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Coherence
We want to show coherence properties:

all the ways to prove that two objects are equivalent are
equal

Think: MacLane’'s coherence theorem

(A®B)®I =
o
/ \
ARB (Ah®B)®I
AT = \La
AR(I®B) (AN ®(B®I)

S 7

(Ax®B

Coherence: all morphisms made of o, A, p and their inverses
between two objects are equal
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Coherence
» Structural isomorphisms of a monoidal category
a: (AB)®@C = A®(B® ()
A (I ®A) 5 A
p: (A® 1) = A

P> These isos satisfy axioms that imply coherence

(A®B)®C)®D —2— (A®(BRC))®D —>— AR((B®C)®D)

! : b

«

(A®B)®(C®D) A®(B®(C®D))

(A2N)®B Ae(I®B)
N:/
A®B

Idea: such coherence conditions can be obtained by orienting
the isos and considering the associated rewriting system
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Coherence from rewriting

P> Rewriting system
Get a rewriting system: choose a “good” orientation for the
isos of the considered structure

a: (ARB)@C 5 A®(B®C()
A (I®A) = A
p: (A1) S A
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Coherence from rewriting

P> Rewriting system
Get a rewriting system: choose a “good” orientation for the
isos of the considered structure

a: (AB)®@C — A®(B®C()
A (I®A) — A
p: (A1) — A

In particular, we want — terminating
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Coherence from rewriting

P> Rewriting system

» Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

2R
V(C, G) critical b1 _ bo
. . ,
then
R (Zs \Rg
VRLR) g1 = ¢
. . v
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Coherence from rewriting

P> Rewriting system
» Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

» Newman’s lemma: — terminating and local confluence
imply confluence

_ AN
V(Ri, R>) rewrite steps o, = 4,
S
(0
then
Ry ¢ R>
<
V(Ri, R2) rewrite paths  , ~ = ¢,
' ',.1* *L;' '
(G
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» Coherence

First case: paths to a normal form Q/A)
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Coherence from rewriting

P> Rewriting system

» Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

» Newman’s lemma: — terminating and local confluence
imply confluence

» Coherence

First case: paths to a normal form Q/A)

R1 (Z) Ry
N
Yo=Y

\ _/
(

by Newman's lemma
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P> Rewriting system
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Coherence from rewriting

P> Rewriting system
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P> Rewriting system
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Coherence from rewriting

P> Rewriting system
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Coherence from rewriting

P> Rewriting system

» Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

» Newman’s lemma: — terminating and local confluence
imply confluence

» Coherence

Third case: paths with inverses (a™,A7 ...)
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Coherence from rewriting

P> Rewriting system

» Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

» Newman’s lemma: — terminating and local confluence
imply confluence

» Coherence

Third case: paths with inverses (a™,A7 ...)

— Analogous to the proof of the Church-Rosser lemma
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Coherence from rewriting

P> Rewriting system

» Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

» Newman’s lemma: — terminating and local confluence
imply confluence

» Coherence

Axioms for coherence:

N
V(Cy, &) critical h1 _ bo
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Algebraic structures in higher categories

» Coherence of monoidal categories is a special case of the
coherence of monoids in a 2-category
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Algebraic structures in higher categories

» Coherence of monoidal categories is a special case of the
coherence of monoids in a 2-category

» For strict-categories, it is well-known how to do rewriting
using polygraphs

» What we would like: adapt these techniques and results to
weak-categories

» In dimension n > 3, weak categories are hard !
> An easier step: semi-strict categories in dimension 3

Gray categories
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Known results

» A coherent approach to pseudomonads, Lack, 2000

» Coherence for Frobenius pseudomonoids and the geometry of
linear proofs,Dunn and Vicary, 2016

» Coherence for braided and symmetric pseudomonoids, Verdon,
2017

> ...

6/40



This work

Summary of the work:
> reflect the properties of Gray categories in a rewriting system
» adapt the usual tools of rewriting theory to show coherence
> give some automation to find the coherence conditions

P apply it on examples
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Rewriting in Gray setting

Critical branchings

Examples
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Rewriting in Gray setting

9/40



Gray categories

Elements of a Gray category:
» 0-cells and 1-cells
> 2-cells:

» 3-cells:
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Gray categories

» composition of 2-cells with identities on the left and the right
oot = || [ ==
x| || = ==
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Gray categories

» composition of 2-cells with identities on the left and the right

[l o= = || |==
x| || = =211
» composition: 2-cells can be composed vertically
——
*1 =
S

» 3-cells can be composed horizontally

(G2 ) w (= ) = (G2 )
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Gray categories

P properties of associativity and unitality

(o}

Y e

B = *1 = *1 = [
1 ]

——
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Gray categories

P properties of associativity and unitality

.

= *1 = *1 = [
1
o ——

> ... but no exchange law !

Tl ad # Sl
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Gray categories

P properties of associativity and unitality

o]

. ]

% = 1 = *1 = [
! —a—

==

> ... but no exchange law !

» instead, invertible 3-cell

Tl Es = ST
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Signatures

A signature S is given by:

P a set of elementary 2-dimensional diagrams called 2-generators

{<.%}

» some typing information about the source and target of these
diagrams
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Terms

> slice: a 2-generators with identities on the left and the right

A

» terms (or 2-cells): a sequence of composable slices

&

in particular, in this formalism, the following cell does not exist

VoY

because there is only one 2-generator per slice
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Rewriting system

» A rewriting system is given by:
» a signature S
> a set P of rewriting rules (called 3-generators) on the terms of

the signature
U s LY
¢ o=

L:
R :
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Rewriting step

Rewriting step: a rewriting rule in a context
> identities on the left and the right

» 2-cells above and below

Start from a rewriting rule, say:

%) = Y
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Rewriting step

Rewriting step: a rewriting rule in a context
> identities on the left and the right

» 2-cells above and below

Put it inside a context:
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Coherence
» Rewriting path: a sequence of rewriting steps

JsJad sS4y

17/40



Coherence
» Rewriting path: a sequence of rewriting steps

JsJad sS4y

» Rewriting zigzag: a sequence of rewriting steps or inverse
rewriting steps

17/40



Coherence
» Rewriting path: a sequence of rewriting steps

JsJad sS4y

» Rewriting zigzag: a sequence of rewriting steps or inverse
rewriting steps
P> Let = a congruence on the zigzags

17/40



Coherence
» Rewriting path: a sequence of rewriting steps

JsJad sS4y

» Rewriting zigzag: a sequence of rewriting steps or inverse
rewriting steps

P> Let = a congruence on the zigzags

» Coherence property: between two 2-cells, at most one

zigzag up to =
< LY=T
\/ ~
A4

A4

==
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Gray rewriting

» Goal: reflect the structure of Gray category in rewriting
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Gray rewriting

» Goal: reflect the structure of Gray category in rewriting

> More precisely: give P and = that will present a Gray
category

» For this purpose:

| 2

>
| 4
>

interchangers

parallels paths

naturally equivalent paths
inverses
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Interchangers
> Let S a signature and o, 5 € S and u a sequence of identities
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Interchangers

> Let S a signature and o, 5 € S and u a sequence of identities
» Gray-cats induce interchanger X, , 5: rewriting rule that
exchanges o and 5 when separated by u

Smae [ [ = GIIT
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Interchangers

> Let S a signature and o, 5 € S and u a sequence of identities
» Gray-cats induce interchanger X, , 5: rewriting rule that
exchanges o and 5 when separated by u

Smae [ |1 = ST

» Nice, because we had branchings that could not be closed

%\v
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Interchangers

> Let S a signature and o, 5 € S and u a sequence of identities
» Gray-cats induce interchanger X, , 5: rewriting rule that
exchanges o and 5 when separated by u

Smae [ |1 = ST

» Nice, because we had branchings that could not be closed

» From now on, interchangers are allowed rewriting steps
19/40



Parallel paths

» Consider the following two paths:

R
=T

and
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Parallel paths

» Consider the following two paths:

R
=TT

»> Parallel paths: the two paths obtained by applying two rules
at independent positions

and

» In a Gray-cat, two parallel paths are equal

» Nice because for coherence, these two paths need to be
=-equivalent
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Naturally-equivalent paths

» Consider the two following rewriting paths:

RIREE NS
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Naturally-equivalent paths

» Consider the two following rewriting paths:
X X A
R
?
A X X
RENIERAE
?

» First path: “move down the unit” then A rule
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Naturally-equivalent paths
» Consider the two following rewriting paths:
X X A
T = T = =
?
A X X
RENIEEI0E
?

» First path: “move down the unit” then A rule
» Second path: A rule then “move down the unit”
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Naturally-equivalent paths

» Consider the two following rewriting paths:

RIS
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Naturally-equivalent paths

» Consider the two following rewriting paths:

RIS
WﬁE uiohs

» First path: “move down the unit” then A rule
» Second path: A rule then “move down the unit”

» These two paths are naturally-equivalent
» In a Gray-cat, two naturally-equivalent paths are equal

» Nice because for coherence, these two paths need to be
=-equivalent
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Inverses

» Recall that we want to consider structures with invertible
3-cells (™, A7, ...)
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Inverses

» Recall that we want to consider structures with invertible
3-cells (™, A7, ...)

» If R:a= [ € P a rewriting rule, denote R~ : § = « the
formal inverse

> As an example, for monoids

SN

» For coherence, equations like A*x AT=1, are needed

> Nice: in a Gray-cat, these equations hold already

22/40



Gray presentation

» Let S a signature and P a set of rewriting rules (with
interchangers)

23/40



Gray presentation

» Let S a signature and P a set of rewriting rules (with
interchangers)

» Let = a congruence on the zigzags (paths with inverses) such
that

23/40



Gray presentation

» Let S a signature and P a set of rewriting rules (with
interchangers)

» Let = a congruence on the zigzags (paths with inverses) such
that

» if Pi, P, parallel paths, then P1=P,

23/40



Gray presentation

» Let S a signature and P a set of rewriting rules (with
interchangers)

» Let = a congruence on the zigzags (paths with inverses) such
that

» if P, P, parallel paths, then Pi1=P,
» if P, P, naturally-equivalent, then P1=P,

23/40



Gray presentation

» Let S a signature and P a set of rewriting rules (with
interchangers)
» Let = a congruence on the zigzags (paths with inverses) such
that
» if P, P, parallel paths, then Pi1=P,
» if P, P, naturally-equivalent, then P1=P,
> RxR =1, R~ xR=1

23/40



Gray presentation

» Let S a signature and P a set of rewriting rules (with
interchangers)
» Let = a congruence on the zigzags (paths with inverses) such
that
» if P, P, parallel paths, then Pi1=P,
» if P, P, naturally-equivalent, then P1=P,
> RxR =1, R~ xR=1
Theorem: the set of zigzag quotiented by = induces
canonically a Gray category.

23/40



Gray presentation

» Let S a signature and P a set of rewriting rules (with
interchangers)
» Let = a congruence on the zigzags (paths with inverses) such
that
» if P, P, parallel paths, then Pi1=P,
» if P, P, naturally-equivalent, then P1=P,
> RxR =1, R~ xR=1
Theorem: the set of zigzag quotiented by = induces
canonically a Gray category.

» Coherence problem: what other axioms on = for the

coherence property
If Zy, Z> are rewriting zigzags between ¢ and 1, then
=D

to hold?

23/40



Gray presentation

» Let S a signature and P a set of rewriting rules (with

interchangers)
» Let = a congruence on the zigzags (paths with inverses) such
that

» if Pi, P, parallel paths, then P1=P,
» if P1, P, naturally-equivalent, then P,=P;
> RxR =1, R~ xR=1

Theorem: the set of zigzag quotiented by = induces
canonically a Gray category.

» Coherence problem: what other axioms on = for the
coherence property
If Zy, Z> are rewriting zigzags between ¢ and 1, then
=D

to hold?

» Solution: squares given by “critical branchings”
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Critical branchings
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Critical branchings

Let P;: ¢ = 91, P> : ¢ = 1o a local branching:

» it is trivial when P; = P>

& &
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Critical branchings
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Critical branchings

Let P;: ¢ = 91, P> : ¢ = 1o a local branching:

it is trivial when Py = P,
it is non-minimal when a smaller context can be found

it is independent when P; and P, act on different parts of ¢

vVvyyvyy

it is natural when P; and P, are the first steps of two
naturally equivalent paths
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Critical branchings

Let P;: ¢ = 91, P> : ¢ = 1o a local branching:
» it is trivial when Py = P>
» it is non-minimal when a smaller context can be found
P it is independent when P; and P, act on different parts of ¢
>

it is natural when P; and P, are the first steps of two
naturally equivalent paths

» it is critical when none of the above ones
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Critical branchings

Let P;: ¢ = 91, P> : ¢ = 1o a local branching:

>

>
>
>

v

it is trivial when P; = P»
it is non-minimal when a smaller context can be found
it is independent when P; and P, act on different parts of ¢

it is natural when P; and P, are the first steps of two
naturally equivalent paths

it is critical when none of the above ones

Theorem(Critical pair lemma): if critical branchings are
confluent then all local branchings are confluent
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Finite number of critical pairs

» There is an infinite number of interchangers
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Finite number of critical pairs

» There is an infinite number of interchangers

TG T Y ITH =@

m,3,e m,4,e
Xm,fe forall n

» So potentially an infinite number of critical branchings
» In fact, no!

Theorem: A finite number of operational rules (and ...) gives
a finite number of critical branchings.
(operational = that are not interchangers)

» Concerning computability

An algorithm exists to compute the critical branchings

T
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Why finiteness 7
Three kinds of branchings:

> between two operational rules

» finite number of operational rules implies finite number of
critical branchings of this kind
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Summing up

Method to show coherence

» Start from an algebraic structure
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Summing up

Method to show coherence
» Start from an algebraic structure
» Orient the isos to get a rewriting system
» Show that it is terminating
» Find the critical branchings (an algorithm exists)

Theorem: if the critical branchings are confluent, then
the structure is coherent

Cd)C
Y X

V(Ci, G) critical g, bo
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Termination

Termination of =:

» Taking into account operational rules and interchangers
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Termination

Termination of =:
» Taking into account operational rules and interchangers
> We can reduce the problem to operational rules
Theorem: (under reasonable conditions on the 2-generators)

rewriting using only interchangers terminates.

» Normal forms for planar connected string diagrams, Delpeuch
and Vicary, 2018

» Method for the operational rules:
Find a measure that is left unvariant by interchangers

z Y =z r Y oz

Y A
=

da42y+2+3 2z42y+2+42

2z+y+1
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Example of monoids
With monoids, we find five critical pairs
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Example of monoids
With monoids, we find five critical pairs and they are confluent
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Example of monoids
With monoids, we find five critical pairs and they are confluent

v ool sl

NI+ T [P
@b%‘@

% g

[« i

We deduce constraints on = for coherence

W i

.4
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Other examples

» Adjunctions

» Signature
S={u,"}
> Rules
P:{zig:tﬂé ,zag:mé‘}
» Self-dualities
» Signature
S={,"}
» Rules

P:{zig:tﬂé

» Frobenius monoid

,zag:(bé‘}
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Frobenius monoid (without units)

Signature

Rules

D QTS GRINERE Y
F=& &%
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19 relations found by the algorithm
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Conclusion

> A rewriting system that reflects the structure of Gray
categories

v

Adapted tools to show coherence in this setting

v

More automated method for coherence
» Algorithm to compute the coherence conditions

» Another proof of the coherence of monoids

v

Coherence of other examples
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