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Abstract
Precategories generalize both the notions of strict n-category and sesquicategory: their

definition is essentially the same as the one of strict n-categories, excepting that we do not
require the various interchange laws to hold. Those have been proposed as a framework in
which one can express semi-strict definitions of weak higher categories: in dimension 3, Gray
categories are an instance of them and have been shown to be equivalent to tricategories, and
definitions of semi-strict tetracategories have been proposed, and used as the basis of proof
assistants such as Globular. In this article, we are mostly interested in free precategories. Those
can be presented by generators and relations, using an appropriate variation on the notion of
polygraph (aka computad), and earlier works have shown that the theory of rewriting can be
generalized to this setting, enjoying most of the fundamental constructions and properties which
can be found in the traditional theory, contrarily to polygraphs for strict categories. We further
study here why this is the case, by providing several results which show that precategories
and their associated polygraphs bear properties which ensure that we have a good syntax for
those. In particular, we show that the category of polygraphs for precategories form a presheaf
category.

∗The work of this author was partially supported by the French ANR project PPS (ANR-19-CE48-0014).
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Introduction
Strict polygraphs. The notion of polygraph, also known as computad, was introduced by Street [47]
and Burroni [13] as a generalization of the notion of presentation for strict n-categories, thus extending
the now classical notions of presentation for groups and monoids introduced by Dehn [19] and
Thue [51]. From an algebraic point of view, they constitute the right notion of “free n-category”, in
the sense that they have been established as being the cofibrant objects in the folk model structure on
the category of n-categories [43, 37]. They thus allow for computing various invariants of categories,
as well as showing coherence theorems, based on the construction of resolutions (or cofibrant
replacements) of categories of interest. For this reason, one is often interested in constructing
coherent presentations of low-dimensional categories, which are polygraphs whose underlying free
category is suitably equivalent to the original one.

In order to be able to perform practical computations, one is generally looking for polygraphs
which are as small as possible. This task can be often be achieved by using techniques originating
from rewriting theory [7, 50], suitably generalized to this setting, which exploits the orientation of
relations in a presentation. Namely, when the presentation is terminating and confluent, generators
corresponding to relations between relations can be found as confluence diagrams for critical
branchings. This idea originates in the works of Squier on presented monoids [45, 46, 35] and has
been the starting point of a series of works exploring higher dimensional rewriting [30, 31, 39, 24],
which has since then been further generalized to various algebraic structures such as term rewriting
systems [40], algebras [29] or operads [41]. While polygraphs have thus been proved to be quite a
useful tool, they are still quite unsatisfactory on many aspects.

Limitations of strict polygraphs. From a categorical point of view, strict polygraphs are
adapted to strict n-categories, but those are known not to be equivalent to weak n-categories, which
are the real objects of interest. Namely, already starting from dimension 3, not every tricategory is
equivalent to a 3-category: the best we can do is to strictify associativity and unitality, and show
that every tricategory is equivalent to a Gray category [26] (we should underline here that this
is not the only possible partial strictification [34]). Following our terminology, a Gray category
is a 3-precategory equipped with interchange isomorphisms satisfying suitable axioms. Another
categorical defect of polygraphs is the fact that they do not form a presheaf category. It is namely
noted in [16] that this cannot be the case because of “the lack of an ordering” of 2-dimensional (and
higher) cells, since composition is commutative for 2-cells with identity source and target. More
formally, an abstract explanation of the fact that polygraphs do not form a presheaf category can
be found in [38] and an elementary proof of this fact can be found in [17]. One route to solve this
consists in restricting to polygraph where generators do not have identity sources (or targets), which
has successfully been explored by Henry [33, 32]. Our exploration consists here in taking the other
route and “add ordering” to morphisms.

From a rewriting point and computer science point of view, polygraphs, when considered as
rewriting systems, lack a fundamental property found in most settings for rewriting: we expect
that a finite rewriting system has a finite number of critical branchings. This was first observed by
Lafont [36] and further studied by Guiraud and Malbos who showed that, because of this, there
are finite convergent 3-polygraphs without finite derivation type [30]. From a practical perspective,
this causes problems. Namely, representing the possibly infinite families of critical branchings is a
difficult challenge, even in low dimensions [44]. But in fact, even providing a concrete representation
of morphisms is a challenge, because there is no canonical representative of morphisms in free
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categories, up to the axioms of strict n-categories.

Polygraphs for precategories. For these reasons, it seems natural to investigate the framework
of n-precategories whose definition is similar to the one of strict n-categories, excepting that we do
not require the interchange laws to hold. In particular, in dimension 2, those correspond to Street’s
sesquicategories [48]. We have defined in [22, 23] an associated notion of polygraph and developed a
theory of rewriting in this setting (interestingly, Araújo has recently independently come up with
a very similar notion [5]). It seems that, in this setting, most of the limitations mentioned above
vanish. First, we now have canonical representatives of morphisms in free n-precategories [23], a
property which was first observed by Makkai while studying strict n-categories [38, Section 8], which
makes them suitable for implementing software performing computation on morphisms. For this
reason, they are also used internally in the Globular graphical proof assistant [52, 9]. Second, a finite
rewriting system has a finite number of critical branchings, and those can be computed effectively.
Third, we have a hope of being able to deal with weak higher-categories in this setting. Namely,
we have already mentioned that Gray categories are equivalent to tricategories and are particular
3-precategories, and putative definitions of semistrict 4-categories based on 4-precategories have
been proposed [9]. Note that the polygraph corresponding to a Gray category is almost never finite,
but the infinite families of generators we add are regular enough to be dealt with in a uniform
way [22, 23].

Properties of polygraphs. In this article, we further study of the category of n-polygraphs for
n-precategories. Most importantly, we show that they form a presheaf category. Our proof is based
on the characterization of concrete presheaf categories given by Makkai [38]. Simultaneously and
independently, another proof of this result has been given by Araújo [5]. We should also mention
that a notion of polygraph for weak categories has been developed and shown to be a presheaf
category in [18]. Our approach gives rise to much smaller polygraphs and thus more amenable
computations, although it is not entirely clear (yet) how to encode weak n-categories in our setting,
excepting in low dimensions.

Plan of the paper. We begin by introducing precategories and associated polygraphs (Section 1)
and show that functors between precategories induced by polygraphs have the important property
of being Conduché (Section 2), which is used subsequently. Most of the remainder of the paper is
devoted to showing that polygraphs form a presheaf category. Our proof is based on Makkai’s theorem
characterizing presheaf categories (recalled in Section 3). In order to make computations on cells in
free precategories, it is useful to consider their support (Section 4). These allow defining and studying
polyplexes (Section 5) which are shapes parametrizing compositions in precategories. This finally
allows us to show that polygraphs form a presheaf category (Section 6). As a nice by-product, we
derive a parametric adjunction together with an associated generic-free factorization for precategories,
which gives a more conceptual view of the good syntactical properties of precategories (Section 7).
Finally, we leave two open questions on homotopical aspects of polygraphs of precategories. First,
whether polygraphs are the cofibrant objects for a reasonable model structure on precategories (we
explain that the usual proof for strict categories does not immediately generalize to precategories),
and second, whether the presheaf category of polygraphs is able to model homotopy types (we
explain why the proof used by Henry for regular plexes [32] does not adapt here) (Section 8).
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1 Precategories and their polygraphs
We recall here the definition of n-precategories as algebras over globular sets, as well as their
elementary properties. We also recall the associated notion of polygraph, introduced in earlier
works [22, 23], which is a particular instance of the very general notion of polygraph associated to a
monad on globular sets introduced by Batanin [11].

The notion of precategory was first introduced by Street, in dimension 2, under the name
of sesquicategory: this means a “1½-category”, since sesquicategories have more structure than
1-categories, but less than 2-categories (they lack the interchange law). The general definition of
precategories was (implicitly) given by Makkai in [38, Section 8], who used them to deal with the
word problem for free strict categories. Later, they were used as data structures for the Globular
proof assistant [8] and more recently for studying coherent presentations of Gray categories in [23]
and coherence for adjunctions [6, 4].

In the following, given n ∈ N, we write N<n for the subset {0, . . . , n−1} of N, and N≤n for N<n+1.

Globular sets. Given n ∈ N∪ {ω}, an n-globular set (X, ∂−, ∂+) (often simply denoted X) is the
data of sets Xk for k ∈ N≤n together with functions ∂−i , ∂+

i : Xi+1 → Xi for i ∈ N<n as in

X0 X1 X2 · · · Xk Xk+1 · · ·
∂−

0

∂+
0

∂−
1

∂+
1

∂−
2

∂+
2

∂−
k−1

∂+
k−1

∂−
k

∂+
k

∂−
k+1

∂+
k+1

such that

∂−i ◦ ∂−i+1 = ∂−i ◦ ∂+
i+1 ∂+

i ◦ ∂−i+1 = ∂+
i ◦ ∂+

i+1

for i ∈ N<n. When there is no ambiguity on i, we often write ∂− and ∂+ for ∂−i and ∂+
i respectively.

An element u of Xi is called an i-globe of X and, for i > 0, the globes ∂−i−1(u) and ∂+
i−1(u) are

respectively called the source and target and u. Given n-globular sets X and Y , a morphism of
n-globular sets between X and Y is a family of functions F = (Fk : Xk → Yk)k∈N≤n

, such that

∂−i ◦ Fi+1 = Fi ◦ ∂−i

for i ∈ N<n. We write Globn for the category of n-globular sets. We have canonical truncation and
inclusion functors

T G
n : Globn+1 → Globn and IG

n : Globn → Globn+1

which respectively forget the (n+1)-globes and add an empty set of (n+1)-globes. They organize
into an adjunction IG

n+1 ⊣ T G
n . It is direct from definition that globular sets are the models of an

(essentially) algebraic theory, so that the category Globn is essentially algebraic. In particular, it
implies that it is locally finitely presentable, complete and cocomplete [1].

For ϵ ∈ {−,+} and j ≥ 0 with j ≤ n− i, we define a morphism ∂ϵ
i,j : Xi+j → Xi by

∂ϵ
i,j = ∂ϵ

i ◦ ∂ϵ
i+1 ◦ · · · ◦ ∂ϵ

i+j−1

called the iterated source (resp. target) operation when ϵ = − (resp. ϵ = +). We generally omit
the index j when there is no ambiguity and simply write ∂ϵ

i (u) for ∂ϵ
i,j(u). Given i, k, l ∈ N≤n
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with i < min(k, l), we write Xk ×i Xl for the pullback

Xk ×i Xl Xl

Xk Xi .

⌟
∂−

i

∂+
i

Given p ∈ N and k0, . . . , kp ∈ N≤n, a sequence of globes u0 ∈ Xk0 , . . . , up ∈ Xkp
is said i-com-

posable for some i < min(k0, . . . , kp), when ∂+
i (uj) = ∂−i (uj+1) for j ∈ N<p. Given k ∈ N≤n

and u, v ∈ Xk, u and v are said parallel when k = 0 or ∂ϵ
k−1(u) = ∂ϵ

k−1(v) for ϵ ∈ {−,+}. In order
to avoid dealing with the side condition k = 0, we use the convention that X−1 is the terminal
set {∗} and that ∂−−1, ∂

+
−1 are the unique function X0 → X−1.

Precategories. Given n ∈ N ∪ {ω}, an n-precategory C is an n-globular set (whose k-globes are
called k-cells in this context) together with, for k ∈ N<n, identity operations

idk+1 : Ck → Ck+1

for which we use the same notation conventions than the identity operations on strict categories,
and, for k, l ∈ N∗n, composition operations

∗k,l : Ck ×min(k,l)−1 Cl → Cmax(k,l)

which satisfy the axioms below. Given i, k, l ∈ N≤n with i = min(k, l), since the dimensions of the
cells determine the indices of the composition to be used, we often write ∗i for ∗k,l. In this way, we
still make explicit the most important information which is the dimension i of composition. The
axioms of n-precategories are the following:

(P-i) for k ∈ N<n and u ∈ Ck,
∂−k (idk+1

u ) = u = ∂+
k (idk+1

u ),

(P-ii) for i, k, l ∈ N≤n such that i = min(k, l) − 1, (u, v) ∈ Ck ×i Cl, and ϵ ∈ {−,+},

∂ϵ(u ∗i v) =


u ∗i ∂

ϵ(v) if k < l,
∂−(u) if k = l and ϵ = −,
∂+(v) if k = l and ϵ = +,
∂ϵ(u) ∗i v if k > l,

(P-iii) for i, k, l ∈ N≤n with i = min(k, l) − 1, given (u, v) ∈ Ck−1 ×i Cl,

idu ∗i v =
{
v if k ≤ l,
idu∗iv if k > l,

and, given (u, v) ∈ Ck ×i Cl−1,

u ∗i idv =
{
u if l ≤ k,
idu∗iv if l > k,
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(P-iv) for i, k, l,m ∈ N≤n with i = min(k, l) − 1 = min(l,m) − 1, and u ∈ Ck, v ∈ Cl and w ∈ Cw

such that u, v, w are i-composable,

(u ∗i v) ∗i w = u ∗i (v ∗i w),

(P-v) for i, j, k, l, l′ ∈ N≤n such that

i = min(k,max(l, l′)) − 1, j = min(l, l′) − 1 and i < j,

given u ∈ Ck and (v, v′) ∈ Cl ×j Cl′ such that u, v are i-composable,

u ∗i (v ∗j v
′) = (u ∗i v) ∗j (u ∗i v

′)

and, given (u, u′) ∈ Cl ×j Cl′ and v ∈ Ck such that u, v are i-composable,

(u ∗j u
′) ∗i v = (u ∗i v) ∗j (u′ ∗i v).

Note that, provided that the Axioms (P-i) to (P-iv) are satisfied, Axiom (P-v) can be shown
equivalent to the more symmetrical axiom

(P-v)’ for every i, j, k ∈ N≤n satisfying i < j < k, and cells u1, u2 ∈ Ci+1, v1, v2 ∈ Cj+1 and w ∈ Ck

such that u1, w, u2 are i-composable and v1, w, v2 are j-composable, we have

u1 ∗i (v1 ∗j w ∗j v2) ∗i u2 = (u1 ∗i v1 ∗i u2) ∗j (u1 ∗i w ∗i u2) ∗j (u1 ∗i v2 ∗i u2).

Example 1. Given a 2-precategory C with two 2-cells ϕ and ψ as in

x y z

f

f ′

g

g′

⇓ ϕ ⇓ ψ

there are two ways to compose ϕ and ψ together, given by

(ϕ ∗0 g) ∗1 (f ′ ∗0 ψ) and (f ∗0 ψ) ∗1 (ϕ ∗0 g
′)

that can be represented using string diagrams by

f g

ϕ

ψ

f ′ g′

and

f g

ψ

ϕ

f ′ g′

and these two composites are not expected to be equal in C. Moreover, by our definition of
precategories, there is no such thing as a valid cell ϕ ∗0 ψ, and the string diagram

f g

ϕ ψ

f ′ g′

makes no sense in this setting.

7



Given two n-precategories C and D, a morphism of n-precategories (or n-prefunctor) between C
and D is a morphism of n-globular sets F : C → D such that

– F (idk+1
u ) = idk+1

F (u) for k ∈ N<n and u ∈ Ck,

– F (u ∗i v) = F (u) ∗i F (v) for i, k, l ∈ N≤n with i = min(k, l) − 1 and (u, v) ∈ Ck ×i Cl.

We write PCatn for the category of n-precategories thus defined. We have canonical truncation
and inclusion functors

T C
n : PCatn+1 → PCatn and IC

n : PCatn → PCatn+1

which respectively forget the (n+1)-cells and add a set of (n+1)-cells consisting of formal identities
of n-cells. They organize into an adjunction IC

n+1 ⊣ T C
n .

The globular monad of n-precategories. The above definition of n-precategories directly trans-
lates into an essentially algebraic theory so that the category PCatn is locally finitely presentable [1].
There is a forgetful functor

Un : PCatn → Globn

which maps an n-precategory to its underlying n-globular set, and this functor is induced by the
inclusion of the essentially algebraic theory of n-globular sets into the one of n-precategories. We
thus have the following [20, Proposition 1.4.2.4]:

Proposition 2. The category PCatn is locally finitely presentable, complete and cocomplete.
Moreover, the functor Un is a right adjoint which preserves directed colimits.

The above proposition states the existence of a functor

Fn : Globn → PCatn

which is left adjoint to Un, sending an n-globular set to the n-precategory it freely generates. Moreover,
the functor Un can be shown monadic using Beck’s monadicity theorem [20, Proposition 1.4.2.5]:

Proposition 3. For every n ∈ N ∪ {ω}, the functor Un is monadic.

This shows that, for n ∈ N∪{ω}, PCatn is the category of algebras for a monad Tn : Globn → Globn

on n-globular sets (the monad induced by the above adjunction).

Polygraphs of precategories. In fact, for n ∈ N, the monads Tn is adequately derived by
truncation from Tω [20, Theorem 1.4.2.8], the latter being truncable in the sense of Batatnin [11].
By general arguments on globular algebras, this allows the definition of polygraphs for the theory of
precategories.

The category of n-polygraphs Poln (for n-precategories) is defined by induction on n, together
with a functor

(−)∗,n : Poln → PCatn

often written (−)∗, which associates to an n-polygraph the n-precategory it freely generates, as
follows. We first define Pol0 = Glob0 (which is isomorphic to Set) and (−)∗,0 = F0 (which is the
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identity functor on Set). Now, given n ∈ N, assuming Poln and (−)∗,n defined in dimension n, we
define Poln+1 as the pullback

Poln+1 Globn+1

Poln Globn

Gn+1

T P
n

⌟
T G

n

Un(−)∗,n

The functor T P
n : Poln+1 → Poln, called the n-truncation functor for polygraphs, admits a left

adjoint IP
n+1 : Poln → Poln+1, which extends an n-polygraph P as an (n+1)-polygraph with an

empty set of (n+1)-generators (using the description of polygraphs given just below). The image P∗
under (−)∗,n+1 of an (n+1)-polygraph P is defined as the pushout

Fn+1 IG
n+1 T G

n Gn+1 P Fn+1 Gn+1 P

IC
n+1(T P

n P)∗ P∗

(Fn+1 iG
n Gn+1)P

αP

⌜

where iGn is the counit of the adjunction IG
n+1 ⊣ T G

n and αP is the composite

αP = Fn+1 IG
n+1 T G

n Gn+1 P IC
n+1 Fn Un(−)∗,n T P

n P IC
n+1(T P

n P)∗∼ (IC
n+1 εn(−)∗,n T P

n)P

where εn is the counit of the adjunction Fn ⊣ Un. Intuitively, P∗ is obtained by freely generating
an (n+1)-precategory from (T P

n P)∗ by attaching the (n+1)-generators described by Gn+1 P. The
mapping P 7→ P∗ then naturally extends to a functor (−)∗,n : Poln+1 → PCatn, which concludes
the inductive definition of polygraphs of precategories. More details on this construction can be
found in [20, 23].

Since the monad of the theory of precategory is truncable, given n ∈ N, an n-polygraph P can
be alternatively described as a diagram in Set of the form

P0 P1 P2 . . . Pn−1 Pn

P∗0 P∗1 . . . P∗n−2 P∗n−1

e0

d−
0

d−
0

e1

d−
1

d−
1 e2

d−
n−2

d−
n−2

en

d−
n−1

d−
n−1

∂−
0

∂+
0

∂−
1

∂+
1

∂−
n−2

∂+
n−2

where, for i ∈ N<n, ei is the embedding of the i-generators Pi into the set P∗i of freely generated
i-cells, such that

∂−i ◦ d−i+1 = ∂−i ◦ d+
i+1 and ∂+

i ◦ d−i+1 = ∂+
i ◦ d+

i+1

for i ∈ N<n. Note that the above description is the same as the original definition of polygraphs by
Burroni [13], excepting that the sets P∗i of i cells are freely generated as i-precategories instead of
strict i-categories.

By general properties on locally presentable categories, we have:

Proposition 4. Given n ∈ N ∪ {ω}, Poln is a locally finitely presentable category. In particular, it
is complete and cocomplete.
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Proof. The 2-category of locally presentable categories, right adjoints (resp. left adjoints) and natural
transformations is closed under bipullbacks (see [12, Theorem 2.18, Theorem 3.15]). A pullback
along an isofibration happens to be a bipullback and the pullback of T G

n along Un can be shown
to be a left adjoint and again an isofibration. Then, its pullback by (−)∗,n, which is known (see
[11, Proposition 3.1]) to be a left adjoint, is again a left adjoint whose domain Poln is a locally
presentable category. A more detailed study shows that Poln is locally finitely presentable with
finite polygraphs as finitely presentable objects. See [21, Proposition 3.3.3] for the local presentability
and [20, Theorem 1.3.3.19] for the local finite presentability.

In the following, we will write 1 for the terminal object of Poln, for n ∈ N ∪ {ω}.

2 Free functors are Conduché
Free precategories on polygraphs enjoy useful properties, thanks to which we have a nice syntax for
morphisms in those, as we now show. It should be noted that many those are not valid in the usual
setting of polygraph for strict categories (as opposed to precategories). One remarkable such property
of free precategories is that their cells can be described as canonical compositions of generators, which
happen to be unique for a given cell, so that we prefer to call them normal forms. These normal
forms are adequately reflected by free functors, since the latter reflect elementary compositions:
in other words, they satisfy the analogue of the Conduché property for strict categories [28]. In
addition to providing convenient tools in the proofs, we will see in subsequent sections that these
properties entail the existence universal shapes of compositions.

Types and contexts. Given m ≤ n ∈ N, an n-precategory C, an m-type is a pair of parallel
(m−1)-cells of C. We use the convention that there is a unique 0-type, and all pairs of 0-cells of a
precategory are parallel. Given a k-cell u ∈ C for some k ≥ m, u has a canonical associated m-type:
(∂−m−1(u), ∂+

m−1)(u)). In the following, an m-type is thought of as the type for a formal variable,
which suggests defining the notion of context (a morphism in which the variable occurs exactly once)
and of substitution (replacing the variable by a morphism).

An m-context E for an m-type (s, t) is defined by induction on m, together with the evalua-
tion E[u] of E at a cell of m-type (s, t):

– there is a unique 0-context of the unique 0-type, denoted [−], and the evaluation of it at a
cell u ∈ C is u,

– an (m+1)-context of type (s, t) is a triple E = (l, E′, r) with l, r ∈ Cm, and E′ an m-context
of type (∂−m−1(s), ∂+

m−1(t)) such that ∂+
m(l) = E′[s] and E′[t] = ∂−m(r), and the evaluation E[u]

of E at a cell u is defined by E[u] = l ∗m E′[u] ∗m r.

Alternatively, an m-context E can be thought of as an expression of the form

lm ∗m−1 (· · · ∗1 (l1 ∗0 [−] ∗0 r1) ∗1 · · · ) ∗m−1 rm

where the li, ri ∈ Ci are the i-cells occurring in the definition of E for i ∈ N≤m, and its evaluation
at a cell u as the cell obtained by replacing [−] by u in the above expression.
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Normal forms. We have the following normal form for the cells of free precategories:

Theorem 5. Given m ∈ N and a polygraph P ∈ Polω, every m-cell of P∗ can be written uniquely as

E1[g1] ∗m−1 · · · ∗m−1 Ek[gk]

for some unique g1, · · · , gk ∈ Pm and (m−1)-contexts E1, . . . , Ek of the corresponding types.

Proof. We only sketch the proof, which is detailed in [23, Theorem 1.8.3]. One can adequately
orient the axioms (P-i)–(P-v) of precategories in order to obtain a terminating and locally confluent
rewriting system on the formal expressions of cells of free precategories. By standard arguments of
rewriting theory [7], this gives the existence and unicity of normal forms.

Remark 6. A consequence of the above theorem is that the embeddings ei : Pi → P∗i introduced
earlier are injective. Thus, given g ∈ Pi, we will often omit ei and write g for both the element of Pi

and the cell of P∗i .
The unicity of normal forms directly entails the that the image under a free functor of an identity is
an identity (resp. of a generator is a generator):

Proposition 7. Let F : P → Q ∈ Polω be a morphism of polygraphs, k ∈ N≤n and u ∈ P∗k. The
following hold:

(i) when k > 0, there exists a cell u′ ∈ P∗k−1 such that u = idk
u′ if and only if there exists a

cell ũ′ ∈ Q∗k−1 such that F ∗(u) = idk
ũ′ ,

(ii) there exists a generator g ∈ Pk such that u = g if and only if there exists a generator g̃ ∈ Qk

such that F ∗(u) = g̃.

We should also mention now that composition in free precategories is cancellative. This does not
seem to be deducible from the more general properties developed in the next sections.

Proposition 8. Given P ∈ Polω and u, v1, v2 ∈ P∗ such that u∗iv1 = u∗iv2 for some i, then v1 = v2.

Proof. Note that, by the input and output dimension conditions of ∗i, we necessarily have that the
dimension of v1 is the one of v2. We do an induction on the dimension of the resulting cell u ∗i v1
and distinguish three cases depending on the relative dimensions of u, v1 and v2.

– Suppose that u, v1, v2 ∈ P∗i+1. By unicity of the decomposition of (i+1)-cells of free precate-
gories (Theorem 5) and its compatibility with i-composition as concatenation, we have v1 = v2.

– Suppose u ∈ P∗i+1 and v1, v2 ∈ P∗n with n > i+ 1. We reason by induction on v1.

– Suppose that v1 = α for some generator α ∈ Pn. Then, by the definition of composition
and the normal forms, we have that v2 = α.

– Suppose that v1 = E1[α] for some generator α ∈ Pn and m-context E1 with 0 < m < n.
By the definition of composition and the unicity of normal forms, we have v2 = E2[α]. Let
(lj , E′j , rj) = Ej for j ∈ {1, 2}. If m = i+ 1, then, by unicity of normal forms, we have
u∗i l1 = u∗i l2, E′1[α] = E′2[α] and r1 = r2. By the beginning of the proof, we have l1 = l2,
so that v1 = v2. Otherwise, if m > i+ 1, then u ∗i l1 = u ∗i l2, u ∗i E

′
1[α] = u ∗i E

′
2[α] and

u ∗i r1 = u ∗i r2. By the different induction hypotheses, we have l1 = l2, E′1[α] = E′2[α]
and r1 = r2, so that v1 = v2.
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– If v1 = E1
1 [α1]∗n−1· · ·∗n−1E

k
1 [αk], then we necessarily have v2 = Ek

2 [α1]∗n−1· · ·∗n−1E
k
2 [αk]

such that u ∗i E
j
1[αj ] = u ∗i E

j
2[αj ]. By the previous argument, we have Ej

1[αj ] = Ej
2[αj ],

so that v1 = v2.

– Suppose that u ∈ P∗n, v1, v2 ∈ P∗i+1 with n > i+ 1. We reason by induction on u.

– If u = idu′ , then we have u′ ∗i v1 = u′ ∗i v2, so that v1 = v2 by induction.
– If u = E[α] for some (n−1)-context E, then let (l, E′, r) = E. We then have r∗iv1 = r∗iv2

so that, by induction hypothesis, v1 = v2.
– If u = E1[α1]∗n−1· · ·∗n−1Ek[αk] for some k ≥ 1, α1, . . . , αk ∈ Pn and contexts E1, . . . , Ek,

then we have in particular E1[α1] ∗i v1 = E1[α1] ∗i v2 so that we can conclude v1 = v2 by
the previous case.

– Suppose that u, v1, v2 ∈ P∗i+1, v1, v2 ∈ P∗i+1 with n > 0. By the unicity of normal forms, we
can uniquely write u as E1[α1] ∗i · · · ∗i E

k[αk] and vj as E1
j [β1

j ] ∗i · · · ∗i E
lj

j [βlj

j ] for j ∈ {1, 2}
for some adequate k, l1, l2 ∈ N, i-contexts E·, E·1, E·2 and (i+1)-generators α·, β·1 and β·2. By
considering the induced normal forms on u ∗i v1 and u ∗i v2 by concatenation, we deduce by
unicity of normal forms that l1 = l2 and E·1 = E·2 and β·1 = β·2, so that v1 = v2.

Remark 9. Note that such a property does not hold for polygraphs of strict categories. Indeed,
considering the 2-polygraph of strict precategories P defined by

P0 = {x} P1 = {f : x → x} P2 = {α : idx ⇒ f},

we have α ∗0 idf ̸= idf ∗0 α while

α ∗1 (α ∗0 idf ) = α ∗0 α = α ∗1 (idf ∗0 α)

in the free strict 2-category P∗. Graphically,

x x x
α⇓

f

α⇓
f

= x x xα⇓
f

α⇓
f

= x x x
α⇓

f
f

α⇓

Conduché functors. We now introduce the notion of (strict) Conduché functor for precategories,
following the work of Guetta in the case of strict categories [28]. Informally, these functors have a “co-
functoriality” property, in the sense that cells mapped to composites are themselves composites. The
notion of weak Conduché functor was introduced by Guiraud in a seemingly unrelated context [25]
as a necessary and sufficient condition for a functor F : C → D between strict n-categories to be
exponentiable, i.e., for the pullback functor F← : Cat/D → Cat/C to have a right adjoint.

Let n ∈ N∪{ω}, C,D ∈ PCatn and F : C → D be an n-prefunctor. We say that F is n-Conduché
when it satisfies that, for all i, k1, k2, k ∈ N∗n with i = min(k1, k2) − 1 and k = max(k1, k2), u ∈ Ck,
i-composable v1 ∈ Dk1 and v2 ∈ Dk2 such that

F (u) = v1 ∗i v2,

there exist unique i-composable u1 ∈ Ck1 and u2 ∈ Ck2 such that

F (u1) = v1 and F (u2) = v2 and u1 ∗i u2 = u.

As in the case of strict categories, the Conduché property implies a unique lifting of identities:
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Proposition 10. Given n ∈ N ∪ {ω} and an n-Conduché prefunctor F : C → D ∈ PCatn, if

F (u) = idv

for some k ∈ N<n, u ∈ Ck+1, and v ∈ Dk, then there exists a unique u′ ∈ Ck such that

F (u′) = v and u = idu′ .

Proof. Since idv = idv ∗k idv, by the Conduché property, there exist unique u1, u2 ∈ Ck+1 such
that F (u1) = idv, F (u2) = idv and u = u1 ∗k u2. Moreover, we have that F (id

∂−
k

(u)) = v

and u = id
∂−

k
(u) ∗k u so that u1 = id

∂−
k

(u) and u2 = u. Symmetrically, we have that u1 = u

and u2 = id
∂+

k
(u). Thus, u = id

∂−
k

(u) ∗k id
∂+

k
(u), so that ∂−k (u) = ∂+

k (u) and u = idu′ with u′ = ∂−k (u).
Uniqueness is immediate.

Unlike for strict categories, we have the remarkable property that all free functors of precategories
are Conduché:

Proposition 11. Given m ∈ N ∪ {ω} and a morphism F : P → Q ∈ Polm, the prefunctor
F ∗ : P∗ → Q∗ is Conduché.

Proof. For the sake of simplicity, we only handle the case m = ω. Suppose given n ∈ N and an
n-cell u ∈ P∗n such that F (u) = ū1 ∗i ū2. We reason by case analysis on the relative dimensions of
ū1 and ū2.

– If ū1, ū2 ∈ Q∗n then i = n− 1. By the unicity of normal forms and its compatibility with ∗n−1,
there are unique u1, u2 such that F ∗(uk) = ūk for k ∈ {1, 2} and u = u1 ∗n−1 u2.

– Suppose ū1 ∈ Q∗i+1 and ū2 ∈ Q∗n. If there are u1, u2 such that F ∗(uk) = ūk for k ∈ {1, 2} and
u = u1 ∗i uu, then they are unique since, by the previous point, u1 and ∂−i+1(u2) are uniquely
determined by ∂−i+1(u) = u1 ∗i u

−
2 and F ∗(u1) = ū1 and F ∗(u−2 ) = ∂−i+1(u2). Moreover, since

u = u1 ∗i u2, we have that u2 is unique by Proposition 8. So unicity holds. For existence, we
reason by induction on n and ū2.

– If ū2 = Ē[ᾱ] for some (i+1)-context Ē = (l̄, Ē′, r̄), then, by unicity of normal forms,
u = E[α] for some α ∈ P, and (i+1)-context E = (l, E′, r), and we moreover have
F ∗(l) = ū1 ∗i l̄, F ∗(E[α]) = Ē[ᾱ] and F ∗(r) = r̄. By the first part, there are u1 and l̃
such that l = u1 ∗i l̃, so that Ẽ = (l̃, E′, r) satisfies that u = u1 ∗i Ẽ[α], F ∗(u1) = ū1 and
F ∗(Ẽ[α]) = Ē[ᾱ].

– If ū2 = Ē[ᾱ] for some (j+1)-context Ē = (l̄, Ē′, r̄) with j > i, then, by unicity of normal
forms, u = E[α] for some α ∈ P, and (j+1)-context E = (l, E′, r), and we moreover have
F ∗(l) = ū1 ∗i l̄, F ∗(E′[α]) = ū1 ∗i Ē

′[ᾱ] and F ∗(r) = ū1 ∗i r̄. By the other induction
hypothesis, there are u1

1, u
2
1, u

3
1, l̃, ũ′, r̃ such that l = u1

1 ∗i l̃, E′[α] = u2
1 ∗i ũ

′ and r = u3
1 ∗i r̃.

Since u1
1 ∗i ∂

+
j (l̃) = ∂+

j (l) = ∂−j (ũ′) = u2
1 ∗i ∂

−
j (Ē′[ᾱ]) and F ∗(u1

1) = F ∗(u2
1) = ū1 and

F ∗(∂+
j (l̃)) = F ∗(∂−j (ũ′)) = ∂+

j (l̄), by unicity, we have u1
1 = u2

1 and ∂+
j (l̃) = ∂−j (ũ′).

Similarly, u2
1 = u3

1 and ∂+
j (ũ′) = ∂−j (r̃). Thus, writing u1 for u1

1 and u2 for l̃ ∗j ũ
′ ∗j r̃, we

have that u = u1 ∗i u2 is the wanted decomposition for u.
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– If ū2 = Ē1[ᾱ1] ∗n−1 · · · ∗n−1 Ēk[ᾱk], then, by unicity of normal forms, we have that
u = E1[α1] ∗n−1 · · · ∗n−1 Ek[αk] such that F ∗(El[αl]) = ū1 ∗i Ēl[ᾱl]. By induction
hypothesis, we get ul

1 and ul
2 such that El[αl] = ul

1∗iu
l
2, F ∗(ul

1) = ū1 and F ∗(ul
2) = Ēl[ᾱl].

Using the same argument as earlier, we get that u1
1 = · · · = uk

1 and u1
2, . . . , u

k
2 are

(n−1)-composable so that, writing u1 for u1
1 and u2 for u1

2 ∗n−1 · · · ∗n−1 u
k
2 , we have a

decomposition u = u1 ∗i u2 satisfying the wanted properties.

– Suppose ū1 ∈ Q∗n and ū2 ∈ Q∗i+1. This case is similar to the previous one.

Remark 12. As a counter-example for the above property in the context of strict categories, consider
the polygraphs P and Q defined by

P0 = {x} P1 = ∅ P2 = {α : idx ⇒ idx, β : idx ⇒ idx}
Q0 = {y} Q1 = ∅ Q2 = {γ : idy ⇒ idy}.

We then have a morphism F : P → Q sending α and β to γ, and the associated prefunctor F ∗ sends
both α ∗0 β and β ∗0 α to γ ∗0 γ.

A nice application of the above Conduché properties is the characterization of monomorphisms
of polygraphs. First, we briefly observe the equivalence between monomorphisms of precategories
and dimensionwise injections.

Proposition 13. Given n ∈ N ∪ {ω} and F : C → D ∈ PCatn, the following are equivalent:

(i) F is a monomorphism,

(ii) Fk is a monomorphism for every k ≤ n.

Proof. The theory of n-precategories is sketchable and the functor (−)k : PCatn → Set, which to a
precategory associates its set of k-cells is induced by a sketch morphism. It is thus a right adjoint
[10, Section 4, Theorem 4.1]. In particular, it preserves monomorphisms. Thus, (i) implies (ii).
Moreover, since the functors (−)k for k < n+ 1 are jointly faithful, we have that (ii) implies (i).

We then have the following characterization property for monomorphisms of polygraphs, which are
in particular preserved by the functor (−)∗:

Proposition 14. Given n ∈ N ∪ {ω} and F : P → Q ∈ Poln, the following are equivalent:

(i) F is a monomorphism,

(ii) Fk is a monomorphism for every k ≤ n,

(iii) F ∗ is a monorphism in PCatn.

Proof. We show this property by induction on n. (ii) clearly implies (i).
Conversely, assuming (i), by induction hypothesis, we have that Fk and F ∗k are monomor-

phisms for k < n. Now, let x, y ∈ Pn such that Fn(x) = Fn(y). In particular, we have
F ∗n−1(∂ϵ(x)) = F ∗n−1(∂ϵ(y)) for ϵ ∈ {−,+}, so that ∂ϵ(x) = ∂ϵ(y) for ϵ ∈ {−,+}, by injectivity of
F ∗n−1. Consider the n-polygraph R such that T P

n−1 R = T P
n−1 P and Rn = z with dϵ

n−1(z) = ∂ϵ(x)
for ϵ ∈ {−,+}. Then, we have two canonical morphisms Gx, Gy : R → P, verifying Gx(z) = x and
Gy(z) = y. We then have F ◦ Gx = F ◦ Gy, so that Gx = Gy since F is a monomorphism. In
particular, we have x = y. Thus, Fn is injective, so (ii) holds.
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By Theorem 5, the embedding eP
k : Pk → P∗k (resp. eQ

k : Qk → Q∗k) is a monomorphism. Thus, (iii)
implies (ii), since eQ

k ◦Fk = F ∗k ◦ eP
k and the right-hand side of the latter equation is a monomorphism

by Proposition 13.
Conversely, assume (ii). Let u, v ∈ P∗n such that F ∗(u) = F ∗(v). We show that u = v by

induction on an expression defining u. If u = idu′ for some u′ ∈ P∗n−1, by Propositions 10 and 11,
there exists v′ ∈ P∗n−1 such that v = idv′ . We thus have F ∗(u′) = F ∗(v′) and u′ = v′ by induction
hypothesis. If u = u1 ∗i u2 for some i < n and i-composable u1, u2 ∈ P∗, then by Proposition 11,
there exists i-composable v1, v2 ∈ P∗ such that v = v1 ∗i v2 and F ∗(uk) = F ∗(vk) for k ∈ {1, 2},
so that uk = vk by induction hypothesis, and u = v. Finally, if u = eP,n(g) for some g ∈ Pn then
v = eP

n(h) for some h ∈ Pn by Proposition 7. But then, we have

eQ
n(Fn(g)) = F ∗(eP

n(g)) = F ∗(eP
n(h)) = eQ

n(Fn(h))

where eQ
n ◦Fn is a monomorphism by hypothesis and Remark 6. Thus, g = h and u = v. Hence, (iii)

holds.

3 Makkai’s criterion for presheaf categories
We now recall the criterion given by Makkai [38] to detect whether a category C is a presheaf
category in the expected way, i.e., relatively to a concretization functor C → Set. In the case of a
presheaf category, the objects of the base category are recognized as the “suitably initial” elements
of the concretization. Makkai used this criterion to show that polygraphs for strict categories do not
form a presheaf categories in the expected way, where the concretization functor maps a polygraph
to the set of all generators. We will use this criterion in Section 6 to prove that, in the case of
precategories, we do get a presheaf category.

A concrete category is a category C endowed with a functor

|−|C : C → Set.

The above concretization functor should be understood as a candidate set-theoretic representation
of C: for c an object of C, the set |c| describes the candidate elements of the associated presheaf.
The following canonical example should provide a good illustration of this intuition.
Example 15. Let C be a small category. Ĉ has a canonical structure of concrete category, where |−|Ĉ
is defined on preasheaves P ∈ Ĉ by

|P |Ĉ =
⊔

c∈C0

P (c)

and extended naturally to morphisms between presheaves.
In the following, we will be interested in the concretization functor given by the following example:
Example 16. The functor |−| : Polω → Set which maps P ∈ Polω to

|P| =
⊔
k∈N

Pk

equips Polω with a structure of concrete category.
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Later, we will study the properties of Polω equipped with the above concretization functor.
Another concretization functor on Polω that will be of interest for us is given by the example below:
Example 17. There is a functor |−| : Catω → Set which maps C ∈ Catω to

|C| =
⊔
k∈N

Ck

By precomposition with the functor (−)∗ : Polω → Catω, we obtain a functor |(−)∗| : Polω → Set
which maps P ∈ Polω to

|P∗| =
⊔
k∈N

P∗k

and also equips Polω with a structure of concrete category.
In order to distinguish between the two preceding structures of concrete category on Polω, we use
the convention that we write Polω when considering the concrete category structure on Polω given
by |−| and Pol∗ω when considering the concrete category structure on Polω given by |(−)∗|.

An equivalence of concrete categories between concrete categories (C, |−|C) and (D, |−|D) is the
data of an equivalence of categories E : C → D and a natural isomorphism

Φ: |−|D ◦ E ⇒ |−|C .

When such an equivalence exists, (C, |−|C) and (D, |−|D) are said concretely equivalent. One might
then consider the following natural question:

When is some concrete category (C, |−|C) concretely equivalent
to a presheaf category (Ĉ, |−|Ĉ) for some small category C?

When it is the case, we say that (C, |−|C) is a concrete presheaf category.

Given a concrete category (C, |−|C), the category of elements Elt(C) of C is the category

– whose objects are the pairs (X,x) where X ∈ C0 and x ∈ |X|C , and

– whose morphisms from (X,x) to (Y, y) are the morphisms f : X → Y ∈ C such that |f |C(x) = y.

Given a morphism f : (X,x) → (Y, y) as above, we say that y is a specialization of x. An ob-
ject (X,x) ∈ Elt(C) is principal when, for every morphism f : (Y, y) → (X,x) ∈ Elt(C) such that f
is a monomorphism in C, we have that f is an isomorphism; it is primitive when it is principal and,
for all f : (Y, y) → (X,x) ∈ Elt(C) where (Y, y) is principal, f is an isomorphism.
Example 18. Let C be a small category and consider the canonical concrete category structure on Ĉ
given by Example 15. Given P ∈ Ĉ and c ∈ C, we write ιc : P (c) →

⊔
c∈C P (c) for the canonical

injection. The category Elt(Ĉ) has

– as objects the pairs (P, ιc(x)) where P ∈ Ĉ and x ∈ P (c), and

– as morphisms from (P, ιc(x)) to (Q, ιd(y)) the natural transformations α : P ⇒ Q such
that c = d and αc(x) = y.

Given (P, ιc(x)) ∈ Elt(Ĉ), we have the following.
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– (P, ιc(x)) is principal when P is the smallest subpresheaf P ′ of P such that x ∈ P ′(c). In
particular, for all c ∈ C, (C(−, c), ιc(idc)) ∈ Elt(Ĉ) is principal.

– (P, ιc(x)) is primitive when the natural transformation θ : C(−, c) → P which maps idc to x is
an isomorphism.

The characterization of concrete presheaf categories given by Makkai is the following [38, Theorem 4]:

Theorem 19. Let (C, |−|C) be a concrete category. C is concretely equivalent to a presheaf category
if and only if the following conditions are all satisfied:

(a) |−|C reflects isomorphisms,

(b) C is cocomplete and |−|C preserves all small colimits,

(c) the collection of isomorphism classes of primitive elements of Elt(C) is small,

(d) for every element (X,x) ∈ Elt(C), there is a morphism (U, u) → (X,x) for some primitive
element (U, u),

(e) given two morphisms f, g : (U, u) → (X,x) ∈ Elt(C) where (U, u) is primitive, we have f = g,

(f) given two morphisms f : (U, u) → (X,x) and g : (V, v) → (X,x) of Elt(C) where both (U, u)
and (V, v) are primitive, there is an isomorphism θ : (U, u) → (V, v) such that g ◦ θ = f .

4 The support function
It is often useful to consider the support of a cell in a precategory, which informally consists in the
set of generators occurring in this cell. In particular, the support will allow us to retrieve some
properties of a morphism of polygraphs F from the associated free functor F ∗, which will turn out
to be useful when studying polyplexes. A support function for free strict categories was already
introduced by Makkai for his study of the word problem on these categories [38].

Given n ∈ N ∪ {ω} and an n-polygraph P, we define the support function

suppP : |P∗| → P(|P|)

which to any cell in P∗ associates a set of generators of P, by induction on u ∈ P∗ as follows:

– if u = g ∈ P0, then supp(u) = {g},

– if u = g ∈ Pk+1 for some k < n, then supp(u) = {g} ∪ supp(d−(g)) ∪ supp(d+(g)),

– if u = idu′ for some k < n and u′ ∈ P∗k, then supp(u) = supp(u′),

– if u = u1 ∗i u2 for some 0 < k1, k2 < n+ 1, i = min(k1, k2) − 1 and i-composable u1 ∈ P∗k1
and

u2 ∈ P∗k2
, then supp(u) = supp(u1) ∪ supp(u2).

One can easily verify that supp respects the axioms of precategories, so that:

Lemma 20. The function supp is well-defined.
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The function supp is moreover natural:
Lemma 21. Let n ∈ N∪{ω} and F : P → Q ∈ Poln. Then, we have that suppQ ◦|F ∗| = |F |◦suppP.

Proof. By induction on u ∈ P∗.

Given a polygraph P and a cell u ∈ P∗, the support of u is always finite. By restricting P to the
generators occurring in this support, on can show the following:
Proposition 22. Given n ∈ N∪{ω}, an n-polygraph P and u ∈ P∗, there exist a finite n-polygraph P̃ ,
a monomorphism F : P̃ → P and ũ ∈ P̃ ∗ such that F ∗(ũ) = u and supp(ũ) = |P̃|.

Given F : P → Q and u ∈ P∗, we write F/u : supp(u) → supp(F ∗(u)) for the restriction of F to
the support and the image of the support of u.
Lemma 23. Given a pair of parallel morphisms

P Q
F

G

of Polω such that F ∗(u) = G∗(u) for some u ∈ P∗, we have F/u = G/u.

Proof. By induction on n and a formula defining u.
– If u = α for some α ∈ P, then F (α) = G(α). We then also have that F ∗(∂ϵ(α)) = G∗(∂ϵ(α))

for ϵ ∈ {−,+}, so that F/∂ϵ(u) = G/∂ϵ(u) by induction. Thus, F/α = G/α.

– If u = idu′ , then the property follows by induction hypothesis.

– If u = u1 ∗i u2. Then, we have F ∗(u1) ∗i F
∗(u2) = G∗(u1) ∗iG

∗(u2). Writing !P : P → 1 for the
terminal morphism in Polω, we have !∗Q(F ∗(uj)) = !∗P(uj) = !∗Q(G∗(uj)) for j ∈ {1, 2}. Since !∗P
is Conduché by Proposition 11, we have F ∗(uj) = G∗(uj) for j ∈ {1, 2}. Thus, F/uj = G/uj

for j ∈ {1, 2} so that F/u = G/u.
We have the following nice description of principal elements of Elt(Polω) and Elt(Pol∗ω) using
support:
Lemma 24. An element (P, u) of Elt(Polω) (resp. Elt(Pol∗ω)) is principal if and only if supp(u) = |P|.

Proof. Assume that (P, u) is principal. Then, by Proposition 22, there exist an element (P̃, ũ) and
F : (P̃, ũ) → (P, u) such that F is a monomorphism of Polω and supp(ũ) = |P̃|. Since (P, u) is
principal, we have that F is an isomorphism. Thus, by Lemma 21, we have that supp(u) = |P|.

Conversely, assume that supp(u) = |P|. Let (Q, v) be an element and F : (Q, v) → (P, u) be a mor-
phism where F is a monomorphism in Polω. By Lemma 21, we have that |F (supp(v))| = supp(u) = |P|.
Thus, Fk is surjective for every k ∈ N. Moreover, Fk is injective by Proposition 14, so that Fk is an
isomorphism for every k. Since |−| reflects isomorphisms (exercise to the reader), we have that F is
an isomorphism. Thus, (P, u) is principal.

Finally, as a consequence of Lemmas 23 and 24, we have:
Lemma 25. Given a pair of parallel morphisms

(P, u) (Q, v)
F

G

of Elt(Pol∗ω) where (P, u) is principal, then F = G.
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5 Polyplexes
We now introduce the construction of polyplexes for the cells of free precategories. Those are
polygraphs representing composition shapes such that every such cell in a polygraph is the composite
of a polyplex in a unique way. Polyplexes are themselves composed of plexes (see next section)
which are polygraphs representing generators in a polygraph. These notions are due to Burroni [14],
and were further developed by Henry [33].

Formally, a polyplex is an element (P, u) ∈ Elt(Pol∗ω) which is primitive (for the concrete structure
introduced in Example 17). Given an element (Q, v) in Elt(Pol∗ω), a polyplex lifting is the data of a
polyplex (P, u) and a morphism of elements F : (P, u) → (Q, v) ∈ Elt(Pol∗ω).

The construction of polyplexes will be carried out by induction on a formula defining a cell. The
inductive case of identities is handled by the following lemma:

Lemma 26. Given an element (P, u) ∈ Elt(Pol∗ω), (P, u) is a polyplex if and only if (P, idu) is a
polyplex.

Proof. By Lemma 24, (P, u) is principal if and only if (P, idu) is principal. So we can assume that
both are principal.

Suppose that (P, u) is primitive. Let F : (Q, v) → (P, idu) be a morphism of elements where Q is
principal. Then, by Proposition 7, we have that v = idv′ for some v′ ∈ Q∗, and, by compatibility
of F ∗ with ∂−, we moreover have F ∗(v′) = u. Since supp(v) = supp(v′), (Q, v′) is still a principal
element. Thus, F is an isomorphism since (P, u) is primitive. Hence, (P, idu) is primitive. The
converse is similar.

The lemmas and propositions until the end of this section, describing the remaining cases
characterizing polyplexes for composites and generators together with global existence and unicity
properties, are proved by mutual induction on a formula defining the cell u appearing in the
statements. First, the case of generators:

Lemma 27. Let (U, u) ∈ Elt(Pol∗ω). Then, the following are equivalent:

(i) (U, u) is a polyplex and there exist α ∈ U such that u = α,

(ii) there exist polyplex liftings
Gϵ : (U ϵ, uϵ) → (U, ∂ϵ(u))

for ϵ ∈ {−,+}, principal elements (S, s) and (T, t), and morphisms

F ϵ− : (S, s) → (U ϵ, ∂−(uϵ)) F ϵ+ : (T, t) → (U ϵ, ∂+(uϵ))

for ϵ ∈ {−,+}, such that, considering the pushout

S ⊔ T U+

U− ∂U

[F +−,F ++]

[F −−,F −+] Ḡ+

Ḡ−

(U, u) is isomorphic to (Ū , ᾱ), where Ū is obtained from ∂U by adding a generator

ᾱ : Ḡ−(u−) → Ḡ+(u+).
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Proof. Suppose that (ii) holds. By the unicity of normal forms (Theorem 5), it is enough to show
that (Ū , ᾱ) is primitive. First, it is principal by Lemma 24 since

supp(ᾱ) = {α} ∪ supp(Ḡ−(u−)) ∪ supp(Ḡ+(u+)) = |Ū |.

Second, consider a morphism H : (V, v) → (Ū , α) with (V, v) principal. By induction hypothesis
on Proposition 29, we have polyplex liftings

Hϵ : (Ũ ϵ, ũϵ) → (V, ∂ϵ(v))

for ϵ ∈ {−,+}. Since H∗(∂ϵ(v)) = ∂ϵ(ū), by Proposition 30, we can assume that (Ũ ϵ, ũϵ) = (U ϵ, uϵ)
for ϵ ∈ {−,+}. Since (S, s) is principal, we have, by Lemma 25

H− ◦ F−− = H+ ◦ F+− and H− ◦ F−+ = H+ ◦ F++.

Thus, we derive a morphism ∂H ′ : ∂U → V from the pushout. By unicity of normal forms, v = β for
some β ∈ V . Thus, ∂H ′ can be extended to H ′ : Ū → V by putting H ′(α) = β. Using Lemma 25,
we can easily verify that H ′ is the inverse of H. Hence, (Ū , ū) is a polyplex.

Now, assume that (i) holds. By induction hypothesis, there are polyplex liftings

Gϵ : (U ϵ, uϵ) → (P, ∂ϵ(u))

for ϵ ∈ {−,+}. By induction hypothesis on Proposition 29, there exists a polyplex lifting
F−− : (S, s) → (U−, ∂−(u−)). Similarly, there is a polyplex lifting of (U+, ∂−(u+)) and, since
(G−)∗(∂−(u−)) = (G+)∗(∂−(u+)), by Proposition 30, it can be chosen to be of the form

F+− : (S, s) → (U+, ∂−(u+)).

Similarly, there are polyplex liftings

F−+ : (T, t) → (U−, ∂+(u−)) and F++ : (T, t) → (U+, ∂+(u+)).

Writing F ϵ for [F ϵ−, F ϵ+] for ϵ ∈ {−,+}, consider the pushout

S ⊔ T U+

U− ∂U

F +

F +
Ḡ+

Ḡ−

and write Ū for the ω-polygraph obtained from ∂U by adding a generator ᾱ : Ḡ−(u−) → Ḡ+(u+) (this
is well-defined, since the definition of ∂U ensures that ∂ϵ(Ḡ−(u−)) = ∂ϵ(Ḡ+(u+)) for ϵ ∈ {−,+}).
By the first part, (Ū , ᾱ) is a polyplex, and we easily deduce a polyplex lifting H : (Ū , ᾱ) → (U,α)
from the above pushout. Since (U,α) is primitive, H is an isomorphism. Thus, (ii) holds.

The next lemma deals with the case of composites of the polyplex construction:

Lemma 28. Let (U, u) ∈ Elt(Pol∗ω), u1 ∈ U∗k , u2 ∈ U∗l for some k, l ∈ N, with u1 and u2 are
i-composable for i = min(k, l). Then, the following are equivalent:

(i) (U, u) is a polyplex and u = u1 ∗i u2,
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(ii) there exist a principal element (U ′, u′) and polyplexes (U1, u1) and (U2, u2), and morphisms
Fj : U ′ → Uj ∈ Polω and Gj : Uj → U for j ∈ {1, 2}, such that

U ′ U2

U1 U

F1

F2

G2

G1

is a pushout diagram in Polω, F ∗1 (u′) = ∂+
i (u1), F ∗2 (u′) = ∂−i (u2) and u = G1(u1) ∗i G2(u2).

Proof. Suppose that (ii) holds. We have

supp(G∗1(u1) ∗i G
∗
2(u2)) = supp(G∗1(u1)) ∪ supp(G∗2(u2))

= G1(supp(u1)) ∪G2(supp(u2))
= G1(|U1|) ∪G2(|U2|)
= |U |

thus (U, u) is principal by Lemma 24. Now, consider H : (R, w) → (U, u) ∈ Elt(Pol∗ω) with (R, w)
principal. We have

H(|R|) = H(supp(w)) = supp(H∗(w)) = supp(u) = |U |

so that the functions Hj : Rj → Uj are surjective for every j. Thus, H is an epimorphism. Since
H∗ is Conduché by Proposition 11 and H∗(w) = G∗1(u1) ∗i G

∗
2(u2), there exist unique w1, w2 such

that H∗(wj) = G∗j (uj) for j ∈ {1, 2} and w = w1 ∗i w2. By induction hypothesis on Proposition 29,
there exist polyplex liftings H ′j : (Ũj , ũj) → (R, wj) for j ∈ {1, 2}. By induction hypothesis on
Proposition 30, since both (Ũj , ũj) and (Uj , uj) are polyplex liftings of (U,G∗j (uj)), we may assume
that (Ũj , ũj) = (Uj , uj) for j ∈ {1, 2}. By Lemma 25, we have H ′1 ◦ F1 = H ′2 ◦ F2, so that we obtain
H ′ : U → R from the pushout. We compute that

H ′(u) = H ′(G∗1(u1) ∗i G
∗
2(u2)) = H ′1(u1) ∗i H

′
2(u2) = w1 ∗i w2 = w.

Thus, using Lemma 25, we easily have that H ′ ◦ H = idR and H ◦ H ′ = idU . Hence, (U, u) is
primitive.

Conversely, suppose that (i) holds. Then, by induction hypothesis on Proposition 29, there
exist Gk : (Uk, ūk) → (P, uk) with (Uk, ūk) primitive for k ∈ {1, 2}. By induction hypothesis on
Proposition 29, there exist F̃k : (Ũk, ũk) → (Uk, ∂

ϵ(k)
i (uk)) with (Ũk, ũk) primitive for i ∈ {1, 2} and

ϵ(1) = + and ϵ(2) = −. In particular, (Ũ1, ũ1) and (Ũ2, ũ2) are both polyplex liftings of (U, ∂+
i (u1)).

By induction hypothesis on Proposition 30, we can assume that (Ũ1, ũ1) = (Ũ2, ũ2) and write (Ũ , ũ)
for this element. By Lemma 25, we have G1 ◦ F1 = G2 ◦ F2. Consider the pushout

Ũ U2

U1 Ū

F1

F2

Ḡ2

Ḡ1
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By its universal property, we get a morphism H : Ū → U from G1 and G2. By the first implication,
(Ū , G∗1(ū1) ∗i G

∗
2(ū2)) is a primitive element. Moreover, H induces a morphism

H : (Ū , G∗1(ū1) ∗i G
∗
2(ū2)) → (U, u1 ∗i u2)

of Elt(Pol∗ω). Thus, since (U, u1 ∗i u2) is primitive, H is an isomorphism.

The previous lemmas lead to the following polyplex lifting existence property:

Proposition 29. Given an element (P, u) ∈ Elt(Pol∗ω), there exists a polyplex lifting

F : (U, ū) → (P, u)

where (U, ū) is primitive.

Proof. We reason by case analysis on a formula for u.

– If u = idu′ , then, by Lemma 26, the conclusion follows from induction hypothesis.

– If u = u1 ∗i u2, then, by induction hypothesis, there are morphisms

Gk : (Uk, ūk) → (P, u)

with (Uk, ūk) primitive for k ∈ {1, 2}. By induction hypothesis, there are polyplex liftings

F k : (Ũk, ũk) → (Uk, ∂
ϵ(k)
i (ūk))

with ϵ(1) = + and ϵ(2) = −. By induction hypothesis on Proposition 30, we can assume
that (Ũ1, ũ1) = (Ũ2, ũ2) and write (Ũ , ũ) for this element. Since (Ũ , ũ) is principal, we have
G1 ◦ F 1 = G2 ◦ F 2. Consider the pushout

Ũ U2

U1 Ū

F 1

F 2

Ḡ2

Ḡ1

Then, by Lemma 28, (Ū , Ḡ1(ū1)∗i Ḡ
2(ū2)) is a polyplex, and the universal property of pushouts

gives a polyplex lifting
H : (Ū , Ḡ1(ū1) ∗i Ḡ

2(ū2)) → (P, u).

– If u = α for some generator α ∈ P, by induction, there are polyplex liftings

Gϵ : (U ϵ, uϵ) → (P, ∂ϵ(u))

for ϵ ∈ {−,+}. By induction on Proposition 29, there exists a polyplex lifting

F−− : (S, s) → (U−, ∂−(u−)).

Similarly, there is a polyplex lifting of (U+, ∂−(u+)) and, since

(G−)∗(∂−(u−)) = (G+)∗(∂−(u+))
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by Proposition 30, it can be chosen to be of the form

F+− : (S, s) → (U+, ∂−(u+)).

Similarly, there are polyplex liftings

F−+ : (T, t) → (U−, ∂+(u−)) and F++ : (T, t) → (U+, ∂+(u+)).

Writing F ϵ for [F ϵ−, F ϵ+] for ϵ ∈ {−,+}, consider the pushout

S ⊔ T U+

U− ∂U

F +

F +
Ḡ+

Ḡ−

and write U for the ω-polygraph obtained from ∂U by adding a generator

ᾱ : Ḡ−(u−) → Ḡ+(u+)

(this is well-defined, since the definition of ∂U ensures that ∂ϵ(Ḡ−(u−)) = ∂ϵ(Ḡ+(u+)) for
ϵ ∈ {−,+}). By Lemma 27, (U, ᾱ) is a polyplex, and we easily deduce a polyplex lifting
H : (U, ᾱ) → (P, α).

Finally, we have the following uniqueness property of polyplex liftings:

Proposition 30. Given two morphisms L1 : (U1, u1) → (P, u) and L2 : (U2, u2) → (P, u) of Elt(Pol∗ω)
where both (U1, u1) and (U2, u2) are primitive, there is an isomorphism Θ: (U1, u1) → (U2, u2) such
that L2 ◦ Θ = L1.

Proof. We reason by case analysis on a formula for u.

– If u = idu′ , then the conclusion follows from induction hypothesis on u.

– If u = α for some α ∈ P, then, by Lemma 27, U1 and U2 are obtained by adding respective
top-level generators α1 and α2 to polygraphs ∂U1 and ∂U2, the latter being expressed as
pushouts

Si ⊔ T i U i,+

U i,− ∂U i

[F i,+−,F i,++]

[F i,−−,F i,−+] Ḡi,+

Ḡi,−

for some principal (Si, si), (T i, ti) and some primitive (U i,−, ui,−), (U i,+, ui,+) for i ∈ {1, 2}
as in the statement of that lemma. In particular, (U i,ϵ, ui,ϵ) are polyplex liftings of ∂ϵ(α) for
i ∈ {1, 2} and ϵ ∈ {−,+}. By induction hypothesis, for ϵ ∈ {−,+}, there are isomorphisms
Θϵ : (U1,ϵ, u1,ϵ) → (U2,ϵ, u2,ϵ). Since (S1, s1) and (T 1, t1) are principal, we can easily verify
with Lemma 25 that

G2,− ◦ Θ− ◦ [F 1,−−, F 1,−+] = G2,+ ◦ Θ+ ◦ [F 1,+−, F 1,++]

so that we get a morphism ∂Θ: ∂U1 → ∂U2, which extends to a morphism Θ: U1 → U2

such that Θ(α1) = α2. Symmetrically, a morphism Θ′ : (U2, α2) → (U1, α1) can be built.
Using Lemma 25, we easily verify that Θ and Θ′ are inverse of each other.
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– If u = u1 ∗i u2, we use the pushout description from Lemma 27 and this case is then handled
just like the previous one.

Remark 31. A consequence of the existence and unicity properties above, together with Lemma 25,
is that the functor |(−)∗| : Polω → Set of Example 17 is familially representable [15], i.e., can be
expressed as a functor of the form ⊔

i∈I

Hom(U i,−) : Polω → Set.

Here, I is a set of representatives (U i, ui) of all polyplexes (considered up to isomorphism of elements
in Elt(Pol∗ω)) of any dimension. Those can for instance be enumerated by constructing one polyplex
liftings for each cell of the free precategory on the terminal polygraph. A similar description holds
for the functor (−)∗k, mapping a polygraph to the set of k-cells of the associated free precategory:
the family I is now a set of representatives for the polyplexes of dimension k up to isomorphism.
Remark 32. A consequence of the canonicity of a polyplex liftings given by the above properties
is that one can define a “polyplex measure” on the cells of free precategories. Let P ∈ Polω, and
write ZP for the free Z-module on |P|. Given u ∈ P∗, one can define δP(u) as follows. Consider
a polyplex lifting F : (V, v) → (P, u) and define SV ∈ ZV by SV =

∑
g∈V g. Then, one defines

δP(u) as ZF (SV ). The definition of δP(u) does not depend on the choice of (V, v) by Lemma 25
and proposition 30. The question of the existence of a similar measure for free strict categories
was raised by Makkai in [38]. Later, using the standard Eckmann–Hilton for strict categories, the
non-existence of such a measure was proven [20, Proposition 2.5.2.13].

6 Polygraphs as a presheaf category
We can now use the results of the previous section in order to conclude that Polω is a (concrete)
presheaf category on the base category (also called shape category) of plexes, which are the elementary
shapes polygraphs are made of. In addition to the works of Burroni [14] and Henry [33], this notion
was also studied by Makkai [38] under the name “computopes”.

Formally, a plex is an element (P, u) ∈ Elt(Polω) which is primitive (for the concrete structure
introduced in Example 16). Given an element (Q, v) in Elt(Polω), a plex lifting is the data of a plex
(P, u) and a morphism of elements F : (P, u) → (Q, v) ∈ Elt(Polω).

In order to relate the properties of plexes to the ones of polyplexes proved in the previ-
ous section, we first need to briefly discuss the link between Elt(Polω) and Elt(Pol∗ω). We
write U : Elt(Polω) → Elt(Pol∗ω) for the canonical embedding. First note that, as a consequence of
Proposition 7(ii), that

Lemma 33. The functor U is fully faithful.

We then have the following.

Proposition 34. Let (P, g) ∈ Elt(Polω). Then

(1) (P, g) is principal if and only if U(P, g) is principal,

(2) (P, g) is a plex if and only if U(P, g) is a polyplex.
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Proof. By Lemma 24, (1) holds. Suppose now that both (P, g) and U(P, g) are principal. By
Proposition 7(ii), U is fully faithful, so that it reflects isomorphisms. Thus, if U(P, g) is a polyplex,
then (P, g) is a plex. For the converse, note that if f : (Q, v) → U(P, g) is a morphism of Elt(Pol∗ω),
then, by Proposition 7(ii), v ∈ Q, so that

(Q, v) = U(Q, v) and f = U(f).
Hence, if (P, g) is a plex, then U(P, g) is a polyplex.

Theorem 35. The category Polω is a concrete presheaf category.
Proof. We verify that the various conditions of Makkai’s criterion (Theorem 19) are satisfied.

(a) Clear from the definition of Polω.

(b) A consequence of general properties satisfied by categories of polygraphs derived from a
globular monad (see Propositions 1.3.3.7 and 1.3.3.15 of [20]).

(c) Since a primitive element (P, g) is principal, the polygraph P is finite. Thus, up to isomorphism,
the sets Pi can be assumed to be subsets of N. So that (c) holds.

(d) Given an element (P, g) ∈ Elt(Polω), by Proposition 29, there exists a polyplex lifting
F : (U, u) → (P, g) of U(P, g). By Proposition 7(ii), we have that u ∈ U . Moreover, by
Proposition 34(2), we have that (U, u) is a plex, so (d) holds.

(e) Given f, g : (U, u) → (X,x) ∈ Elt(Polω) with (U, u) a primitive plex, then we have that
U(f),U(g) : (U, u) → (X,x) ∈ Elt(Pol∗ω), so that U(f),U(g) by Lemma 25, and f = g by
faithfulness.

(f) Given two morphisms f : (U, u) → (X,x) and g : (V, v) → (X,x) of Elt(Polω) where both (U, u)
and (V, v) are primitive, we have by Proposition 30 that there is an isomorphism

θ : U(U, u) → U(V, v) ∈ Elt(Pol∗ω)
such that U(g) ◦ θ = U(f). We conclude by the full faithfulness of U .

Remark 36. Following Makkai’s proof of [38, Theorem 4], the base category of the presheaf category
given by the above theorem is a small full subcategory of Polω, whose objects are (the underlying
polygraphs of) plexes, and such that every (underlying polygraph of a) plex is isomorphic to exactly
one object of this subcategory. The objects of the latter can thus be easily enumerated, since they
are in correspondence with the generators of the terminal polygraph 1, as plex liftings.
Remark 37. Like the familial representability observed in Remark 31, the conditions (d) to (f) proved
above entails a familial representability for the functor |−| of Example 16, which can be expressed as⊔

i∈I

Hom(U i,−) : Polω → Set.

Here, I is a set of representatives (U i, gi) of all plexes (considered up to isomorphism of Elt(Polω)).
By taking I to be a set of representatives of all plexes of dimension k for some k ∈ N, one get a
familial representability of the functor (−)k : Polω → Set.
Remark 38. In [5], Araújo relies on [18, Proposition 5.14], which gives sufficient conditions for a
category to be a presheaf category on a given full subcategory. The difference with [38, Theorem 4]
is that the latter is relative to a concrete presheaf structure, and is able to characterize the shape
category as a full subcategory of primitive elements.
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7 Parametric adjunction and genericic factorization
While Remark 31 asserts that the cells of free precategories on polygraphs are instances of “universal
shapes” (i.e., polyplexes), a more conceptual and general syntactical result can be given, which
encompasses both the existence of those universal shapes and the Conduché property of free functors.
This result relies on the existence of a parametric adjunction and an associated generic factorization
for the free functor (−)∗. Parametric adjunctions and generic factorizations appear frequently
in the context of algebraic higher category [49, 53, 32]: for example, the free ω-category monad
functor on globular sets is parametric right adjoint, and has an associated generic factorization.
While the classical parametric right adjoints are monad functors on presheaf categories (for which
characterization criteria have been developed, for example [54, Theorem 2.13]), the unusual fact here
is that the parametric right adjoint (−)∗ is a left adjoint, whose codomain is not a presheaf category,
but the category of n-precategories: for us, this fact reflects and summarize the good syntactical
properties of the theory of precategories.

While parametric adjunctions can easily be deduced from familial representability properties
(like Remark 31) in a presheaf setting (see [54, Proposition 2.10]), there is no direct criterion in our
setting, so that we have to show the parametric representability “by hand”: we need to show that
the functor (−)∗1 : Polω → PCatω/1∗ is a right adjoint, where PCatω/1∗ is the slice category of
PCatω over the free precategory on the terminal polygraph 1, and (−)∗1 the functor induced by
(−)∗. Since both Polω and PCatω/1∗ are locally presentable categories, and that (−)∗ is a left
adjoint, we are only required to show that (−)∗1 preserves limits (see [1, Theorem 1.66]). Since Polω

has a terminal object and the computation of limits in PCatω/1∗ amounts to the computation of a
connected limit in PCatω, we simply need to show that connected limits are preserved, recovering
[54, Theorem 2.13] in our context. In the following, given k, n ∈ N, we write Dk,n, or simply Dk for
the free n-precategory with one non-identity k-cell.

Proposition 39. Given n ∈ N ∪ {ω}, the functor (−)∗ : Poln → PCatn preserves connected limits.

Proof. First note that the functor |−| : PCatn → Set is conservative; it is moreover familially
representable by the Dk’s for k < n+ 1 (a k-cell of an n-precategory C is the same thing as a functor
Dk → C) and thus preserves connected limits by [15, Theorem 2.5] and [1, Corollary 2.45]. Since
PCatn is complete, it is sufficient to show that the functor |(−)∗| : Poln → Set preserves connected
limits. But this functor is familially representable by Remark 31, so that it preserves connected
limits by [15, Theorem 2.5].

By the argument exposed earlier, we can conclude that:

Theorem 40. Given n ∈ N ∪ {ω}, the functor (−)∗1 : Poln → PCatn/1∗ is a right adjoint. In
other words, (−)∗ is a parametric right adjoint.

As a consequence, we have a generic factorization for the functor (−)∗. We recall from [53]
the notion of generic morphism in the present case: given C ∈ PCatn and P ∈ Poln, a morphism
F : C → P∗ is generic when, for any commutative square of the form

C Q∗

P∗ R∗

G

F H∗

K∗

L∗
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for some Q,R ∈ Poln, G : C → Q∗ in PCatn, H : Q → R and K : P → R in Poln, there exists a
unique L : P → Q such that G = L∗ ◦ F and K = H ◦ L. Now, given a morphism F : C → P∗, a
generic factorization is a decomposition of F as H∗ ◦G for some Q ∈ Poln, some generic G : C → Q∗
and H : Q → P ∈ Poln. By the universal property of generic morphisms, such a decomposition is
unique up to an isomorphism Q → Q′.

Corollary 41. Given n ∈ N ∪ {ω}, C ∈ PCatn and P ∈ Poln, every F : C → P∗ ∈ PCatn admits
a generic factorization.

Proof. By [54, Proposition 2.6], the existence of generic factorizations follows from the fact that
(−)∗1 is a parametric right adjoint.

Some generic morphisms are easy to identify:

Proposition 42. Given n ∈ N and P ∈ Polω, writing u for the non-identity n-cell of Dn, a functor
F : Dn → P∗ is generic if and only if (P, F (u)) is a polyplex.

Proof. We start with the first implication. Let H : (Q, v) → (P, F (u)) be a polyplex lifting of
(P, F (u)). Then, writting G : Dn → Q∗ sending u to v, we have H∗ ◦G = (idP)∗ ◦ F . Thus, there
exists a unique lifting L : P → Q such that L∗ ◦ F = G and H ◦L = idP. In particular, we have that
L∗(F (u)) = v and L is a monomorphism. Thus, since (Q, v) is principal, L : (P, F (u)) → (Q, v) is
an isomorphism.

Conversely, let
Dn Q∗

P∗ R∗

G

F H∗

K∗

be a commutative square where (P, F (u)) is assumed to be a polyplex. Consider a polyplex lifting
L : (P̄, ū) → (Q, G(u)). By applying H∗, (P̄, ū) is a polyplex lifting of H∗(G(u)) = K∗(F (u)) and
so is (P, F (u)). By Proposition 30, we may assume (P̄, ū) = (P, F (u)) with H ◦ L = K. Moreover,
since L∗(F (u)) = G(u), we have L ◦ F = G by freeness of Dn. Finally, the unicity of the lifting L of
the above square is a consequence of Lemma 25.

Remark 43. In a related manner, given n ∈ N and v ∈ 1∗n, the image of Dn v−→ 1∗, seen as an object
of PCatω/1∗, by a left adjoint to (−)∗1 is the underlying polygraph of a polyplex lifting of v.
Remark 44. The above generic factorization can be seen as a stronger version of Proposition 11.
Indeed, given k, l > 0 and i = min(k, l) − 1, there exists a polygraph Dk,l such that (Dk,l)∗ is the free
ω-precategory with one k-cell u1 and one l-cell u2, such that ∂+

i (u1) = ∂−i (u2). The construction of
Dk,l can be seen to induce a polyplex (Dk,l, u1 ∗i u2) by Lemma 28. Writting n for max(k, l) and
F k,l : Dn → (Dk,l)∗ for the functor sending the non-trivial n-cell of Dn to u1 ∗i u2, Proposition 11
amounts to observe that the F k,l’s are generic by Proposition 42.

8 Toward homotopical properties of precategories
In this section, we report on failed attempts to study homotopical properties of categories, leaving
open questions for future works.
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A folk model structure on precategories? In the setting of strict n-categories, the usefulness
of polygraphs can be explained by the facts that they are free objects such that every category
admits a description by such an object, and any two descriptions are suitably equivalent. In more
precise and modern terms, this was formalized by Lafont, Métayer and Worytkiewicz [37], who
constructed a structure of model category on the category Catω of strict ω-categories, in which weak
equivalences are the expected equivalences of ω-categories and cofibrant objects are ω-categories
freely generated by polygraphs. One could expect that we could perform a similar construction on
precategories, and construct a model structure where weak equivalences are the expected ones and
cofibrant objects are polygraphs in the sense of this article. Whether this is possible or not is left as
an open question, but explain here that a direct adaptation of the proof of [37] does not go through
easily.

Let us first introduce some terminology. Given an ω-precategory C, we make the following
coinductive mutual definitions:

– two cells x, y ∈ C of the same dimension are equivalent, denoted x ∼ y, when there exists an
equivalence u : x → y;

– a cell u : x → y is an equivalence when there exists ū : y → x such that u ∗ ū ∼ idx and
ū ∗ u ∼ idy.

We could then have hope for the following definition of weak equivalences. Given an ω-prefunctor
F : C → D, F is a weak equivalence when it is “essentially surjective in every dimension”, i.e.,

– for every 0-cell y ∈ D0, there exists x ∈ C0 such that Fx ∼ y,

– for every pair of parallel cells u, u′ ∈ C and cell v̄ : F (u) → F (u′), there exists v ∈ C such that
F (v) ∼ v̄.

The above definitions directly generalize the ones for strict categories. The construction of the
folk model structure on strict ω-categories then requires a weak division property [37, Lemma 5],
which the authors present as being “crucial”. The direct generalization of it in the setting of
precategories is as follows:

Property 45 (Weak division). Given an ω-precategory C and an equivalence u : x → y ∈ C1, for
any 1-cells s, t : y → z and for any 2-cell w : u ∗0 s ⇒ u ∗0 t,

(a) there is a 2-cell v : s ⇒ t such that u ∗0 v ∼ w,

y

x z

y

su

u

w ⇓

t

∼ x y zu

s

t

v ⇓

(b) for any 2-cells v, v′ : s ⇒ t such that u ∗0 v ∼ w ∼ u ∗0 v
′ we have v ∼ v′.

We would also need a generalization of the above property for n-cells, but we will see that the
proof of the stated property in dimension 1 already fails to generalize from strict categories to
precategories. Consider cells u and w as in the above property, with u reversible, and let us try to
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define the cell v. Writing r : ū ∗0 u → 1x for the 2-cell witnessing that u is reversible, following [37],
we are tempted to define v as

v = (r ∗0 s) ∗1 (ū ∗0 w) ∗1 (r ∗0 t)

If we picture r and w as on the left, v can be pictured as on the right:

r = ū u w =
u s

w

u t

v =

s

w

t

In particular, in the case where w is of the form w = u ∗0 v
′ for some 2-cell v′ : s ⇒ t, we should

have v ∼ v′ by (b). In the case of strict categories, this holds thanks to the interchange law:

v = (r ∗0 s) ∗1 (ū ∗0 u ∗0 v
′) ∗1 (r ∗0 t) = (r ∗0 s) ∗1 (r ∗0 s) ∗1 v

′ ∼ v′

s

v

t

=

s

v′

t

=

s

v′

t

∼

s

v′

t

However, in the case of precategories there is no reason why this should hold. Of course, this does
not directly imply that Property 45 does not hold or that there is no suitable model structure on
precategories, but more work is required than a mere adaptation of [37]. The above also suggests
that it could be interesting to investigate structures “in between” precategories and strict categories,
where the interchange law is only required to hold for some morphisms (such as r in the above
example).

A cone construction? Another homotopy-related question one might ask is whether the underly-
ing shape category of the presheaf category of polygraphs of precategories is able to model homotopy
types. A now standard approach to get a positive answer is to show that this shape category is a
weak test category [27, 42], i.e., a category C whose presheaf category Ĉ can be equipped with a
canonical class of weak equivalences W, such that the induced localization Ĉ[W−1] is canonically
isomorphic to the homotopy category Hot, so that, in particular, Ĉ models all homotopy types.

A common way to show that a category is a weak test category is to exhibit a separating
décalage [42] on this category. Formally, a décalage on a catégorie C is given by a functor D : C → C
together with natural transformations

1C D ⊤α β

where ⊤ is an object of C seen as a constant functor. Such a décalage is separating when we moreover
have that

(a) for every c ∈ C0, the arrow αc : c → D(c) is a monomorphism,
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(b) α is cartesian: for every morphism f : c → c′ ∈ C, the diagram

c D(c)

c′ D(c′)

αc

f D(f)

αc′

is a pullback,

(c) for every c ∈ C0, there is no commutative diagram of the form

c′ ⊤

c D(c)

g

f βc

αc

for some c′ ∈ C0 and f : c′ → c and g : c′ → ⊤ in C1.

Following Henry’s line of proof for the case of regular plexes [32], a promising choice of décalage in a
polygraphic setting is the one where D is “cone construction” functor, also called expansion functor :
starting from a polygraph P, this functor adds to P a 0-generator o, a 1-generator x → o for each
x ∈ P0, and more generally an (i+1)-generator for each i-generator of P, so that DP appears as a
combinatorial description of a cone over the “space” defined by P. Then, continuing the definition
of a décalage, one can take α to be the canonical embedding of a polygraph into the base of its cone,
⊤ to be the polygraph with only one 0-generator o, and β to be the marking of o as the top of each
constructed cone.

While Henry [32] used the join of strict categories [3] to define the expansion functor on regular
plexes, a more direct description of this construction was used by Ara et al. [2] in the case of strict
categories that we unsuccessfully tried to adapt to precategories. In the following, we describe
this attempt, hoping it can still benefit other settings. Write PCat•ω for the category of pointed
ω-precategories, that is, the category whose objects are the pairs (C, o) where o ∈ C0 and the
morphisms (C, oC) → (D, oD) are the functor F : C → D such that F (oC) = oD. We have an
evident adjunction

PCatω PCat•ω

(−)⊔{o}

⊥

U

(1)

where U simply forgets the pointed 0-cell o. In order to define an expansion functor on precategories,
one wants to introduce a functor

Λ: PCat•ω → PCat•ω
such that Λ(C, o) is the ω-precategory of i-cones on (C, o) for i ∈ N: a 0-cone is some “base” 0-cell
xb ∈ C together with some 1-cell xc : xb → o of C, a 1-cone between (xb, xc) and (yb, yc) is a
“base” 1-cell fb : x → y and fc : fb ∗0 yc ⇒ xc, and so on. There is then a natural embedding
γ(C,o) : Λ(C, o) → (C, o), mapping every i-cone to its “base” i-cell. If such a functor exists, one
could then define the category of conic precategories PCatC

ω whose objects are the triples (C, o, σ),
where (C, o) is a pointed ω-precategory and σ is a section of γ(C,o) satisfying adequate degeneracy
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conditions (see [2, Definition 2.2.1]), and whose morphisms are the ones of PCat•ω which adequately
commute with the sections. In other words, an object of PCatC

ω is a pointed ω-precategory with the
data of a compatible i-cone for every i-cell, satisfying degeneracy conditions. The forgetful functor
V: PCatC

ω → PCat•ω should then admit a left adjoint, so that we get an adjunction

PCat•ω PCatC
ω

(−)C∗

⊥

V

. (2)

The expansion functor is then the functor

D̃ = U ◦ V ◦(−)C∗ ◦ ((−) ⊔ {o}) : PCatω → PCatω

which is the underlying functor of the monad of the composition of the two adjunctions (1) and (2).
Then, one could show that this functor restricts well to polygraphs (just like for the case of strict
categories [2]), so that we get D : Polω → Polω, and then show that D is the underlying functor of
a separating décalage.

Sadly, the definition of Λ does not go through for precategories. Given a pointed ω-precategory
(C, o), even though one can follow the concrete definition of [2] to get a globular set Λ(C, o) equipped
with precategorical compositions operations, one can show that the latter do not satisfy axiom (P-v)
of precategories in general: the lack of interchange law for precategories is to blame here.

While it is not formally excluded that the shape category of plexes is a weak test category, the
fact that it does not admit an expansion functor while the one of regular plexes does is already a
bad sign which suggests, in addition to the difficulty to define a notion of weak equivalences with
good properties (as discussed at the beginning of this section), that “bare” precategories are not an
adequate tool for homotopical purposes (but that does not prevent them to be used to define other
adequate tools, like Gray categories [23]). Maybe this could be linked to the fact that the underlying
operad of precategories is not contractile, and should be better understood in future work.
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