections. Future works will
also include a more extensive comparison with state-of-the-
art CBIR systems and the extension of the proposed method
to the retrieval of video sequences.
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