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Abstract. In this paper we address the task of image categorization us-
ing a new similarity measure on the space of Sparse Multiscale Patches
(SMP). SMPs are based on a multiscale transform of the image and
provide a global representation of its content. At each scale, the proba-
bility density function (pdf ) of the SMPs is used as a description of the
relevant information. The closeness between two images is defined as a
combination of Kullback-Leibler divergences between the pdfs of their
SMPs.
In the context of image categorization, we represent semantic categories
by prototype images, which are defined as the centroids of the train-
ing clusters. Therefore any unlabeled image is classified by giving it the
same label as the nearest prototype. Results obtained on ten categories
from the Corel collection show the categorization accuracy of the SMP
method.

1 Introduction

Image categorization is still one of the most challenging tasks in computer vision.
It consists in labeling an image according to its semantic category. The main
difficulty lies in using low-level information provided by digital images to retrieve
semantic-level classes, which are generally characterized by high intra-variability.

Most approaches address the task of image categorization as a supervised
learning problem. They use a set of annotated images to learn the categories
and then assign to an unlabeled image one of these categories. These methods
rely on extracting visual descriptors, which are to be highly specific, i.e. able
to highlight visual patterns that characterize a category. Providing suitable sets
of visual descriptors has been a topic of active research in the recent years and
several approaches have been proposed.

1.1 Related works

Visual descriptors for image categorization generally consist of either global or
local features. The former ones represent global information of images and are
based on global image statistics such as color histograms [1] or edge directions
histograms [2]. Global feature-based methods were mostly designed to separate
very general classes of images, such as indoor vs. outdoor scenes or city vs. land-
scape images. On the contrary, local descriptors extract information at specific
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image locations that are relevant to characterize the visual content. Local ap-
proaches are more adapted to cope with the intra-class variability of real image
categories. Indeed these techniques are able to emphasize local patterns, which
images of the same category are expected to share.

Early approaches based on local features work on image blocks. In [3] color
and texture features are extracted from image blocks to train a statistical model;
this model takes into account spatial relations among blocks and across image
resolutions. Then several region-based approaches have been proposed, which
require segmentation of images into relevant regions. E.g. in [4], an algorithm
for learning region prototypes is proposed as well as a classification of regions
based on Support Vector Machines (SVMs). More recent techniques have suc-
cessfully used bags-of-features, which collect local features into variable length
vectors. In [5], the bags-of-features representing an image are spatial pyramid
aggregating statistics of local features (e.g. “SIFT” descriptors); this approach
takes into account approximate global geometric correspondences between local
features. Other methods using bags-of-features are based on explicitly modeling
the distribution of these vector sets. In fact, measuring the similarity between
the bags-of-features’ distributions is the main difficulty for this kind of catego-
rization methods. For example, Gaussian Mixture Models (GMMs) have been
used to model the distribution of bags of low-level features [6]. This approach
requires both to estimate the model parameters and to compute a similarity
measure to match the distributions.

Apart from what descriptors are used, computing a similarity measure be-
tween feature sets is crucial for most approaches. Measuring similarities is partic-
ularly adapted to categorization when one prototype of each category is defined
in the feature space. In this context the similarity measure is used to find the
prototype that best matches an unlabeled image. As pointed out in [7], this
framework has provided the best results in image categorization. The main rea-
son is that categorization based on similarity corresponds well to the way human
beings recognize visual classes. Indeed human visual categories are mostly de-
fined by similarity to prototype examples, as it results from research on cognitive
psychology [8]. Taking advantage of these results, we propose a new categoriza-
tion technique that is based on category prototypes and uses a similarity measure
between feature set distributions.

1.2 Proposed statistical approach

The categorization method that we propose consists of two steps: the training
step and the classification step. The training consists in selecting one prototype
per category among a set of labeled images (training set). The classification step
assigns to an unlabeled image (query image) the label of its closest prototype.
Both training and query images are represented by their sets of Sparse Multiscale
Patches (SMPs).

We have designed the SMP descriptors in order to exploit local multiscale
properties of images, which generally convey relevant information about their
category. Indeed SMPs describe local spatial structures of images at different
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scales by taking into account dependencies between multiscale coefficients across
scale, space and color channels. An image is represented by the set of its SMPs
at each scale and we measure the similarity between two images as the closeness
between their SMP probability density functions (pdf ). Namely we combine their
Kullback-Leibler divergence, which has already shown good performances in the
context of image retrieval [9].

We use this SMP similarity measure in both steps of the categorization, as
depicted in the block diagram of Figure 1. During the training step we compute
all pairwise SMP -based “distances” between images of the same training cate-
gory C, thus obtaining a distance matrix for this category (see left column of
Fig. 1). The entry si,j of this matrix represents the distance between the image
Ii (query image) and the image Ij (reference image); we denote this distance as
S(Ii|Ij). The distance matrix is used to select the prototype JC , which we define
as the image minimizing the distance to all other images of the same category:

JC = argmin
j|Ij∈C

∑
i|Ii∈C

si,j (1)

Applying the same method to all training categories yields one prototype for
each category in terms of SMP feature sets.1

In the second phase, which is the categorization, we compute the SMP sim-
ilarity of an unlabeled image Q to all category prototypes (see right column of
Fig. 1). The query image is given the same label as the nearest prototype.

1.3 Organization of the paper

In the rest of this paper we explain in more details how the SMP similarity
measure is defined and give some experimental results of categorization. The
SMP similarity measure is described in two steps. Firstly we define the proposed
feature set of Sparse Multiscale Patches in Section 2. Secondly we define the
similarity between SMP probability densities in Section 3. We also propose a
method for estimating this measure non-parametrically, thus avoiding to model
the underlying pdf s. Finally, in Section 4, we present some results of performing
our categorization method on a subset of the Corel database.

2 Feature space: Sparse Multiscale Patches

Les us now define our feature space, which is based on a multiresolution decom-
position of the images. Throughout the paper, we will denote by w(I)j,k the
coefficient for image I at scale j and location in space k for a general multires-
olution decomposition.

1 Note that the proximity matrix is not symmetric here si,j 6= sj,i.
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Fig. 1. Overview of the proposed method for image categorization.

2.1 Multiscale patches

The wavelet transform enjoys several properties that have made it quite suc-
cessful in signal processing and it naturally yields good candidates for image
descriptors. Indeed, it provides a sparse representation of images, meaning that
it concentrates the informational content of an image into few coefficients of
large amplitude while the rest of the coefficients are small. Classical wavelet
methods focus on these large coefficients and treat them separately, relying on
their decorrelation, to efficiently process images. However, wavelet coefficients are
not independent and these dependencies are the signature of structures present
in the image. These dependencies have then been exploited in image enhance-
ment (e.g [10, 11]). In particular, the authors of [10] introduced the concept of
patches of wavelet coefficients (called “neighborhoods of wavelet coefficients”)
to represent efficiently fine spatial structures in images.

Following these ideas, we define a feature space based on a sparse description
of the image content by a multiresolution decomposition. More precisely, we
group the Laplacian pyramid coefficients of the three color channels of image
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Fig. 2. Building a patch of multiscale coefficients, for a single color channel image.

I into coherent sets called patches. Here the coherence is sought by grouping
coefficients linked to a particular scale j and location k in the image.

In fact, the most significant dependencies are seen between a coefficient
w(I)j,k and its closest neighbors in space: w(I)j,k±(0,1), w(I)j,k±(1,0) and in
scale: w(I)j−1,k, where scale j − 1 is coarser than scale j. Grouping the closest
neighbors in scale and space of the coefficient w(I)j,k in a vector, we obtain the

patch
→
w(I)j,k (see Fig. 2):

→
w(I)j,k =

(
w(I)j,k, w(I)j,k±(1,0), w(I)j,k±(0,1), w(I)j−1,k

)
(2)

which describes the structure of the grayscale image I at scale j and location k.
The probability density functions of such patches at each scale j has proved to
characterize fine spatial structures in grayscale images [10, 12].

We consider color images in the luminance/chrominance space: I=(IY,IU,IV).
Since the coefficients are correlated through channels, we aggregate in the patch
the coefficients of the three channels:

w(I)j,k =
(→
w(IY )j,k,

→
w(IU )j,k,

→
w(IV )j,k

)
(3)

The low-frequency approximation that results from the Laplacian pyramid
is also used to build additional feature vectors. The 3 × 3 pixel neighborhoods
along the three channels are joined to form patches of dimension 27 (whereas
patches from the higher-frequency subbands defined in Eq.(3) are of dimension
18). The union of the higher-frequency and low-frequency patches forms our
feature space. For convenience, the patches of this augmented feature space will
still be denoted by w(I)j,k.

2.2 Sparse Multiscale Patches

The coefficients are obtained by a Laplacian pyramid decomposition [13]. In-
deed, critically sampled tensor wavelet transforms lack rotation and translation
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invariance and so would the patches made of such coefficients. Hence we pre-
fer to use the Laplacian pyramid which shares the sparsity and inter/intrascale
dependency properties with the wavelet transform while being more robust to
rotations.

Multiscale coefficients provide a sparse representation of images and, simi-
larly, patches of multiscale coefficients of large overall energy (sum of the square
of all coefficients in a patch) also concentrate the information. Since the total
number of patches in an image decomposition is 4/3N with N the number of
pixels in the image, the number of samples we have in the feature space is quite
large as far as measuring a similarity is concerned. The possibility of selecting a
small number of patches which represent the whole set well is therefore highly
desirable. In practice, we selected a fixed proportion of patches at each scale of
the decomposition and proved that the resulting similarity measure (defined in
Section 3) remains consistent (see [14] for details). This is exploited to speed up
our computations. We now define a similarity on this feature space.

3 Similarity measure

3.1 Definition

Our goal is to define a similarity measure between two images I1 and I2 from
their feature space i.e. from their respective set of patches {w(I1)j,k}j,k and
{w(I2)j,k}j,k. When images are clearly similar (e.g. different views of the same
scene, images containing similar objects...), their patches w(I1)jl,kl

and w(I2)jl,kl

do not necessarily correspond. Hence a measure comparing geometrically corre-
sponding patches would not be robust to geometric transformations. Thus, we
propose to compare the pdfs of these patches. Specifically, for an image I, we
consider for each scale j the pdf pj(I) of the set of patches {w(I)j,k}k.

To compare two pdfs, we use the Kullback-Leibler (KL) divergence which
derives from the Shannon differential entropy (quantifies the amount of infor-
mation in a random variable through its pdf). The KL divergence (Dkl) is the
quantity [9]:

Dkl(p1||p2) =
∫
p1 log(p1/p2). (4)

This divergence has been successfully used for other applications in image pro-
cessing in the pixel domain [15, 16], as well as for evaluating the similarity be-
tween images using the marginal pdf of the wavelet coefficients [17, 18]. We
propose to measure the similarity S(I1|I2) between two images I1 and I2 by
summing over scales the divergences between the pdfs pj(I1) and pj(I2) (with
weights αj that may normalize the contribution of the different scales):

S(I1|I2) =
∑

j

αjDkl(pj(I1)||pj(I2)) (5)
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3.2 Parametric approach to the estimation: pros and cons

The estimation of the similarity measure S consists of the evaluation of diver-
gences between pdfs pj(Ii) of high dimension. This raises two problems. Firstly,
estimating the KL divergence, even with a good estimate of the pdfs, is hard
because this is an integral in high dimension involving unstable logarithm terms.
Secondly, the accurate estimation of a pdf itself is difficult due to the lack of
samples in high dimension (curse of dimensionality). The two problems should
be embraced together to avoid cumulating both kinds of errors.

Parametrizing the shape of the pdf is not ideal. The KL divergence is easy
to compute when it is an analytic function of the pdf parameters. This is the
case for generalized Gaussians models, which fit well the marginal pdf of multi-
scale coefficients [17, 18]. However, this model cannot be extended to account for
the correlations we want to exploit in multiscale patches. Mixture of Gaussians
on contrary are efficient multidimensional models accounting for these correla-
tions [12] but the KL divergence is not an analytic function of the pdf parameters.

Thus, we propose to make no hypothesis on the pdf at hand. We therefore
spare the cost of fitting model parameters but we have to estimate the diver-
gences in this non-parametric context. Conceptually, we combine the Ahmad-Lin
approximation of the entropies necessary to compute the divergences with “bal-
loon estimate” of the pdfs using the kNN approach.

3.3 Proposed non-parametric estimation of the similarity measure

The KL divergence can be written as the difference between a cross-entropy Hx

and an entropy H (see Eq.(4)):

Hx(p1, p2) =−
∫
p1 log p2, H(p1)=−

∫
p1log p1 (6)

Let us explain how to estimate these terms from i.i.d sample setsWi ={wi
1,w

i
2, ..,

wi
Ni
} of pi for i = 1 or 2 (The samples are in Rd.) Assuming we have estimates

p̂1, p̂2 of the pdfs p1, p2, we use the Ahmad-Lin entropy estimators [19]:

Hal
x (p̂1, p̂2) = − 1

N1

N1∑
n=1

log[p̂2(w1
n)], Hal(p̂1) = − 1

N1

N1∑
n=1

log[p̂1(w1
n)] (7)

to obtain a first estimator of the KL divergence:

Dal
kl(p̂1, p̂2) = 1

N1

N1∑
n=1

log[p̂1(w1
n)]− log[p̂2(w1

n)]. (8)

General non-parametric pdf estimators from samples can be written as a sum
of kernels K with possibly varying bandwidth h (see [20] for a review):

p̂1(x) = 1
N1

∑N1

n=1
Kh(W1,x)(x−w1

n) (9)
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We use a balloon estimator i.e. the bandwidth h(W1, x) = hW1(x) adapts to
the point of estimation x given the sample set W1. The kernel is binary and the
bandwidth is computed in the k-th nearest neighbor (kNN) framework [20]:

Kh(W1,x)(x−w1
n) =

1
vd ρd

k,W1(x)
δ
[
||x−w1

n|| < ρk,W1(x)
]

(10)

with vd the volume of the unit sphere in Rd and ρk,W(x) the distance of x to
its k-th nearest neighbor in W. This is a dual approach to the fixed size kernel
methods and was firstly proposed in [21]: the bandwidth adapts to the local
sample density by letting the kernel contain exactly k neighbors of x among a
given sample set.

Although this is a biased pdf estimator (it does not integrate to one), it has
proved to be efficient for high-dimensional data [20]. Plugging Eq.(10) in Eq.(8),
we obtain the following estimator of the KL divergence, which is valid in any
dimension d and robust to the choice of k: 2

Dkl(p1||p2) = log
[

N2
N1−1

]
+ d

N1

N1∑
n=1

log[ρk,W2(w1
n)]− d

N1

N1∑
n=1

log[ρk,W1(w1
n)] (11)

4 Experiments

4.1 Database and parameter settings

An experimental evaluation of the SMP method has been made on a subset
of the Corel database. It includes 1,000 images of size 384 × 256 or 256 × 384
which are classified in ten semantic categories (Africa, Beach, Buildings, Buses,
Dinosaurs, Flowers, Elephants, Horses, Food, Mountains). This dataset is well
known in the domain of content-based image retrieval and particularly it has
been widely used to evaluate several methods of image categorization, like in
[22], [23], [4] and [24].

The SMP descriptors of images were extracted as described in Section 2. In
particular, to build the patches, the Laplacian pyramid was computed for each
channel of the image (in the YUV color space) with a 5-point binomial filter w5 =
[1 4 6 4 1]/16, which is a computationally efficient approximation of the Gaussian
filter classically used to build Laplacian pyramids. Two high-frequency subbands
and the low-frequency approximation were used. In the following experiments,
1/16 (resp. 1/8 and all) of the patches were selected in the first high-frequency
(resp. second high-frequency and low-frequency) subband to describe an image
(see Section 2.1). At each scale, the KL divergence was estimated in the kNN
framework, with k = 10. The contributions to the similarity measure of the
divergences in all subbands were equally weighted (αj = 1 in Eq. (5)).

2 Note that in the log term, N1 has been replaced by N1 − 1, which corresponds to
ommitting the current sample w1

i in the set W1 when estimating the entropy (Eq.
(7) and (9)).
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Since the computation of KL divergences is a time-consuming task, we devel-
oped a parallel implementation of the kNN search on a Graphic Processing Unit
(GPU) [25]. This implementation is based on a brute-force approach and was
run on a NVIDIA GeForce 8800 GTX GPU (with 768 MB of internal memory).
The computation of one similarity measure between two images required 0.1 s
on average.

4.2 Categorization results

In order to allow the prototype learning, we have randomly split the whole image
set into a training set and a test set. We have tested our method for different
sizes of the training set (15, 30 and 50 images per category), while using all the
remaining images as a test set. For each value of the training set size we have
repeated the same experiment ten times; hence all reported results are averaged
over ten experiments with identical parameter values.

These results are shown in Fig. 3 in terms of the average recognition rate per
category. This rate corresponds to the average proportion of correct classification
as a function of the number of training images. We can see that the accuracy
of categorization is quite stable with the size of the training set. In the same
figure we can see an example of which images are selected as prototypes from
the training set.

We have also measured the accuracy of our method by using a criterion
for rejecting unreliable categorization results, so as to reduce the probability
of misclassifications. Namely we have empirically fixed a threshold value for
the query-to-prototype distance. Hence, whenever the SMP -based “distance”
between the query image and its nearest prototype is larger than the threshold,
we reject the result, thus giving no label to the image. Table 1 contains the
confusion matrix which summarizes the categorization results for the case of 50
training images per category. The generic element ai,j of this matrix represents
the average percentage of the test images belonging to category i which have been
classified into category j. Therefore, the entries on the main diagonal show the
categorization accuracy for each category. On the contrary, off-diagonal entries
show classification errors. Interestingly note that big values of some of these
entries are related to a certain semantic “intersection” between two different
categories. This is particularly clear for misclassifications between categories 2
(Beaches) and 9 (Mountains), since several images belonging to these categories
share similar visual patterns (e.g. rocky seaside pictures are visually similar to
mountain sceneries containing lakes or rivers).

Our method shows good overall categorization performances, typically of
the same order of magnitude as those of state-of-the-art methods developed
by Chen and colleagues [22, 4], although not as accurate on some categories”.
This can be explained by the difficulty of choosing a representative prototype
amongst the training images. Indeed, for diverse categories, the classification
rate may vary a lot according to the randomly chosen training set which yields
to choosing different prototypes. For example, in the category “Africa”, some
training sets lead to a prototype being a picture of a face (as displayed in Fig. 3)
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Cat. 1 Africa Cat. 2 Beach Cat. 3 Buildings Cat. 4 Buses Cat. 5 Dinosaurs

Cat. 6 Elephants Cat. 7 Flowers Cat. 8 Horses Cat. 9 Mountains Cat. 10 Food

Fig. 3. Top: average recognition rate per category for 15, 30 and 50 training images per
category. All results are averaged over 10 experiments with different randomly chosen
training sets. Bottom: prototype images for one particular choice of the training sets.

while others lead to village picture prototypes. Different methods are under
study to tackle the problem of prototype selection, one of which being to create
a poll of representative SMPs to define a pdf prototype. The patch selection
strategy presented here is also basic: one retains a predefined percentage of the
patches at each scale. The selection does not adapt to the specificity of the
image considered and thus probably results in taking into account outliers of
the underlying pdf s. Therefore we also study adaptive patch selection strategies.
Considering the large prototype variations and the simplistic patch selection
process used, the reasonably good performances obtained here show that the
SMP similarity measure is promising regarding the classification step.
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Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9 Cat. 10 reject

Cat. 1 74.8 4.2 6.8 0.6 0.0 3.2 0.4 0 1.6 0.4 8.0

Cat. 2 2.0 56.4 5.4 0.4 0.0 4.4 0.0 0.0 21.4 0.0 10.0

Cat. 3 7.8 4.0 74.0 1.4 0.0 1.6 0.6 0.0 3.8 0.0 6.8

Cat. 4 0.6 1.4 9.4 73.4 0.0 0.0 0.0 0.0 1.2 0.2 13.8

Cat. 5 0.0 0.0 0.2 0.0 88.8 0.0 0.0 0.0 0.0 0.4 10.6

Cat. 6 4.2 0.6 0.4 0.0 0.0 87.8 0.0 0.8 1.8 0.6 3.8

Cat. 7 3.0 0.0 0.0 0.0 0.0 0.0 89.0 0.6 0.0 0.0 7.4

Cat. 8 1.2 0.4 0.0 0.0 0.0 1.2 0.4 91.4 0.6 0.0 4.8

Cat. 9 0.2 14.0 5.0 0.4 0.0 5.8 1.0 0.0 62.0 0.2 11.4

Cat. 10 12.8 1.8 8.2 1.2 0.4 2.4 0.0 0.0 1.2 55.6 16.4

Table 1. The confusion matrix resulting from our image categorization experiments
(over 10 randomly generated training sets containing 50 images per category). Entry on
the row i and column j is the average percentage (over the 10 experiments) of images
belonging to the category i which have been classified into the category j (see Fig. 3
for category names). The last column lists the percentage of non-classified images for
each category.

5 Conclusion

In this paper we tackled the task of image categorization by using a new image
similarity framework. It is based on high-dimensional probability distributions
of patches of multiscale coefficients which we call Sparse Multiscale Patches or
SMPs. Image signatures are represented by sets of patches of subband coeffi-
cients, that take into account their intrascale, interscale and interchannel de-
pendencies. The similarity between images is defined as the “closeness” between
the distributions of their signatures, measured by the Kullback-Leibler diver-
gence. The latter is estimated in a non-parametric framework, via a k-th nearest
neighbor or kNN approach.

Our approach to image classification is to represent each category by an
image prototype. The latter is defined as the image minimizing the SMP -based
measure with all other images in the category’s training set.

The experiments we made on a subset of the Corel collection show that the
SMP similarity measure is a promising tool for the categorization problem. The
prototype selection as well as the patch selection are to be improved and are
among the subjects of ongoing work.
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