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Abstract
In this work, we relate the three main formalisms for the notion of pasting diagram in strict
ω-categories: Street’s parity complexes, Johnson’s pasting schemes and Steiner’s augmented
directed complexes. In the process, we show that the axioms of parity complexes and pasting
schemes are not strong enough for them to correctly represent pasting diagrams, and we do
so by providing a counter-example. Then, we introduce a new formalism, called torsion-free
complexes, which aims at encompassing the three other ones. We prove its correctness by
providing a detailed proof that an instance induces a free ω-category. Next, we prove that
the three other formalisms can be embedded in some sense in the new one. Finally, we show
that there are no other embedding between these four formalisms.
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Introduction

From an original idea of S.Mimram.

Pasting diagrams Central to the theory of strict ω-categories is the notion of pasting diagram,
which gives a simple representation for formal composites of cells of strict ω-categories. Indeed,
the standard representation, as equivalence classes of expressions under the axioms of ω-cate-
gories, can be difficult to handle in practice, since the equivalence relation induced by the axioms
is hard to describe. Instead, a graphical representation of the cells involved in the composite is
often sufficient to designate a cell. For instance, consider the two formal composites

a ∗0 (α ∗1 β) ∗0 ((γ ∗0 h) ∗1 (δ ∗0 h))

and

(a ∗0 α ∗0 e ∗0 h) ∗1 (a ∗0 c ∗0 γ ∗0 h) ∗1 (a ∗0 β ∗0 δ ∗0 h).

Under the axioms of ω-categories, it can be checked, though it is not immediate, that they
represent the same cell. However, both are formal composites of the elements of the following
diagram

u v w x ya
c

b

d

⇓ α

⇓ β
f

e

g

h
⇓ γ

⇓ δ
(1)

More generally, all formal composites involving all the generators of this diagram are equal and
the data of the diagram enables referring to the cell obtained by composing u, v, . . . , y, a, b, . . . , h,
α, β, γ, δ together unambiguously without giving an explicit composite for them. We call pasting
diagrams the diagrams satisfying this property. It can be observed that this pasting diagram is
made of smaller pasting diagrams like

v wc

b

d

⇓ α

⇓ β
and w x y

f

e

h
⇓ γ

.

Moreover, the two can be composed along w by taking the union of the pasting diagrams. Thus,
given a set of generators and a specification of sources and targets for them satisfying sufficient
properties, one can obtain an ω-category of pasting diagrams on such a set, which is actually free
on the generators. This fact justifies the use of pasting diagrams as an adequate replacement to
formal composites to designate particular cells.
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Pasting diagrams in 1-categories The simplest instances of pasting diagrams are the ones
of dimension 1: in this case, they are of the form

x0 x1 x2 · · · xn
a1 a2 a3 an (2)

and admit an ◦ · · · ◦ a1 as composite. On the contrary, diagrams such as

y x za b or x a (3)

are not expected to be pasting diagrams: in the first one, the two arrows are not even composable,
and the second one is ambiguous in the sense that it might denote a, or a ◦ a, etc. Note that the
diagram (2) can be freely obtained as the composite of generating diagrams of the form

xi xi+1
ai

(composition amounts here to identify the target object of a diagram with the source of the
second), whereas this is not the case for the diagrams of (3). Pasting diagrams of the form (2)
can also be characterized as finite graphs which are connected, acyclic and non-branching, in the
sense that no two arrows have the same source or the same target.

Pasting diagrams in higher dimensions In order to extend the definition of pasting dia-
grams to higher dimensions, we first need to extend the one of graph: an ω-hypergraph is the
data of sets of hyperedges, or generators, for each dimension, where each generator of dimen-
sion i+1 has specified source and target sets of edges of dimension i. Then, the definition of
higher-dimensional pasting diagrams can be sketched as follows: an (n+1)-pasting diagram is
an ω-hypergraph with edges up to dimension n+1 whose source and target are valid n-pasting
diagrams, and whose (n+1)-generator can be composed unambiguously in an (n+1)-category.
The conditions for which the composition is unambiguous cannot be formulated as easily as in
dimension 1. Indeed, on the one hand, the complexity of the definition of higher strict categories
makes it difficult to check whether a set of generators can be composed in at least one way, and if
two composites are formally equivalent. On the other hand, the sources for non-composability or
ambiguity are much more varied. For example, the order in which we are supposed to compose
the elements of (1) is ambiguous. Considering only the 2-generators, the orders of composition
α, β, γ, δ and α, γ, δ, β are both possible. However, it can be proved that all possible orders of
composition are equivalent by the axioms of strict ω-categories, so this ambiguity is not impor-
tant. On the contrary, given the 2-cells α and β described by the diagrams

x

w ⇓ α y

x

ba

a′ b

and

y

x ⇓ β z

y

cb

b c′

,

α and β can be composed together in two possible orders: α then β or β then α, which can be
represented as

x

w y

x z

y

b

⇓ α

a

a′
c

⇓ β
b

b c′

and

y

x z

w y

x

c

⇓ β

b

b

⇓ α

a

a′

c′

b

.
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But here, these two composites are different. Even more subtle problems arise starting from
dimension 3, justifying the use of sophisticated formalisms for recognizing pasting diagrams.

Pasting diagram formalisms Until now, different proposals of pasting diagram formalisms,
each one giving a set of conditions to recognize pasting diagrams, have been made. The main ones
are Johnson’s pasting schemes [13], Street’s parity complexes [23, 24] and Steiner’s augmented
directed complexes [21]. Even though the ideas underlying the definitions of these formalisms are
quite similar, they differ on many points and comparing them precisely is uneasy, and actually,
to the best of our knowledge, no formal account of the differences was ever made.

One of the main difference between these formalisms is the notion of sub-pasting diagram, or
cell, which is used. The formalism of pasting schemes has the most evident notion of cell: it is
simply a set which gathers all the generators which appear in the pasting diagram it represents,
regardless of their dimension or source/target status. For example, the diagram (1) will be
represented by the set

X = {u, v, w, x, y, a, b, c, d, e, f, g, h, α, β, γ, δ}.

Parity complexes use cells defined as tuples of sets of generators that are kept organized by
dimension and by source/target status. For instance, the pasting diagram (1) is represented by
five sets

X2 = {α, β, γ, δ},
X1,− = {a, b, e, h}, X1,+ = {a, d, g, h},
X0,− = {u}, X0,+ = {y}

where Xi,− represents the i-source, Xi,+ the i-target, and X2 the 2-dimensional part of the
pasting diagram. This notion of cell seems less natural at first than the one of pasting schemes,
since the translations from a pasting diagram to a cell, and vice versa, are not evident. The
notion of cell used by augmented directed complexes can be obtained by considering the abelian
groups induced by an ω-hypergraph. As a variant of the ones of parity complexes, cells are
now given by sums of generators for each dimension and source/target status. For example, the
pasting diagram (1) will be represented by the five elements

X2 = α+ β + γ + δ,

X1,− = a+ b+ e+ h, X1,+ = a+ d+ g + h,

X0,− = u, X0,+ = y.

Thus, one can use tools from group theory and commutative algebra when manipulating aug-
mented directed complexes, which make them an interesting alternative to the two other set-based
formalisms.

Another important point of divergence between the different formalisms is the conditions, or
axioms, they require on diagrams in order for them to be pasting diagrams. This naturally raises
the question of the difference of expressivity, i.e., ability to recognize more or fewer diagrams,
between these formalisms. Since the axioms are quite sophisticated and rely on different defini-
tions used by each formalism and, in particular, the different notions of cells, these comparisons
cannot be done so easily.
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Outline and results In Section 1, we recall the definitions of the main structures involved in
this article. We first introduce the definitions of globular sets (Section 1.1) and strict categories
(Section 1.2), and then recall the definitions of the three existing pasting diagram formalisms
that we consider: parity complexes (Section 1.4), pasting schemes (Section 1.5) and augmented
directed complexes (Section 1.6). We relate each definition to the unifying notion of ω-hyper-
graph (Section 1.3): a formalism is then a class of ω-hypergraphs (defined by axioms) together
with a notion of cell and operations on these cells. In Section 1.4, we discuss a counter-example to
the freeness property claimed in the respective articles of parity complexes and pasting schemes,
i.e., that the diagrams they accept are pasting diagrams. It involves the diagram made of

x y zb

a

c

α⇓ ⇓α′

β⇓ ⇓β′
e

d

f

γ⇓ ⇓γ′

δ⇓ ⇓δ′

together with two 3-generators

x y zb

a

⇓ α
e

f

⇓ δ

A
V x y zb

a

⇓ α′
e

f

⇓ δ′
,

and

x y zb

c

⇓ β
e

d

⇓ γ B
V x y zb

c

⇓ β′
e

d

⇓ γ′
.

This shortcoming motivated the introduction of a new formalism, called torsion-free complexes,
whose axioms aim at correcting and generalizing the ones of parity complexes and pasting schemes
(Section 1.7).

In Section 2, we show the correctness of torsion-free complexes as a pasting diagram formal-
ism, i.e., that the set of cells associated with a torsion-free complex has a canonical structure of a
free ω-category. For this purpose, we state in Section 2.1 the correctness of a “gluing” operation
(Theorem 2.1.1), as an adapted version of an existing result for parity complexes [23, Lemma 3.2].
This operation allows constructing new cells by gluing higher-dimensional generators on existing
cells. In Section 2.2, we prove that the cells of a torsion-free complex admit a structure of an
ω-category (Theorem 2.2.3). Then, in Section 2.3, in order to show that the ω-category is free,
we first introduce the notion of freeness that we use by recalling the definition of polygraphs [22,
4], which describe sets of generators of different dimensions from which one can generate a free
ω-category. Finally, in Section 2.3, we state the freeness properties of the ω-category of cells of
a torsion-free complex (Theorem 2.4.1 and corollary 2.4.2).

In Section 3, we relate the different pasting diagram formalisms that were introduced. We
first make the link between torsion-free complexes and the three other ones. For this purpose,
in Section 3.1, we define other notions of cells for torsion-free complexes, namely maximal-
well-formed and closed-well-formed sets. Closed-well-formed sets should be understood as the
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equivalent of the notion of cell for pasting schemes in torsion-free complexes. Maximal-well-
formed sets are then a convenient intermediate for proofs between the original notion of cell
for parity complexes and closed-well-formed sets. We show that the both new notions induce
ω-categories of cells isomorphic to the original one (Theorems 3.1.18 and 3.1.21). We then prove
the embedding results into torsion-free complexes for the three other formalisms: in Section 3.2,
we show that parity complexes are torsion-free complexes (Theorem 3.2.3); in Section 3.3, we
show that loop-free pasting schemes are torsion-free complexes (Theorem 3.3.9) and that both
formalisms induce isomorphic ω-categories (Theorem 3.3.10); in Section 3.4, we show that loop-
free unital augmented directed complexes are torsion-free complexes (Theorem 3.4.17) and that
both formalisms induce isomorphic ω-categories (Theorem 3.4.18). Finally, in Section 3.5, we
give counter-examples to the other embeddings between the formalisms.

Applications and related works Pasting diagram formalisms are an effective description of
cells of free ω-categories. In particular, they give a precise definition to the notion of commutative
diagram and can represent generic compositions. Moreover, they make it possible to study
higher categories by probing them through pasting diagrams. For example, augmented directed
complexes were used to give an effective description of the Gray tensor product in [21]. In
a related manner, Kapranov and Voevodsky studied topological properties of pasting schemes
in [15] and used them in an attempt to give a description of ω-groupoids in [14], but their results
were shown paradoxical [20].

Several other works studied pasting diagrams. In [3], Buckley gives a mechanized Coq proof of
the results of [23] but stops at the excision theorem [23, Theorem 4.1]. In particular, the proof of
the freeness claim [23, Theorem 4.2] was not formally verified, and could not be, since this claim
does not hold in general, as is shown in the present paper. In [5], Campbell isolates a common
structure behind parity complexes and pasting schemes, called parity structure, and gives stronger
axioms than the ones of parity complexes and pasting schemes, taking an opposite path from this
work which seeks a more general formalism. In [18], Nguyen studies pre-polytopes with labeled
structures and shows that they give a parity structure that satisfies a variant of Campbell’s
axioms that are enough to obtain another correct notion of pasting diagrams. In [10], Henry
defines a theoretical notion of pasting diagrams, called polyplexes, to show that certain classes of
polygraphs are presheaf categories, and uses them to prove a variant of the Simpson’s conjecture
in [11]. However, his pasting diagrams can involve some looping behaviors, and are then out of
the scope of the formalisms studied in the present work. Using similar ideas, Hadzihasanovic [9]
defines a class of pasting diagrams, called regular polygraphs, that is “big enough” to study semi-
strict categories and which is well-behaved for several constructions (notably, their realizations
as topological spaces are CW complexes).

Acknowledgements I would like to deeply thank Samuel Mimram and Yves Guiraud for their
supervision, help and useful feedback during this work. I would also like to thank Simon Henry,
Ross Street and Léonard Guetta for the interesting exchanges on the subject. Finally, I would
like to thank École Normale Supérieure de Paris for funding my PhD thesis.

Notations We write N for the set of natural numbers, N∗ for N\{0} and ω for the first infinite
ordinal. Given n ∈ N, we write Nn for the set {0, . . . , n} and N∗n for Nn \ {0}. We use the
convention that Nω denotes N.
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1. Formalisms of pasting diagrams

In this section, we recall some basic definitions about strict categories and introduce the defi-
nitions of the formalisms of pasting diagrams that we will consider in this article. We present
them through the common perspective of ω-hypergraphs, that are structures which encode the
information in diagrams of generators like (1). Then, the definition of each formalism roughly
follows the same pattern. First, a definition for cells that represent pasting diagrams is intro-
duced, together with an identity and composition operations that aim at equipping those cells
with a structure of ω-category. Then, a class of ω-hypergraphs that are correctly handled by the
considered formalism is defined by the mean of axioms or conditions.

We first recall the definition of globular sets (Section 1.1) and of strict categories (Section 1.2)
as globular sets with additional operations. We then introduce ω-hypergraphs (Section 1.3) and
recall the definitions of the three main existing formalisms for pasting diagrams: parity complexes
(Section 1.4), pasting schemes (Section 1.5) and augmented directed complexes (Section 1.6).
Then, we introduce the new formalism of torsion-free complexes that share the definitions of
parity complexes but have different axioms on ω-hypergraphs (Section 1.7).

1.1 Globular sets Given n ∈ N ∪ {ω}, an n-globular set (X, ∂−, ∂+) is the data of sets Xk

for k ∈ Nn, the elements of Xk being called k-cells, together with, for i ∈ Nn−1, functions

∂−i , ∂
+
i : Xi+1 → Xi

as in

X0 X1 X2 · · · Xn−1 Xn

∂−0

∂+0

∂−1

∂+1

∂−2

∂+2

∂−n−2

∂+n−2

∂−n−1

∂+n−1

satisfying the following globular identities for every i ∈ Nn−2:

∂−i ◦ ∂
−
i+1 = ∂−i ◦ ∂

+
i+1 and ∂+

i ◦ ∂
−
i+1 = ∂+

i ◦ ∂
+
i+1.

Given k ∈ N∗n, the elements of Xk are called the k-globes of X. Given i, j ∈ N with i ≤ j, by
abusing notation, we write ∂−i : Xj → Xi for the function

∂−i = ∂−i ◦ ∂
−
i+1 ◦ · · · ◦ ∂

−
j−1

and similarly for ∂+. Given i, k ∈ Nn with i ≤ k, for u ∈ Xk, ∂−i (u) and ∂+
i (u) are respectively

the i-source and i-target of u. We write Xk ×i Xk for the pullback

Xk ×i Xk

Xk Xk.

Xi
∂+i ∂−i

Given u, v ∈ Xk, we say that u and v are i-composable when ∂+
i (u) = ∂−i (v). More generally,

given p ≥ 0 and u1, . . . , up ∈ Xk, we say that u1, . . . , up are i-composable when, for j ∈ N∗p−1, uj
and uj+1 are i-composable.

Given two n-globular sets X and Y , a morphism F : X → Y between X and Y is the data
of functions Fk : Xk → Yk for k ∈ Nn such that Fi ◦ ∂εi = ∂εi ◦ Fi+1 for i ∈ Nn−1 and ε ∈ {−,+}.



8 Simon Forest

1.2 Strict categories Given n ∈ N∪ {ω}, a strict n-category (C, ∂−, ∂+, id, ∗) (often simply
denoted C) is an n-globular set (C, ∂−, ∂+) together with, for k ∈ N with k < n, identity
operations

idk+1 : Ck → Ck+1

often written id when there is no ambiguity on k, and, for i, k ∈ Nn with i < k, composition
operations

∗i,k : Ck ×i Ck → Ck

often denoted ∗i when there is no ambiguity on k, which satisfy the axioms (S-i) to (S-vi) below.
Given k, l ∈ Nn such that k ≤ l and u ∈ Ck, we extend the notations for identity operations and
write idl(u) for

idl(u) = idl ◦ · · · ◦ idk+1(u)

and, for the sake of conciseness, we often write idlu for idl(u), or even idu when l = k + 1. The
axioms are the following:
(S-i) for k ∈ Nn−1 and u ∈ Ck,

∂−k (idk+1
u ) = ∂+

k (idk+1
u ) = u,

(S-ii) for i, k ∈ Nn with i < k, (u, v) ∈ Ck ×i Ck and ε ∈ {−,+},

∂εk−1(u ∗i v) =


∂εk−1(u) ∗i ∂εk−1(v) if i < k − 1,

∂−k−1(u) if i = k − 1 and ε = −,
∂+
k−1(v) if i = k − 1 and ε = +,

(S-iii) for i, k ∈ Nn such that i < k, and u ∈ Ck,

idk(∂−i (u)) ∗i u = u = u ∗i idk(∂+
i (u)),

(S-iv) for i, k ∈ Nn such that i < k, and i-composable u, v, w ∈ Ck,

(u ∗i v) ∗i w = u ∗i (v ∗i w),

(S-v) for i, k ∈ Nn−1 such that i < k, and (u, v) ∈ Ck ×i Ck,

idk+1(u ∗i v) = idk+1
u ∗i idk+1

v ,

(S-vi) (“exchange law”) for i, j, k ∈ Nn such that i < j < k, and u, u′, v, v′ ∈ Ck such that u, v are
i-composable, and u, u′ are j-composable, and v, v′ are j-composable,

(u ∗i v) ∗j (u′ ∗i v′) = (u ∗j u′) ∗i (v ∗j v′).

Given two strict n-categories C and D, a morphism F between C and D is the data of an
n-globular morphism F : C → D which moreover satisfies that

– F (idk+1
u ) = idk+1

F (u) for every k ∈ Nn−1 and u ∈ Ck,
– F (u ∗i v) = F (u) ∗i F (v) for every i, k ∈ Nn with i < k and i-composable u, v ∈ Ck.

We often call such morphisms n-functors. We write Catn for the category of strict n-categories.
Given k, l ∈ N ∪ {ω} with k < l, there is an evident truncation functor

(−)≤k : Catl → Catk

which forgets the cells of dimension > k from an l-category.
Remark 1.2.1. Using the truncation functors, the category Catω could equivalently be defined
as the strict limit in CAT on the diagram

Cat0 Cat1 Cat2 · · · Catk Catk+1 · · ·
(−)≤0 (−)≤1 (−)≤2 (−)≤k−1 (−)≤k (−)≤k+1
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1.3 Hypergraphs Here, we introduce the notion of ω-hypergraph. It is essentially the same
as the one of parity structure introduced by Campbell in [5] when defining a new formalism
whose instances are both parity complexes and pasting schemes. It is also similar to the notion
of oriented graded poset that, in a related context, Hadzihasanovic used to define presentations
of polygraphs [9].

Definition A graded set is a set P equipped with a partition P = tn∈NPn. An ω-hyper-
graph is a graded set P , the elements of Pn being called n-generators, together with, for n ∈ N
and u ∈ Pn+1, two finite subsets u−, u+ ⊆ Pn called the source and target of u. Given a
subset U ⊆ P and ε ∈ {−,+}, we write U ε for ∪u∈Uuε.

Simple ω-hypergraphs can be represented graphically using diagrams, where 0-generators
are represented by their names, and higher generators by arrows →, ⇒, V, etc. that represent
respectively 1-generators, 2-generators, 3-generators etc.

Example 1.3.1. The diagram
y

x ⇓ α z

y′

ca

b d

(4)

represents the ω-hypergraph P with P0 = {x, y, y′, z}, P1 = {a, b, c, d}, P2 = {α}, and Pn = ∅
for n ≥ 3, sources and targets being a− = {x}, a+ = {y}, α− = {a, c}, α+ = {b, d}, and so on.

Fork-freeness Given an ω-hypergraph P and n ∈ N, a subset U ⊆ Pn is fork-free (also called
well-formed in [23]) when:

– either n = 0 and |U | = 1,
– or n > 0 and for all u, v ∈ U and ε ∈ {−,+}, we have uε ∩ vε = ∅.

For example, the subset {a, b} of (4) is not fork-free since a− ∩ b− = {x}, but {a, c} is.

Remark 1.3.2. Note that the definition of fork-freeness depends on the intended dimension n.
This subtlety is important in the case of the empty set: ∅ is not well-formed as a subset of P0

but it is as a subset of Pn when n > 0.

The relation / Given an ω-hypergraph P , n ∈ N∗ and U ⊆ Pn, for u, v ∈ U , we write u /1
U v

when u+ ∩ v− 6= ∅ and we define the relation /U on U as the transitive closure of /1
U . Given

subsets V,W ⊆ U , we write V /U W when there exist u ∈ V and v ∈ W such that u /U v.
We define the relation / on P by putting u / v when there exists n ∈ N∗ such that u, v ∈ Pn
and u /Pn v. The ω-hypergraph P is then said acyclic when / is irreflexive.

Example 1.3.3. The ω-hypergraph represented by

x y
a

b

(5)

is not acyclic since a / b / a. On the contrary, the ω-hypergraph represented by (1) is acyclic.

Given a subset V ⊆ U , we say that V is a segment for /U when for all u1, u2, u3 ∈ U such that

u1, u3 ∈ V and u1 /U u2 /U u3,

it holds that u2 ∈ V .
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Other source and target operations Given an ω-hypergraph P , for n ≥ 2, u ∈ Pn
and ε, η ∈ {−,+}, we write uεη for (uε)η. We extend the notation to subsets U ⊆ Pn and
write U εη for (U ε)η. Moreover, we write u∓ and u± for

u∓ = u− \ u+ and u± = u+ \ u−.

We also extend the notation to subsets U ⊆ Pn and write U∓ and U± for

U∓ = U− \ U+ and U± = U+ \ U− .

Example 1.3.4. Consider the ω-hypergraph represented by the diagram

w

v x

t u w′ y z

v′ x′

w′′

d

⇓ β
c

c′′

⇓ α
e

⇓ δa

b

b′

d′′

d′′′

⇓ γ

f

c′′′

c′

e′

d′

. (6)

For this ω-hypergraph, we have

α−− = {u, v}, α+− = {u, v′}, α−∓ = {u}, α+± = {w′}

and, writing U for the set {a, b, c, d, e, f},

U− = {t, u, v, w, x, y}, U+ = {u, v, w, x, y, z},
U∓ = {t}, U± = {z}

and, writing V for the set {α, β, γ, δ},

V − = {b, c, c′′, c′′′, d, d′′, d′′′, e}, V + = {b′, c′, c′′, c′′′, d′, d′′, d′′′, e′},
V ∓ = {b, c, d, e}, V ± = {b′, c′, d′, e′}.

From the above examples, one can intuitively describe the operations (−)− and (−)+ as comput-
ing the “inner” sources and targets of a set of generators, whereas the operations (−)∓ and (−)±

compute the source and target “borders” of a set of generators.

1.4 Parity complexes In this section, we recall the formalism of parity complexes developed
by Street in [23]. Most of the content will be reused when defining torsion-free complexes. The
idea behind the formalism is to represent an (n+1)-cell as a pair of source and target n-cells
together with a subset of Pn+1 which “moves” the source n-cell to the target n-cell.

Pre-cells Let P be an ω-hypergraph. For n ∈ N, an n-pre-cell of P is a tuple

X = (X0,−, X0,+, . . . , Xn−1,−, Xn−1,+, Xn)

of finite subsets of P , such that Xi,ε ⊆ Pi for i ∈ Nn−1 and ε ∈ {−,+}, and Xn ⊆ Pn. By
convention, we often denote Xn by Xn,− or Xn,+. We write PCell(P ) for the graded set of pre-
cells of P . Given n ∈ N, ε ∈ {−,+} and an (n+1)-pre-cell X of P , we define the n-pre-cell ∂εn(X)

as
∂εn(X) = (X0,−, X0,+, . . . , Xn−1,−, Xn−1,+, Xn,ε).

The functions ∂−, ∂+ then equip PCell(P ) with a structure of an ω-globular set.
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X0,−

X0,+

X1,−

X1,+

· · ·

· · ·

Xn−2,−

Xn−2,+

Xn−1,−

Xn−1,+

Xn

Figure 1: Movements in a cell

Movement and orthogonality Let P be an ω-hypergraph. Given n ∈ N and finite sets
M ⊆ Pn+1, U ⊆ Pn and V ⊆ Pn, we say that M moves U to V when

U = (V ∪M−) \M+ and V = (U ∪M+) \M−.

Intuitively, the first equation means that U is the subset obtained from V by replacing the target
of M by its source, and the second equation has a dual meaning.

Example 1.4.1. In the ω-hypergraph (6), the set {α, β, γ, δ} moves the set {a, b, c, d, e, f} to the
set {a, b′, c′, d′, e′, f}.

Cells Let P be an ω-hypergraph. Given n ∈ N, an n-cell of P is an n-pre-cell of P , such that
(i) Xi+1,ε moves Xi,− to Xi,+ for i ∈ Nn−1 and ε ∈ {−,+},
(ii) Xi,ε is fork-free for i ∈ Nn and ε ∈ {−,+}.

We denote by Cell(P ) the graded set of cells of P , which inherits the structure of globular set
from PCell(P ). An n-cell X can be represented as on Figure 1 where each arrow

U V
M

means that M moves U to V .

Example 1.4.2. The ω-hypergraph represented by (6) has, among others,
– a 0-cell ({t}),
– a 1-cell ({t}, {w′}, {a, b, c′′}, {a, b, c′′′}, {α}),
– a 2-cell ({t}, {z}, {a, b, c, d, e, f}, {a, b′, c′, d′, e′, f}, {α, β, γ, δ}), etc.

Identity and composition of operations Let P be an ω-hypergraph. Given n ∈ N and an
n-cell X, the identity of X is the (n+1)-cell

idn+1(X) = (X0,−, X0,+, . . . , Xn−1,−, Xn−1,+, Xn, Xn, ∅).

Given i, n ∈ N with i < n, and i-composable n-cells X,Y ∈ Cell(P )n, the i-composition X ∗i Y
of X and Y is defined as the n-pre-cell Z such that, for j ∈ Nn and ε ∈ {−,+},

Zj,ε =


Xj,ε if j < i,

Xi,− if j = i and ε = −,
Yi,+ if j = i and ε = +,

Xj,ε ∪ Yj,ε if j > i.

It will be shown in Section 2 that, under suitable assumptions, the composite of two n-cells is
actually an n-cell.
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Atoms and relevance Let P be an ω-hypergraph. Given n ∈ N and u ∈ Pn, we define
sets 〈u〉i,ε ⊆ Pi for i ∈ Nn and ε ∈ {−,+} with a downward induction by

〈u〉n,− = 〈u〉n,+ = {u}
and

〈u〉j,− = 〈u〉∓j+1,− 〈u〉j,+ = 〈u〉±j+1,+

for j ∈ Nn−1. We often write 〈u〉n for both 〈u〉n,− and 〈u〉n,+. The atom associated to u is then
the n-pre-cell of P

〈u〉 = (〈u〉0,−, 〈u〉0,+, . . . , 〈u〉n−1,−, 〈u〉n−1,+, 〈u〉n).

A generator u is said relevant when the atom 〈u〉 is a cell. When P is a parity complex, the
relevant generators of P will have the role of generating cells in the ω-category Cell(P ).

Example 1.4.3. The atom associated to α in (4) is 〈α〉 with

〈α〉0,− = {u}, 〈α〉1,− = {a, c}, 〈α〉2 = {α},
〈α〉0,+ = {z}, 〈α〉1,+ = {b, d},

and, since it is a cell, α is relevant.

Tightness Some defects were found in the first definition of parity complexes given in [23], so
that Street fixed his definition in [24]. His correction involves the notion of tightness defined as
follows. Given n ∈ N, a subset U ⊆ Pn is said to be tight when, for all u, v ∈ Pn such that u / v
and v ∈ U , we have u− ∩ U± = ∅.

Example 1.4.4. In (6), U = {β, γ} is not tight since α/ γ and c′′ ∈ α− ∩ U±. However, the
set U ′ = {α, β, γ, δ} is tight.

Parity complexes A parity complex [23, 24] is an ω-hypergraph P satisfying the axioms (C0)
to (C5) below:
(C0) for n ∈ N∗ and u ∈ Pn, u− 6= ∅ and u+ 6= ∅;
(C1) for n ∈ N with n ≥ 2 and u ∈ Pn, u−− ∪ u++ = u−+ ∪ u+−;
(C2) for n ∈ N∗ and u ∈ Pn, u− and u+ are fork-free;
(C3) P is acyclic;
(C4) for n ∈ N∗, u, v ∈ Pn, w ∈ Pn+1, if u / v, u ∈ wε and v ∈ wη for some ε, η ∈ {−,+},

then ε = η;
(C5) for i, n ∈ N with i < n and u ∈ Pn, 〈u〉i,− is tight.

Axiom (C0) ensures that each generator has defined source and target. Axiom (C1) enforces
basic globular properties on generators. For example, it forbids the ω-hypergraph

w x y z

a

b

⇓ α (7)

since α−−∪α++ = {w, y} and α+−∪α−+ = {x, z}. Axiom (C2) forbids generators with parallel
elements in their sources or targets. For example, it forbids the ω-hypergraph

x

y
za (8)
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since a− = {x, y} is not fork-free. Axiom (C3) forbids ω-hypergraphs with some loops like (5).
Axiom (C4) can be informally described as forbidding “bridges”. For instance, the ω-hypergraph

y

x ⇓ α z

y′

b

c

a

a′ b′

(9)

does not satisfy Axiom (C4). Indeed, a / c / b′ and a ∈ α− and b′ ∈ α+. Axiom (C5) prevents
more subtle problems, like the one exposed by the ω-hypergraph (14) (even though the latter
does not satisfy Axiom (C3) in the first place). It entails that the sources and targets of each
generator are segments (as defined in Section 1.3), which is a condition that we will motivate
in Section 1.7 when discussing Axiom (T3) of torsion-free complexes.

A counter-example to the freeness property Given a parity complex P , the main result
claimed in [23] is that the globular set Cell(P ) together with the source, target, identity and
composition operations, has the structure of an ω-category, which is freely generated by the
atoms 〈u〉 for u ∈ P ([23, Theorem 4.2]). More precisely, using the terminology of Section 2.3,
this result states that there is an ω-polygraph Q and an ω-functor F : Q∗ → Cell(P ) such that

– Qk = Pk for k ∈ N,
– F (u) = 〈u〉 for u ∈ Q,
– F is an isomorphism.

Since the cells of a free ω-category on a polygraph are equivalent classes of formal composites of
generators (c.f. [17, Lemma 4.1]), this property intuitively says that the cells of parity complexes
adequately represent pasting diagrams, i.e., diagrams associated with a unique class of equivalent
formal composites of generators. However, this property does not hold as we illustrate with a
counter-example. Consider the ω-hypergraph P defined by the diagram given by

x y zb

a

c

α⇓ ⇓α′

β⇓ ⇓β′
e

d

f

γ⇓ ⇓γ′

δ⇓ ⇓δ′
(10)

together with two 3-generators

x y zb

a

⇓ α
e

f

⇓ δ

A
V x y zb

a

⇓ α′
e

f

⇓ δ′
,

x y zb

c

⇓ β
e

d

⇓ γ B
V x y zb

c

⇓ β′
e

d

⇓ γ′
.

By carefully checking Axioms (C0) to (C5), it can be shown that P is a parity complex. The
diagram (10) moreover defines a polygraph Q, whose induced ω-category Q∗ is supposed to be
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isomorphic to Cell(P ), as a consequence of [23, Theorem 4.2], but it is not the case here. Indeed,
we can find two expressions that compose together the 3-generators A and B in Q∗, inducing
two 3-cells H1 and H2 with

H1 = ((a ∗0 γ) ∗1 A ∗1 (β ∗0 f)) ∗2 ((α′ ∗0 d) ∗1 B ∗1 (c ∗0 δ′))
H2 = ((α ∗0 d) ∗1 B ∗1 (c ∗0 δ)) ∗2 ((a ∗0 γ′) ∗1 A ∗1 (β′ ∗0 f))

where, for the sake of readability, we omitted the operations id required to lift the generators to
dimension 3. The canonical morphism F : Q∗ → Cell(P ) maps H1 and H2 to the same 3-cell X
defined by:

X3 = {A,B},
X2,− = {α, β, γ, δ}, X2,+ = {α′, β′, γ′, δ′},
X1,− = {a, d}, X1,+ = {c, f},
X0,− = {x}, X0,− = {z}.

However, H1 and H2 are different cells in Q∗. This has first been proved using Agda as a proof
assistant [8], but can be proved more quickly using a solver for the word problem on strict
categories like cateq [6]. Hence, the distinct cells H1 and H2 of Q∗ are sent to the same cell
of Cell(P ) by F , since the information that makes H1 and H2 different is the order in which A
and B are composed, which can not be expressed by a cell of a parity complex. This refutes [23,
Theorem 4.2] which asserts that F is an isomorphism. Thus, parity complexes do not necessarily
induce free ω-categories in general.

1.5 Pasting schemes Johnson’s loop-free pasting schemes [13] is another proposed formalism
for pasting diagrams. Like parity complexes, they are based on ω-hypergraphs, but the cells will
now be represented as single subsets of generators instead of tuples like for parity complexes.
This formalism relies on set relations, namely B and E, to encode which generators to remove in
order to obtain respectively the target and the source of a cell.

Conventions for relations A relation between two sets X and Y is a subset L ⊆ X × Y .
For (x, y) ∈ X × Y , we write xL y when (x, y) ∈ L. The identity relation on a set X is the
relation L ⊆ X × X such that xL y if and only if x = y. Given a relation L between X

and Y , and x ∈ X, we write L(x) for the set L(x) = {y ∈ Y | xL y}. Given a subset X ′ ⊆ X,
we denote by L(X ′) the set {y ∈ Y | ∃x ∈ X ′, xL y}. The relation L is said finitary when, for
all x ∈ X, L(x) is a finite set. If L is a relation on a graded set P = tn∈NPn, given k, l ∈ N,
we write Llk for the relation between Pl and Pk defined as L∩(Pl × Pk). Similarly, we write Ll

for the relation between Pl and P defined as L∩(Pl × P ). Given relations L between X and Y
and L′ between Y and Z, we write LL′ for the relation between X and Z which is the composite
relation defined as

LL′ = {(x, z) ∈ X × Z | ∃y ∈ Y, xL y and y L′ z}.

Pre-pasting schemes A pre-pasting scheme (P,B,E) is given by a graded set P and two
relations B,E (for “beginning” and “end”) on P such that
(i) B and E are finitary,
(ii) for k, l ∈ N with l < k, Bl

k = Elk = ∅,
(iii) Bk

k (resp. Ekk) is the identity relation on Pk,
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(iv) for k, l ∈ N with k < l, L ∈ {B,E}, u ∈ Pl+1 and v ∈ Pk, uLl+1
k v if and only if

uLl+1
l Bl

k v and uLl+1
l Elk v.

Example 1.5.1. The diagram (4) can be encoded as a pre-pasting scheme

B2
1(α) = {a, c}, B2

0(α) = {y}, B1
0(a) = {x},

E2
1(α) = {b, d}, E2

0(α) = {y′}, E1
0(a) = {y} . . .

Note that the relations B and E of a pre-pasting scheme P are completely determined by the data
of Bk+1

k (u) and Ek+1
k (u) for k ∈ N and u ∈ Pk. As a consequence, the data of a pre-pasting scheme

structure on P is equivalent to the data of an ω-hypergraph structure on P : the correspondence
is given by u− = Bk+1

k (u) and u+ = Ek+1
k (u) for k ∈ N∗ and u ∈ Pk+1. In particular, the

relation / on a pasting scheme is defined as the one on the associated ω-hypergraph.

Direct loops Given an ω-hypergraph P , P has a direct loop when
(i) either there exist n ∈ N∗ and u, v ∈ Pn such that u / v and E(v) ∩ B(u) 6= ∅,
(ii) or there exists w ∈ P such that E(w) ∩ B(w) 6= {w}.

Example 1.5.2. The ω-hypergraph
y

x z

y

a2

b

a1

c1 c2

⇓ α

⇓ β
(11)

has a direct loop by the first criterion, because α/β and y ∈ B(α) ∩ E(β). Examples of direct
loops by the second condition are given by the ω-hypergraphs

P 1 = v w

a

a

⇓ α and P 2 =

y

x ⇓ β z

y

cb

b′ c′

. (12)

Finite graded subsets Let P be a pre-pasting scheme. We define the relation R ⊆ P × P as
the smallest reflexive transitive relation on P such that, for all k ∈ N and x ∈ Pk+1, we have

B(x) ∪ E(x) ⊆ R(x).

Example 1.5.3. In the case of the ω-hypergraph (11), we have

R(α) = {x, y, z, a1, a2, b, α} and R(β) = {x, y, z, b, c1, c2, β}.

A finite graded subset of dimension n of P (abbreviated n-fgs) is an (n+1)-tuple

X = (X0, . . . , Xn)

such that Xk ⊆ Pk and Xk is finite for k ∈ Nn. We often identify the n-fgs X with the
set ∪k∈NnXk, but one should keep in mind that the n-fgs X and the (n+1)-fgs (X0, . . . , Xn, ∅)
are two different objects. We say that X is closed when R(X) = X. Given n ∈ N and an
(n+1)-fgs X of P , we define the source and the target of X as the n-fgs’s ∂−n (X) and ∂+

n (X)

of P such that
∂−n (X) = X \ En(X) and ∂+

n (X) = X \ Bn(Y ).
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Example 1.5.4. Considering the ω-hypergraph (11), we have

∂−n (R(α)) = R(α) \ {b, α} = {x, y, z, a1, a2} and ∂+
n (R(α)) = R(α) \ {y, a1, a2} = {x, z, b}.

Remark 1.5.5. The fgs’s of the form R(u) for u ∈ P are the analogue of the atoms defined for
parity complexes.

Well-formed sets Given a pre-pasting scheme P , we define by induction on n the notion of
well-formed n-fgs (abbreviated n-wfs): given n ∈ N, an n-fgs X of P is well-formed when
(i) X is closed,
(ii) Xn is fork-free,
(iii) when n > 0, ∂−n (X) and ∂+

n (X) are well-formed (n−1)-fgs.
We denote by WF(P ) the graded set of n-wfs’s of P for n ∈ N. By [13, Theorem 3], for n ∈ N,
the operations ∂−n and ∂+

n on (n+1)-fgs’s restrict to functions

∂−n : WF(P )n+1 →WF(P )n and ∂+
n : WF(P )n+1 →WF(P )n

and they equip WF(P ) with a structure of ω-globular set. In the following, the wfs’s will be the
“cells” of the pasting diagram formalism of pasting schemes.

Example 1.5.6. The pre-pasting scheme

y1

x z

y2

a2

b

a1

c1 c2

⇓ α

⇓ β
(13)

has, among others, the 0-wfs’s {x} and {z}, the 1-wfs’s {x, y1, z, a1, a2} and {x, y2, z, c1, c2}, and
the 2-wfs {x, y1, y2, z, a1, a2, b, c1, c2, α, β}.

Identity and composition operations Let P be a pre-pasting scheme. Given n ∈ N and an
n-wfs X = (X0, . . . , Xn) of P , the identity of X is the (n+1)-wfs idn+1(X) defined by

idn+1(X) = (X0, . . . , Xn, ∅).

Given i, n ∈ N with i < n and X,Y two n-wfs such that ∂+
i (X) = ∂−i (Y ), the i-composition

of X and Y is the n-fgs X ∗i Y such that

X ∗i Y = X ∪ Y.

Under the conditions of a pre-pasting scheme, it is not necessarily the case that the composite
of two n-wfs’s is an n-wfs, but it will under the axioms of a pasting scheme introduced below.

Loop-free pasting schemes A pasting scheme [13] is a pre-pasting scheme P satisfying the
following two axioms:

(S0) for k ∈ N and u ∈ Pk+1, Bk+1
k (u) 6= ∅ and Ek+1

k (u) 6= ∅;
(S1) for k, l ∈ N with k ≤ l, L ∈ {B,E}, u ∈ Pl+1 and v ∈ Pk,

– if uEl+1
l Llk v then uEl+1

k v or uBl+1
k Llk v,

– if uBl+1
l Llk v then uBl+1

k v or uEl+1
l Llk v.
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The pasting scheme P is a loop-free pasting scheme when it moreover satisfies the following:
(S2) P has no direct loops;
(S3) for u ∈ P , R(u) ∈WF(P );
(S4) for k, n ∈ N with k < n, X ∈WF(P )k and u ∈ Pn,

– if ∂−k (R(u)) ⊆ X, then 〈u〉k,− is a segment for /Xk ,
– if ∂+

k (R(u)) ⊆ X, then 〈u〉k,+ is a segment for /Xk ;
(S5) for n ∈ N, X ∈WF(P )n and u ∈ Pn+1 with ∂−n (R(u)) ⊆ X, the following hold:

(a) X ∩ E(u) = ∅,
(b) for y ∈ X, if B(u) ∩ R(y) 6= ∅, then y ∈ B(u).

Axiom (S1) enforces basic globular properties on generators and forbids, the ω-hypergraph (7)
for example. Axiom (S2) forbids ω-hypergraphs with loops like (5), (11) and (12). Axiom (S3)
enforces fork-freeness on the iterated sources and targets of a generator (for example, it forbids the
ω-hypergraph (8)). Axiom (S4) relates to Axiom (C5) of parity complexes and prevent situations
in the spirit of the ω-hypergraph (14) (even though the latter does not satisfy Axiom (S2) in the
first place). We motivate this axiom in Section 1.7 when we discuss a similar axiom for torsion-
free complexes. Axiom (S5) can be deduced from the other axioms (c.f. [12, Theorem 3.7])
but it simplifies the proofs of [13]. An example of a sensible pre-pasting scheme that satisfy
Axioms (S0) to (S3), but neither Axiom (S4) nor Axiom (S5), exists in dimension four (see [19,
Example 3.11]).

A counter-example to the freeness property The main result claimed in [13] is simi-
lar to the one of [23]: given a loop-free pasting scheme P , the globular set WF(P ) together
with the source, target, identity and composition operations has the structure of an ω-cate-
gory, which is freely generated by the wfs’s R(u) for u ∈ P ([13, Theorem 13]). Using the
terminology of Section 2.3, this amounts to say that there exist an ω-polygraph Q and an
ω-functor F : Q∗ →WF(P ) such that

– Qk = Pk for k ∈ N,
– F (u) = R(u) for u ∈ Q,
– F is an isomorphism.

But the same flaw as for parity complexes is present here too, which makes the freeness result
wrong. In fact, the counter-example to the freeness property of parity complexes, introduced in
Section 1.4, is also a counter-example to the freeness property of pasting schemes: the ω-hyper-
graph P is a loop-free pasting scheme and the canonical morphism F : Q∗ → WF(P ) sends H1

and H2 to the same 3-wfs X = {x, y, z, α, β, γ, δ, α′, β′, γ′, δ′, A,B} refuting the freeness prop-
erty [13, Theorem 13].

1.6 Augmented directed complexes Augmented directed complexes, designed by Steiner
in [21], are not directly based on ω-hypergraphs, but on chain complexes. Under the conditions
required by Steiner, it happens that the data of a chain complex is equivalent to the data of
an ω-hypergraph. The definition of cells for this formalism strongly resembles the one of parity
complexes. The only difference is that the cells are tuples of group elements instead of subsets
of an ω-hypergraph.

Augmented directed complex A pre-augmented directed complexes (K,d, e) (abbreviated
pre-adc) is the data of
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– for n ∈ N, an abelian group Kn together with a distinguished submonoid K∗n ⊆ Kn,
– for n ∈ N, group morphisms called boundary operators

dn : Kn+1 → Kn,

– an augmentation, that is, a group morphism

e : K0 → Z.

An augmented directed complex, abbreviated adc, is a pre-adc (K,d, e) such that

e ◦ d0 = 0 and dn ◦dn+1 = 0 for n ∈ N.

Bases for pre-adc’s Given a pre-adc (K,d, e), a basis of (K,d, e) is the data of a graded
set P ⊆

⊔
n∈NKn such that each K∗n is the free commutative monoid on Pn and each Kn is the

free abelian group on K∗n. Given a basis P of (K,d, e), every element u ∈ Kn can be uniquely
written as u =

∑
g∈Pn ugg, with ug ∈ Z such that ug 6= 0 for a finite number of g ∈ Pn. This

representation induces a partial order ≤ where, for n ∈ N and u, v ∈ Kn, u ≤ v when ug ≤ vg
for all g ∈ Pn. Given n ∈ N and u, v ∈ Kn we can define a greatest lower bound u ∧ v of u and v
by

u ∧ v =
∑
g∈Pn

min(ug, vg)g.

Given n ∈ N and u ∈ Kn+1, we write u∓, u± ∈ K∗n for the unique elements which satisfies that
dn(u) = u± − u∓ and u∓ ∧ u± = 0. Moreover, we write u−, u+ for

u− =
∑

g∈Pn+1

ugg
∓ and u+ =

∑
g∈Pn+1

ugg
±.

Remark 1.6.1. The elements u∓ and u± are respectively denoted by ∂−(u) and ∂+(u) in [21].
We adopt the former notation for consistency with those of Section 1.4.

From ω-hypergraphs to pre-adc’s with basis Given an ω-hypergraph P , we define the
pre-adc (K,d, e) associated to P as follows. For n ∈ N, K∗n is defined as the free commutative
monoid on Pn and Kn as the free abelian group on K∗n. The augmentation e : K0 → Z is defined
as the unique morphism such that e(x) = 1 for x ∈ P0. Given n ∈ N and a finite subset U ⊆ Pn,
we write Σn(U) for

∑
u∈U u ∈ Kn. Then, dn : Kn+1 → Kn is defined as the unique morphism

such that dn(u) = Σn(u+) − Σn(u−) for u ∈ Pn+1. Then, K canonically admits P as a basis.
We say that P is an adc when K is an adc.

Example 1.6.2. We explicitly describe the pre-adc associated to the ω-hypergraph (13) as follows.
Writing S∗ for the free commutative monoid on a set S, we put

K∗0 = {x, y1, y2, z}∗, K∗1 = {a1, a2, b, c1, c2}∗, K∗2 = {α, β}∗

and K∗n = {0} for n ≥ 3. K0, K1, K2 and Kn for n ≥ 3 are then the induced free abelian groups
on these monoids. The operations e and d are defined by universal property to be the unique
morphisms such that e(x) = e(y1) = e(y2) = e(z) = 1 and

d0(a1) = y1 − x, d0(a2) = z − y1, d0(b) = z − x,

d0(c1) = y2 − x, d0(c2) = z − y2,

d1(α) = b− (a1 + a2), d1(β) = (c1 + c2)− b.
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We can now give some examples for the operations (−)∓ and (−)± operations defined above:

(a1 + a2)∓ = x, (a1 + a2)± = z, (α+ β)∓ = a1 + a2, (α+ β)± = c1 + c2.

We moreover illustrate the operations (−)− and (−)+:

(a1 + a2)− = x+ y1, (a1 + a2)+ = y1 + z, (α+ β)− = a1 + a2 + b, (α+ β)+ = b+ c1 + c2.

Thus, the operations (−)∓ and (−)± compute the source and target “borders” of an element
of Kn, whereas the operations (−)− and (−)+ compute the sum of the “inner” sources and
targets of an element of Kn. They are the analogues of the operations defined for ω-hypergraph
in Section 1.3.

Cells Let K be a pre-adc. Given n ∈ N, an n-pre-cell of K is given by an (2n+1)-tuple

X = (X0,−, X0,+, . . . , Xn−1,−, Xn−1,+, Xn)

with Xn ∈ K∗n and Xi,−, Xi,+ ∈ K∗i for i ∈ Nn−1. For the sake of conciseness, we often refer
to Xn by Xn,− or Xn,+. We write PCell∗(K) for the graded set of pre-cells of K. When n > 0,
given ε ∈ {−,+}, we define the n-pre-cell ∂εn(X) as

∂εn(X) = (X0,−, X0,+, . . . , Xn−1,−, Xn−1,+, Xn,ε).

The functions ∂−, ∂+ then equip PCell∗(K) with a structure of ω-globular set.

Given n ∈ N, an n-cell of K is an n-pre-cell X of K such that
(i) for i ∈ Nn−1, di(Xi+1,−) = di(Xi+1,+) = Xi,+ −Xi,−,
(ii) e(X0,−) = e(X0,+) = 1.

We denote by Cell∗(K) the graded set of cells of K, which inherits the ω-globular structure
from PCell∗(K).

Remark 1.6.3. The condition (i) is analogous to the moving condition (i) of parity complex
cells, and the condition (ii) is related to the fork-freeness condition (ii) of parity complex cells
instantiated in dimension 0.

Identity and composition operations LetK be a pre-adc. Given n ∈ N and an n-pre-cellX
of K, we define the identity of X as the (n+1)-pre-cell idn+1(X) of K such that

idn+1(X) = (X0,−, X0,+, . . . , Xn−1,−, Xn−1,+, Xn, Xn, 0).

Given i, n ∈ N with i < n and i-composable n-cells X,Y , we define the i-composition X ∗i Y
of X and Y as the n-pre-cell Z such that, for j ∈ Nn and ε ∈ {−,+},

Zj,ε =


Xj,ε + Yj,ε when j > i,

Xi,− when j = i and ε = −,
Yi,+ when j = i and ε = +,

Xj,ε (or equivalently Yj,ε) when j < i.

We then easily verify that Z ∈ Cell∗(K).
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Atoms Let K be a pre-adc equipped with a basis P . Given n ∈ N and u ∈ Pn, we de-
fine [u]i,ε ⊆ Pi for i ∈ Nn and ε ∈ {−,+} using a downward induction by [u]n,− = [u]n,+ = u and,
for j ∈ Nn−1, [u]j,− = [u]∓j+1,− and [u]j,+ = [u]±j+1,+. For simplicity, we sometimes write [u]n,−
or [u]n,+ for [u]n. The atom associated to u is then the n-pre-cell of K

[u] = ([u]0,−, [u]0,+, . . . , [u]n−1,−, [u]n−1,+, [u]n).

Example 1.6.4. In the pre-adc associated to the ω-hypergraph (13), the atom [α] associated to α
is defined by

[α]2 = α,

[α]1,− = a1 + a2, [α]1,+ = b,

[α]0,− = x, [α]0,+ = z.

Unital loop-free basis Let K be a pre-adc equipped with a basis B. Given i ∈ N, we define
a relation <i on B as the smallest transitive relation such that, for k, l ∈ N with i < min(k, l),
and u ∈ Bk, v ∈ Bl with [u]i,+ ∧ [v]i,− 6= 0, we have u <i v. The basis B is then said

– unital when for all u ∈ B, e([u]0,−) = e([u]0,+) = 1,
– loop-free when, for all i ∈ N, <i is irreflexive.

Example 1.6.5. Consider the pre-adc K with basis B derived from the hypergraph (5). The
basis B is then unital but not loop-free since a <0 b <0 a. Now, consider the pre-adc with basis B
derived from the hypergraph (8). The basis B is then not unital since e([a]0,−) = e(x+ y) = 2,
but it is loop-free. Now consider the pre-adc K with basis B derived from the hypergraph (6).
We have, among others, the relations

a <0 b <0 c <0 d <0 e <0 f , a <0 α <0 δ <0 f , β <1 α <1 γ and β <1 δ <1 γ.

It can be verified that B is unital and loop-free.

The freeness property In [21], the author shows that, given an adc K with a loop-free
unital basis B, the globular set Cell∗(K), together with identity and composition operations,
has a structure of an ω-category which is freely generated by the atoms [u] for u ∈ B. Using
the terminology of Section 2.3, this amounts to say that there exist an ω-polygraph Q and an
ω-functor F : Q∗ → Cell∗(K) such that

– Qk = Bk for k ∈ N,
– F (u) = [u] for u ∈ Q,
– F is an isomorphism.

Contrary to parity complexes and pasting schemes, the pre-adc with basis associated to the
ω-hypergraph (10) is not a loop-free adc. Indeed, it is an adc with unital basis, but the basis
is not loop-free since A <1 B <1 A. Thus, augmented directed complexes are, to the best of
our knowledge, the only formalism of pasting diagrams among the three that we have already
introduced for which the freeness property holds.

1.7 Torsion-free complexes In this section, we introduce torsion-free complexes. They are
a new formalism for pasting diagrams based on parity complexes. More precisely, torsion-free
complexes rely on the same notion of cell than parity complexes, but satisfy different axioms,
namely the axioms (T0) to (T4).
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Figure 2: A problematic ω-hypergraph

Definitions Let P be an ω-hypergraph. Given k ∈ N and u ∈ Pk, we say that u satisfies the
segment condition when, for all n ∈ Nk−1 and every n-cell X such that 〈u〉n,− ⊆ Xn, it holds that
both 〈u〉n,− and 〈u〉n,+ are segments for /Xn . Given n, k, l ∈ N with 0 < n < min(k, l), u ∈ Pk,
v ∈ Pl and an n-cell X, u and v are said to be in torsion with respect to X when

〈u〉n,+ ⊆ Xn, 〈v〉n,− ⊆ Xn, 〈u〉n,+ ∩ 〈v〉n,− = ∅ and 〈u〉n,+ /Xn〈v〉n,− /Xn〈u〉n,+.

The ω-hypergraph P is then a torsion-free complex when it satisfies the following axioms:
(T0) (non-emptiness) for all u ∈ P , u− 6= ∅ and u+ 6= ∅;
(T1) (acyclicity) P is acyclic;
(T2) (relevance) for all u ∈ P , u is relevant;
(T3) (segment condition) for u ∈ P , u satisfies the segment condition;
(T4) (torsion-freeness) for all n, k, l ∈ N∗ with n < min(k, l), u ∈ Pk, v ∈ Pl and every

n-cell X, u and v are not in torsion with respect to X.
Axiom (T1) enforces the same notion of acyclicity than for parity complexes, forbidding loops
like (5). Axiom (T2) requires that the generators of the ω-hypergraph induce cells, forbidding
ω-hypergraphs like (7) and (8). It can be shown that Axiom (T2) entails Axioms (C1) and (C2)
of parity complexes. The last axioms deserve their own paragraphs.

The segment Axiom (T3) Our goal is to find conditions on ω-hypergraphs P so that the
freeness property holds, i.e., the ω-category of cells Cell(P ) is freely generated by the atoms.
In particular, a technical result states that every cell should be decomposable as a sequence
of “whiskered atoms” (c.f. Proposition B.3.4). But there are cells of ω-hypergraphs satisfying
Axioms (T0) to (T2) that cannot be decomposed this way, because of the constraints that /
requires on the composition order. We illustrate this with an example. Consider the ω-hyper-
graph P represented on Figure 2 where, more precisely,

A− = {α1, α4}, A+ = {α′1, α′4},

α−1 = α′1
−

= {a}, α+
1 = α′1

+
= {a′},

α−4 = α′4
−

= {d}, α+
4 = α′4

+
= {d′}, etc.
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One can verify that P satisfies Axioms (T0), (T1) and (T2). In this ω-hypergraph, there is a
2-cell X given by

X2 = {α1, α2, α3, α4},
X1,− = {a, b}, X1,+ = {c, d′, e},
X0,− = {x}, X0,+ = {z},

and a 3-cell Y uniquely defined by ∂−2 (Y ) = X and Y3 = {A}. Suppose by contradiction
that Cell(P ) is an ω-category which is freely generated by the atoms. Then, Y can be written

Y = idλ ∗1 (id2
l ∗0 〈A〉 ∗0 id2

r) ∗1 idρ

for some 1-cells l, r and 2-cells λ, ρ. Thus, X = idλ ∗1 X ′ ∗1 idρ where X ′ is a 2-cell such
that X ′2 = A−. Since Cell(P )≤2 ' Cell(P \ {A})≤2 and P \ {A} is a torsion-free complex, using
Lemma 2.2.1 introduced later, the existence of the decomposition of X implies that

the sets λ2, X ′2 and ρ2 form a partition of X2 = {α1, α2, α3, α4},

and, using Lemma B.5.4 introduced later, we have that

for (β, γ) ∈ (λ2 × (X ′2 ∪ ρ2)) ∪ ((ρ2 ∪X ′2)× ρ2), we have ¬(γ /X2 β),

or, more simply put, the partition λ2, X
′
2, ρ2 respects the relation /X2 . But this cannot be

possible since X ′2 = {α1, α4} and α1 /α2 /α3 /α4. Hence, Cell(P ) is not an ω-category freely
generated by the atoms. Since 〈A〉2,− is not a segment for /X2 , Axiom (T3) prevents this kind
of problem.

The torsion-freeness Axiom (T4) The notion of torsion captures the essence of the counter-
example to the freeness property of parity complexes and pasting schemes presented in Sec-
tion 1.4. Indeed, considering the ω-hypergraph P represented by (10), there is a 2-cell X defined
by

X2 = {α′, β, γ, δ′},
X1,− = {a, d}, X1,+ = {c, f},
X0,− = {x}, X0,+ = {z},

which is induced by the pasting diagram

x y zb

a

c

⇓α′

⇓β
e

d

f

⇓γ

⇓δ′
.

Then, one can verify that A and B are in torsion with respect to X, so that P does not satisfy
Axiom (T4) (on the other hand, it satisfies Axioms (T0) to (T3)).

Intuitively, the situations with torsion are the minimal cases where the freeness property fails
for a parity complex P (and similarly for a pasting scheme P ). When u, v ∈ P are in torsion
with respect to a cell X of P , there are two possible order to compose u and v: first u then v, or
first v then u. And both composites produce equal cells in Cell(P ). However, this equality can
not be deduced from an exchange law, since the torsion says basically that u and v cross each
other, preventing to use the exchange law to swap them.
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More computable axioms Axioms (T3) and (T4) happen to be hard to check in practice,
since they both involve a quantification on all the cells of an ω-hypergraph. Here, we give stronger
axioms that are simpler to verify.

Given an ω-hypergraph P , for n ∈ N, u, v ∈ Pn, we write uy v when there exists w ∈ Pn+1

such that u ∈ w− and v ∈ w+ and we write y∗ for the reflexive transitive closure of y.
For U, V ⊆ Pn, we write U y∗ V when there exist u ∈ U and v ∈ V such that uy∗ v. Consider
the following axiom on an ω-hypergraph P :
(T3’) for k, n ∈ N∗ with k < n and u ∈ Pn, we do not have 〈u〉k,+ y∗ 〈u〉k,−.

Then, Axiom (T3) can be replaced by Axiom (T3’) in the axioms of torsion-free complexes:

Proposition 1.7.1. Let P be an ω-hypergraph satisfying Axioms (T0), (T1) and (T2). If P
satisfies Axiom (T3’), then it satisfies Axiom (T3).

Proof. Suppose that P satisfies Axiom (T3’). Let n, k ∈ N with n < k, X be an n-cell and u ∈ Pk
such that 〈u〉n,− ⊆ Xn. If n = 0, there is nothing to prove, so we can assume n > 0. By con-
tradiction, suppose that 〈u〉n,− is not a segment for /Xn . So there are r ∈ N with r > 2

and u1, . . . , ur ∈ Xn such that u1, ur ∈ 〈u〉n,−, u2, . . . , ur−1 6∈ 〈u〉n,− and ui /1
Xn

ui+1 for i ∈ N∗r−1.
In particular, there are v1, . . . , vr−1 ∈ Pn−1 such that vi ∈ u+

i ∩ u
−
i+1 for i ∈ N∗r−1. Given w ∈ Xn

such that v1 ∈ w−, since Xn is fork-free, we have w = u2 6∈ 〈u〉n,−. Thus, since u is rele-
vant by Axiom (T2), v1 ∈ 〈u〉±n,− = 〈u〉n−1,+. Similarly, we have that vr−1 ∈ 〈u〉n−1,−. So,
〈u〉n−1,+ y∗ 〈u〉n−1,−, contradicting Axiom (T3’). Hence, P satisfies Axiom (T3).

Now, consider the following axiom on an ω-hypergraph P :
(T4’) for n, k, l ∈ N∗ with n < min(k, l), u ∈ Pk and v ∈ Pl, if 〈u〉n,+ ∩ 〈v〉n,− = ∅, then

at most one of the following holds:
– 〈u〉n−1,+ y∗ 〈v〉n−1,−,
– 〈v〉n−1,+ y∗ 〈u〉n−1,−.

Then, Axiom (T4) can be replaced by Axiom (T4’) in the axioms of torsion-free complexes:

Proposition 1.7.2. Let P be an ω-hypergraph satisfying Axioms (T0), (T1) and (T2). If P
satisfies Axiom (T4’), then it satisfies Axiom (T4).

Proof. Suppose that P satisfies Axiom (T4’). By contradiction, assume that P does not satisfy
Axiom (T4). So there are n, k, l ∈ N∗ with n < min(k, l), u ∈ Pk, v ∈ Pl and an n-cell X
such that u and v are in torsion with respect to X. That is, 〈u〉n,+ ⊆ Xn, 〈v〉n,− ⊆ Xn

〈u〉n,+ ∩ 〈v〉n,− = ∅ and 〈u〉n,+ /Xn〈v〉n,− /Xn〈u〉n,+. By the last condition, there are r ∈ N
with r > 1, and w1, . . . , wr ∈ Xn such that

w1 ∈ 〈u〉n,+, wr ∈ 〈v〉n,−, w2, . . . , wr−1 6∈ 〈u〉n,+ ∪ 〈v〉n,−, and wi /
1
Xn wi+1

for i ∈ N∗r−1. Thus, there are w̄1, . . . , w̄r−1 ∈ Pn−1 such that w̄i ∈ w+
i ∩ w

−
i+1 for i ∈ N∗r−1.

Given w ∈ Xn with w̄1 ∈ w−, we have w = w2 6∈ 〈u〉n,+ since Xn is fork-free. Thus,
w̄1 ∈ 〈u〉±n,+ = 〈u〉n−1,+. Similarly, w̄r−1 ∈ 〈v〉n−1,−, so 〈u〉n−1,+ y∗ 〈v〉n−1,−. Likewise, we
have 〈v〉n−1,+ y∗ 〈u〉n−1,−, which contradicts Axiom (T4’). Hence, P satisfies Axiom (T4).

2. The free ω-category of cells

In this section, we show that the cells on a torsion-free complex have a structure of a free ω-cate-
gory. For the ω-categorical structure, we essentially have to prove that the composition of two
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cells is a cell. In order to show this, we adapt a result of [23] and prove a “gluing theorem”,
which enables building an (n+1)-cell from an n-cell by gluing a set of (n+1)-generators. As
a by-product, it also gives some properties satisfied by composable cells, from which one can
derive that the composition of cells is well-defined. Then, for the freeness, we must first define
the meaning of “freeness” that we use. The most natural notion for our context is the one of
polygraph [22, 4], which is a set of generators for strict categories whose sources and targets are
composites made of other generators, and from which a free strict category can be generated.
This structure adequately encodes the fact that the source and target of each generator of a
torsion-free complexes are themselves pasting diagrams of generators that must be composed.

In Section 2.1, we first state the gluing theorem (Theorem 2.1.1), after introducing the ade-
quate terminology for the “gluing” of a set of generators on a cell. Then, in Section 2.2, we use
this property to prove that the cells of a torsion-free complex have a structure of an ω-category
(Theorem 2.2.3). In Section 2.3, we introduce the definition of “freeness” for strict categories
that we are going to use for the ω-category of cells by recalling the definition of polygraphs and
the associated free strict category construction. In Section 2.4, we prove that the ω-category
of cells of a torsion-free complex is free in this sense, i.e., is the free ω-category on a canonical
polygraph (Corollary 2.4.2).

2.1 Gluing sets on cells

Gluings and activations Let P be an ω-hypergraph. Given n ∈ N, an n-pre-cell X of P and
a finite set G ⊆ Pn+1, we say that G is glueable on X if G∓ ⊆ Xn. If so, we call gluing of G
on X the (n+1)-pre-cell Y of P defined by

Yn+1 = G, Yn,− = Xn, Yn,+ = (Xn ∪G+) \G− and Yi,ε = Xi,ε

for i ∈ Nn and ε ∈ {−,+}. We denote Y by Glue(X,G). Moreover, we call activation of G on X
the n-pre-cell Act(X,G) defined by

Act(X,G) = ∂+
n (Glue(X,G))

We say that G is dually glueable on X when G± ⊆ Xn, and we define the dual gluing Glue(X,G)

and the dual activation Act(X,G) similarly. For example, consider the ω-hypergraph (14)
from Section 1.7 and recall there the definitions of X and Y . Then {A} is glueable on X

and Glue(X, {A}) = Y , and Act(X, {A}) is the 2-pre-cell X̄ with

X̄2 = {α1, α
′
2, α
′
3, α4},

X̄1,− = {a, b}, X̄1,+ = {c, d′, e},
X̄0,− = {x}, X̄0,+ = {z}.

Conversely, {A} is dually glueable on X̄, and we have Glue(X̄, {A}) = Y , and Act(X̄, {A}) = X.

The gluing theorem We now state the “gluing theorem”. It is an adapted version of [23,
Lemma 3.2] which enables building new cells using the gluing and activation operations. The
theorem moreover gives additional results concerning intersections with the source and the target
sets of gluing sets.
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Xn−1,− Xn−1,+

...
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X0,− X0,+

X Act(X,G)

Glue(X,G)

Figure 3: Cells involved and their movements in Theorem 2.1.1

Theorem 2.1.1. Let P be an ω-hypergraph which satisfies Axioms (T0), (T1), (T2) and (T3).
Given n ∈ N, an n-cell X of P and a finite fork-free set G ⊆ Pn+1 such that G is glueable on X,
we have that
(a) Act(X,G) is a cell and G+ ∩Xn = ∅,
(b) Glue(X,G) is a cell,
(c) given a finite fork-free subset G′ ⊆ Pn+1 which is dually glueable on X, G′− ∩G+ = ∅.

and dual properties hold when G is dually glueable on X.

A representation of the cells of the statement is shown in Figure 3.

Proof. See Appendix A.

2.2 Structure of ω-category Here, we prove that the cells on a torsion-free complex have a
structure of an ω-category. For this purpose, we first show that the composite of two cells is a
cell using Theorem 2.1.1 shown above. Then, we quickly verify that the axioms of ω-categories
are satisfied, which is almost immediate by the definitions of the operations on cells.

We first handle the case of compositions of cells in codimension 1 with the following result:

Lemma 2.2.1. Let P be an ω-hypergraph satisfying Axioms (T0), (T1), (T2) and (T3). Given
n ∈ N∗ and two n-cells X,Y of P that are (n−1)-composable, the following hold:
(a) X−n ∩ Y +

n = ∅,
(b) Xn ∩ Yn = ∅,
(c) X ∗n−1 Y is an n-cell of P .

Proof. Using Theorem 2.1.1(c) with ∂+
n−1(X), Xn and Yn, we get X−n ∩ Y +

n = ∅. Moreover,

X+
n ∩ Y +

n = X±n ∩ Y +
n (since X−n ∩ Y +

n = ∅)
⊆ Xn−1,+ ∩ Y +

n

= Yn−1,− ∩ Y +
n

= ∅ (by Theorem 2.1.1(a)).
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By Axiom (T0), it implies that Xn ∩ Yn = ∅. Similarly, X−n ∩ Y −n = ∅, so Xn ∪ Yn is fork-free.
For X ∗n−1Y to be a cell, Xn∪Yn must move Xn−1,− to Yn−1,+. But, since X and Y are cells and
are (n−1)-composable, we know that Xn moves Xn−1,− to Xn−1,+, Yn moves Yn−1,− to Yn−1,+

and Xn−1,+ = Yn−1,−. Since X−n ∩ Y +
n , using Lemma A.1.3, we get that Xn ∪ Yn moves Xn−1,−

to Yn−1,+. Hence, X ∗n−1 Y is a cell.

We now handle the general case of compositions of cells:

Lemma 2.2.2. Let P be an ω-hypergraph satisfying Axioms (T0), (T1), (T2) and (T3). Let
i, n ∈ N with i < n and X,Y be two n-cells of P that are i-composable. Then,
(i) for j ∈ N with i < j ≤ n, (X−j,− ∪X

−
j,+) ∩ (Y +

j,− ∪ Y
+
j,+) = ∅,

(ii) X ∗i Y is a cell.

Proof. By induction on n− i. If n− i = 1, the properties follow from Lemma 2.2.1. So suppose
that n − i > 1. For ε, η ∈ {−,+}, by induction hypothesis with ∂εn−1(X) and ∂ηn−1(Y ), we get
X−n−1,ε∩Y

+
n−1,η = ∅. Therefore, (X−n−1,−∪X

−
n−1,+)∩ (Y +

n−1,−∪Y
+
n−1,+) = ∅. We moreover obtain

that (X−j,−∪X
−
j,+)∩ (Y +

j,−∪Y
+
j,+) = ∅ for j ∈ N with i < j < n−1. Let Z = ∂+

n−1(X)∗i ∂−n−1(Y ).
By induction, Z is a (n−1)-cell and Zn−1 = Xn−1,+ ∪ Yn−1,−. Using Theorem 2.1.1(c), we get
that X−n ∩ Y +

n = ∅ which concludes the proof of (i).
For (ii), we already know that ∂−n−1(X) ∗i ∂−n−1(Y ) and ∂+

n−1(X) ∗i ∂+
n−1(Y ) are cells by

induction. So, in order to prove that X ∗i Y is a cell, we just need to show that Xn ∪ Yn is
fork-free and moves Xn−1,− ∪ Yn−1,− to Xn−1,+ ∪ Yn−1,+. But

X+
n ∩ Y +

n = X±n ∩ Y +
n (by (i))

⊆ Zn−1 ∩ Y +
n

= ∅ (by Theorem 2.1.1(a))

and similarly, X−n ∩ Y −n = ∅, so Xn ∪ Yn is fork-free. Using the dual of Theorem 2.1.1(a) with Z
and Xn, we get

X−n ∩ (Xn−1,+ ∪ Yn−1,−) = X−n ∩ Yn−1,− = ∅.

Similarly, if Z ′ = ∂−n−1(X) ∗i ∂−n−1(Y ) then Z ′n−1 = Xn−1,− ∪ Yn−1,−. Using Theorem 2.1.1(a)
with Z ′ and Xn, we have

X+
n ∩ (Xn−1,− ∪ Yn−1,−) = X+

n ∩ Yn−1,− = ∅.

SinceXn movesXn−1,− toXn−1,+, using Lemma A.1.2, we deduce thatXn movesXn−1,−∪Yn−1,−
to Xn−1,+∪Yn−1,−. Similarly, Yn moves Xn−1,+∪Yn−1,− to Xn−1,+∪Yn−1,+. Since X−n ∩Y +

n = ∅,
by Lemma A.1.3, we have that Xn∪Yn moves Xn−1,−∪Yn−1,− to Xn−1,+∪Yn−1,+. Hence, X ∗iY
is a cell.

We can finally conclude that the ω-category of cells has a structure of ω-category given by the
identity and composition operations on cells:

Theorem 2.2.3. Let P be a torsion-free complex. (Cell(P ), ∂−, ∂+, id, ∗) is an ω-category.

Proof. We already know that Cell(P ) is a ω-globular set. By Lemma 2.2.2, the composition
operation ∗ is well-defined on composable cells. Moreover, all the axioms of ω-categories (given
in Section 1.2), follow readily from the definitions of ∂−, ∂+, id and ∗. For example, consider the
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exchange law Axiom (S-v). Given i, j, n ∈ N with i < j ≤ n and X,X ′, Y, Y ′ ∈ Cell(P )n such
that X,Y are i-composable, X,X ′ are j-composable and Y, Y ′ are j-composable, let

Z = (X ∗j Y ) ∗i (X ′ ∗j Y ′) and Z ′ = (X ∗i X ′) ∗j (Y ∗i Y ′).

One then easily verifies that Zk,ε = Z ′k,ε for k ≤ n and ε ∈ {−,+}, so Z = Z ′. Thus, Cell(P )

satisfies Axiom (S-v), and the other axioms are shown as easily.

Remark 2.2.4. For the proof of Theorem 2.2.3, we did not use Axiom (T4), so that the same
property holds for an ω-hypergraph which only satisfies Axioms (T0), (T1), (T2), (T3).

2.3 The notion of freeness Our aim is to show that the ω-category of cells on a torsion-free
complex is “free” on the generators of the ω-hypergraph. We now give a precise sense to the
notion of freeness that we want to use. It is based on the structure of polygraph [22, 4]: the
latter describes generators of strict categories of multiple dimensions, whose sources and targets
are composite of generators of lower dimensions. We recall its definition following [4], using the
intermediate notion of cellular extension. The latter describes sets of (n+1)-generators specified
on strict n-categories. A polygraph is then simply a tower of cellular extensions.

Cellular extensions Given n ∈ N, an n-cellular extension is a pair (C, S) where C is an
n-category and S is a set, together with two functions

d−n ,d
+
n : S → Cn

such that, when n > 0, ∂εn−1 ◦ d−n = ∂εn−1 ◦ d+
n for ε ∈ {−,+}. The set S is to be considered

as a set of (n+1)-generators. Given two n-cellular extensions (C, S) and (C ′, S′), a morphism
between (C, S) and (C ′, S′) is a pair (F, f) where

F : C → C ′ ∈ Catn and f : S → S′ ∈ Set

and such that dεn ◦f = Fn ◦ dεn for ε ∈ {−,+}. We write Cat+
n for the category of n-cellular

extensions. There is a canonical functor

Vn : Catn+1 → Cat+
n

which forgets the operations on the (n+1)-cells except the globular ones, and we have that

Proposition 2.3.1. The functor Vn admits a left adjoint.

Proof. By the equational definitions of strict categories, the functor Vn is a functor induced by
a morphism of sketches and thus has a left adjoint (see for example [1, Theorem 3.5]).

We write
−[−]n : Cat+

n → Catn+1

for such a left adjoint, or even −[−] when there is no ambiguity on n. This functor maps an
n-cellular extension (C, S) to its free extension C[S]. In fact, the functor −[−] can be chosen so
that the canonical morphism

C → C[S]≤n

is the identity for every (C, S) ∈ Cat+
n . The reason is that the theory of strict categories is

truncable in the sense of [2] (see for example [7, Proposition 1.3.2.10]). Given (C, S) ∈ Cat+
n

and g ∈ S, we often abuse notation and write g for the embedding of g in C[S].
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Polygraphs For n ∈ N, we define inductively on n the notion of an n-polygraph P together
with a free n-category P∗ on P:

– a 0-polygraph P is a set P0 and the free 0-category on P∗ is P0 (seen as a 0-category),
– an (n+1)-polygraph P is given by an n-polygraph P≤n together with an n-cellular exten-

sion (P≤n,Pn+1) and the free (n+1)-category P∗ on P is the free extension (P≤n)∗[Pn+1].

By induction on n, we naturally define a notion of morphism between n-polygraphs: a morphism
between 0-polygraphs is simply a function between sets, and a morphism of (n+1)-polygraphs is
the data of a morphism between the underlying n-polygraphs together with a morphism between
the underlying n-cellular extensions. Thus, for every n ∈ N we obtain a category Poln of
n-polygraphs, and a functor

(−)∗ : Poln → Catn .

Remark 2.3.2. An n-polygraph P can alternatively be described as a diagram in Set of the form

P0 P1 P2 . . . Pn−1 Pn

P∗0 P∗1 . . . P∗n−2 P∗n−1

e0

d−0

d−0
e1

d−1

d−1 e2

d−n−2

d−n−2
en

d−n−1

d−n−1
∂−0

∂+0

∂−1

∂+1

∂−n−2

∂+n−2

where, for i ∈ Nn−1, P∗i is the set of cells freely generated on the generators of dimensions ≤ i

with associated embedding ei : Pi → P∗i , and such that

∂−i ◦ d−i+1 = ∂−i ◦ d+
i+1 and ∂+

i ◦ d−i+1 = ∂+
i ◦ d+

i+1

for i ∈ Nn−1. This description of polygraphs can already be found in the original paper of
Burroni [4].

These constructions naturally extend to ω: an ω-polygraph P is a sequence (Pk)k≥0 where Pk

is a k-polygraph such that (Pk+1)≤k = Pk and the free ω-category on P is defined by

P∗ = colim
k→ω

((Pk)∗)↑ω,k .

where, for every k ∈ N,

(−)↑ω,k : Catk → Catω

is the left adjoint to the truncation functor (−)≤k : Catω → Catk. The notion of morphism of
ω-polygraph is defined as expected and we obtain a category Polω of ω-polygraphs together with
a functor (−)∗ : Polω → Catω.

2.4 Freeness of the ω-category of cells Here, we prove that the ω-category of cells on a
torsion-free complex is free in the sense introduced previously, i.e., that it is isomorphic to the
free ω-category on a certain polygraph. For this purpose, we introduce the canonical cellular
extensions from which this polygraph is built from, and show inductively that the adequate
restrictions of the ω-category of cells are isomorphic to the free extensions on these cellular
extensions.
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The canonical cellular extension Let P be a torsion-free complex P . Given n ∈ N, there
is an n-cellular extension

Cell(P )≤n Pn+1

∂−n ◦〈−〉

∂+n ◦〈−〉

where, for x ∈ Pn+1 and ε ∈ {−,+}, ∂εn ◦ 〈−〉(x) = ∂εn(〈x〉), which is an n-cell by Axiom (T2).
We write Cell(P )n+ for the (n+1)-category

Cell(P )n+ = Cell(P )≤n[Pn+1]

i.e., the image of (Cell(P )≤n, Pn+1) ∈ Cat+
n by the functor −[−]n : Cat+

n → Catn+1. There is
a morphism of n-cellular extension

(Cell(P )≤n, Pn+1)
(idCell(P )≤n

,〈−〉)
−−−−−−−−−−→ (Cell(P )≤n,Cell(P )n+1)

which maps x ∈ Pn+1 to 〈−〉(x) = 〈x〉. By the universal property of Cell(P )n+ as a free
extension, it induces a unique (n+1)-functor

evaln : Cell(P )n+ → Cell(P )≤n+1

often written eval for conciseness, such that evaln≤n = idCell(P )≤n
and eval(g) = g for all g ∈ Pn+1.

Freeness of Cell(P ) We can now assert the freeness of the ω-category Cell(P ). First, we
show that it is inductively built from the canonical free extensions:

Theorem 2.4.1. Given a torsion-free complex P , for n ∈ N, the (n+1)-functor evaln is an
isomorphism between Cell(P )n+ and Cell(P )≤n+1.

Proof. See the proof in Appendix B.5.

By an inductive argument, we conclude that the ω-category of cells is freely generated on the
ω-polygraph made from the atoms:

Corollary 2.4.2. Given a torsion-free complex P , there are unique polygraph Q ∈ Polω and
ω-functor

F : Q∗ → Cell(P ) ∈ Catω

such that Qn = Pn for n ∈ N and F (g) = 〈g〉 for g ∈ P . Moreover, F is an isomorphism.

Proof. We show by induction on n ∈ N that there are unique n-polygraph Qn and morphism

Fn : (Qn)∗ → Cell(P )≤n

such that Qnk = Pk for k ∈ N and Fn(g) = 〈g〉 for g ∈ Qn, and that Fn is moreover an
isomorphism. This is clear for n = 0. So suppose that n > 0. If Qn and Fn as above exist, then,
by the unicity property of the induction hypothesis, we have Qn≤n−1 = Qn−1 and Fn≤n−1 = Fn−1.
The n-functor Fn is then uniquely defined by the universal property of (Qn)∗ = (Qn−1)∗[Qn]

given by Proposition 2.3.1 knowing that Fn(g) = 〈g〉 for g ∈ Qnn. Moreover, the n-polygraph
structure on Qn is unique since

dεn−1(g) = (Fn−1)−1 ◦ ∂εn−1(〈g〉) (15)
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for g ∈ Qnn and ε ∈ {−,+}. Finally, Fn is an isomorphism since, by Theorem 2.4.1, the func-
tor (evaln−1)−1 ◦ Fn is the image by −[−]n−1 of the isomorphism

(Fn−1, 1Pn) : ((Qn−1)∗,Qnn)→ (Cell(P )≤n−1, Pn) ∈ Cat+
n−1

so that the unicity of Qn and Fn, and the fact that Fn is an isomorphism are proved. For
existence, one defines the n-polygraph structure on Qn from the one on Qn−1 and with (15),
and the n-functor Fn is then defined by extending Fn−1, using the universal property of (Qn)∗.
By the definition of Polω, we obtain unique ω-polygraph Q together with a unique ω-functor
F : Q∗ → Cell(P ) as wanted.

3. Relating formalisms

In this section, we relate all the introduced formalisms together. In particular, we show that the
formalism of torsion-free complexes is a Rosetta stone which can express the other ones (after
correcting the defect of parity complexes and pasting schemes). Embedding parity complexes
into torsion-free complexes is almost direct, since they share the same definition of cells and
several axioms. However, additional developments are needed for translating pasting schemes
and augmented directed complexes into torsion-free complexes. Indeed, in the first case, one
needs to show that a definition of cells analogous to the ones of pasting schemes can be used
for torsion-free complexes before being able to relate the axioms of the two formalisms. In the
second case, one needs to link the abelian group setting of augmented directed complexes to the
set setting of torsion-free complexes.

We first introduce two other set-based definitions of cells for torsion-free complexes: closed-
well-formed fgs’s and maximal-well-formed fgs’s (Section 3.1). The former is similar to the
well-formed fgs of pasting schemes, while the latter is a convenient intermediate between the
cells of torsion-free complexes and closed-well-formed fgs’s. The ω-categories of cells induced
by these two other definitions is then isomorphic to the one obtained with the initial definition
(Theorems 3.1.18 and 3.1.21). Using the more natural definition of cells as closed-well-formed
fgs’s, we give a characterization of polygraphs that can be represented by torsion-free complex
(Theorem 3.1.22). Next, we show the embeddings of parity complexes (Section 3.2) and past-
ing schemes (Section 3.3) into torsion-free complexes. Then, we develop the relation between
the set-based and group-based definitions of cells before showing the embedding augmented di-
rected complexes into torsion-free complexes (Section 3.4). Finally, we illustrate that those are
the only embeddings between the formalisms by providing counter-examples to the other ones
(Section 3.5).

3.1 Closed and maximal cells In this section, we introduce two other set-based definitions
of cells for torsion-free complexes, namely closed-well-formed fgs’s and maximal-well-formed fgs’s,
together with identity and compositions operations for them. We moreover provide translation
functions between the different definitions of cells, and show that the ω-categories of cells with
the new definitions are isomorphic to the one with the original definition of cells (Theorems 3.1.18
and 3.1.21). Finally, using this different representation, we characterize the polygraphs that can
be represented by torsion-free complexes (Theorem 3.1.22).
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Definitions Let P be an ω-hypergraph. Recall the definitions of fgs and closed fgs from
Section 1.5. We write

Closed(P )

for the graded set of closed fgs’s of P . Given an n-fgs X of P , x ∈ X is said to be maximal in
X when for all y ∈ P such that xR y and x 6= y, it holds that y 6∈ X. We write max(X) for the
n-fgs of P made of the maximal elements of X. The n-fgs X is then said to be maximal when
max(X) = X. We write

Max(P )

for the graded set of maximal fgs. Given n ∈ N and X an n-pre-cell of P , we write ∪X for the
n-fgs of P given by

∪X =
⋃
i∈Nn

(Xi,− ∪Xi,+).

Maximality lemma Let P be an ω-hypergraph. In order to relate the cells of Cell(P ) with
the fgs’s of Max(P ), we give here a simple criterion to characterize the maximal elements in a
cell of Cell(P ):

Lemma 3.1.1 (Maximality lemma). Suppose that P satisfies Axioms (T0), (T1), (T2) and
(T3). Let k, n ∈ N with k < n and X ∈ Cell(P )n. For x ∈ Xk,− (resp. x ∈ Xk,+) with x not
maximal in ∪X, we have x ∈ X∓k+1,− (resp. x ∈ X±k+1,+).

Proof. We prove this property by induction on l = n− k. By symmetry, we only prove the case
where x ∈ Xk,−. Since x is not maximal, by definition of R, there exist

p ∈ N∗, η ∈ {−,+}, x0, x1, . . . , xp ∈ P and ε1, . . . , εp ∈ {−,+}

such that
x0 = x, xp ∈ Xk+p,η and xi ∈ xεi+1

i+1 for i ∈ Np−1.

Suppose that p = 1. By Lemma A.1.1, we haveXk,−∩X+
k+1,η = ∅. Since x ∈ xε11 and x1 ∈ Xk+1,η,

we have ε1 = − and x ∈ X∓k+1,η. Hence, by Lemma A.1.5, x ∈ X∓k+1,−.

Otherwise, suppose that p > 1. Let y ∈ Xk+p,η be the smallest of Xk+p,η for /Xk+p,η such
that yRxp−1. If xp−1 ∈ y−, then, by minimality of y, there is no ȳ ∈ Xk+p,η such that xp−1 ∈ ȳ+.
Therefore, xp−1 ∈ X∓k+p,η ⊆ Xk+p−1,−. Hence, x is not minimal in ∂−k+p−1(X) and we conclude
by induction. We now consider the case xp−1 ∈ y+. Let

G = {z ∈ Xk+p,η | z /Xk+p,η y} ∪ {y} and Y = Act(∂−k+p−1(X), G).

We have x ∈ Yk,− and xp−1 ∈ Yk+p−1. Moreover, by Theorem 2.1.1, Y is a cell. By induc-
tion hypothesis, we have x ∈ Y ∓k+1,−. Since Xk+1,− and Yk+1,− both move Xk,− to Xk,+, by
Lemma A.1.5, we have x ∈ X∓k+1,− which concludes the proof.

We then have a simple description of the set of maximal elements of a cell of Cell(P ):

Lemma 3.1.2. Suppose that P satisfies Axioms (T0), (T1), (T2) and (T3). Let k, n ∈ N with
k < n, an n-cell X ∈ Cell(P )n and ε ∈ {−,+}. Then, max(∪X) ∩ Pk = Xk,− ∩Xk,+.

Proof. By Lemmas 3.1.1 and A.1.6,

max(∪X) ∩ Pk = (Xk,− \X∓k+1,−) ∪ (Xk,+ \X±k+1,+) = Xk,− ∩Xk,+. .
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The translation functions We now provide translation functions between the three graded
sets Cell(P ), Max(P ) and Closed(P ) and introduce several properties on them. The functions
we introduce are the ones represented on the diagram

Max(P )

PCell(P ) Closed(P )

TM
PC

TM
Cl

TPC
Cl

TPC
M

TCl
M

TCl
PC

and are defined as follows:
– TPC

M : PCell(P )→ Max(P ) is defined by TPC
M (X) = max(∪X) for X ∈ PCell(P ),

– TM
PC : Max(P ) → PCell(P ) is such that, for n ∈ N and X ∈ Max(P ), TM

PC(X) is the
n-pre-cell Y of P defined by Yn = Xn, and, for i ∈ Nn−1,

Yi,− = Xi ∪ Y ∓i+1,− Yi,+ = Xi ∪ Y ±i+1,+,

– TM
Cl : Max(P )→ Closed(P ) is defined by TM

Cl(X) = R(X) for X ∈ Max(P ),
– TCl

M : Closed(P )→ Max(P ) is defined by TCl
M(X) = max(X) for X ∈ Closed(P ),

– TPC
Cl : PCell(P )→ Closed(P ) is defined by TPC

Cl (X) = R(∪X) for X ∈ PCell(P ),
– TCl

PC : Closed(P )→ PCell(P ) is defined by TCl
PC = TM

PC ◦TCl
M .

These operations can be related to each other, as state the following lemmas.

Proposition 3.1.3. We have TM
Cl ◦TCl

M = 1Closed(P ) and TCl
M ◦TM

Cl = 1Max(P ).

Proof. Let X ∈ Closed(P ). By the definitions, we have TM
Cl ◦TCl

M(X) ⊆ X. Moreover, given
x ∈ X, since X is finite, there exists y ∈ max(X) with yRx. It implies that y ∈ TCl

M(X) and
x ∈ TM

Cl ◦TCl
M(X). Therefore, X ⊆ TM

Cl ◦TCl
M(X).

For the other equality, note that, for all n-fgs X of P , R(X) has the same maximal elements
as X. Thus, TCl

M ◦TM
Cl = 1Max(P ).

Lemma 3.1.4. Suppose that P satisfies Axioms (T0), (T1), (T2) and (T3). Let n ∈ N,
X ∈ Cell(P )n and Y = TPC

M (X). Then, Yn = Xn and Yi = Xi,− ∩Xi,+ for i ∈ Nn−1.

Proof. This is a direct consequence of Lemma 3.1.2.

Proposition 3.1.5. Suppose that P satisfies Axioms (T0), (T1), (T2) and (T3). Then, given
a cell X ∈ Cell(P ), we have TM

PC ◦TPC
M (X) = X.

Proof. Let n ∈ N, X ∈ Cell(P )n, Y = TPC
M (X) and Z = TM

PC(Y ). For i ∈ Nn and ε ∈ {−,+}, we
show that Xi,ε = Zi,ε by a decreasing induction on i. By Lemma 3.1.4, we have Zn = Yn = Xn

and, for i ∈ Nn−1, by Lemma A.1.7, we have

Zi,− = Yi ∪ Z∓i+1,− = (Xi,− ∩Xi,+) ∪X∓i+1,− = Xi,−.

Similarly, Zi,+ = Xi,+, so X = Z. Hence, TM
PC ◦TPC

M (X) = X.

Proposition 3.1.6. We have TM
Cl ◦TPC

M = TPC
Cl .

Proof. It readily follows from the definitions.
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Sources and targets Let P be an ω-hypergraph. We now define source and target operations
for Closed(P ) and Max(P ). Given n ∈ N∗ and X ∈ Closed(P ), we define the source ∂̄−n−1(X)

(resp. target ∂̄+
n−1(X)) of X as the closed (n−1)-fgs Y defined by

Y = R(X \ (Xn ∪ R(X+
n ))) (resp. R(X \ (Xn ∪ R(X−n )))).

Respectively, given n ∈ N∗ and a maximal n-fgs X, we define the source ∂̃−n−1(X) (resp. tar-
get ∂̃+

n−1(X)) of X as the maximal (n−1)-fgs Y such that

Yn−1 = Xn−1 ∪X∓n (resp. Yn−1 = Xn−1 ∪X±n ) and Yi = Xi for i ∈ Nn−2.

We have the following compatibility results between the source and target operations and the
translation functions:

Proposition 3.1.7. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, for n ∈ N∗,
ε ∈ {−,+} and X ∈ Cell(P )n, we have TPC

M (∂εn−1(X)) = ∂̃εn−1(TPC
M (X)).

Proof. Let Y = TPC
M (∂εn−1(X)), X ′ = TPC

M (X) and Z = ∂̃εn−1(X ′). By Lemma 3.1.4, we have
Yn−1 = Xn−1,ε and Yi = Xi,− ∩Xi,+ for i ∈ Nn−1. Moreover, X ′n = Xn and X ′i = Xi,− ∩Xi,+

for i ∈ Nn−1. If ε = −, then, by Lemma A.1.7,

Zn−1 = (Xn−1,− ∩Xn−1,+) ∪X∓n = Xn−1,−

and Zi = X ′i = Xi,− ∩Xi,+ for i ∈ Nn−1, so Y = Z. Similarly, if ε = +, we have Y = Z.

Proposition 3.1.8. For n ∈ N∗, ε ∈ {−,+} and X ∈ Max(P )n, we have

TM
Cl(∂̃

ε
n−1(X)) = ∂̄εn−1(TM

Cl(X)).

Proof. By symmetry, it is sufficient to handle the case ε = −. Let Y = TM
Cl(∂̃

−
n−1(X)) and

Z = ∂̄−n−1(TM
Cl(X)). By unfolding the definitions, we have

Y = R((X \Xn) ∪X∓n ) and Z = R(R(X) \ (Xn ∪ R(X+
n ))).

In order to show that Y ⊆ Z, we only need to prove that Y ′ ⊆ Z where Y ′ = (X \Xn) ∪X∓n .
First, we have that Y ′ ⊆ R(X). Moreover,

Y ′ ∩ (Xn ∪ R(X+
n )) = ((X \Xn) ∪X∓n ) ∩ (Xn ∪ R(X+

n ))

= ((X \Xn) ∪X∓n ) ∩ R(X+
n )

= (X \Xn) ∩ R(X+
n )

= X ∩ R(X+
n ) = ∅ (since X is maximal).

So Y ′ ⊆ Z, which implies that Y ⊆ Z. Similarly, in order to show that Z ⊆ Y , we only need to
prove that Z ′ ⊆ Y where Z ′ = R(X) \ (Xn ∪ R(X+

n )). But

Z ′ ⊆ Y ⇔ R(X) ⊆ Y ∪Xn ∪ R(X+
n )

and
Y ∪Xn ∪ R(X+

n ) = R((X \Xn) ∪X∓n ) ∪Xn ∪ R(X+
n )

= R((X \Xn) ∪X∓n ∪X+
n ) ∪Xn

= R((X \Xn) ∪X−n ∪X+
n ) ∪Xn

= R((X \Xn) ∪X−n ∪X+
n ∪Xn) = R(X).

So Z ′ ⊆ Y , which implies that Z ⊆ Y . Hence, Y = Z, which concludes the proof.
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Proposition 3.1.9. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, for n ∈ N∗,
ε ∈ {−,+} and X ∈ Cell(P )n, TPC

Cl (∂εn−1(X)) = ∂̄εn−1(TPC
Cl (X)).

Proof. We compute that

TPC
Cl (∂εn−1(X)) = TM

Cl ◦TPC
M (∂εn−1(X)) (by Proposition 3.1.6)

= TM
Cl(∂̃

ε
n−1(TPC

M (X))) (by Proposition 3.1.7)

= ∂̄εn−1(TM
Cl ◦TPC

M (X)) (by Proposition 3.1.8)

= ∂̄εn−1(TPC
Cl (X)).

Identities and compositions Let P be an ω-hypergraph. Here, we define identity and com-
position operations for the graded sets Max(P ) and Closed(P ), and prove some compatibility
results with the translations functions.

Given n ∈ N and a closed (resp. maximal) n-fgs X, we define the identity of X as the closed
(resp. maximal) (n+1)-fgs idn+1(X) defined by

idn+1(X) = (X0, . . . , Xn, ∅).

Given i, n ∈ N with i < n and two maximal n-fgs X,Y , we define the maximal i-composition of
X and Y as the maximal n-fgs X ∗Mi Y defined by

X ∗Mi Y = max(R(X) ∪ R(Y )).

Respectively, given i, n ∈ N with i < n and two closed n-fgs X,Y , we define the closed i-
composition of X and Y as the closed n-fgs X ∗Cl

i Y defined by

X ∗Cl
i Y = X ∪ Y.

For simplicity, we sometimes write ∗Cl (resp. ∗M) for ∗Cl
i (resp. ∗Mi ). We now prove several

compatibility results of the identity and composition operations with the translation functions.

Proposition 3.1.10. For n ∈ N and an n-cell X ∈ Cell(P ), TPC
Cl (idn+1(X)) = idn+1(TPC

Cl (X)).

Proof. It readily follows from the definitions.

Proposition 3.1.11. For n ∈ N and an n-cell X ∈ Cell(P ), TPC
M (idn+1(X)) = idn+1(TPC

M (X)).

Proof. It readily follows from the definitions.

Proposition 3.1.12. For i, n ∈ N with i < n, and i-composable n-cells X and Y in Cell(P ),

TPC
Cl (X ∗i Y ) = TPC

Cl (X) ∗Cl
i TPC

Cl (Y ).

Proof. Let Z = X ∗i Y . We have TPC
Cl (X ∗i Y ) = R(∪Z) and

TPC
Cl (X) ∗Cl

i TPC
Cl (Y ) = R(∪X) ∪ R(∪Y ) = R((∪X) ∪ (∪Y )).

By definition of composition, ∪Z ⊆ (∪X) ∪ (∪Y ), so TPC
Cl (X ∗i Y ) ⊆ TPC

Cl (X) ∗Cl
i TPC

Cl (Y ). For
the other inclusion, note that Xj,ε ⊆ Zj,ε for j ∈ Nn and ε ∈ {−,+} with (j, ε) 6= (i,+), and

Xi,+ = (Xi,− ∪X+
i+1,−) \X−i+1,− ⊆ Zi,− ∪ Z

+
i+1,− ⊆ R(∪Z)

so ∪X ⊆ R(∪Z). Similarly, ∪Y ⊆ R(∪Z), thus (∪X) ∪ (∪Y ) ⊆ R(∪Z), which implies that

TPC
Cl (X) ∗Cl

i TPC
Cl (Y ) ⊆ TPC

Cl (X ∗i Y ).
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Proposition 3.1.13. For i, n ∈ N with i < n, and X,Y ∈ Closed(P )n,

TCl
M(X ∗Cl

i Y ) = TCl
M(X) ∗Mi TCl

M(Y ).

Proof. We compute that

TCl
M(X) ∗Mi TCl

M(Y ) = max(R(TCl
M(X)) ∪ R(TCl

M(Y )))

= max(X ∪ Y ) (by Proposition 3.1.3)

= TCl
M(X ∗Cl

i Y ).

Proposition 3.1.14. For i, n ∈ N with i < n, and i-composable n-cells X and Y of P ,

TPC
M (X ∗i Y ) = TPC

M (X) ∗Mi TPC
M (Y ).

Proof. We compute that

TPC
M (X ∗i Y ) = TCl

M ◦TPC
Cl (X ∗i Y ) (by Propositions 3.1.3 and 3.1.6)

= TCl
M(TPC

Cl (X) ∗Cl
i TPC

Cl (Y )) (by Proposition 3.1.9)

= TCl
M ◦TPC

Cl (X) ∗Mi TCl
M ◦TPC

Cl (Y ) (by Proposition 3.1.13)

= TPC
M (X) ∗Mi TPC

M (Y ) (by Propositions 3.1.3 and 3.1.6).

Well-formed cells We defined above source, target, identity and composition operations for
both Closed(P ) and Max(P ). However, these operations are not expected to equip the graded
sets Closed(P ) and Max(P ) with a structure of ω-category (in fact, not even a structure of
ω-globular set). In order to obtain an ω-category, we need to restrict to subsets of “well-formed”
elements of Closed(P ) and Max(P ). Then, we can show that the two induced ω-category of cells
are isomorphic to Cell(P ).

Let P be an ω-hypergraph. Given n ∈ N and X ∈ Closed(P )n, we say that X is closed-well-
formed when

– Xn is fork-free,
– ∂̄−n−1(X) and ∂̄+

n−1(X) are closed-well-formed,
– if n ≥ 2, ∂̄−n−2 ◦ ∂̄

−
n−1(X) = ∂̄−n−2 ◦ ∂̄

+
n−1(X) and ∂̄+

n−2 ◦ ∂̄
−
n−1(X) = ∂̄+

n−2 ◦ ∂̄
+
n−1(X).

We write ClosedWF(P ) for the graded set of closed-well-formed fgs of P . Respectively, given
n ∈ N and X ∈ Max(P )n, we say that X is maximal-well-formed when

– Xn is fork-free,
– ∂̃−n−1(X) and ∂̃+

n−1(X) are maximal-well-formed,
– if n ≥ 2, ∂̃−n−2 ◦ ∂̃

−
n−1(X) = ∂̃−n−2 ◦ ∂̃

+
n−1(X) and ∂̃+

n−2 ◦ ∂̃
−
n−1(X) = ∂̃+

n−2 ◦ ∂̃
+
n−1(X).

We write MaxWF(P ) for the graded set of maximal-well-formed fgs of P . We now aim at
proving that both ClosedWF(P ) and MaxWF(P ) are ω-categories isomorphic to Cell(P ) when P
satisfies enough axioms of torsion-free complexes. We first show this property for MaxWF(P )

after introducing several technical results.

Lemma 3.1.15. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, for n ∈ N and
X ∈ Cell(P )n, we have TPC

M (X) ∈ MaxWF(P )n.
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Proof. We proceed by induction on n. If n = 0, the result is trivial. So suppose that n > 0 and
let Y = TPC

M (X). Since Yn = Xn, Yn is fork-free. Moreover, by Proposition 3.1.7, we have

∂̃εn−1(Y ) = TPC
M (∂εn−1(X)) for ε ∈ {−,+}.

By the induction hypothesis, ∂̃εn−1(Y ) is maximal-well-formed. And, when n ≥ 2, for η ∈ {−,+},
we have

∂̃ηn−2 ◦ ∂̃
−
n−1(Y ) = TPC

M (∂ηn−2 ◦ ∂
−
n−1(X)) (by Proposition 3.1.7)

= TPC
M (∂ηn−2 ◦ ∂

+
n−1(X))

= ∂̃ηn−2 ◦ ∂̃
+
n−1(Y ).

Hence, Y is maximal-well-formed.

Lemma 3.1.16. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, given n ∈ N and an
fgs X ∈ MaxWF(P )n, there exists an n-cell Y ∈ Cell(P )n such that TPC

M (Y ) = X.

Proof. We proceed by induction on n. If n = 0, the result is trivial. So suppose that n > 0.
By induction, let S, T ∈ Cell(P )n−1 be such that TPC

M (S) = ∂̃−n−1(X) and TPC
M (T ) = ∂̃+

n−1(X).
When n ≥ 2, for ε ∈ {−,+}, we have

∂εn−2(S) = TM
PC ◦TPC

M (∂εn−2(S)) (by Proposition 3.1.5)

= TM
PC(∂̃εn−2(TPC

M (S))) (by Proposition 3.1.7)

= TM
PC(∂̃εn−2 ◦ ∂̃−n−1(X))

= TM
PC(∂̃εn−2 ◦ ∂̃+

n−1(X)) (because X is maximal-well-formed)

= TM
PC(∂̃εn−2(TPC

M (T )))

= TM
PC ◦TPC

M (∂εn−2(T )) = ∂εn−2(T ).

Moreover,
(Sn−1 ∪X+

n ) \X−n = (Xn−1 ∪X∓n ∪X+
n ) \X−n

= Xn−1 ∪X±n = Tn−1.

Similarly, (Tn−1 ∪X−n ) \X+
n = Sn−1 so Xn moves Sn−1 to Tn−1. Thus, the n-pre-cell Y defined

by Yn = Xn, Yn−1,− = Sn−1, Yn−1,+ = Tn−1 and Yi,δ = Si,δ for i ∈ Nn−2 and δ ∈ {−,+}, is an
n-cell. Let Z = TPC

M (Y ). We have Zn = Xn and

∂̃−n−1(Z) = ∂̃−n−1(TPC
M (Y ))

= TPC
M (∂−n−1(Y )) (by Proposition 3.1.7)

= TPC
M (S) = ∂̃−n−1(X).

So, by definition of ∂̃−, we have Zn−1 ∪ X∓n = Xn−1 ∪ X∓n and Zi = Xi for i ∈ Nn−2. Since
X and Z are maximal, we have Xn−1 ∩ X∓n = Zn−1 ∩ X∓n = ∅. Hence, Xn−1 = Zn−1 and
X = Z = TPC

M (Y ) which concludes the proof.

Lemma 3.1.17. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, TPC
M induces a bijection

between Cell(P ) and MaxWF(P ).

Proof. By Lemma 3.1.16, TPC
M : Cell(P )→ MaxWF(P ) is surjective and, by Proposition 3.1.5, it

is injective, so it is bijective.
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We can now deduce that maximal-well-formed fgs’s are an adequate alternative definition of cells
for torsion-free complexes:

Theorem 3.1.18. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, MaxWF(P ) is an
ω-category and TPC

M induces an isomorphism between Cell(P ) and MaxWF(P ).

Proof. By definition of MaxWF(P ), the functions ∂̃−k , ∂̃
+
k for k ∈ N equip MaxWF(P ) with

a structure of ω-globular set. We first prove that the composition operation ∗M restricts to
MaxWF(P ). Let i, n ∈ N with i < n, and X,Y ∈ MaxWF(P )n be such that ∂̃+

i (X) = ∂̃−i (Y ).
By Lemma 3.1.17, there exist X ′, Y ′ ∈ Cell(P )n such that TPC

M (X ′) = X and TPC
M (Y ′) = Y . By

Proposition 3.1.7, we have

TPC
M (∂+

i (X ′)) = ∂̃+
i (X) = ∂̃−i (Y ) = TPC

M (∂−i (Y ′)),

and, by Lemma 3.1.17, ∂+
i (X ′) = ∂−i (Y ′) so X ′ and Y ′ are i-composable. By Lemma 3.1.17, we

have TPC
M (X ′ ∗i Y ′) ∈ MaxWF(P ) and, by Proposition 3.1.14, X ∗Mi Y ∈ MaxWF(P ).

By Propositions 3.1.7, 3.1.11 and 3.1.14, TPC
M commutes with the source, target, identity

and composition operations and is a bijection when restricted to MaxWF(P ), so that MaxWF(P )

is an ω-category since Cell(P ) is (by Theorem 2.2.3 and Remark 2.2.4), and TPC
M induces an

isomorphism of ω-categories.

We prove a similar property for closed-well-formed fgs’s after showing some technical results.

Lemma 3.1.19. TM
Cl induces a bijection between MaxWF(P ) and ClosedWF(P ).

Proof. We already know that TM
Cl is a bijection by Proposition 3.1.3. For n ∈ N, we show that TM

Cl

sends a maximal-well-formed n-fgs X to a closed-well-formed n-fgs by induction on n. If n = 0,
the result is trivial. So suppose that n > 0. Let Y = TM

Cl(X). Then, Yn = Xn is fork-free and,
for ε ∈ {−,+}, we have ∂̄εn−1(Y ) = TM

Cl(∂̃
ε
n−1(X)) by Proposition 3.1.8, and it is closed-well-

formed by induction. Moreover, when n ≥ 2,

∂̄εn−2 ◦ ∂̄−n−1(Y ) = TM
Cl(∂̃

ε
n−2 ◦ ∂̃−n−1(X)) (by Proposition 3.1.8)

= TM
Cl(∂̃

ε
n−2 ◦ ∂̃+

n−1(X))

= ∂̄εn−2 ◦ ∂̄+
n−1(Y )

so Y is closed-well-formed. Similarly, TCl
M sends closed-well-formed fgs to maximal-well-formed

fgs, which concludes the proof.

Lemma 3.1.20. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, TPC
Cl induces a bijection

between Cell(P ) and ClosedWF(P ).

Proof. The result is a consequence of Proposition 3.1.6 and Lemmas 3.1.17 and 3.1.19.

We can now conclude that closed-well-formed fgs’s are an adequate alternative definition of cells
for torsion-free complexes:

Theorem 3.1.21. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, ClosedWF(P ) is an
ω-category and TPC

Cl induces an isomorphism between Cell(P ) and ClosedWF(P ).

Proof. By a proof similar to the one of Theorem 3.1.18, using Propositions 3.1.9, 3.1.10 and 3.1.12
and Lemma 3.1.20.
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From polygraphs to torsion-free complexes We saw earlier (Corollary 2.4.2) that torsion-
free complexes induce free ω-categories on a canonical ω-polygraph. However, in practice, we
are often interested in the inverse operation, i.e., representing the cells of an ω-category freely
generated on an ω-polygraph by the cells of a torsion-free complex. Here, we define the ω-hyper-
graph PH associated to an ω-polygraph P and, in the case where PH is a torsion-free complex, give
conditions under which the ω-category ClosedWF(PH) is isomorphic to the free ω-category P∗.
In order to define PH, we will use the support function introduced by Makkai for free strict
categories [16]. Given a polygraph P, this function maps a cell of P∗ to the set of generators “it
involves”. We first recall its definition before dealing with the other matters.

Given a set S, we write Pf(S) for the set of finite subsets of S. Given n ∈ N ∪ {ω} and an
n-polygraph P, we define the support function

suppP : P∗ → Pf(ti∈NnPi)

or simply, supp, as the unique function such that, given u ∈ P∗,
– supp(u) = {g} when u = g for some g ∈ P0,
– supp(u) = {g} ∪ supp(∂−k−1(g)) ∪ supp(∂+

k−1(u)) when u = g for some k ∈ N∗n and g ∈ Pk,
– supp(u) = supp(u′) when u = idu′ for some u′ ∈ P∗,
– supp(u) = supp(u1) ∪ supp(u2) when u = u1 ∗i u2 for some i, k ∈ N∗n with i < k and
i-composable u1, u2 ∈ P∗k

The above definition completely defines supp, since the cells of P∗ are precisely the classes of
formal composites of generators of P. It can moreover be shown well-defined (see the original
proof of Makkai [16, Lemma 5] or [7, Proposition 2.4.3.2]).

Given P ∈ Polω, we define an ω-hypergraph PH by putting PH
n = Pn for n ∈ N and,

when n > 0,
g− = supp(d−n−1(g)) ∩ Pn−1 g+ = supp(d+

n−1(g)) ∩ Pn−1

for g ∈ PH
n . Under this definition, suppP can be seen as a function P∗ → Closed(PH). We then

have the following criterion to know whether P∗ can be faithfully represented by the closed-well-
formed fgs’s of PH:

Theorem 3.1.22. Let P ∈ Polω such that PH is a torsion-free complex. Then, suppP is the
underlying function of an ω-functor F : P∗ → ClosedWF(PH) if and only if, for n ∈ N∗, g ∈ Pn
and ε ∈ {−,+}, we have supp(dεn−1(g)) = R(gε). In this case, F is moreover an isomorphism.

Remark 3.1.23. If the condition of Theorem 3.1.22 is satisfied, then TCl
PC ◦F : P∗ → Cell(PH) is

the unique isomorphism given by Corollary 2.4.2 which maps g ∈ P to 〈g〉 ∈ Cell(PH).

Proof. If suppP induces an ω-functor F : P∗ → ClosedWF(PH), then we have

supp(dεn−1(g)) = F (dεn−1(g))

= ∂̄εn−1(F (g))

= ∂̄εn−1(R(g))

= R(gε) (by definition of ∂̄εn−1)

which proves the necessity. For sufficiency, we prove by induction on n ∈ N that suppP is the
underlying function of an n-functor Fn : (P∗)≤n → ClosedWF(PH)≤n. This is clear for n = 0,
and, when n > 0, we define Fn by extending Fn−1 and so that Fn(g) = R(g) using the universal
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property of (P∗)≤n = (P∗)≤n−1[Pn]. This is possible since the condition of the statement implies
that

Fn−1(dεn−1(g)) = ∂̄εn−1(R(g))

for g ∈ Pn and ε ∈ {−,+}. We then obtain an ω-functor F : P∗ → ClosedWF(PH) using
Remark 1.2.1, which satisfies that F (g) = R(g) for g ∈ P. Then, by Theorem 3.1.21, TCl

PC ◦F is
an ω-functor P∗ → Cell(P ) which maps g to 〈g〉. It is then an isomorphism by Corollary 2.4.2,
so that F is an isomorphism too.

Example 3.1.24. Let P be the ω-polygraph with

P0 = {x, y, z} P1 = {f : x→ y g, g′ : y → z} P2 = {α, α′ : g ⇒ g′}
P3 = {A : id2

f ∗0 α⇒ id2
f ∗0 α′}

and Pk = ∅ for k ∈ N with k ≥ 4 as in

x y z
f

g

g′

α⇓⇓α′ and x z

f∗0g

f∗0g′

⇓ id2
f ∗0α

A
≡V x z

f∗0g

f∗0g′

⇓ id2
f ∗0α′ .

We can verify that PH is a torsion-free complex. But, by Theorem 3.1.22, the function suppP

does not induce an ω-functor P∗ → ClosedWF(PH) since

supp(d−2 (A)) = {x, y, z, f, g, g′, α} 6= {y, z, g, g′, α} = R(A−).

However, by considering a modified version of P where P3 = {A : α⇒ α′} it can be verified that
PH is still a torsion-free complex and that, by Theorem 3.1.22, the function suppP induces an
ω-functor P∗ → ClosedWF(PH) which is an isomorphism.

3.2 Embedding parity complexes In this section, we show that parity complexes are a
particular case of torsion-free complexes, under two reasonable caveats. Firstly, since parity
complexes do not require all the generators to be relevant, there are parity complexes that are not
torsion-free complexes. But, by [23, Theorem 4.2], irrelevant generators of a parity complex P do
not play any role in the generated ω-category Cell(P ), so that, by restraining P to the ω-hyper-
graph P̄ of relevant generators, we have Cell(P ) = Cell(P̄ ). Thus, it is reasonable to assume
that all the parity complexes we are considering for embedding in torsion-free complexes have
relevant generators, i.e., satisfy Axiom (T2). Secondly, as discussed in Section 1.4, general parity
complexes are not freely generated by their atoms and, since the latter property is supposed to
be the raison d’être of such structures, it is reasonable to only consider the parity complexes that
satisfy this property. We believe that Axiom (T4) is the minimal additional condition to require
for the ω-category of cells of a parity complex to be freely generated, so we will only consider
parity complexes that moreover satisfy Axiom (T4).

Under the assumptions given above, we are only left to derive Axiom (T3) from the axioms of
a parity complex. We show below that it is essentially a consequence of the tightness requirements
stated by Axiom (C5). First, we recall from [24] the link between tightness and the segment
property:
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Proposition 3.2.1 ([24, Proposition 1.4]). Let P be an ω-hypergraph. For n ∈ N∗, subsets
U, V ⊆ Pn with U tight, V fork-free and U ⊆ V , we have that U is a segment for /V .

Proof. Let x, y, z ∈ V such that x, z ∈ U and x /1
V y /V z. Then, there is w ∈ x+ ∩ y−. By

definition of tightness, since y /V z, we have y− ∩ U± = ∅. So there is ȳ ∈ U such that w ∈ ȳ−.
Since V is fork-free, y = ȳ. Hence, U is a segment for /V .

Then, we show how to derive the segment property from the axioms of parity complexes:

Lemma 3.2.2. Let P be a parity complex which satisfies Axiom (T2). Given n ∈ N and x ∈ Pn,
x satisfies the segment condition.

Proof. Let k, n ∈ N with k < n, x ∈ Pn and X be a k-cell. Suppose first that 〈x〉k,− ⊆ Xk. By
Axiom (C5), the set 〈x〉k,− is tight, so that, by Proposition 3.2.1, 〈x〉k,− is a segment for /Xk .

Now suppose that 〈x〉k,+ ⊆ Xk. By contradiction, assume that 〈x〉k,+ is not a segment
for /Xk . By definition of /Xk , there exist p > 1 and u0, . . . , up ∈ Xk such that

u0, up ∈ 〈x〉k,+, u1, . . . , up−1 6∈ 〈x〉k,+ and ui /
1
Xk
ui+1.

By definition of /1
Xk

, there exist z0, . . . , zp−1 such that zi ∈ u+
i ∩ u

−
i+1. Note that z0 ∈ 〈x〉±k,+.

Indeed, if z0 ∈ v− for some v ∈ Xk, then, sinceXk is fork-free, v = u1, so v 6∈ 〈x〉k,+. Similarly, we
have zp−1 ∈ 〈x〉∓k,+. Since x is relevant by Axiom (T2), we have 〈x〉±k+1,+ = 〈x〉k,+ ⊆ Xk. By [23,
Lemma 3.2] (which is the analogous for parity complexes of Theorem 2.1.1) and Axiom (T2), we
have that 〈x〉k,− ∩Xn ⊆ 〈x〉−k+1,+ ∩Xn = ∅ and the k-pre-cell Y = Act(X, 〈x〉k+1,+) is a k-cell.
Moreover, by Lemma A.1.6,

Yk = (Xk ∪ 〈x〉−k+1,+) \ 〈x〉+k+1,+ = (Xk \ 〈x〉k,+) ∪ 〈x〉k,−.

Thus, 〈x〉k,− ⊆ Yk and, similarly as above, 〈x〉k,− is a segment for /Yk . Since 〈x〉∓k,− = 〈x〉∓k,+
and 〈x〉±k,− = 〈x〉±k,+, there exist ũ0, ũp ∈ 〈x〉k,− such that z0 ∈ ũ+

0 and zp−1 ∈ ũ−p . So

ũ0 /
1
Xk
u1 /

1
Xk
· · · /1

Xk
up−1 /

1
Xk
ũp

with u1, . . . , up−1 6∈ 〈x〉k,− (since 〈x〉−k+1,+ ∩ Xn = ∅), contradicting the fact that 〈x〉k,− is a
segment for /Yk . Thus, 〈x〉k,+ is a segment for /Xk . Hence, x satisfies the segment condition.

We conclude that parity complexes are embedded into torsion-free complexes:

Theorem 3.2.3. Given a parity complex P which satisfies Axiom (T2) and Axiom (T4), P is
a torsion-free complex.

Proof. Axiom (T0) is a consequence of Axiom (C0). Axiom (T1) is a consequence of Axiom (C3).
And Axiom (T3) is a consequence of Lemma 3.2.2.

Remark 3.2.4. Given P as in Theorem 3.2.3, the ω-category Cell(P ) of cells of the parity com-
plex P is, of course, exactly the ω-category Cell(P ) of cells of the torsion-free complex P .
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3.3 Embedding pasting schemes In this section, we show that loop-free pasting schemes
are a particular case of torsion-free complexes, under the caveat that we only consider loop-
free pasting schemes that satisfy Axiom (T4) since, like for parity complexes, loop-free pasting
schemes do not induce free ω-categories in general. We think that it is a reasonable requirement
since we also believe that Axiom (T4) is the minimal additional condition to add to the axioms
of loop-free pasting schemes for this property to hold.

In order to embed pasting schemes into torsion-free complexes, our main concerns will be
to derive Axioms (T2) and (T3) from Axioms (S3) and (S4). For this purpose, we will need to
relate the cells of torsion-free complexes with the wfs’s (defined in Section 1.5), using closed-well-
formed fgs’s (defined in Section 3.1) as an intermediate. In fact, we will prove that the latter are
exactly the wfs’s. First, we prove a technical result about the relations B and E:

Lemma 3.3.1. Let P be a pasting scheme, k, n ∈ N with k < n, x ∈ Pn and y ∈ Pk. If
xBn

n−1Rn−1
k y then y ∈ Bn

k(x) or xEnn−1Rn−1
k y. Dually, if xEnn−1Rn−1

k y then y ∈ Enk(x) or
xBn

n−1Rn−1
k y.

Proof. We do an induction on n− k. If k = n− 1, the result is trivial. If k = n − 2, the result
is a consequence of Axiom (S1). So suppose that k < n − 2. We will only prove the first part,
since the second is dual. So assume that y 6∈ Bn

k(x). By the definition of B, we have

¬(xBn
n−1Bn−1

k y) or ¬(xBn
n−1En−1

k y).

By symmetry, we can suppose that ¬(xBn
n−1En−1

k y). Let u ∈ Pn−1 be minimal for / such that
xBn

n−1 uRn−1
k y. Then, there are two possible cases: either uBn−1

n−2Rn−2
k y or uEn−1

n−2Rn−2
k y.

In the first case, let v ∈ Pn−2 be such that uBn−1
n−2 vRn−2

k y. By the minimality of u, we have
¬(xBn

n−1En−1
n−2 v), so ¬(xBn

n−2 v) by definition of B. By Axiom (S1), we have xEnn−1En−1
n−2 v. So

xEnn−1Rn−1
k y.

In the second case, since we supposed ¬(xBn
n−1En−1

k y), we have ¬(uEn−1
k y). By induction

hypothesis, we deduce uBn−1
n−2Rn−2

k y and we can conclude using the first case.

Then, we prove that the source and target of wfs’s computed by the operations defined for pasting
schemes in Section 1.5 are the same as the ones computed with the operations defined for closed
fgs’s in Section 3.1:

Lemma 3.3.2. Let P be a loop-free pasting scheme. Given n ∈ N∗, ε ∈ {−,+} and an n-wfs X
of P , we have ∂εn−1(X) = ∂̄εn−1(X).

Proof. We only prove the case ε = −. Recall that

∂−n−1(X) = X \ E(X) and ∂̄−n−1(X) = R(X \ (Xn ∪ R(X+
n ))).

We first prove ∂̄−n−1(X) ⊆ ∂−n−1(X), that is,

R(X \ (Xn ∪ R(X+
n ))) ⊆ X \ E(X).

Since X \E(X) is closed (by [13, Theorem 12]), it is equivalent to X \ (Xn∪R(X+
n )) ⊆ X \E(X)

which is itself equivalent to E(X) ⊆ (Xn ∪ R(X+
n )) which holds. We now prove that we

have ∂−n−1(X) ⊆ ∂̄−n−1(X), that is,

X \ E(X) ⊆ R(X \ (Xn ∪ R(X+
n ))) = ∂̄−n−1(X).
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Let k ∈ Nn−1 and x ∈ (X \ E(X))k. If x 6∈ R(X+
n ) then x ∈ ∂̄−n−1(X). So suppose that

x ∈ R(X+
n ). Since E(X)n−1 = X+

n , it implies that k < n− 1. By definition of R(X+
n ), there

exists y ∈ Xn such that yEnn−1Rn−1
k x and, by Axiom (S2), we can take y minimal for / satis-

fying this property. By Lemma 3.3.1, it holds that yBn
n−1Rn−1

k x. Let z ∈ Pn−1 be such that
yBn

n−1 zRn−1
k x. Then, there is no ȳ ∈ Xn such that ȳEnn−1 z: otherwise, ȳEnn−1Rn−1

k x and ȳ / y,
contradicting the minimality of y. So z 6∈ R(X+

n ) and zRx. It implies that z ∈ X\(Xn∪R(X+
n ))

and x ∈ ∂̄−n−1(X).

We can then prove the inclusion of wfs’s into closed-well-formed fgs’s:

Proposition 3.3.3. Let P be a loop-free pasting scheme. Given n ∈ N and X ∈ WF(P )n, we
have X ∈ ClosedWF(P )n.

Proof. We prove this lemma by induction on n. If n = 0, the result is trivial. So suppose n > 0.
Since X is well-formed, Xn is fork-free. Moreover, by Lemma 3.3.2, for ε ∈ {−,+}, we have
that ∂̄εn−1(X) = ∂εn−1(X) is a well-formed (n−1)-fgs. By induction, ∂̄εn−1(X) ∈ ClosedWF(P )n−1.
Moreover, when n ≥ 2, since ∂εn−2 ◦ ∂

−
n−1(X) = ∂εn−2 ◦ ∂

+
n−1(X), by Lemma 3.3.2,

∂̄εn−2 ◦ ∂̄−n−1(X) = ∂̄εn−2 ◦ ∂̄+
n−1(X).

Hence, X ∈ ClosedWF(P )n.

Next, we prove an analogue of the gluing Theorem 2.1.1 for wfs’s:

Lemma 3.3.4. Let P be a loop-free pasting scheme, n ∈ N, X be an n-wfs, S ⊆ Pn+1 be a finite
subset with S fork-free and S∓ ⊆ X, and Y = X ∪ R(S). Then, Y is an (n+1)-wfs of P and
∂−n (Y ) = X.

Proof. We show this lemma by induction on k = |S|. If k = 0, the result is trivial. If k = 1, the
result is a consequence of [13, Proposition 8]. So suppose that k > 1. By Axiom (S2), take x ∈ S
minimal for /. By minimality, we have x− ⊆ S∓ ⊆ X. Using [13, Proposition 8], X ∪ R(x) is
well-formed. By Axiom (S5), X ∩ E(x) = ∅, so we have that ∂−n (X ∪ R(x)) = X. Let

X̄ = ∂+
n (X ∪ R(x)) and S̄ = S \ {x}.

We have

S̄∓ ⊆ X̄n ⇔ S̄− ⊆ X̄n ∪ S̄+ ⇔ S− ⊆ X̄n ∪ S̄+ ∪ x−

⇔ S− ⊆ (Xn \ x−) ∪ x+ ∪ S̄+ ∪ x− ⇔ S− ⊆ Xn ∪ S+ ⇔ S∓ ⊆ Xn

so S̄∓ ⊆ X̄. By induction, X̄ ∪ R(S̄) is well-formed and ∂−n (X̄ ∪ R(S̄)) = X̄. Since WF(P ) has
the structure of an ω-category by [13, Theorem 12], we can compose X ∪ R(x) and X̄ ∪ R(S̄).
So

X ∪ R(S) = X ∪ R(x) ∪ X̄ ∪ R(S̄)

is well-formed and ∂−n (X ∪ R(S)) = X.

We can now prove the converse inclusion of closed-well-formed fgs’s into wfs’s:

Proposition 3.3.5. Let P be a loop-free pasting scheme. Given n ∈ N and X ∈ ClosedWF(P )n,
we have X ∈WF(P )n.
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Proof. We prove this lemma by induction on n. If n = 0, the result is trivial. So suppose
n > 0. Let Y = ∂̄−n−1(X). By definition of ClosedWF(P ), Y ∈ ClosedWF(P ) and, by induction,
Y ∈ WF(P ). By definition of ∂̄−, we have X∓n ⊆ Y . Moreover, by Lemma 3.3.4, Y ∪ R(Xn) is
well-formed. But Y = R(X \ (Xn ∪ R(X+

n ))), so that X = Y ∪ R(Xn) is well-formed.

We now give a simple form for the sources and targets of atomic wfs’s:

Lemma 3.3.6. Let P be a loop-free pasting scheme. Given i, n ∈ N such that i < n, ε ∈ {−,+}
and x ∈ Pn, we have ∂εi (R(x)) = R(〈x〉i,ε).

Proof. By symmetry, we can suppose that ε = −. We compute that

∂−i (R(x)) = ∂−i (TM
Cl({x}))

= TM
Cl(∂̃

−
i ({x})) (by Proposition 3.1.8 and Lemma 3.3.2)

= TM
Cl(〈x〉i,−) = R(〈x〉i,−).

Using the above lemma, we deduce the relevance of the generators:

Lemma 3.3.7. Let P be a loop-free pasting scheme. Given n ∈ N and x ∈ Pn, x is relevant.

Proof. By Axiom (S3), R(x) is well-formed. So, for i ∈ Nn−1 and ε ∈ {−,+}, ∂εi (R(x)) is well-
formed. Then, by Lemma 3.3.6, 〈x〉i,− and 〈x〉i,+ are fork-free. We show that 〈x〉±i+1,− = 〈x〉i,+
and 〈x〉∓i+1,+ = 〈x〉i,−. We have

〈x〉±n,− = 〈x〉± = x+ = 〈x〉n−1,+

and, similarly, 〈x〉∓n,+ = 〈x〉n−1,−. For i ∈ Nn−1, we have

〈x〉±i+1,− = (∂+
i (R(〈x〉i+1,−)))i (by definition of ∂+

i )

= (∂+
i ◦ ∂

−
i+1(R(x)))i (by Lemma 3.3.6)

= (∂+
i (R(x)))i (by globularity)

= (R(〈x〉i,+))i (by Lemma 3.3.6)

= 〈x〉i,+

and similarly, 〈x〉∓i+1,+ = 〈x〉i,−. Moreover, we have

(〈x〉i,− ∪ 〈x〉+i+1,−) \ 〈x〉−i+1,− = ((〈x〉−i+1,− \ 〈x〉
+
i+1,−) ∪ 〈x〉+i+1,−) \ 〈x〉−i+1,−

= 〈x〉+i+1,− \ 〈x〉
−
i+1,− = 〈x〉i,+

and similarly (〈x〉i,+ ∪ 〈x〉−i+1,−) \ 〈x〉+i+1,− = 〈x〉i,−. Thus, 〈x〉i+1,− moves 〈x〉i,− to 〈x〉i,+ and so
does 〈x〉i+1,+. Hence, 〈x〉 is a cell.

We now prove that the cells (in the sense of Section 1.4) of pasting schemes are sent to wfs’s
by TPC

Cl , and that all the generators satisfy the segment condition:

Lemma 3.3.8. Let P be a loop-free pasting scheme and n ∈ N. The following hold:
(i) for x ∈ Pn, x satisfies the segment condition,
(ii) for X ∈ Cell(P )n, TPC

Cl (X) ∈WF(P )n.
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Proof. We prove this lemma by an induction on n. If n = 0, the result is trivial. So suppose
that n > 0.

We start with the proof of (i). Let k ∈ Nn−1, x ∈ Pn, X be a k-cell such that 〈x〉k,− ⊆ Xk,
and Y = TPC

Cl (X). By induction, Y ∈WF(P ). Moreover, by Lemma 3.3.6,

∂−k (R(x)) = R(〈x〉k,−) ⊆ Y .

So, by Axiom (S4), 〈x〉k,− is a segment for /Yk = /Xk . Hence, x satisfies the segment condition.
We now prove (ii). Let X ∈ Cell(P )n. By Proposition 3.3.5, it is enough to show that

TPC
Cl (X) is closed-well-formed. This latter property can be obtained from Theorem 3.1.21 which

requires the full segment axiom. But we can consider the restriction of P to an ω-hypergraph P̄
where P̄i = Pi for i ≤ n and P̄i = ∅ for i > n. By (i), P̄ satisfies Axiom (T3). Then, using
Theorem 3.1.21, TPC

Cl (X) is closed-well-formed and is still closed-well-formed in P . Hence, by
Proposition 3.3.5, TPC

Cl (X) ∈WF(P ).

We can conclude the embedding of pasting schemes into torsion-free complexes:

Theorem 3.3.9. Let P be a loop-free pasting scheme. Then, P satisfies Axioms (T0), (T1),
(T2) and (T3). In particular, if P satisfies Axiom (T4), then P is a torsion-free complex.

Proof. The different axioms of torsion-free complexes can be deduced as follows: Axiom (T0)
is a consequence of Axiom (S0), Axiom (T1) is a consequence of Axiom (S2), Axiom (T2) is a
consequence of Lemma 3.3.7 and Axiom (T3) is a consequence of Lemma 3.3.8.

Moreover, one translates the cells of the pasting scheme to the wfs’s using the operation TPC
Cl :

Theorem 3.3.10. Let P be a loop-free pasting scheme. TPC
Cl is an isomorphism between the

ω-categories Cell(P ) and WF(P ). Moreover, for all x ∈ P , TPC
Cl (〈x〉) = R(x).

Proof. By Propositions 3.3.3 and 3.3.5, we have ClosedWF(P ) = WF(P ) as graded sets and, by
Lemma 3.3.2 and the definition of id, ∗Cl and ∗, the two have the same structure of ω-category.
Thus, by Theorems 3.3.9 and 3.1.21, TPC

Cl : Cell(P )→WF(P ) is an isomorphism. Moreover, by
Proposition 3.1.6, for x ∈ P , we have

TPC
Cl (〈x〉) = TM

Cl ◦TPC
M (〈x〉) = TM

Cl({x}) = R(x).

3.4 Embedding augmented directed complexes In this section, we embed augmented
directed complexes with loop-free unital basis into torsion-free complexes. More precisely, given
an adc with a loop-free unital basis, we prove that the basis induces an ω-hypergraph which is a
torsion-free complex such that the ω-category of cells of the adc is isomorphic to the ω-category
of cells of this torsion-free complex. For this purpose, we relate properties defined for ω-hyper-
graphs, like fork-freeness (Section 1.3) and movement (Section 1.4), to analogous properties in
augmented directed complexes, and define translation functions between the cells of augmented
directed complexes and the ones of the associated ω-hypergraphs.

Adc’s as ω-hypergraphs Here, dually to the translation given in Section 1.6, we associate
a canonical ω-hypergraph to an adc with basis. Let (K,d, e) be an adc with a basis P . Note
that P is canonically a graded set and, in the following, given n ∈ N and x ∈ Pn, we write x̄
to refer to x as an element of the graded set P whereas x alone refers to x as an element of the
monoid K∗n. Given n ∈ N,
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– for s ∈ K∗n, we write Sn(s) for {x̄ ∈ Pn | x ≤ s},
– for a finite subset S ⊆ Pn, we write Σ̄n(S) for

∑
x∈S x.

From these definitions, we readily have:

Lemma 3.4.1. For all n ∈ N, Sn ◦ Σ̄n = 1Pf(Pn).

For n ∈ N∗ and x̄ ∈ Pn+1, we define subsets x̄−, x̄+ ⊆ Pn such that

x̄− = Sn(x−) and x̄+ = Sn(x+)

where x−, x+ are the elements of Kn−1 defined in Section 1.6. We thus obtain an ω-hyper-
graph (P, (−)−, (−)+) that we call the ω-hypergraph associated to K. In the following, we prove
that, when P is a unital loop-free basis of K, P is a torsion-free complex. We already have:

Lemma 3.4.2. If P is a unital basis of K, given n ∈ N∗ and x̄ ∈ Pn, we have x̄− 6= ∅ and x̄+ 6= ∅.
That is, P satisfies Axiom (T0).

Proof. By contradiction, if x̄− = ∅, it implies that [x]n−1,− = 0. Hence, [x]i,− = 0 for i ∈ Nn−1.
In particular, e([x]0,−) = 0, contradicting the fact that the basis is unital. Hence, x̄− 6= ∅ and,
similarly, x̄+ 6= ∅.

Fork-freeness and radicality We now define an analogue for adc’s of the notion of fork-
freeness defined for ω-hypergraphs, and relate the notions between the two settings.

Let (K,d, e) be an adc with a loop-free unital basis P . Given n ∈ N∗, an element s ∈ K∗n is
said fork-free when for all x, y ∈ Pn such that x+ y ≤ s, it holds that x̄ε ∩ ȳε = ∅ for ε ∈ {−,+}.
Moreover, in dimension 0, s ∈ K∗0 is said to be fork-free when e(s) = 1. We extend the notion
of fork-freeness to cells: given n ∈ N and X ∈ Cell∗(K), X is said fork-free when, for i ∈ Nn
and ε ∈ {−,+}, Xi,ε is fork-free.

Contrary to subsets of the ω-hypergraph P , an element of P can appear in an element
of K∗n with a multiplicity greater than one (since K∗n is the free monoid on Pn). It is then
useful to distinguish the elements of K∗n where generators appear with multiplicity at most one:
given n ∈ N and s ∈ K∗n, s is said radical when for all z ∈ K∗n such that 2z ≤ s, we have z = 0.
We then readily have:

Lemma 3.4.3. For all n ∈ N and s ∈ K∗n radical, Σ̄n ◦ Sn(s) = s

Moreover, fork-freeness implies radicality:

Lemma 3.4.4. Given n ∈ N and s ∈ K∗n, if s is fork-free, then s is radical.

Proof. If n = 0, s ∈ K∗n can be written s =
∑

1≤i≤k xi for some k ∈ N and xi ∈ P0 for i ∈ N∗k.
So e(s) = k, and, by fork-freeness, k = 1. Hence, s is radical.

Otherwise, assume that n > 0. By contradiction, suppose that there is x̄ ∈ Pn such
that 2x ≤ s. By Lemma 3.4.2, it means that x̄− ∩ x̄− 6= ∅, contradicting the fact that s is
fork-free. Hence, s is radical.

Like for cells of torsion-free complexes, cells of adc’s with loop-free basis are fork-free:

Lemma 3.4.5. Given n ∈ N and X ∈ Cell∗(K)n, X is fork-free.
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Proof. We prove this lemma using an induction on n. If n = 0, since e(X0) = 1, X is fork-free
by definition.

Otherwise, suppose that n > 0. By induction, ∂−n−1(X) and ∂+
n−1(X) are fork-free, so Xi,ε is

fork-free for i ∈ Nn−1 and ε ∈ {−,+}. Let x̄, ȳ ∈ Pn be such that x+ y ≤ Xn. By contradiction,
suppose that there is z̄ ∈ Pn−1 such that z̄ ∈ x̄− ∩ ȳ−. By [21, Proposition 5.4], there are

k ≥ 1, x̄1, . . . , x̄k ∈ Pn and X1, . . . , Xk ∈ Cell∗(K)

with Xi
n = x̄i for i ∈ N∗k and such that X = X1 ∗n−1 · · · ∗n−1 X

k, so Xn = x1 + · · ·+ xk. Hence,
there are 1 ≤ i1, i2 ≤ k with i1 6= i2 such that xi1 = x and xi2 = y. By symmetry, we can
suppose that i1 < i2. If there is some i such that z̄ ∈ x̄+

i , by [21, Proposition 5.4], we have i < i1.
So, for i1 ≤ i ≤ i2, it holds that z̄ 6∈ x̄+

i . Let Y = Xi1 ∗n−1 X
i1+1 ∗n−1 · · · ∗n−1 X

i2 . We have
that Y ∈ Cell∗(K) and

Yn−1,− =
∑

i1≤i≤i2

[xi]n−1,− −
∑

i1≤i≤i2

[xi]n−1,+ + Yn−1,+

with

2z ≤
∑

i1≤i≤i2

[xi]n−1,− and ¬(z ≤
∑

i1≤i≤i2

[xi]n−1,+) and Yn−1,+ ≥ 0

so 2z ≤ Yn−1,−, contradicting the fact that ∂−n−1(Y ) is radical by Lemma 3.4.4. Thus x̄−∩ ȳ− = ∅
and, similarly, x̄+ ∩ ȳ+ = ∅. Hence, X is fork-free.

We now give several compatibility results for the operations Σ̄n with sets and the structure of
ω-hypergraph on P :

Lemma 3.4.6. Let n ∈ N, U, V ⊆ Pn be finite subsets and x ∈ Pn. The following hold:
(i) if U ∩ V = ∅, then Σ̄n(U) ∧ Σ̄n(V ) = 0 and Σ̄n(U ∪ V ) = Σ̄n(U) + Σ̄n(V ),
(ii) if U ⊆ V , then Σ̄n(U) ≤ Σ̄n(V ) and Σ̄n(V \ U) = Σ̄n(V )− Σ̄n(U),
(iii) if n > 0, then Σ̄n−1(x̄ε) = xε,
(iv) Suppose that U is fork-free. Then Σ̄n(U) is fork-free. Moreover, in the case where n > 0,

we have Σ̄n−1(U ε) = (Σ̄n(U))ε.

Proof. (i) and (ii) are direct consequences of the definitions. For (iii), note that x̄ε = Sn−1(xε).
By Lemma 3.4.5, [x]n−1,ε is fork-free and, by Lemma 3.4.4, it is radical. So, by Lemma 3.4.3, we
have Σ̄n−1(x̄ε) = xε.

For (iv), suppose that U ⊆ Pn is fork-free. If n = 0, the result is trivial. So suppose
that n > 0. Given x, y ∈ Pn with x ≤ Σ̄n(U) and y ≤ Σ̄n(U), z̄ ∈ Pn−1 and ε ∈ {−,+} such
that z ≤ xε and z ≤ yε, we have z̄ ∈ x̄ε and z̄ ∈ ȳε. Since U is fork-free, x = y. Also, Σ̄n(U) is
radical by definition of Σ̄n, so that ¬(x+ y ≤ Σ̄n(U)). Hence, Σ̄n(U) is fork-free. For the second
part, note that, for x, y ∈ U with x 6= y, we have x̄ε ∩ ȳε = ∅. Hence, by (i) and (iii),

Σ̄n−1(U ε) = Σ̄n−1(∪x̄∈U x̄ε) =
∑
x̄∈U

Σ̄n−1(x̄ε) =
∑
x̄∈U

xε = (Σ̄n(U))ε.

We give analogous compatibility results for the operations Sn with the group structure of Kn

and the operations (−)− and (−)+ defined on Kn:

Lemma 3.4.7. Let n ∈ N, u, v ∈ K∗n be such that u, v are radical and z ∈ Pn. The following
hold:
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(i) if u ∧ v = 0, then Sn(u) ∩ Sn(v) = ∅ and Sn(u+ v) = Sn(u) ∪ Sn(v),
(ii) if u ≤ v, then Sn(u) ⊆ Sn(v) and Sn(v − u) = (Sn(v)) \ (Sn(u)),
(iii) if n > 0, then Sn−1(zε) = z̄ε,
(iv) Suppose that u is fork-free. Then, Sn(u) is fork-free. Moreover, in the case where n > 0,

we have Sn−1(uε) = (Sn(u))ε.

Proof. (i), (ii) and (iii) are direct consequences of the definitions. For (iv), suppose that u is
fork-free. If n = 0, the result is trivial, so suppose that n > 0. Given x̄, ȳ ∈ Sn(u), z̄ ∈ Pn−1

and ε ∈ {−,+} such that z̄ ∈ x̄ε∩ ȳε, we have z ≤ xε and z ≤ yε. By fork-freeness, ¬(x+y ≤ u).
But x ≤ u and y ≤ u, so that x = y. Thus, Sn(u) is fork-free. For the second part, note that,
for x, y ∈ Pn with x 6= y, x ≤ u and y ≤ u, we have xε ∧ yε = 0. Hence, by (i) and (iii),

Sn−1(uε) = Sn−1(
∑

x∈Pn,x≤u
xε) =

⋃
x∈Pn,x≤u

Sn−1(xε) =
⋃

x∈Pn,x≤u
x̄ε = (Sn(u))ε.

Movement properties We now relate the movement properties of ω-hypergraphs (as defined
in Section 1.4) to properties of augmented directed complexes. Let (K,d, e) be an adc with
a loop-free unital basis P . We first prove a compatibility result of the functions Σ̄n with the
operations (−)∓ and (−)± on ω-hypergraphs and adc’s:

Lemma 3.4.8. Let n ∈ N∗, u ∈ K∗n fork-free and U = Sn(u). We have

u∓ = Σ̄n−1(U∓) and u± = Σ̄n−1(U±).

Proof. We compute that

d(u) = u± − u∓ = u+ − u−

= Σ̄n−1(U+)− Σ̄n−1(U−) (by Lemma 3.4.6)

= (Σ̄n−1(U±)+ Σ̄n−1(U+ ∩ U−))− (Σ̄n−1(U∓) + Σ̄n−1(U+ ∩ U−)) (by Lemma 3.4.6)

= Σ̄n−1(U±)− Σ̄n−1(U∓).

Since U± ∩ U∓ = ∅, we have Σ̄n−1(U±) ∧ Σ̄n−1(U∓) = ∅. By uniqueness of the decomposition,
we have u∓ = Σ̄n−1(U∓) and u± = Σ̄n−1(U±).

Now, we show a compatibility of the operations Σ̄n with movement:

Lemma 3.4.9. Let n ∈ N, S ⊆ Pn+1 be a finite and fork-free set and U, V ⊆ Pn be finite sets
such that S moves U to V . Then, d(Σ̄n+1(S)) = Σ̄n(V )− Σ̄n(U).

Proof. By definition of movement, V = (U ∪ S+) \ S−. Hence,

Σ̄n(V ) = Σ̄n((U ∪ S+) \ S−)

= Σ̄n(U ∪ S+)− Σ̄n(S−) (by Lemma 3.4.6, since S− ⊆ U ∪ S+)

= Σ̄n(U) + Σ̄n(S+)− Σ̄n(S−) (since U ∩ S+ = ∅ by Lemma A.1.1)

= Σ̄n(U) + (Σ̄n+1(S))+ − (Σ̄n+1(S))− (by Lemma 3.4.6)

= Σ̄n(U) + d(Σ̄n+1(S)).

Conversely, we prove sufficient conditions for the operations Sn to induce movement:
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Lemma 3.4.10. Let n ∈ N, s ∈ K∗n+1 fork-free, u, v ∈ K∗n with u, v radical, such that

d(s) = v − u, u ∧ s+ = 0 and s− ∧ v = 0.

Then, Sn+1(s) moves Sn(u) to Sn(v).

Proof. Let S = Sn+1(s), U = Sn(u) and V = Sn(v). Since d(s) = v − u, we have

s− ≤ s− + v = u+ s+

so S− = Sn(s−) ⊆ Sn(u+ s+) = U ∪ S+. We compute that

Σ̄n((U ∪ S+) \ S−) = Σ̄n(U ∪ S+)− Σ̄n(S−)

= Σ̄n ◦ Sn(u+ s+)− s− (by Lemma 3.4.6)

= u+ s+ − s−

= u+ d(s) = v = Σ̄n(V ).

By Lemma 3.4.1, V = (U ∪ S+) \ S−. Similarly, U = (V ∪ S−) \ S+. So, S moves U to V .

Finally, we show empty intersection results for cells of Cell∗(K), analogous to the ones for Cell(P ):

Lemma 3.4.11. Let n ∈ N∗ and X ∈ Cell∗(K)n. Then, for i ∈ Nn−1 and ε ∈ {−,+}, we have

Xi,− ∧X+
i+1,ε = 0 and X−i+1,ε ∧Xi,+ = 0.

Proof. By contradiction, suppose given n ∈ N∗, X ∈ Cell∗(K)n, i ∈ Nn−1 and ε ∈ {−,+}
that give a counter-example for this property. By applying ∂−, ∂+ sufficiently, we can suppose
that i = n − 1. Also, by symmetry, we only need to handle the first case, that is, when there
is z ∈ Pn−1 such that z ≤ Xn−1,− ∧X+

n . So there is x ∈ Pn such that x ≤ Xn and z ≤ x+. By
the definition of a cell, we have d(Xn) = Xn−1,+ −Xn−1,−, thus

Xn−1,+ +
∑

u∈Pn,u≤Xn

u− = Xn−1,− +
∑

u∈Pn,u≤Xn

u+ ≥ 2z

and, since Xn−1,+ is radical, there is y ∈ Pn with y ≤ Xn such that z ≤ y−. By [21, Proposi-
tion 5.1], there are k ∈ N∗, x1, . . . , xk ∈ Pn with x1 + · · · + xk = Xn, i1, i2 ∈ N∗k with i1 < i2,
xi1 = x and xi2 = y, and X1, . . . , Xk ∈ Cell∗(K) with Xi

n = xi for i ∈ N∗k such that we have the
decomposition X = X1 ∗n−1 · · · ∗n−1 X

k. Let Y = X1 ∗n−1 · · · ∗n−1 X
i1 . Since Y is a cell, we

have
Yn−1,+ +

∑
1≤i≤k

x−i = Yn−1,− +
∑

1≤i≤k
x+
i = Xn−1,− +

∑
1≤i≤k

x+
i ≥ 2z.

Moreover, since X is fork-free and z ≤ x−i2 , we have ¬(z ≤ x−i ) for i ∈ Ni1 . So 2z ≤ Yn−1,+,
contradicting the fact that Yn−1,+ is radical derived from Lemmas 3.4.5 and 3.4.4. Hence, we
have Xi,− ∧X+

n = 0.

The translation operations We now introduce translation functions between the cells of
augmented directed complexes and the cells of their associated ω-hypergraphs, and show that
these translations are bijective.

Let (K,d, e) be an adc with a loop-free unital basis P . We extend the operations Σ̄n and Sn
to translation functions between the pre-cells of P and the pre-cells of K. Given n ∈ N
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and an n-pre-cell X ∈ PCell(P )n, we define Σ̄(X) ∈ Cell∗(K) as the n-pre-cell Y such that
Yi,ε = Σ̄i(Xi,ε) for i ∈ Nn and ε ∈ {−,+}. Similarly, given an n-pre-cell X ∈ PCell∗(K), we
define S(X) ∈ PCell(P ) as the n-pre-cell Y such that Yi,ε = Si(Xi,ε) for i ∈ Nn and ε ∈ {−,+}.
We then have:

Proposition 3.4.12. Σ̄ induces a bijection with inverse S from Cell(P ) to Cell∗(K). Moreover,
given x ∈ P , we have S([x]) = 〈x̄〉.

Proof. Let n ∈ N and X ∈ Cell(P )n. Then, by Lemma 3.4.6, for i ∈ Nn and ε ∈ {−,+}, Σ̄i(Xi,ε)

is fork-free. Plus, when i < n, by Lemma 3.4.9, we have d(Σ̄i+1(Xi+1,ε)) = Σ̄i(Xi,+)− Σ̄i(Xi,−)

so Σ̄(X) ∈ Cell∗(K). Conversely, let n ∈ N and X ∈ Cell∗(K)n. By Lemma 3.4.7, given i ∈ Nn
and ε ∈ {−,+}, Si(Xi,ε) is fork-free. Moreover, when i < n, by Lemmas 3.4.10 and 3.4.11,
we have that Si+1(Xi+1,ε) moves Si(Xi,−) to Si(Xi,+) so S(X) ∈ Cell(P ). By Lemma 3.4.1,
for X ∈ Cell(P ), S ◦ Σ̄(X) = X, and, by Lemmas 3.4.5, 3.4.4 and 3.4.3, for X ∈ Cell∗(K),
Σ̄ ◦ S(X) = X. Hence, Σ̄ and S induce bijections between Cell(P ) and Cell∗(K) and are inverse
of each other.

Now let n ∈ N, x ∈ Pn and X = S([x]). We have Xn = Sn([x]n) = {x}. We show by a de-
creasing induction on i that Xi,ε = 〈x〉i,ε for i ∈ Nn−1 and ε ∈ {−,+}. We have [x]i,− = [x]∓i+1,−
so, by Lemmas 3.4.5 and 3.4.8, Xi,− = Si([x]∓i+1,−) = X∓i+1,−. Thus, Xi,− = 〈x〉i,−. Simi-
larly, Xi,+ = 〈x〉i,+. Hence, S([x]) = 〈x̄〉.

Adc’s are torsion-free complexes We now prove that the ω-hypergraphs associated to adc’s
equipped with loop-free unital bases are torsion-free complexes. In fact, we will show that they
moreover satisfy the stronger Axioms (T3’) and (T4’).

Let (K,d, e) be an adc with a loop-free unital basis P . We have already shown how to derive
Axiom (T0) for P in Lemma 3.4.2, and we now derive the other ones in the following lemmas.

Lemma 3.4.13. P satisfies Axiom (T1).

Proof. Note that, for n ∈ N∗ and x̄, ȳ ∈ Pn, x̄ /1
Pn
ȳ implies x̄ <n−1 ȳ. So, by transitivity, we

have /Pn ⊆ <n−1. Since the basis P is loop-free, <n−1 is irreflexive and so is /Pn . Hence, / is
irreflexive.

Lemma 3.4.14. P satisfies Axiom (T2).

Proof. Given x̄ ∈ P , we have S([x]) = 〈x̄〉 By Proposition 3.4.12. Moreover, by Proposi-
tion 3.4.12, we have S([x]) ∈ Cell(P ). Hence, x̄ is relevant.

Lemma 3.4.15. P satisfies Axiom (T3’).

Proof. By contradiction, suppose that there are i, n ∈ N with i < n and an element x̄ ∈ Pn such
that 〈x̄〉i,+ y∗ 〈x̄〉i,−. So there are k ≥ 1, ȳ1, . . . , ȳk ∈ Pi such that ȳ1 ∈ 〈x̄〉i,+, ȳk ∈ 〈x̄〉i,−
and ȳj y ȳj+1 for 1 ≤ j < k. By definition of y, it gives z̄1, . . . , z̄k−1 ∈ Pi+1 with ȳj ∈ z̄−j
and ȳj+1 ∈ z̄+

j for 1 ≤ j < k. So we have x <i z1 <i · · · <i zk−1 <i x, contradicting the
loop-freeness of the basis P . Hence, P satisfies Axiom (T3’).

Lemma 3.4.16. P satisfies Axiom (T4’).
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Proof. By contradiction, suppose that there are i ∈ N∗, m,n ∈ N with m > i and n > i, x̄ ∈ Pm
and ȳ ∈ Pn such that 〈x̄〉i,+ ∩ 〈ȳ〉i,− = ∅, 〈x̄〉i−1,+ y∗ 〈ȳ〉i−1,− and 〈ȳ〉i−1,+ y∗ 〈x̄〉i−1,−. By the
same method as for Lemma 3.4.15, we get r, s ∈ N, u1, . . . , ur ∈ Pi, v1, . . . , vs ∈ Pi such that

x <i u1 <i · · · <i ur <i y <i v1 <i · · · <i vs <i x,

contradicting the loop-freeness of the basis P . Hence, P satisfies Axiom (T4’).

We can conclude that:

Theorem 3.4.17. The ω-hypergraph P associated to K is a torsion-free complex.

Proof. This follows from Lemmas 3.4.2 and 3.4.13 to 3.4.16 and Propositions 1.7.1 and 1.7.2.

Finally, we show that Σ̄ exhibits an isomorphism between the two ω-categories of cells:

Theorem 3.4.18. Σ̄ induces an isomorphism of ω-categories between Cell(P ) and Cell∗(K).
Moreover, for x̄ ∈ P , we have Σ̄(〈x̄〉) = [x].

Proof. By definition, Σ̄ commutes with the source, target and identity operations defined on
the ω-categories Cell(P ) and Cell∗(K). We show that it commutes with the composition opera-
tions. Given i, n ∈ N with i < n, i-composable cells X,Y ∈ Cell(P )n, by Lemma 2.2.2, we have
Xj,ε ∩ Yj,ε = ∅ for j ∈ N with i < j ≤ n and ε ∈ {−,+}. Thus, by Lemma 3.4.6, it follows readily
that Σ̄n(X ∗i Y ) = Σ̄n(X) ∗i Σ̄n(Y ). Thus, Σ̄ is a morphism of ω-categories. We conclude with
Proposition 3.4.12.

3.5 Absence of other embeddings We conclude our comparison of the pasting diagram
formalisms by showing that there are no embeddings between the four formalisms except the ones
already proved, that is, that parity complexes, pasting scheme and augmented directed complexes
are particular cases of torsion-free complexes (under the caveats stated for parity complexes and
pasting schemes). We show these nonexistence results by simply exhibiting counter-examples to
the other embeddings.

Since adc’s are not exactly ω-hypergraphs, we should make the following precision. When
we say that “there is no embedding of adc’s with loop-free unital bases into the formalism X”,
we mean that, in general, the ω-hypergraph obtained from an adc with loop-free unital basis
(as described in Section 3.4) is not an instance of X. Conversely, when we say that “there is no
embedding of the formalism X into adc’s with loop-free unital bases”, we mean that, in general,
the pre-adc with basis obtained from an ω-hypergraph which is an instance of X (as described
in Section 1.6) is not an adc with loop-free unital basis.

No embedding in parity complexes We show that there are no embeddings into parity
complexes of the other formalisms. Considering the axioms of parity complexes, Axiom (C4)
is relatively strong, and it has no real equivalent in the other formalisms, so it can be used to
build a counter-example to embeddings. The ω-hypergraph (9) is a pasting scheme satisfying
Axiom (T4) (and thus is a torsion-free complex) and is an adc with loop-free unital basis. But it
is not a parity complex as we have seen in Section 1.4, because it does not satisfy Axiom (C4).
So pasting schemes, augmented directed complexes and torsion-free complexes are not parity
complexes in general.
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No embedding in pasting schemes We now show that there are no embeddings into pasting
schemes of the other formalisms. We use the relatively strong Axiom (S2) to build a counter-
example to the embeddings. The following ω-hypergraph is a parity complex satisfying Ax-
iom (T4) (and thus it is a torsion-free complex) and is an adc with loop-free unital basis but it
is not a pasting scheme:

z

y

x

w

d′

d

a′ac

b

b′

e

α1
⇒

α4
⇒

α2
⇒

α3
⇐

. (16)

Indeed, Axiom (S2) is not satisfied because α2 /α3 and y ∈ B(α2) ∩ E(α3) 6= ∅. Note that (16)
is essentially the ω-hypergraph (14) without the 3-generator A and the 2-generators α′1 and α′4.

No embedding in augmented directed complexes Finally, we prove that there are no em-
beddings into augmented directed complexes with loop-free unital basis of the other formalisms.
As shown in Section 3.4, such adc’s satisfy Axiom (T4’), which is a stronger version of Ax-
iom (T4). Thus, we can find a counter-example to embedding into adc’s with loop-free unital
basis by considering an adequate ω-hypergraph which satisfies Axiom (T4) but not Axiom (T4’).
Consider the ω-hypergraph P from Figure 4 where the 3-generators A,B,C are such that

A− = {β, γ}, B− = {δ, ε}, C− = {α, γ′, δ′, ζ},
A+ = {β′, γ′}, B+ = {δ′, ε′}, C+ = {α′, γ′′, ζ ′}.

It can be shown that it is a parity complex and a pasting scheme. It moreover satisfies Axiom (T4)
so that it is a torsion-free complex by Theorem 3.3.9. But its associated pre-adc is an adc with a
basis which is not loop-free unital. Indeed, we have e ≤ [A]1,+ ∧ [B]1,−, h ≤ [B]1,+ ∧ [C]1,− and
b ≤ [C]1,− ∧ [A]1,+, so that A <1 B <1 C <1 A. Hence, the basis of the associated augmented
directed complex is not loop-free.
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Figure 4: The ω-hypergraph P
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Appendix A: Details on the gluing theorem

This section is devoted to the proof of Theorem 2.1.1, which allows gluing sets of generators
to existing cells in order to get new cells. This result requires some technical results about
movement, which appears in the definition of cells. We first introduce these results and then
discuss the proof of the gluing theorem.

A.1 Movement properties Here, we state and prove here several such properties, some of
which coming already present in [23].

In the following, we suppose given an ω-hypergraph P . We first state a criterion for movement:

Lemma A.1.1 ([23, Proposition 2.1]). For n ∈ N, finite subsets U ⊆ Pn and S ⊆ Pn+1, there
exists V ⊆ Pn such that S moves U to V if and only if S∓ ⊆ U and U ∩ S+ = ∅.

Proof. If S moves U to V , then, by definition, S∓ ⊆ (V ∪ S−) \ S+ = U and

U ∩ S+ = ((V ∪ S−) \ S+) ∩ S+ = ∅.

Conversely, if S∓ ⊆ U and U ∩ S+ = ∅, let V = (U ∪ S+) \ S−. Then

(V ∪ S−) \ S+ = (U ∪ S+ ∪ S−) \ S+

= (U \ S+) ∪ (S− \ S+)

= U ∪ S∓ (since U ∩ S+ = ∅)
= U (since S∓ ⊆ U)

and S moves U to V .

The next property states that it is possible to modify a movement by adding or removing “inde-
pendent” elements.

Lemma A.1.2 ([23, Proposition 2.2]). Let n ∈ N, U, V ⊆ Pn and S ⊆ Pn+1 be finite subsets
such that S moves U to V . Then, given X,Y ⊆ Pn such that X ⊆ U , X ∩ S∓ = ∅ and
Y ∩ (S− ∪ S+) = ∅, we have that S moves (U ∪ Y ) \X to (V ∪ Y ) \X.

Proof. By Lemma A.1.1, we have S∓ ⊆ U and U ∩ S+ = ∅. Using the hypothesis, we can refine
both equalities to S∓ ⊆ (U ∪ Y ) \X and ((U ∪ Y ) \X) ∩ S+ = ∅. Using Lemma A.1.1 again, S
moves (U ∪ Y ) \X to W where

W = (((U ∪ Y ) \X) ∪ S+) \ S−

= ((U ∪ S+ ∪ Y ) \X) \ S− (since X ∩ S+ ⊆ U ∩ S+ = ∅)
= (((U ∪ S+) \ S−) ∪ Y ) \X (since Y ∩ S− = ∅)
= (V ∪ Y ) \X.

The following property gives sufficient conditions for composing movements.

Lemma A.1.3 ([23, Proposition 2.3]). Let n ∈ N, and U, V,W ⊆ Pn, S, T ⊆ Pn+1 be finite
subsets such that S moves U to V and T moves V to W , if S− ∩ T+ = ∅ then S ∪ T moves U
to W .
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Proof. We compute (U ∪ (S ∪ T )+) \ (S ∪ T )−:

(U ∪ S+ ∪ T+) \ (S− ∪ T−) = (((U ∪ S+) \ S−) ∪ T+) \ T− = (V ∪ T+) \ T− = W.

Similarly, (W ∪ (S ∪ T )−) \ (S ∪ T )+ = U and S ∪ T moves U to W .

Conversely, the next property enables decomposing movements, under a condition of orthogonal-
ity: given n ∈ N and finite sets S, T ⊆ Pn, we say that S and T are orthogonal, written S ⊥ T ,
when (S− ∩ T−) ∪ (S+ ∩ T+) = ∅. We then have:

Lemma A.1.4 ([23, Proposition 2.4]). Given n ∈ N, finite subsets U,W ⊆ Pn and S, T ⊆ Pn+1

such that S ∪ T moves U to W and S∓ ⊆ U , if S ⊥ T then there exists V such that S moves U
to V and T moves V to W .

Proof. Let R = S ∪ T . By Lemma A.1.1, R∓ ⊆ U and U ∩ S+ ⊆ U ∩R+ = ∅. By Lemma A.1.1
again, S moves U to V = (U ∪ S+) \ S−. Moreover,

S− ∩ T+ = S∓ ∩ T+ (since S+ ∩ T+ = ∅, by S ⊥ T )
⊆ U ∩ T+ (since S∓ ⊆ U , by hypothesis)

⊆ U ∩ (S ∪ T )+

= ∅ (by Lemma A.1.1).

so that

R∓ ⊆ U
⇔ ((S− ∪ T−) \ T+) \ S+ ⊆ U
⇔ ((T− \ T+) ∪ S−) \ S+ ⊆ U (since S− ∩ T+ = ∅)
⇔ T∓ ∪ S− ⊆ U ∪ S+

⇔ T∓ ⊆ (U ∪ S+) \ S− (since T∓ ∩ S− = ∅, by S ⊥ T ).

Hence, T∓ ⊆ (U ∪ S+) \ S− = V and

V ∩ T+ ⊆ (U ∪ S+) ∩ T+ ⊆ (U ∩R+) ∪ (S+ ∩ T+) = ∅.

By Lemma A.1.1, T moves V to (V ∪ T+) \ T−. Moreover,

S− ∩ T+ = S∓ ∩ T+ (since S ⊥ T )
⊆ U ∩R+ (since S∓ ⊆ U by hypothesis)

= ∅.

Therefore,

(V ∪ T+) \ T− = (((U ∪ S+) \ S−) ∪ T+) \ T−

= (U ∪ S+ ∪ T+) \ (S− ∪ T−) (since S− ∩ T+ = ∅)
= W.

Hence, T moves V to W .

The next three properties (not in [23]) describe which elements are touched or left untouched by
movement.
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Lemma A.1.5. Given n ∈ N, finite subsets U, V ⊆ Pn and S ⊆ Pn+1, if S moves U to V , then

S∓ = U \ V and S± = V \ U .

In particular, if T moves U to V , then S∓ = T∓ and S± = T±.

Proof. By the definition of movement, we have V = (U ∪ S+) \ S− and U = (V ∪ S−) \ S+.
Therefore, since U ∩S+ = ∅, U ∩V = U ∩ ((U \S−)∪S±) = U \S∓. Similarly, U ∩V = V \S±.
Hence, S∓ = U \ V and S± = V \ U .

Lemma A.1.6. Given n ∈ N, finite subsets U, V ⊆ Pn and S ⊆ Pn+1, if S moves U to V , then

U \ S− = U \ S∓ = U ∩ V = V \ S± = V \ S+.

Proof. We compute that

U \ S− = U \ S∓ (since U ∩ S+ = ∅, by definition of movement)

= U ∩ V (by Lemma A.1.5)

= V \ S±

= V \ S+ (since V ∩ S− = ∅, by definition of movement)

Lemma A.1.7. For n ∈ N, finite subsets U, V ⊆ Pn and S ⊆ Pn+1, if S moves U to V , then

U = (U ∩ V ) t S∓ and V = (U ∩ V ) t S±.

Proof. By Lemma A.1.6, we have

U = (V ∪ S−) \ S+ = (V \ S+) ∪ (S− \ S+) = (U ∩ V ) ∪ S∓.
Moreover,

(U ∩ V ) ∩ S∓ ⊆ V ∩ S− = ((U ∪ S−) \ S−) ∩ S− = ∅.

Hence, U = (U ∩ V ) t S∓. Similarly V = (U ∩ V ) t S±.

For n ∈ N, V ⊆ U ⊆ Pn, we say that V is initial (resp. terminal) in U for /U when, for all u ∈ U ,
whenever there exists v ∈ V such that u /U v (resp. v /U u), we have u ∈ V . The last lemma
enables decomposing a moving set starting from a subset which is a segment:

Lemma A.1.8. For n ∈ N, finite subsets U, V ⊆ Pn, S ⊆ Pn+1 and T ⊆ S such that S is
fork-free and moves U to V , and T is a segment in S for /S, there exist L,R ⊆ S and A,B ⊆ Pn
such that

– L, T,R is a partition of S,
– L is initial in S for /S and R is final in S for /S,
– L moves U to A, T moves A to B and R moves B to V .

Proof. Let L = {x ∈ S | x /S T} and R = S \ (L ∪ T ). L, T,R is a partition of S, and
since S is fork-free, we have L ⊥ T , L ⊥ R and T ⊥ R. Since T is a segment for /S , we have
that L− ∩ T+ = ∅, and, by definition of L and R, L− ∩ R+ = ∅ so that L is initial in S. In
particular, L∓ ⊆ U . Thus, by Lemma A.1.3, writing A for the set (U ∪L+)\L−, we have that L
moves U to A. Furthermore, since L ∩R = ∅, we have T− ∩R+ = ∅ so that R is terminal in S.
In particular, R± ⊆ V . Thus, by the dual of Lemma A.1.3, writing B for (V ∪R−) \R+, we
have that R moves B to V .
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A.2 Proof of the gluing theorem We have now enough material to prove the gluing theo-
rem:

Theorem 2.1.1. Let P be an ω-hypergraph which satisfies Axioms (T0), (T1), (T2) and (T3).
Given n ∈ N, an n-cell X of P and a finite fork-free set G ⊆ Pn+1 such that G is glueable on X,
we have that
(a) Act(X,G) is a cell and G+ ∩Xn = ∅,
(b) Glue(X,G) is a cell,
(c) given a finite fork-free subset G′ ⊆ Pn+1 which is dually glueable on X, G′− ∩G+ = ∅.

and dual properties hold when G is dually glueable on X.

Proof. See Figure 3 for a representation of the cells in the statement of the theorem. In the
following, write S for

S = Act(X,G)n = (Xn ∪G+) \G−.

We prove the different sub-properties (and their duals) of the theorem by induction on n.

Proof of (a): We prove (a) in two steps: first, in the case where |G| = 1, then, in the general
case.

Step 1: (a) holds when |G| = 1. Let x ∈ Pn+1 be such that {x} = G. If n = 0, then there
exists y ∈ P0 such that X0 = {y}. By Axioms (T1) and (T2), there exists z ∈ P0 with y 6= z

such that x− = {y} and x+ = {z}. So Act(X,G) = {z} is a cell. So suppose that n > 0. Then,
we have S = (Xn ∪ x+) \ x− and, in order to prove that Act(X,G) is a cell, we are required to
show that

– S moves Xn−1,− to Xn−1,+;
– S is fork-free.

Using Axiom (T3), we get that x− is a segment in Xn for /Xn . By Lemma A.1.8, we can
decompose the set Xn as a partition

Xn = U ∪ x− ∪ V

with U initial and V final in Xn and, writing A,B ⊆ Pn−1 for

A = (Xn−1,− ∪ U+) \ U− and B = (Xn−1,+ ∪ V −) \ V +

we have that

U moves Xn−1,− to A, x− moves A to B, V moves B to Xn−1,+

as pictured on Figure 5. In the following, for Z ⊆ Pn−1, we write D(Z) for the (n−1)-pre-cell
of P defined by

D(Z)n−1 = Z and D(Z)i,ε = Xi,ε for i ∈ Nn−2 and ε ∈ {−,+}.

Since D(A) = Act(D(Xn−1,−), U), D(B) = Act(D(A), x−), and D(Xn−1,−) = ∂−n−1(X) is an
(n−1)-cell and both U and x− are fork-free, by using two times the induction hypothesis of
Theorem 2.1.1, first on D(Xn−1,−), then on D(A), we get that

D(A) and D(B) are cells. (17)

By Axiom (T2), we have that
x+ is fork-free. (18)
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A B

•

•

•

•

Xn−1,− Xn−1,+

Xn−2,−

Xn−2,+

x−

⇒
U
⇒

V
⇒

Figure 5: The decomposition of Xn

Since x− moves A to B, by Lemma A.1.1, we get

A ∩ x−+ = ∅. (19)

By Axiom (T2), it holds that x+∓ = x−∓ ⊆ A. By (17) and (18), using the induction hypothesis
of Theorem 2.1.1 on D(A), we get

A ∩ x++ = ∅. (20)

By Lemma A.1.1, there exists B′ such that x+ moves A to B′, and

B′ = (A ∪ x++) \ x+−

= (A \ x+−) ∪ (x++ \ x+−)

= (A \ x+∓) ∪ x+± (by (20))

= (A \ x−∓) ∪ x−± (since x+∓ = x−∓, by Axiom (T2))

= (A \ x−−) ∪ (x−+ \ x−−) (by (19))

= (A ∪ x−+) \ x−−

= B (since x− moves A to B).

Hence,
x+ moves A to B. (21)

Since x+∓ ⊆ D(A)n−1 and U± ⊆ D(A)n−1, using the induction hypothesis of Theorem 2.1.1,
by (c) we get

U− ∩ x++ = ∅. (22)

Similarly, with D(B), we get
x+− ∩ V + = ∅. (23)

By definition, U moves Xn−1,− to A, and x+ moves A to B by (21). Moreover, by (22), we have
that U− ∩ x++ = ∅. Using Lemma A.1.3, we deduce that

U ∪ x+ moves Xn−1,− to B. (24)

Since U and V are disjoint and respectively initial and terminal in Xn, U− ∩ V + = ∅. Also,
by (23), we have (x+− ∩ V +) = ∅, therefore

(U ∪ x+)− ∩ V + ⊆ (U− ∩ V +) ∪ (x+− ∩ V +) = ∅.



58 Simon Forest

Using (24) and Lemma A.1.3, knowing that S = U ∪ x+ ∪ V , we deduce that

S moves Xn−1,− to Xn−1,+. (25)

The set U ∪ V is fork-free as a subset of the fork-free Xn, and x+ is fork-free since x is relevant
by Axiom (T2). Moreover,

U− ∩ x+− = U− ∩ x+∓ (by (22))

⊆ U− ∩A (by (21) and Lemma A.1.1)

= ∅ (since U moves Xn−1,− to A),

U+ ∩ x++ = U± ∩ x++ (by (22))

⊆ A ∩ x++ (by Lemma A.1.1 since U moves Xn−1,− to A)

= ∅ (by (21) and Lemma A.1.1).

So U ⊥ x+. Similarly, x+ ⊥ V . Hence, since S = U ∪ x+ ∪ V ,

S is fork-free. (26)

Then, by (25) and (26), Act(X,G) is a cell.
We now prove the second part of (a). By Axiom (T1), x− ∩ x+ = ∅ . Since U ⊥ x+

and x+ ⊥ V (by (26)), using Axiom (T0), we deduce that U ∩ x+ = x+ ∩ V = ∅ so that

Xn ∩ x+ = (U ∪ x− ∪ V ) ∩ x+ = ∅

which concludes the proof of the Step 1.

Step 2: (a) holds. We prove this by induction on |G|. If |G| = 0, then the result is trivial.
Moreover, the case |G| = 1 was proved in Step 1. So suppose that |G| ≥ 2. Since the relation /
is acyclic by Axiom (T1), we can consider a minimal x ∈ G for /G. Let

G̃ = G \ {x}, U = (Xn ∪ x+) \ x−, V = (U ∪ G̃+) \ G̃−

and recall that we defined S as (Xn∪G+)\G−. In order to show that Act(X,G) is a cell, we are
required to prove that S moves Xn−1,− to Xn−1,+, and that S is fork-free. For this purpose, we
will first move Xn with {x} to U and use Step 1, then move U by G̃ to V and use the induction
of Step 2. Finally, we will prove that V = S. So, using Step 1 with X and {x}, we get that

– Act(X, {x}) is a cell;
– in particular, U is fork-free and, when n > 0, U moves Xn−1,− to Xn−1,+;
– Xn ∩ x+ = ∅.

By Lemma A.1.1, we deduce that {x} moves Xn to U . Moreover,

G̃∓ = G̃− \ G̃+

= (G− \ x−) \ (G+ \ x+) (since fork-freeness implies that Gε = tu∈Guε)
⊆ ((G− \ x−) \G+) ∪ x+

= ((G− \G+) \ x−) ∪ x+

⊆ (Xn \ x−) ∪ x+ (since G∓ ⊆ Xn by Lemma A.1.1)

⊆ (Xn ∪ x+) \ x− (since x− ∩ x+ = ∅ by Axiom (T1))

= U.

Also, G̃ is fork-free as a subset of the fork-free set G. Using the induction hypothesis of Step 2
for G̃, we get that
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– Act(Act(X, {x}), G̃) is a cell;
– In particular, V = (U∪G̃+)\G̃− is fork-free, and, when n > 0, V moves Xn−1,− to Xn−1,+;
– U ∩ G̃+ = ∅.

By Lemma A.1.1, we deduce that G̃ moves U to V . Also, note that x− ∩ G̃+ = ∅ since x
was taken minimal in G. Using Lemma A.1.3, we deduce that G = {x} ∪ G̃ moves Xn to V .
But S = (Xn ∪G+) \G− so that S = V .

The second part of (a) is left to show, that is, Xn ∩G+ = ∅. We compute that

Xn ∩G+ = (U ∪ x− \ x+) ∩G+ (by Lemma A.1.1, since {x} moves Xn to U)

= ((U ∪ x−) ∩G+) \ x+

= (U ∩G+) \ x+ (since x− ∩G = x− ∩ (x+ ∪ G̃) = ∅)
= (U ∩ G̃+) = ∅

which concludes the proofs of Step 2 and (a).

Proof of (b): By (a), Act(X,G) is a cell. To conclude, we need to show that G moves Xn to S.
By definition of S, we have that S = (Xn ∪G+) \G−. Moreover,

(S ∪G−) \G+ = (((Xn ∪G+) \G−) ∪G−) \G+

= (Xn ∪G+ ∪G−) \G+

= (Xn \G+) ∪G∓

= Xn ∪G∓ (since Xn ∩G+ = ∅ by (a))

= Xn (since G is glueable on X).

Hence, Glue(X,G) is a cell.

Proof of (c): By contradiction, suppose that G′− ∩ G+ 6= ∅. Then, there are x ∈ G′, y ∈ G
and z ∈ x− ∩ y+. Consider U = {x′ ∈ G′ | x /G′ x′} ∪ {x}, and V = {y′ ∈ G | y′ /G y} ∪ {y}. By
the acyclicity Axiom (T1), we have U+ ∩ V − = ∅. Since U is a terminal set for /G′ , we have in
particular U+ ∩G′− ⊆ U−. So,

U+ = (U+ \G′−) ∪ (U+ ∩G′−) ⊆ G′± ∪ U−.

Hence, U± ⊆ G′± ⊆ Xn (since G′ is dually glueable on X). Similarly, V ∓ ⊆ Xn. Using the
dual version of (a), the n-pre-cell Y = Act(X,U) is an n-cell where Yn = (Xn ∪ U−) \ U+ (see
Figure 6) and we have

V ∓ = V ∓ \ U+ (since V − ∩ U+ = ∅)
⊆ Xn \ U+ (since V ∓ ⊆ Xn)

⊆ (Xn ∪ U−) \ U+ = Yn.

Using Theorem 2.1.1(a) with Y and V , we get Yn ∩ V + = ∅. But, since z ∈ U∓ ⊆ Yn (by
Axiom (T1)) and U∓ ⊆ Yn, z ∈ Yn ∩ V +, which is a contradiction. Hence, G′− ∩G+ = ∅ which
ends the proof of (c).
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⇒

z

V
⇒

Figure 6: V , U and Yn

Appendix B: Details on the freeness property

This section is devoted to prove Theorem 2.4.1, stating that the ω-category of cells of a torsion-
free complex is a tower of cellular extensions. For this purpose, we first need a concrete de-
scription of cells of free extensions. Such a description was already introduced by Makkai when
he gave a solution to the word problem on free strict categories [16]. It is based on an alter-
nate definition of strict categories using another set of operations. Indeed, the standard set of
operations, i.e., identity operations id and operations ∗ which allow composing pairs of cells of
homogeneous dimensions, is inconvenient for finding such a description, since this homogeneous
constraint requires an intensive use of identity operations to lift dimensions of cells, in order to
compose them with other cells of higher dimensions. Instead, strict categories can be seen as
instances of another kind of higher categories called precategories which satisfy an additional
condition. In precategories, the composition operation r of precategories allows composing cells
of heterogeneous dimensions, which is more convenient for formal handling. Based on this new
definition, syntactical devices called contexts and context classes can be developed. These for-
mally represent whiskering operations on generators as composites with one hole. Using them,
cells of free extensions can be described as adequately quotiented sequences of context classes
formally applied to generators. From this description, the freeness of the ω-category of cells of
torsion-free complexes can be proved.

In Appendix B.1, we first introduce the definition of precategories and show that strict cat-
egories can be interpreted as precategories satisfying an additional exchange condition. Then,
in Appendix B.2, we introduce contexts and context classes for strict categories, together with
several natural operations on them. In Appendix B.3, we give a description, in the form of Theo-
rem B.3.3, of the functor −[−] from cellular extensions to strict categories using the intermediate
notion of categorical actions, the latter describing the structure that context classes have with
regard to the underlying strict category. Concretely, the cells of free extensions will be classes
of sequences of formally applied context classes. In Appendix B.4, we prove that the cells of
torsion-free complexes admit a decomposition of this form (Theorem B.4.6). In Appendix B.5,
we finally prove Theorem 2.4.1 by showing that this decomposition is essentially unique, which
precisely characterizes that a strict category is a free extension. If required, more detailed proofs
can be found in [7].

B.1 Another definition of strict categories In this section, we introduce an alternate
definition of strict categories as particular instances of precategories.
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Precategories Precategories can be described, in a sense that will be made precise in the next
paragraph, as “strict categories without exchange law” and generalize in higher dimensions the
2-dimensional theory of sesquicategories defined by Street in [25]. They were already introduced
by Makkai in order to describe the cells of free strict categories [16].

Given n ∈ N ∪ {ω}, an n-precategory C is an n-globular set together with, for k ∈ Nn−1,
identity operations

idk+1 : Ck → Ck+1

for which we use the same notation conventions than the identity operations on strict categories,
and, for k, l ∈ N∗n, composition operations

r
k,l : Ck ×min(k,l)−1 Cl → Cmax(k,l)

which satisfy the axioms below. Given i, k, l ∈ Nn with i = min(k, l), since the dimensions
of the cells determine the functions to be used, we often write r

i for r
k,l. This way, we still

display the most important information which is the dimension i of composition. The axioms of
n-precategories are the following:
(P-i) for k ∈ Nn−1 and u ∈ Ck,

∂−k (idk+1
u ) = u = ∂+

k (idk+1
u ),

(P-ii) for i, k, l ∈ Nn such that i = min(k, l)− 1, (u, v) ∈ Ck ×i Cl, and ε ∈ {−,+},

∂ε(u r
i v) =


u r

i ∂
ε(v) if k < l,

∂−(u) if k = l and ε = −,
∂+(v) if k = l and ε = +,

∂ε(u) r
i v if k > l,

(P-iii) for i, k, l ∈ Nn with i = min(k, l)− 1, given (u, v) ∈ Ck−1 ×i Cl,

idu r
i v =

{
v if k ≤ l,
idu qiv if k > l,

and, given (u, v) ∈ Ck ×i Cl−1,

u r
i idv =

{
u if l ≤ k,
idu qiv if l > k,

(P-iv) for i, k, l,m ∈ Nn with i = min(k, l)− 1 = min(l,m)− 1, and u ∈ Ck, v ∈ Cl and w ∈ Cw
such that u, v, w are i-composable,

(u r
i v) r

i w = u r
i (v r

i w),

(P-v) for every i, j, k ∈ Nn satisfying i < j < k, and cells u1, u2 ∈ Ci+1, v1, v2 ∈ Cj+1 and w ∈ Ck
such that u1, w, u2 are i-composable and v1, w, v2 are j-composable, we have

u1
r
i (v1

r
j w r

j v2) r
i u2 = (u1

r
i v1

r
i u2) r

j (u1
r
i w r

i u2) r
j (u1

r
i v2

r
i u2).

Given two n-precategories C and D, a morphism of n-precategories between C and D (also called
n-prefunctor), is a morphism of n-globular sets F : C → D which moreover commutes with the
operations id and r. We write PCatn for the category of n-precategories.
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Strict categories as precategories In this section, we recall from [16] how strict categories
can be expressed as precategories satisfying a condition analogous to the exchange law.

For n ∈ N ∪ {ω} and C ∈ PCatn, we write (E) for the following property on C:
(E) for i, k, l ∈ Nn with 1 ≤ i = min(k, l)−1, u ∈ Ck and v ∈ Cl, if u, v are (i−1)-com-

posable, then

(u r
i−1 ∂

−
i (v)) r

i (∂+
i (u) r

i−1 v) = (∂−i (u) r
i−1 v) r

i (u r
i−1 ∂

+
i (v)).

Let PCat
(E)
n be the full subcategory of PCatn of those n-precategories C that satisfy (E). The

condition (E) can be thought as an equivalent for precategories of the exchange law (S-vi) of
strict categories.

Given n ∈ N ∪ {ω} and C ∈ Catn, we define a structure of n-precategory on the underlying
n-globular set of C. We keep the identities given by the strict n-category structure and define the
composition operations r

(−) on C based on the composition operations ∗(−). Given i, k, l ∈ Nn
with i = min(k, l)− 1, u ∈ Ck and v ∈ Cl such that u, v are i-composable, we put

u r
i v = idmu ∗i idmv

where m = max(k, l). We can then prove that we indeed obtain an n-precategory which satis-
fies (E) and that the construction is functorial.

Conversely, given C ∈ PCat
(E)
n , we define a structure of strict n-category on the underlying

n-globular set of C. We keep the identities given by the structure of n-precategory of C as before
and define the multiple composition operations ∗(−) based on the precategorical composition
operations r

(−). For i, k ∈ Nn with i < k, we define u∗i v for i-composable u, v ∈ Ck by induction
on k − i. If i = k − 1, we put u ∗i v = u r

i v. Otherwise, if i < k − 1, we define u ∗i v inductively
by

u ∗i v = (u r
i ∂
−
i+1(v)) ∗i+1 (∂+

i+1(u) r
i v).

We can then prove that we obtain a strict n-category and that the construction is functorial.

Theorem B.1.1. The two constructions define an isomorphism between Catn and PCat
(E)
n .

Thus, a strict n-category C is canonically an n-precategory satisfying (E) (and vice versa). For
our purposes, we will often prefer the definition of strict categories and use the precategorical
compositions r

(−) on a strict category without invoking Theorem B.1.1.

B.2 Contexts and contexts classes Here, we introduce contexts and context classes, that
represent formal cells of strict categories with “holes” in them. Our definitions are similar to the
one of context given by Métayer in [17], but with a stronger syntactical perspective.

Definition Let n ∈ N ∪ {ω} and G be an n-globular set. Given k ∈ Nn and u, v ∈ Xk, u
and v are said parallel when k = 0 or ∂εk−1(u) = ∂εk−1(v) for ε ∈ {−,+}. Given m ∈ Nn, an
m-type is a pair (u, u′) of parallel (m−1)-globes of G (we use the convention that there is a
unique (−1)-globe ∗ which is parallel with itself). Given k ∈ Nn with k ≥ m and v ∈ Gk, the
m-type of v is the m-type (∂−m−1(v), ∂+

m−1(v)) so that every k-cell can be implicitly considered
as an m-type.

Let C ∈ Catn. For every m ∈ Nn and m-type (u, u′), we define, by induction on m,
– the notion of m-context of type (u, u′) of C,
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– the notion of m-context class of type (u, u′) of C,
– for k ∈ Nn with k ≥ m, the evaluation of an m-context E (resp. m-context class F ) of

type (u, u′) at a cell w ∈ Ck of type (u, u′) which is a k-cell denoted E[w] (resp. F [w]).
For m ∈ Nn, an m-context class of type (u, u′) of C will be an equivalence class of m-contexts
of type (u, u′) under a relation denoted ≈m, so that we write JEK for the associated m-context
class of an m-context E. This relation witnesses that two contexts are equivalent up to the
equalities (E) considered in dimension m.

There is a unique 0-context, denoted [−], and the relation ≈0 is the identity relation, so that
a 0-context class is exactly a 0-context. Given k ∈ Nn and k-cell v ∈ Ck, the evaluation of the
unique 0-context (class) [−] at v is v.

Given m ∈ Nn−1 and an (m+1)-type (u, u′), an (m+1)-context of type (u, u′) is defined as a
triple E = (l, F, r) where

– F is an m-context class of type (∂−m−1(u), ∂+
m−1(u′)),

– l and r are (m+1)-cells of C such that ∂+
m(l) = F [u] and ∂−m(r) = F [u′].

Moreover, given k ∈ Nn with k ≥ m + 1 and w ∈ Ck of type (u, u′), the evaluation E[w] of E
at w is the k-cell

E[w] = l rm F [w] rm r.

We define the relation ≈m+1 on (m+1)-contexts of type (u, u′). When m = 0, for all 1-con-
texts E1 and E2 of type (u, u′), we put E1 ≈1 E2 if and only if E1 = E2. When m > 0,
we define ≈m+1 to be the reflexive symmetrical transitive closure of ≈1

m+1, where ≈1
m+1 is the

relation such that, for all (m+1)-contexts

E1 = (l1, F1, r1) and E2 = (l2, F2, r2)

of type (u, u′), we have E1 ≈1
m+1 E2 if there exist m-contexts

E′1 = (l′1, F
′
1, r
′
1) and E′2 = (l′2, F

′
2, r
′
2)

of type (∂−m−1(u), ∂+
m−1(u′)) with Fi = JE′iK for i ∈ {1, 2}, and l, r, w ∈ Cm+1 such that at least

one of the two sets of conditions (≈-L) and (≈-R) is satisfied, where the set of conditions (≈-L)
is

(≈-L)

l1 = l rm (w r
m−1 F

′
1[u] rm−1 r

′
1) r1 = r

l2 = l r2 = (w r
m−1 F

′
2[u′] rm−1 r

′
2) r

m r

l′1 = ∂+
m(w) r′1 = r′2

l′2 = ∂−m(w) F ′1 = F ′2

and the set of conditions (≈-R) is

(≈-R)

l1 = l rm (l′1 r
m−1 F

′
1[u] rm−1 w) r1 = r

l2 = l r2 = (l′2 r
m−1 F

′
2[u′] rm−1 w) r

m r

l′1 = l′2 r′1 = ∂+
m(w)

r′2 = ∂−m(w) F ′1 = F ′2.

We give a graphical representation of (≈-L) and (≈-R) in the case m = 1 in Figure 7. An
(m+1)-context class of type (u, u′) is an equivalence class of (m+1)-contexts of type (u, u′)

under ≈m+1. Note that if E1 ≈m+1 E2 and w is a k-cell of type (u, u′), then E1[w] = E2[w],
so that we can define the evaluation F [w] of an (m+1)-context class F by a k-cell w, both of
type (u, u′), as E[w], where E is an (m+1)-context of type (u, u′) such that F = JEK.
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(≈-L)

l

r

w ≈1
2

l

r

w

(≈-R)

l

r

w ≈1
2

l

r

w

Figure 7: The rules (≈-L) and (≈-R) for ≈1
2

Source and target of contexts Let n ∈ N ∪ {ω} and C ∈ Catn. Given m ∈ N∗n, an
m-type (u, u′) and an m-context E = (l, F, r) of type (u, u′) of C, the source and the target of E
are respectively the (m−1)-cells

∂−m−1(E) = ∂−m−1(l) and ∂+
m−1(E) = ∂+

m−1(r).

When m > 1, for ε ∈ {−,+}, we easily verify that

∂εm−2 ◦ ∂−m−1(E) = ∂εm−2 ◦ ∂+
m−1(E).

The operations ∂−, ∂+ on m-contexts extend to m-context classes since they are compatible
with the ≈m relation. Given i ∈ Nm−1 and ε ∈ {−,+} and an m-context E (resp. an m-context
class F ), we write ∂εi (E) for ∂εi ◦ ∂εm−1(E) (resp. ∂εi ◦ ∂εm−1(F )). Thus, for i ∈ Nn−1, we can
extend the notion of i-composable sequences of globes of globular sets to sequences X1, . . . , Xl

for some l ∈ N∗ where Xs is either an m-context, an m-context class, or a cell of C for s ∈ N∗l ,
and say that X1, . . . , Xl is i-composable when ∂+

i (Xs) = ∂−i (Xs+1) for s ∈ N∗l−1.

Composition operations Let n ∈ N ∪ {ω} and C ∈ Catn. Given i,m ∈ Nn with i < m, an
m-context E = (l, F, r) of some m-type (u, u′) of C, and v ∈ Ci+1, if (v,E) is i-composable, we
define an m-context v r

i E by induction on m− i with

v r
i E =

{
(v r

i l, F, r) if i+ 1 = m,

(v r
i l, v r

i F, v r
i r) if i+ 1 < m,

and, since it can be verified that the r
i operation is compatible with ≈m, we extend the operation

on m-context classes and put v r
i JEK = Jv r

i EK. Similarly, if (E, v) is i-composable, we define
an m-context E r

i v using an induction on m− i by

E r
i v =

{
(l, F, r r

i v) if i+ 1 = m,

(l ri v, F r
i v, r r

i v) if i+ 1 < m,

and we put JEK r
i v = JE r

i vK. These composition operations satisfy properties similar to strict
(n+1)-categories (unitality, associativity, condition (E), etc.).
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B.3 A description of free extensions We now introduce a concrete description of the free
extension functor −[−] of strict categories using context and context classes. It is based on the
intermediate notion of categorical action, which encodes the structure of context and context
classes with regard to the underlying n-category. On the one hand, the cells of free categorical
action on a cellular extension will then be characterized as formally applied context classes on
the generators. On the other hand, the cells of the free strict category on a categorical action will
be characterized as adequately quotiented sequences of the cells of the categorical action. This
will result in the characterization of cells of free extensions as quotiented sequences of formally
applied context classes.

Categorical actions Let n ∈ N. An n-categorical action is the data of an n-cellular exten-
sion (C,Cn+1) together with, for k ∈ N∗n, composition operationsr

k,n+1 : Ck ×k−1 Cn+1 → Cn+1 and r
n+1,k : Cn+1 ×k−1 Ck → Cn+1

satisfying the axioms given below. We extend the convention used for precategories, meaning
that, for i, k, l ∈ Nn+1 with i = min(k, l)− 1 and max(k, l) = n+ 1, given (u, v) ∈ Ck ×i Cl, we
write u r

i v for u r
k,l v. The axioms satisfied by n-categorical actions are then the following:

(A-i) for i, k, l ∈ Nn+1 satisfying

i = min(k, l)− 1 ≤ n− 1 and max(k, l) = n+ 1,

and (u, v) ∈ Ck ×i Cl and ε ∈ {−,+},

∂εn(u r
i v) =

{
u r

i ∂
ε
n(v) if k < l,

∂εn(u) r
i v if k > l,

(A-ii) for i, k, l,m ∈ Nn+1 satisfying

i = min(k, l)− 1 = min(l,m)− 1 ≤ n− 1 and max(k, l,m) = n+ 1,

and (u, v, w) ∈ Ck ×i Cl ×i Cm,

(u r
i v) r

i w = u r
i (v r

i w),

(A-iii) for i, j ∈ Nn−1 with i < j, u1, u2 ∈ Ci+1, v1, v2 ∈ Cj+1 and w ∈ Cn+1 such
that u1, w, u2 are i-composable and v1, w, v2 are j-composable,

u1
r
i (v1

r
j w r

j v2) r
i u2 = (u1

r
i v1

r
i u2) r

j (u1
r
i w r

i u2) r
j (u1

r
i v2

r
i u2),

(A-iv) for i, k, l ∈ N∗n+1 satisfying

i = min(k, l)− 1 ≤ n− 1 and max(k, l) = n+ 1,

and (u, v) ∈ Ck ×i−1 Cl,

(u r
i−1 ∂

−
i (v)) r

i (∂+
i (u) r

i−1 v) = (∂−i (u) r
i−1 v) r

i (u r
i−1 ∂

+
i (v)).

Axioms (A-i), (A-ii) and (A-iii) above closely match Axioms (P-ii), (P-iv) and (P-v) of pre-
categories. Axiom (A-iv) is analogous to the condition (E) satisfied by precategories derived
from strict categories (c.f. Appendix B.1). An n-categorical action morphism between (C,Cn+1)

and (D,Dn+1) is a morphism of n-cellular extension

(F, f) : (C,Cn+1)→ (D,Dn+1) ∈ Cat+
n

which is moreover commutes with the r
k,n+1 and r

n+1,k operations for k ∈ N∗n. We write CatA
n

for the category of n-categorical actions.



66 Simon Forest

Free action on a cellular extension There is a forgetful functor

U : CatA
n → Cat+

n

which forgets the data of the r
k,n+1 and r

n+1,k operations, for k ∈ N∗n. In this section, we
use the formalism of contexts and contexts classes to define a left adjoint (−,−A) to the func-
tor U : CatA

n → Cat+
n : given an n-cellular extension (C,X), the elements of XA will be the pairs

(g, F ), where g ∈ X and F is an adapted n-context class, i.e., XA is the set of context classes
formally applied to generators of X.

Let n ∈ N. Given an n-cellular extension (C,X), an n-categorical action C[X]A = (C,XA)

can be defined as follows: XA is the set of pairs (g, F ) with g ∈ X and F an n-context class of
type g. The n-source and n-target of such a pair (g, F ) are defined respectively as the n-cells

∂−n ((g, F )) = F [d−n (g)] and ∂+
n ((g, F )) = F [d+

n (g)].

and they equip (C,XA) with a structure of an n-cellular extension. We extend the operations r
i

defined for n-context classes to such pairs by putting

u r
i (g, F ) = (g, u r

i F ) and (g, F ) r
i v = (g, F r

i v)

for i ∈ Nn−1 and u, v ∈ Ci+1 such that u, (g, F ) and (g, F ), v are i-composable. We then have:

Proposition B.3.1. The operations r
i defined above equip C[X]A with the structure of an n-cate-

gorical action. It is the free categorical action relatively to the forgetful functor U .

The construction (C,X) 7→ C[X]A of the above proof uniquely extends to a functor

−[−]A : Cat+
n → CatA

n

which is left adjoint to U . Given (H,h) : (C,X) → (D,Y ) in Cat+
n , the n-categorical action

morphism
H[h]A : C[X]A → D[Y ]A ∈ CatA

n

is defined by H[h]Ai = Hi and H[h]An+1((g, F )) = (h(g), H(F )) for i ∈ Nn and (g, F ) ∈ XA.

Free (n+1)-categories on n-categorical actions There is a forgetful functor

U ′ : Catn+1 → CatA
n

which maps an (n+1)-category C to an n-categorical action (C≤n, Cn+1) by forgetting the r
n

operation (where we consider the (n+1)-precategory structure of C). In this section, we describe
explicitly a left adjoint −[−]≈ to this functor: given (C,A) ∈ CatA

n , we show that the (n+1)-cells
of C[A]≈ can be described as sequences of composable elements of A that are adequately quo-
tiented.

Let n ∈ N and (C,A) ∈ CatA
n . We define the set A? of n-composable sequences (or simply,

n-sequences) of (C,A) as the set of terms of the form

(u1, . . . , uk)
s

for some k ∈ N and u1, . . . , uk ∈ A such that u1, . . . , uk are n-composable. When k = 0, by
convention, there is an empty sequence ( )s

u for each u ∈ Cn. Given v = (v1, . . . , vk)
s ∈ A?, we
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l = x y z

f

f ′

g
⇓ u r = x y z

f

g

g′

⇓ v

l′ = x y z
f ′

g

g′

⇓ v r′ = x y z

f

f ′

g′

⇓ u

Figure 8: A configuration of 2-cells l, l′, r, r′, u, v such that X (l, l′, r, r′, u, v)

say that k is the length of v and we write |v| for k. Moreover, we define a source ∂−n (v) and a
target ∂+

n (v) for v by putting

∂−n (v) = ∂−n (v1) and ∂+
n (v) = ∂+

n (vk)

where, by convention, if v = ( )s
u for some u ∈ Cn, then ∂−n (v) = ∂+

n (v) = u. Thus, we obtain an
n-cellular extension whose set of (n+1)-globes is A? and whose underlying n-category is C. We
now define composition operations for the n-sequences. Given i ∈ Nn−1, a cell u ∈ Ci+1 and an
n-sequence v = (v1, . . . , vl)

s ∈ A? such that u, v are i-composable, we put

u r
i v = (u r

i v1, . . . , u r
i vl)

s

where, by convention, if v = ( )s
ṽ for some ṽ ∈ Cn, then u r

i v = ( )s
u qiṽ. Given n-composable

n-sequences u = (u1, · · · , uk)s and v = (v1, · · · , vl)s in A?, we put

u r
n v = (u1, . . . , uk, v1, . . . , vl)

s.

In order to obtain a strict (n+1)-category from C and A?, we need to quotient A? so that the
exchange condition (E) on precategories holds (c.f. Theorem B.1.1). For this purpose, we define
a relation X ⊆ A6 such that, given l, l′, r, r′, u, v ∈ A, X (l, l′, r, r′, u, v) holds when u, v are
(n−1)-composable and the following equalities hold in A

l = u r
n−1 ∂

−
n (v) r = ∂−n (u) r

n−1 v

l′ = ∂+
n (u) r

n−1 v r′ = u r
n−1 ∂

+
n (v).

In Figure 8, we illustrate this condition in the case of a 1-categorical action. Given top-
level elements l, l′, r, r′ ∈ A, we write X (l, l′, r, r′) when there exist u, v ∈ A such that we
have X (l, l′, r, r′, u, v). We define an equivalence relation ≈ on A? as the reflexive symmetrical
transitive closure of ≈1, where, for l = (l1, . . . , lk)

s and r = (r1, . . . , rk)
s in A?, l ≈1 r when there

is i ∈ N∗k−1 such that X (li, li+1, ri, ri+1) and lj = rj for j ∈ N∗k \ {i, i+ 1}. We write A≈ for the
quotient set A?/ ≈ of n-sequence classes and

J−K : A? → A≈

for the associated projection. We remark that, if u, v ∈ A? are such that u ≈ v, then |u| = |v|.
Thus, the length given for the members of A? induces a length for the members of A≈. The
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operations ∂εn for ε ∈ {−,+} on A? can be shown compatible with the relation ≈, so that they
are well-defined on A≈ as well. Thus, we obtain an n-cellular extension C[A]≈ by extending the
strict n-category C with A≈. Similarly, the operations r

i for i ∈ Nn−1 and r
n defined for A? are

compatible with the relation ≈, so that they are well-defined on C[A]≈n+1 = A≈ as well. We add
an identity operation by putting idn+1

u = J( )s
uK for u ∈ Cn. We then have:

Proposition B.3.2. C[A]≈ has a structure of a strict (n+1)-category. It is the free (n+1)-cate-
gory on the action (C,A) relatively to the forgetful functor U ′.

In the following, for all n-categorical action (C,A), we write C[A]≈ for C[A]≈ as above. The
construction (C,A) 7→ C[A]≈ uniquely extends to a functor

−[−]≈ : CatA
n → Catn+1

which is left adjoint to U ′. Given (H,h) : (C,A)→ (D,B) in Cat+
n , the (n+1)-functor

H[h]≈ : C[A]≈ → D[B]≈ ∈ Catn+1

is defined by H[h]≈i = Hi and H[h]≈n+1(J(u1, . . . , uk)
sK) = J(h(u1), . . . , h(uk))

sK for i ∈ Nn
and (u1, . . . , uk)

s ∈ A?.

Free categories on cellular extensions Let n ∈ N. We can sum up the content of the
previous sections to give a concrete description of the functor

−[−] : Cat+
n → Catn+1.

Indeed, since its right adjoint Vn : Catn+1 → Cat+
n is the composite of the right adjoints U ′ and

U , we have, as a consequence of Propositions B.3.1 and B.3.2:

Theorem B.3.3. The composite

(−[−]≈) ◦ (−[−]A) : Cat+
n → Catn+1

is a left adjoint for Vn. In particular, it is isomorphic to −[−].

Our description of −[−] also induces a decomposition property for the (n+1)-cells of free exten-
sions:

Proposition B.3.4. Given an n-cellular extension (C,X) and u ∈ C[X]n+1, u can be written

F1[g1] rn · · · rn Fk[gk]
where k ∈ N, gi ∈ X and Fi is an n-context class of type gi for i ∈ N∗k. Moreover, k is unique
for u.

B.4 Cell decompositions Here, we use the machinery of context classes in order to prove a
decomposition property for the cells of a torsion-free complex. More precisely, given a torsion-
free complex P , we prove that the n-cells of Cell(P ) can be written as sequences of applied
(n−1)-context classes. Actually, we prove the stronger statement that such a composite exists
for any total ordering, called linear extensions, of the top-level n-generators that respects the
relation /. This result will be a first step towards the proof that Cell(P ) is freely generated
on the atoms. The next one, tackled in the following section, will be to show that the above
decomposition is unique up to the relation ≈ defined in the previous section.
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Linear extensions Given a finite poset (S,<), a linear extension of (S,<) is the data of a
bijection σ : N∗|S| → S such that, for i, j ∈ N∗|S|, if σ(i) < σ(j), then i < j. Given two linear
extensions σ, σ′ : N|S| → S, a morphism of linear extensions of (S,<) between σ and σ′ is a
function ρ : N∗|S| → N∗|S| such that the triangle

N∗|S| N∗|S|

S

ρ

σ σ′

is commutative (in particular, ρ is a bijection). We write LinExt(S) for the category of linear
extensions of S. Given n ∈ N and a bijection ρ : N∗n → N∗n, we write Inv(ρ) ∈ N for the number
of inversions of ρ, i.e.,

Inv(ρ) = |{(i, j) ∈ N∗n × N∗n | i < j and ρ(i) > ρ(j)}|.

Moreover, given i, j ∈ N∗n such that i 6= j, we write τi,j for the bijection N∗n → N∗n which is the
transposition of i and j. We show that the morphisms of linear extensions are generated by the
transpositions:

Lemma B.4.1. Given a poset (S,<) and σ, σ′ ∈ LinExt(S) and ρ : σ → σ′ ∈ LinExt(S)1, there
exist p ∈ N and σ0, . . . , σp ∈ LinExt(S) with σ = σ0 and σp = σ′, and ρi : σi−1 → σi ∈ LinExt(S)

for i ∈ N∗p such that ρ = ρ1 ∗0 · · · ∗0 ρp and ρi is a transposition for i ∈ N∗p.

Proof. We prove the result by induction on the number Inv(ρ) of inversions of the bijection ρ.
If Inv(ρ) = 0, then ρ = 1N∗|S| = id1

σ. So suppose that Inv(ρ) > 0. Thus, there exists k ∈ N∗|S|−1

such that ρ(k) > ρ(k + 1). The bijection σ̄ = σ ◦ τk,k+1 is then a linear extension of (S,<) as in

N∗|S| N∗|S| N∗|S|

S

τk,k+1

σ σ̄

ρ◦τk,k+1

σ′
.

Indeed, for i, j ∈ N∗|S| such that i 6= j and σ̄(i) < σ̄(j),
– if i = k+1 and j = k, then σ(k) < σ(k+1), so σ′(ρ(k)) < σ′(ρ(k+1)) and ρ(k) < ρ(k+1),

contradicting the hypothesis;
– if i = k + 1 and j 6= k, then σ(i− 1) < σ(j), so i− 1 < j, and, since j 6= i, i < j;
– otherwise, we are able to prove that i < j easily.

Moreover, the number of inversions of ρ◦ τk,k+1 is Inv(ρ)−1. By induction hypothesis, ρ◦ τk,k+1

can be written as

ρ ◦ τk,k+1 = ρ2 ∗0 · · · ∗0 ρp

for some p ∈ N and transpositions ρi : σi−1 → σi ∈ LinExt(S)1 for i ∈ N∗p−1, so that

ρ = τk,k+1 ∗0 ρ2 ∗0 · · · ∗0 ρp

is of the wanted form.
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Decomposition theorem Here, we write P for a torsion-free complex. We show that cells
of Cell(P ) can be decomposed as composites of applied context classes that respect the relation /.
First, we state a simple criterion for equality in Cell(P ), which readily follows from the definitions
of cells and source/target operations:

Lemma B.4.2. Given k, n ∈ N with k < n, ε ∈ {−,+} and X,Y ∈ Cell(P )n such that
∂εk(X) = ∂εk(Y ) and Xi,ε = Yi,ε for i ∈ {k + 1, . . . , n}, we have X = Y .

Next, we show that we can write a cell as a composition by extracting a minimal element for /:

Lemma B.4.3. Let n ∈ N∗ and X be an n-cell and g be a minimal element of Xn for /Xn.
Then, there exist n-cells Y and Z that are (n−1)-composable such that Yn = {g}, Zn = Xn \ {g}
and X = Y ∗n−1 Z.

Proof. Since g is minimal for /Xn , we have {g}∓ ⊆ Xn−1,−. Moreover, since X is an n-cell, Xn

is fork-free so that {g} ⊥ (Xn \ {g}). Thus, by Lemma A.1.4, writing V for (Xn−1,− ∪ g+) \ g−,
we have that {g} moves Xn−1,− to V and Xn \ {g} moves V to Xn−1,+. By Theorem 2.1.1, the
cell Y = Glue(∂−n−1(X), {g}) is an n-cell which satisfies that

Yn = {g}, ∂−n−1(Y ) = ∂−n−1(X) and Yn−1,+ = V .

By Theorem 2.1.1 again, Z = Glue(∂+
n−1(Y ), Xn \ {g}) is an n-cell such that

Zn = Xn \ {g}, ∂−n−1(Z) = ∂+
n−1(Y ) and Zn−1,+ = Xn−1,+,

so that ∂+
n−1(Z) = ∂+

n−1(X). Then, by the definition of ∗n−1, we have X = Y ∗n−1 Z.

The previous lemma implies that we can write a cell as a composite of cells with a single top-level
generator, that are moreover ordered by a given linear extension:

Lemma B.4.4. Let n ∈ N∗ and X be an n-cell of P , p = |Xn| and σ : N∗p → (Xn, /Xn) be a
linear extension. There exist n-cells X1, . . . , Xp that are (n−1)-composable and such that

Xi
n = {σ(i)} for i ∈ N∗p and X = X1 ∗n−1 · · · ∗n−1 X

p.

Proof. We prove this property by induction on p. When p = 0 or p = 1, then the property is
trivial. So suppose that p > 1. Note that σ(1) is minimal in Xn for /Xn . By Lemma B.4.3, we
can writeX = X1∗n−1X

′ where X1 and X ′ are (n−1)-composable n-cells such thatX1
n = {σ(1)}

and X ′n = Xn\{σ(1)}. By induction hypothesis, we have that X ′ = X2∗n−1 · · ·∗n−1X
p for some

(n−1)-composable n-cells X2, . . . , Xp such that Xi
n = {σ(i)} for i ∈ {2, . . . , p}, which concludes

the proof.

Next, we give a sufficient criterion for a cell to be written as an applied context class:

Lemma B.4.5. Let k, n ∈ N with k < n, g ∈ Pn and X be an n-cell such that Xi,ε = 〈g〉i,ε
for i ∈ {k + 1, . . . , n} and ε ∈ {−,+}. There exists a k-context class F of type 〈g〉 such that we
have X = F [〈g〉].

Proof. We show this property by induction on k. When k = 0, we have that Xi,ε = 〈g〉i,ε
for i ∈ N∗n and ε ∈ {−,+}. Moreover, since X is an n-cell, we have that 〈g〉1,− moves X0,−
to X0,+, so that 〈g〉∓1,− = 〈g〉0,− ⊆ X0,−. Since X0,− is fork-free, |X0,−| = 1. Thus, X0,− = 〈g〉0,−.
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Similarly, X0,+ = 〈g〉0,+. Hence, we have X = 〈g〉 and the property of the statement is verified
with the unique 0-context class.

So suppose that k > 0. We have thatXk+1,ε = 〈g〉k+1,ε movesXk,− toXk,+, so 〈g〉k,− ⊆ Xk,−.
By Axiom (T3), 〈g〉k,− is a segment for /Xk,− and, by Lemma A.1.8, there exist U, V ⊆ Xk,−
and A,B ⊆ Pk−1 such that

– U, 〈g〉k,−, V is a partition of Xk,−,
– U moves Xk−1,− to A, 〈g〉k,− moves A to B and V moves B to Xk−1,+.

Writing

L = Glue(∂−k−1(X), U) Xk = Glue(∂+
k−1(L), 〈g〉k,−) R = Glue(∂+

k−1(Xk), V ),

by Theorem 2.1.1, we have that L,Xk, R are k-cells that are (k−1)-composable and such that

∂−k (X) = L r
k−1 X

k r
k−1 R

By induction on i ∈ {k+1, n}, we define i-cells Xi such that ∂−i−1(Xi) = Xi−1 and Xi
i = 〈g〉i,− by

putting Xi = Glue(Xi−1, 〈g〉i,−), which is indeed a cell by Theorem 2.1.1. Then, Xn is an n-cell
such that ∂−k (Xn) = Xk and Xn

i,ε = 〈g〉i,ε for i ∈ {k, . . . , n}. Moreover, since ∂−k (Xn) = Xk,

L,Xn, R are (k−1)-composable and ∂−k (L r
k−1 X

n r
k−1 R) = ∂−k (X).

Furthermore, we have that

Xi,− = 〈g〉i,− = Xn
i,− = (L r

k−1 X
n r
k−1 R)i,−

for i ∈ {k + 1, n} so that, by Lemma B.4.2, we have X = L r
k−1 X

n r
k−1 R. By induction

hypothesis, there exists a (k−1)-context class F ′ such that Xn = F ′[〈g〉]. Writing F for the
k-context class J(L,F ′, R)K, we have that X = F [〈g〉] as wanted.

We can now prove the following decomposition theorem:

Theorem B.4.6. Given n ∈ N∗, an n-cell X ∈ Cell(P ) and a linear extension

σ : N∗p → (Xn, /Xn)

with p = |Xn|, there exist (n−1)-context classes F1, . . . , Fp of Cell(P ) of types 〈σ(1)〉, . . . , 〈σ(p)〉
respectively such that

X = F1[〈σ(1)〉] rn−1 · · · rn−1 Fp[〈σ(p)〉].

Remark B.4.7. By Axiom (T1), given n ∈ N∗ and a finite subset S ⊆ Pn, there always exists a
linear extension σ : N∗|P | → (S, /S), so that an n-cell X of P has at least one decomposition of
the form given by Theorem B.4.6.

Proof. By Lemma B.4.4, X can be written X = X1 r
n−1 · · · rn−1 X

p for some n-cells X1, . . . , Xp

such that Xi
n = {σ(i)} for i ∈ N∗p. We conclude with Lemma B.4.5.

We verify with the following property that Theorem B.4.6 does not miss other possible decom-
positions:

Proposition B.4.8. Given n ∈ N∗ and X ∈ Cell(P )n such that

X = F1[〈x1〉] rn−1 · · · rn−1 Fk[〈xk〉]

for some k ∈ N, x1, . . . , xk ∈ Pn and (n−1)-context classes F1, . . . , Fk of Cell(P ), we have
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(i) Xn = {x1, . . . , xk},
(ii) for i, j ∈ N∗k with i 6= j, we have xi 6= xj,
(iii) the function p 7→ xp of type N∗k → Xn is a linear extension of (Xn, /Xn).
In particular, if X = F ′1[〈y1〉] rn−1 · · · rn−1F

′
l [〈yl〉] for some l ∈ N, y1, . . . , yl ∈ Pn and (n−1)-con-

text classes F ′1, . . . , F
′
l , then k = l and {x1, . . . , xk} = {y1, . . . , yl}.

Proof. Given m < n, x ∈ Pn and an m-context class F of type 〈x〉, by a simple induction on m,
one can prove that (F [〈x〉])n = {x}. Thus, by definition of ∗n−1, we have Xn = {x1, . . . , xk}, so
(i) holds. Let i, j ∈ N∗k with i < j, and Y,Z be the n-cells defined by

Y = F1[〈x1〉] rn−1 · · · rn−1 Fi[〈xi〉] and Z = Fi+1[〈xi+1〉] rn−1 · · · rn−1 Fk[〈xk〉].

Then xi ∈ Yn, xj ∈ Zn and Y ,Z are (n−1)-composable. By Lemma 2.2.1, Yn ∩ Zn = ∅.
Hence, xi 6= xj , thus (ii) holds. Moreover, by Lemma 2.2.1 again, (Yn)− ∩ (Zn)+ = ∅, so
that ¬(xj /

1
Xn

xi). Thus, by contrapositive, given i, j ∈ N∗k such that xi /1
Xn

xj , we have i ≤ j,
and in fact i < j by Axiom (T1). Since /Xn is the transitive closure of /1

Xn
, given i, j ∈ N∗k,

we have that xi /Xn xj implies i < j, so the function p 7→ xp is a linear extension of (Xn, /Xn),
which concludes the proof of (iii).

B.5 Freeness for torsion-free complexes In this section, we give a proof to Theorem 2.4.1,
which states that the ω-category of cells of a torsion-free complex is, in each dimension, a free
extension over itself. By the characterization of the functor −[−] : Cat+

n → Catn+1 given in
Appendix B.3, we are only left to prove that the canonical forms F1[x1] rn · · · rn Fp[xp] from the
previous section are unique, up to the relation ≈ defined in Appendix B.2. We first prove the
unicity of the decomposition in the case p = 1, and then handle the general case afterwards.
In this section, we write P for a torsion-free complex.

Freeness of decompositions of length one We first prove two technical lemmas on the
manipulation of contexts by mutual induction. The first states that, as long as we respect the
relation /, we can modify the whiskers of the contexts:

Lemma B.5.1. Let k, n ∈ N∗ with k < n, ε ∈ {−,+}, g ∈ Pn and E = (L,F,R) be a k-context
of type 〈g〉 of Cell(P ). Consider the following subsets of Pk:

S = Lk ∪Rk, S′ = S ∪ 〈g〉k,ε,
U = {y ∈ S | y /S′〈g〉k,ε}, V = {y ∈ S | 〈g〉k,ε /S′ y}.

Then, for every partition U ′ ∪ V ′ of S such that U ⊆ U ′, V ⊆ V ′, U ′ is initial in S and V ′ is
final in S, there exists a k-context E′ = (L′, F ′, R′) of type X such that

L′k = U ′, R′k = V ′, E ≈k E′.

For k = 2, Lemma B.5.1 states that, given g ∈ Pn for some n > 2 and a 2-context E = (L,F,R)

of type 〈g〉 Figure 9, E is equivalent through ≈2 to a 2-context E′ = (L′, F ′, R′) as on the right
of Figure 9. The second lemma gives sufficient conditions under which two composable context
classes can be decomposed in a way that allows them to be exchanged by the relations ≈k or ≈
defined in Appendix B.2:
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L2

R2

. .. .g

⇓ V

⇓ U

≈2

L′2

R′2

. .. .g

⇓ V

⇓ U

Figure 9: Illustration of Lemma B.5.1

Lemma B.5.2. Let k, n1, n2 ∈ N∗ with k < min(n1, n2), g1 ∈ Pn1, g2 ∈ Pn2 , and F1, F2 be
k-context classes of Cell(P ), of type 〈g1〉 and 〈g2〉 respectively, such that

F1[∂+
k (〈g1〉)] = F2[∂−k (〈g2〉)] and 〈g1〉k,+ ∩ 〈g2〉k,− = ∅.

There exist k-context classes F̄1, F̄2 of type 〈g1〉 and 〈g2〉 respectively, such that
– either F̄1, F̄2 are (k−1)-composable and

F1 = F̄1
r
k−1 F̄2[∂−k (〈g2〉)] F2 = F̄1[∂+

k (〈g1〉)] rk−1 F̄2,

– or F̄2, F̄1 are (k−1)-composable and

F1 = F̄2[∂−k (〈g2〉)] rk−1 F̄1 F2 = F̄2
r
k−1 F̄1[∂+

k (〈g1〉)].

Proof. We prove the two lemmas by induction on k.

Proof of Lemma B.5.1. Let p = |Lk|. Since U ′ is initial in S, U ′ ∩ Lk is initial for /Lk , so there
exists a linear extension

σ : N∗p → (Lk, /Lk)

such that {i ∈ N∗p | σ(i) ∈ U ′} = {1, . . . , i0} for some i0 ∈ Np. Writing xi for σ(i) for i ∈ N∗p, by
Theorem B.4.6, L can be decomposed as

L = F1[〈x1〉] rk−1 · · · rk−1 Fp[〈xp〉]

for some (k−1)-context classes F1, . . . , Fp. For i ∈ {i0 + 1, . . . , p}, we aim at transferring Fi[xi]
from L to R using the relation ≈k on k-contexts. If k = 1, then 〈x1〉, . . . , 〈xp〉, ∂ε1(〈g〉) are
0-composable, so that

x1 /S′ · · · /S′ xp /S′〈g〉1,ε

which implies that x1, . . . , xp ∈ U ′ and i0 = p. Thus, we can suppose that k > 1. Assume
moreover that i0 < p. To transfer the Fi[xi]’s, our plan is to use Lemma B.5.2. We only need to
show how to do this for i = p, and then iterate this procedure for i ∈ {i0 + 1, . . . , p− 1}.

Note that Fp[∂+
k−1(〈xp〉)] = F [∂−k−1(〈g〉)]. Moreover, since xp /∈ U ′, we have xp /∈ U , so that

〈xp〉k−1,+ ∩ 〈g〉k−1,− = ∅.

Thus, using Lemma B.5.2 inductively, we get (k−1)-context classes F̄p and F̄ of type 〈xp〉 and 〈g〉
such that
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– either F̄p, F̄ are (k−2)-composable and

Fp = F̄p r
k−2 F̄ [∂−k−1(〈g〉)] F = F̄p[∂

+
k−1(〈xp〉)] rk−2 F̄

– or F̄ , F̄p are (k−2)-composable and

Fp = F̄ [∂−k−1(〈g〉)] rk−2 F̄p F = F̄ r
k−2 F̄p[∂

+
k−1(〈xp〉)]

By symmetry, we can suppose that we are in the first situation. Then, by axiom (≈-L) of ≈k,
we get that E ≈k Ẽ where Ẽ = (L̃, F̃ , R̃) is such that

L̃ = F1[〈x1〉] rk−1 · · · rk−1 Fp−1[〈xp−1〉]
F̃ = F̄p[∂

−
k−1(〈xp〉)] rk−2 F̄

R̃ = (F̄p[〈xp〉] rk−2 F̄ [∂+
k−1(〈g〉)]) r

k−1 R

By iterating the above procedure for i ∈ {i0+1, . . . , p−1}, we obtain a k-context E′ = (L′, F ′, R′)

of type 〈g〉 such that

E ≈k E′ L′k = Lk ∩ U ′ R′k = Rk ∪ (Lk \ U ′).

Using a similar method to transfer elements from R′ to L′, we get a k-context E′′ = (L′′, F ′′, R′′)

of type 〈g〉 such that

E′ ≈k E′′ L′′k = L′k ∪ (R′k \ V ′) R′′k = R′k ∩ V ′.

Then, we have E ≈k E′′ and we compute that

L′′k = L′k ∪ (R′k \ V ′)
= (Lk ∩ U ′) ∪ (Rk \ V ′) ∪ (Lk \ (U ′ ∪ V ′))
= (Lk ∩ U ′) ∪ (Rk ∩ U ′) (since Lk ∪Rk = U ′ ∪ V ′)
= U ′

and, similarly, R′′k = V ′. Thus, E′′ satisfies the wanted properties.

Proof of Lemma B.5.2. Let Ek = (Lk, F ′k, R
k) be such that JEkK = Fk for k ∈ {1, 2}. Consider

M = F1[∂+
k (〈g1〉)] (or, equivalently, F2[∂−k (〈g2〉)]),

Si = Lik ∪Rik for i ∈ {1, 2},
S′ = Mk,

U1 = {x ∈ S1 | x /S′〈g1〉k,+} V1 = {x ∈ S1 | 〈g1〉k,+ /S′ x}
U2 = {x ∈ S2 | x /S′〈g2〉k,−} V2 = {x ∈ S2 | 〈g2〉k,− /S′ x}

Since, by Axiom (T4), g1 and g2 are not in torsion with respect to F1[∂+
k (〈g1〉)], we have

either ¬(〈g1〉k,+ /S′〈g2〉k,−) or ¬(〈g2〉k,− /S′〈g1〉k,+).

By symmetry, we can suppose that ¬(〈g2〉k,− /S′〈g1〉k,+). Since we can use Lemma B.5.1 (which
is proved for the current value of k) to change E1 and E2, we can suppose that

L1
k = U1, R1

k = S1 \ U1,

L2
k = S2 \ V2, R2

k = V2.
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M1

M2

M3

M4

M5

Figure 10: The decomposition of M

Then,
(U1 ∪ 〈g1〉k,+) ∩ (〈g2〉k,− ∪ V2) = ∅

since, otherwise, it would contradict the condition ¬(〈g2〉k,− /S′〈g1〉k,+). Consider the following
sets:

Q1 = U1, Q2 = 〈g1〉k,+,
Q3 = S′ \ (U1 ∪ 〈g1〉k,+ ∪ 〈g2〉k,− ∪ V2),

Q4 = 〈g2〉k,−, Q5 = V2.

Then Q1, Q2, Q3, Q4, Q5 form a partition of S′. Moreover, this partition is compatible with /S′ .
Indeed, given x, y ∈ S′ such that x /S′ y,

– if x ∈ Q2, then we can not have y ∈ Q1 since, by Axiom (T3), 〈g1〉k,+ is a segment for /S′ ,
– if x ∈ Q3, then we can not have y ∈ Q1 ∪Q2 (otherwise, we would have x ∈ U1 ∪ 〈g1〉k,+),
– if x ∈ Q4, then either y ∈ Q4 or y ∈ Q5 by definition of Q5,
– if x ∈ Q5, then y ∈ Q5 since, by Axiom (T3), 〈g2〉k,− is a segment for /S′ .

Thus, there exists a linear extension for (S′, /S′)

σ : NS′ → S′

such that, for i, j ∈ N|S′| and r, s ∈ N∗5, if σ(i) ∈ Qr and σ(j) ∈ Qs with r < s, then i < j.
Since S′ = Mk, using Theorem B.4.6, M can be written

M =

|S′|∏
i=1

Fi[〈σ(i)〉]

for some (k−1)-context classes F1, . . . , F|S′|. By gathering the terms corresponding to Q1, . . . , Q5

respectively, we obtain five k-cells M1,M2,M3,M4, M5 ∈ Cell(P )k where

M j =
∏

i∈σ−1(Qj)

Fi[〈σ(i)〉]

as in Figure 10 and such that

M = M1 r
k−1 M

2 r
k−1 M

3 r
k−1 M

4 r
k−1 M

5.
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Since
∂−k−1(L1) = ∂−k−1(M) = ∂−k−1(M1) and L1

k = U1 = M1
k ,

by Lemma B.4.2, we have L1 = M1. Moreover, since

∂−k−1(F ′1[〈g1〉]) = ∂+
k−1(L1) = ∂+

k−1(M1) = ∂−k−1(M2)

and
(F ′1[∂+

k (〈g1〉)])k = 〈g1〉k,+ = M2
k ,

by Lemma B.4.2, it follows that
F ′1[∂+

k (〈g1〉)] = M2.

Similarly, we can show that

F ′2[∂−k (〈g2〉)] = M4 and R2 = M5.

Moreover, since

∂−k−1(L2) = ∂−k−1(M) = ∂−k−1(M1 r
k−1 M

2 r
k−1 M

3)

and

L2
k = S2 \ V2 = S′ \ (〈g2〉k,− ∪ V2) = Q1 ∪Q2 ∪Q3,

by Lemma B.4.2, we have
L2 = M1 r

k−1 M
2 r
k−1 M

3.

Similarly, we have
R1 = M3 r

k−1 M
4 r
k−1 M

5.

Hence, writing

F̄1 = J(L1, F ′1, id
k
F ′1[∂+k−1(〈g1〉)]

)K and F̄2 = J(M3, F ′2, R
2)K

we have F1 = F̄1
r
k−1 F̄2[∂−k (g2)] and F2 = F̄1[∂+

k (g1)] rk−1 F̄2 as wanted.

We deduce that applied context classes are completely determined by their sources (or targets):

Theorem B.5.3. Given k, n ∈ N with k < n, g ∈ Pn and k-context classes F1, F2 of type 〈g〉
such that

∂−k (F1[〈g〉]) = ∂−k (F2[〈g〉]) or ∂+
k (F1[〈g〉]) = ∂+

k (F2[〈g〉]),

we have F1 = F2.

Proof. By symmetry, it is enough to prove the case where ∂−k (F1[〈g〉]) = ∂−k (F2[〈g〉]). We prove
this property by an induction on k. If k = 0, the result is trivial. So suppose that k > 0. Let

E1 = (L1, F ′1, R
1) and E2 = (L2, F ′2, R

2)

be k-contexts such that Fi = JEiK for i ∈ {1, 2}. Thus,

L1 r
k−1 F

′[∂−k (〈g〉)] rk−1 R
1 = L2 r

k−1 F
′[∂−k (〈g〉)] rk−1 R

2
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In particular, L1
k∪〈g〉k,−∪R1

k = L2
k∪〈g〉k,−∪R2 and, by Lemma 2.2.1, both sides are partitions,

so that we have L1
k ∪R1

k = L2
k ∪R2

k. Consider the following subsets of Pk:

S = L1
k ∪R1

k, S′ = S ∪ 〈g〉k,−,
U = {x ∈ S | x /S′〈g〉k,−}, V = S \ U.

By Lemma B.5.1, we can suppose that

L1
k = L2

k = U and R1
k = R2

k = V.

For i ∈ {1, 2}, we have

∂−k−1(Li) = ∂−k−1(Fi[〈g〉]) = ∂−k−1 ◦ ∂
−
k (Fi[〈g〉])

so that ∂−k−1(L1) = ∂−k−1(L2). Thus, by Lemma B.4.2, we have L1 = L2 and, by a similar
argument, R1 = R2. Moreover, for i ∈ {1, 2}, ∂+

k−1(Li) = ∂−k−1(F ′i [〈g〉]), so

∂−k−1(F ′1[〈g〉]) = ∂−k−1(F ′2[〈g〉]).

By induction hypothesis, we have F ′1 = F ′2. Hence, F1 = F2.

Freeness of general decompositions We now handle the case of general decompositions of
arbitrary lengths. First, we show an analogous of Theorem B.4.6, i.e., that the decompositions
in Cell(P )n+ can also be reordered by linear extensions:

Lemma B.5.4. Let n ∈ N and X be an (n+1)-cell of Cell(P )n+ such that

X = F1[x1] rn · · · rn Fp[xp]
for some p ∈ N, x1, . . . , xp ∈ Pn+1 and n-context classes F1, . . . , Fp of Cell(P ). Then, we have
that the function q 7→ xq of type N∗q → Xn+1 is a linear extension of (Xn+1, /Xn+1). Moreover, if σ
is a linear extension of (Xn+1, /Xn+1), then there exist n-context classes F̄1, . . . , F̄p of respective
types 〈σ(1)〉, . . . , 〈σ(p)〉 such that

X = F̄1[σ(1)] rn · · · rn F̄p[σ(p)].

Proof. Write ρ : Np → Xn+1 for the function such that ρ(i) = xi for i ∈ N∗p. By the functoriality
of eval, we have

eval(X) = F1[〈x1〉] rn · · · rn Fp[〈xp〉]
so that ρ is a linear extension by Proposition B.4.8. We are left to prove the second part of the
statement. We have a morphism of linear extensions

f = σ−1 ◦ ρ

between σ and ρ. By Lemma B.4.1, we can suppose that f = τi,i+1 for some i ∈ N∗p−1. To
conclude, we only need to show that xi and xi+1 can be swapped in the decomposition of X
as F1[x1] rn · · · rn Fp[xp]. By contradiction, suppose that 〈xi〉n,+ ∩ 〈xi+1〉n,− 6= ∅. In particular,
we have ρ(i) /Xn+1 ρ(i+ 1). Since ρ = σ ◦ τi,i+1, it implies σ(i+ 1) /Xn+1 σ(i). Thus, since σ is a
linear extension, we deduce that i+ 1 < i, which is a contradiction. So 〈xi〉n,+ ∩ 〈xi+1〉n,− = ∅.
By Lemma B.5.2, there exist n-context classes F̄i and F̄i+1 such that, in Cell(P )≤n[Pn+1]≈,

((xi, Fi), (xi+1, Fi+1))s ≈ ((xi+1, F̄i), (xi, F̄i+1))s
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so that

((x1, F1), . . . , (xp, Fp))
s

≈ ((x1, F1), . . . , (xi−1, Fi−1), (xi+1, F̄i), (xi, F̄i+1), (xi+2, Fi+2), . . . , (xp, Fp))
s

i.e., in Cell(P )n+,

X = F1[x1] rn · · · rn Fi−1[xi−1] rn F̄i[xi+1] rn F̄i+1[xi] rn Fi+2[xi+2] rn · · · rn Fp[xp]
which concludes the proof.

We can now deduce that Cell(P )≤n+1 is canonically a free extension on Cell(P )≤n:

Theorem 2.4.1. Given a torsion-free complex P , for n ∈ N, the (n+1)-functor evaln is an
isomorphism between Cell(P )n+ and Cell(P )≤n+1.

Proof. Since eval≤n = idCell(P )≤n
, it is enough to prove that eval induces a bijection on the

(n+1)-cells. By Theorem B.4.6, it is surjective, so we are left to prove injectivity. Let X1

and X2 be (n+1)-cells of Cell(P )n+, such that eval(X1) = eval(X2) and

Xi = F i1[xi1] rn · · · rn F ipi [xipi ]
for some pi ∈ N, xi1, . . . , xipi ∈ Pn+1 and n-context classes F i1, . . . , F ipi for i ∈ {1, 2}. By functori-
ality of eval, we have

eval(Xi) = F i1[〈xi1〉] rn · · · rn F ipi [〈xipi〉]
for i ∈ {1, 2}, so that, by Proposition B.4.8, we have p1 = p2, and we write p for the common
value. Moreover, {x1

1, . . . , x
1
p} = {x2

1, . . . , x
2
p}. By Lemma B.5.4, we can suppose that x1

j = x2
j

for j ∈ N∗p, and we write xj for the common value. Since ∂−n (Xi) = ∂−n (F i1[x1]) for i ∈ {1, 2}, we
have

∂−n (F 1
1 [x1]) = ∂−n (F 2

1 [x1])

so that, by Theorem B.5.3, F 1
1 = F 2

1 . In particular, ∂+
n (F 1

1 [x1]) = ∂+
n (F 2

1 [x1]), so that

∂−n (F 1
2 [x2] rn · · · rn F 1

p [xp]) = ∂−n (F 2
2 [x2] rn · · · rn F 2

p [xp]).

Thus, we can iterate the above procedure to show that F 1
j = F 2

j for j ∈ {1, . . . , p}, so that we
get X1 = X2. Hence, the (n+1)-functor eval is an isomorphism.



Unifying notions of pasting diagrams 79

References

[1] Michael Barr and Charles Wells. Toposes, Triples, and Theories. Springer-Verlag, 2000.

[2] Michael A. Batanin. “Computads for finitary monads on globular sets”. In: Contemporary
Mathematics 230 (1998), pp. 37–58.

[3] Mitchell Buckley. “A formal verification of the theory of parity complexes”. In: Journal of
Formalized Reasoning 8.1 (2015), pp. 25–48.

[4] Albert Burroni. “Higher-dimensional word problems with applications to equational logic”.
In: Theoretical Computer Science 115.1 (1993), pp. 43–62.

[5] Alexander Campbell. “A higher categorical approach to Giraud’s non-abelian cohomology”.
PhD thesis. Macquarie University, Australia, 2016.

[6] Simon Forest. The cateq program. https://github.com/SimonForest/cateq. 2020.

[7] Simon Forest. “Computational descriptions of higher categories”. Theses. Institut Polytech-
nique de Paris, Jan. 2021. url: https://tel.archives-ouvertes.fr/tel-03155192.

[8] Simon Forest and Samuel Mimram. “Describing free ω-categories”. In: 34th Annual Sym-
posium on Logic in Computer Science (LICS). 2019, pp. 1–13.

[9] Amar Hadzihasanovic. A combinatorial-topological shape category for polygraphs. 2018.
arXiv: 1806.10353.

[10] Simon Henry. Non-unital polygraphs form a presheaf category. 2017. arXiv: 1711.00744.

[11] Simon Henry. Regular polygraphs and the Simpson conjecture. 2018. arXiv: 1807.02627.

[12] Michael S. J. Johnson. “Pasting diagrams in n-categories with applications to coherence
theorems and categories of paths”. PhD thesis. University of Sydney, Australia, 1987.

[13] Michael S. J. Johnson. “The combinatorics of n-categorical pasting”. In: Journal of Pure
and Applied Algebra 62.3 (1989), pp. 211–225.

[14] Mikhail Kapranov and Vladimir Voevodsky. “∞-groupoids and homotopy types”. In: Ca-
hiers de Topologie et Géométrie Différentielle Catégoriques 32.1 (1991), pp. 29–46.

[15] Mikhail Kapranov and Vladimir Voevodsky. “Combinatorial-geometric aspects of polycat-
egory theory: pasting schemes and higher Bruhat orders (list of results)”. In: Cahiers de
Topologie et Géométrie Différentielle Catégoriques 32.1 (1991), pp. 11–27.

[16] Michael Makkai. The word problem for computads. 2005.

[17] François Métayer. “Cofibrant objects among higher-dimensional categories”. In: Homology,
Homotopy and Applications 10.1 (2008), pp. 181–203.

[18] Christopher Nguyen. “Parity structure on associahedra and other polytopes”. PhD thesis.
Macquarie University, Australia, 2017.

[19] A. John Power. “An n-categorical pasting theorem”. In: Category theory. 1991, pp. 326–358.

[20] Carlos Simpson. Homotopy types of strict 3-groupoids. 1998. arXiv: math/9810059.

[21] Richard Steiner. “Omega-categories and chain complexes”. In: Homology, Homotopy and
Applications 6.1 (2004), pp. 175–200.

[22] Ross Street. “Limits indexed by category-valued 2-functors”. In: Journal of Pure and Ap-
plied Algebra 8.2 (1976), pp. 149–181.

https://github.com/SimonForest/cateq
https://tel.archives-ouvertes.fr/tel-03155192
https://arxiv.org/abs/1806.10353
https://arxiv.org/abs/1711.00744
https://arxiv.org/abs/1807.02627
https://arxiv.org/abs/math/9810059


80 Simon Forest

[23] Ross Street. “Parity complexes”. In: Cahiers de Topologie et Géométrie Différentielle Ca-
tégoriques 32.4 (1991), pp. 315–343.

[24] Ross Street. “Parity complexes: corrigenda”. In: Cahiers de Topologie et Géométrie Diffé-
rentielle Catégoriques 35.4 (1994), pp. 359–361.

[25] Ross Street. “Categorical structures”. In: Handbook of Algebra. Vol. 1. 1996, pp. 529–577.


	1 Formalisms of pasting diagrams
	1.1 Globular sets
	1.2 Strict categories
	1.3 Hypergraphs
	1.4 Parity complexes
	1.5 Pasting schemes
	1.6 Augmented directed complexes
	1.7 Torsion-free complexes

	2 The free omega-category of cells
	2.1 Gluing sets on cells
	2.2 Structure of omega-category
	2.3 The notion of freeness
	2.4 Freeness of the omega-category of cells

	3 Relating formalisms
	3.1 Closed and maximal cells
	3.2 Embedding parity complexes
	3.3 Embedding pasting schemes
	3.4 Embedding augmented directed complexes
	3.5 Absence of other embeddings

	A Details on the gluing theorem
	A.1 Movement properties
	A.2 Proof of the gluing theorem

	B Details on the freeness property
	B.1 Another definition of strict categories
	B.2 Contexts and contexts classes
	B.3 A description of free extensions
	B.4 Cell decompositions
	B.5 Freeness for torsion-free complexes


