Coherence of Gray categories via rewriting

Simon Forest and Samuel Mimram

July 12th 2018

Coherence

We want to show coherence properties:

all the ways to prove that two objects are equivalent are equal

Think: MacLane's coherence theorem

Coherence: all morphisms made of α,λ,ρ and their inverses between two objects are equal

Coherence

Structural isomorphisms of a monoidal category

$$\begin{array}{rcl} \alpha: & (A \otimes B) \otimes C & \xrightarrow{\sim} & A \otimes (B \otimes C) \\ \lambda: & (I \otimes A) & \xrightarrow{\sim} & A \\ \rho: & (A \otimes I) & \xrightarrow{\sim} & A \end{array}$$

These isos satisfy axioms that imply coherence

Idea: such coherence conditions can be obtained by orienting the isos and considering the associated rewriting system

Rewriting system

Get a rewriting system: choose a "good" orientation for the isos of the considered structure $% \left({{{\left[{{{C_{1}}} \right]}_{i}}}_{i}} \right)$

$$\begin{array}{rcl} \alpha: & (A \otimes B) \otimes C & \xrightarrow{\sim} & A \otimes (B \otimes C) \\ \lambda: & (I \otimes A) & \xrightarrow{\sim} & A \\ \rho: & (A \otimes I) & \xrightarrow{\sim} & A \end{array}$$

Rewriting system

Get a rewriting system: choose a "good" orientation for the isos of the considered structure

$$\begin{array}{rcl} \alpha: & (A \otimes B) \otimes C & \to & A \otimes (B \otimes C) \\ \lambda: & (I \otimes A) & \to & A \\ \rho: & (A \otimes I) & \to & A \end{array}$$

In particular, we want \rightarrow terminating

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent

then

$$\forall (R_1, R_2) \qquad \phi_1 = \phi_2 \\ \psi \qquad \psi$$

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

First case: paths to a normal form $\hat{\psi}$

$$R_1 \begin{pmatrix} \phi \\ * & * \\ \hat{\psi} & \mathcal{K} \end{pmatrix} R_2$$

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

First case: paths to a normal form $\hat{\psi}$

by Newman's lemma

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

First case: paths to a normal form $\hat{\psi}$

$$R_1\left(\begin{smallmatrix}\phi\\ * = \\ *\\ \hat{\psi} \end{smallmatrix}\right) R_2$$

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

$$R_1 \begin{pmatrix} \phi \\ * & * \\ \psi \end{pmatrix} R_2$$

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

Third case: paths with inverses $(\alpha^-, \lambda^- ...)$

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence

Coherence

Third case: paths with inverses $(\alpha^-, \lambda^- ...)$

 \rightarrow Analogous to the proof of the Church-Rosser lemma

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- ► Newman's lemma: → terminating and local confluence imply confluence
- Coherence

Axioms for coherence:

$$\forall (C_1, C_2) \text{ critical} \qquad \begin{array}{c} C_1 & \varphi & C_2 \\ \phi_1 & = & \phi_2 \\ & & & * & * \\ \psi & & & \psi \end{array}$$

ф

 Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category

- Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category
- For strict-categories, it is well-known how to do rewriting using polygraphs

- Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category
- For strict-categories, it is well-known how to do rewriting using polygraphs
- What we would like: adapt these techniques and results to weak-categories

- Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category
- For strict-categories, it is well-known how to do rewriting using polygraphs
- What we would like: adapt these techniques and results to weak-categories
- ln dimension $n \ge 3$, weak categories are hard !

- Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category
- For strict-categories, it is well-known how to do rewriting using polygraphs
- What we would like: adapt these techniques and results to weak-categories
- ln dimension $n \ge 3$, weak categories are hard !
- An easier step: semi-strict categories in dimension 3

Gray categories

Known results

- A coherent approach to pseudomonads, Lack, 2000
- Coherence for Frobenius pseudomonoids and the geometry of linear proofs, Dunn and Vicary, 2016
- Coherence for braided and symmetric pseudomonoids, Verdon, 2017

▶.

This work

Summary of the work:

- reflect the properties of Gray categories in a rewriting system
- adapt the usual tools of rewriting theory to show coherence
- give some automation to find the coherence conditions
- apply it on examples

Rewriting in Gray setting

Critical branchings

Examples

Rewriting in Gray setting

Elements of a Gray category:

- 0-cells and 1-cells
- ► 2-cells:

3-cells:

composition of 2-cells with identities on the left and the right

composition of 2-cells with identities on the left and the right

composition: 2-cells can be composed vertically

composition of 2-cells with identities on the left and the right

composition: 2-cells can be composed vertically

3-cells can be composed horizontally

 $\left(\begin{array}{c} \begin{matrix} - & - \\ - & - \\ - & - \\ \end{array}\right) \ast_2 \left(\begin{array}{c} \begin{matrix} - & - \\ - & - \\ \end{array}\right) \Rightarrow \begin{array}{c} \begin{matrix} - & - \\ - & - \\ \end{array}\right) = \left(\begin{array}{c} \begin{matrix} - & - \\ - & - \\ - & - \\ \end{array}\right)$

properties of associativity and unitality

properties of associativity and unitality

... but no exchange law !

properties of associativity and unitality

- ... but no exchange law !
- instead, invertible 3-cell

Signatures

- A signature S is given by:
 - a set of elementary 2-dimensional diagrams called 2-generators

$\{ \bigtriangledown, ^{\varphi} \}$

 some typing information about the source and target of these diagrams
Terms

slice: a 2-generators with identities on the left and the right

$| \ | \ | \ \bigtriangledown \ | \ |$

terms (or 2-cells): a sequence of composable slices

in particular, in this formalism, the following cell does not exist

 $\forall ~|~|~\forall$

because there is only one 2-generator per slice

Rewriting system

• A *rewriting system* is given by:

- a signature S
- a set P of rewriting rules (called 3-generators) on the terms of the signature

Rewriting step

Rewriting step: a rewriting rule in a context

- identities on the left and the right
- 2-cells above and below

Start from a rewriting rule, say:

Rewriting step

Rewriting step: a rewriting rule in a context

- identities on the left and the right
- 2-cells above and below

Put it inside a context:

Rewriting path: a sequence of rewriting steps

Rewriting path: a sequence of rewriting steps

 Rewriting zigzag: a sequence of rewriting steps or inverse rewriting steps

Rewriting path: a sequence of rewriting steps

- Rewriting zigzag: a sequence of rewriting steps or inverse rewriting steps
- Let \equiv a *congruence* on the zigzags

Rewriting path: a sequence of rewriting steps

- Rewriting zigzag: a sequence of rewriting steps or inverse rewriting steps
- Let \equiv a *congruence* on the zigzags
- Coherence property: between two 2-cells, at most one zigzag up to ≡

• Goal: reflect the structure of Gray category in rewriting

Gray rewriting

► Goal: reflect the structure of Gray category in rewriting

More precisely: give P and ≡ that will present a Gray category

Gray rewriting

► Goal: reflect the structure of Gray category in rewriting

- More precisely: give P and ≡ that will present a Gray category
- For this purpose:
 - interchangers
 - parallels paths
 - naturally equivalent paths
 - inverses

▶ Let S a **signature** and $\alpha, \beta \in S$ and u a sequence of identities

- ▶ Let S a **signature** and $\alpha, \beta \in S$ and u a sequence of identities
- Gray-cats induce interchanger X_{α,u,β}: rewriting rule that exchanges α and β when separated by u

$$X_{m,\overline{3},e}: \bigvee | | | _{\circ} \Rightarrow \bigcup | | | ^{\circ}$$

- ▶ Let S a **signature** and $\alpha, \beta \in S$ and u a sequence of identities
- Gray-cats induce interchanger X_{α,u,β}: rewriting rule that exchanges α and β when separated by u

$$X_{m,\overline{3},e}: \bigvee | | | _{\circ} \Rightarrow \bigcup | | | ^{\circ}$$

Nice, because we had branchings that could not be closed

- ▶ Let S a **signature** and $\alpha, \beta \in S$ and u a sequence of identities
- Gray-cats induce interchanger X_{α,u,β}: rewriting rule that exchanges α and β when separated by u

$$X_{m,\bar{3},e}: \bigtriangledown | | | |_{\circ} \Rightarrow \bigcup | | | |^{\circ}$$

Nice, because we had branchings that could not be closed

From now on, interchangers are allowed rewriting steps

and

Consider the following two paths:

Consider the following two paths:

Parallel paths: the two paths obtained by applying two rules at independent positions

Consider the following two paths:

- Parallel paths: the two paths obtained by applying two rules at independent positions
- In a Gray-cat, two parallel paths are equal

Consider the following two paths:

- Parallel paths: the two paths obtained by applying two rules at independent positions
- In a Gray-cat, two parallel paths are equal
- ► Nice because for coherence, these two paths need to be ≡-equivalent

Consider the two following rewriting paths:

Consider the two following rewriting paths:

First path: "move down the unit" then A rule

• Consider the two following rewriting paths:

First path: "move down the unit" then A rule
Second path: A rule then "move down the unit"

• Consider the two following rewriting paths:

- First path: "move down the unit" then A rule
 Second path: A rule then "move down the unit"
- These two paths are naturally-equivalent

• Consider the two following rewriting paths:

- First path: "move down the unit" then A rule
 Second path: A rule then "move down the unit"
- These two paths are naturally-equivalent
- ▶ In a Gray-cat, two naturally-equivalent paths are equal

• Consider the two following rewriting paths:

- First path: "move down the unit" then A rule
 Second path: A rule then "move down the unit"
- These two paths are naturally-equivalent
- ▶ In a Gray-cat, two naturally-equivalent paths are equal
- ► Nice because for coherence, these two paths need to be ≡-equivalent

 Recall that we want to consider structures with invertible 3-cells (α⁻, λ⁻, ...)

- Recall that we want to consider structures with invertible 3-cells (α⁻, λ⁻, ...)
- If R : α ⇒ β ∈ P a rewriting rule, denote R[−] : β ⇒ α the formal inverse

- Recall that we want to consider structures with invertible 3-cells (α⁻, λ⁻, ...)
- If R : α ⇒ β ∈ P a rewriting rule, denote R[−] : β ⇒ α the formal inverse
- As an example, for monoids

$$A^{-}:\bigcup \qquad \Rightarrow \qquad \bigvee$$

- Recall that we want to consider structures with invertible 3-cells (α⁻, λ⁻, ...)
- If R : α ⇒ β ∈ P a rewriting rule, denote R[−] : β ⇒ α the formal inverse
- As an example, for monoids

$$\mathsf{A}^-:\bigcup \qquad \Rightarrow \qquad \bigvee$$

▶ For coherence, equations like $A * A^- \equiv 1_\alpha$ are needed

- Recall that we want to consider structures with invertible 3-cells (α⁻, λ⁻, ...)
- If R : α ⇒ β ∈ P a rewriting rule, denote R[−] : β ⇒ α the formal inverse
- As an example, for monoids

$$A^-:\bigcup \qquad \Rightarrow \qquad \bigvee$$

For coherence, equations like A * A⁻≡1_α are needed
 Nice: in a Gray-cat, these equations hold already

 Let S a signature and P a set of rewriting rules (with interchangers)

- Let S a signature and P a set of rewriting rules (with interchangers)
- \blacktriangleright Let \equiv a congruence on the zigzags (paths with inverses) such that

- Let S a signature and P a set of rewriting rules (with interchangers)
- \blacktriangleright Let \equiv a congruence on the zigzags (paths with inverses) such that

• if P_1, P_2 parallel paths, then $P_1 \equiv P_2$

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
 - if P_1, P_2 parallel paths, then $P_1 \equiv P_2$
 - if P_1, P_2 naturally-equivalent, then $P_1 \equiv P_2$

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
 - ▶ if P_1, P_2 parallel paths, then $P_1 \equiv P_2$
 - if P_1, P_2 naturally-equivalent, then $P_1 \equiv P_2$

►
$$R * R^{-} \equiv 1, R^{-} * R \equiv 1$$

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
 - if P_1, P_2 parallel paths, then $P_1 \equiv P_2$
 - if P_1, P_2 naturally-equivalent, then $P_1 \equiv P_2$
 - ► $R * R^{-} \equiv 1, R^{-} * R \equiv 1$

Theorem: the set of zigzag quotiented by \equiv induces canonically a Gray category.
Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
 - if P_1, P_2 parallel paths, then $P_1 \equiv P_2$
 - if P_1, P_2 naturally-equivalent, then $P_1 \equiv P_2$
 - ► $R * R^{-} \equiv 1$, $R^{-} * R \equiv 1$

Theorem: the set of zigzag quotiented by \equiv induces canonically a Gray category.

If Z_1, Z_2 are rewriting zigzags between ϕ and ψ , then $Z_1 {\equiv} Z_2$

to hold?

Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
 - if P_1, P_2 parallel paths, then $P_1 \equiv P_2$
 - if P_1, P_2 naturally-equivalent, then $P_1 \equiv P_2$
 - ► $R * R^{-} \equiv 1$, $R^{-} * R \equiv 1$

Theorem: the set of zigzag quotiented by \equiv induces canonically a Gray category.

If Z_1, Z_2 are rewriting zigzags between ϕ and ψ , then $Z_1 \equiv Z_2$

to hold?

Solution: squares given by "critical branchings"

Let $P_1: \phi \Rightarrow \psi_1$, $P_2: \phi \Rightarrow \psi_2$ a local branching:

▶ it is *trivial* when $P_1 = P_2$

- it is *trivial* when $P_1 = P_2$
- ▶ it is *non-minimal* when a smaller context can be found

- it is *trivial* when $P_1 = P_2$
- ▶ it is non-minimal when a smaller context can be found
- ▶ it is *independent* when P_1 and P_2 act on different parts of ϕ

- it is *trivial* when $P_1 = P_2$
- ▶ it is non-minimal when a smaller context can be found
- ▶ it is *independent* when P_1 and P_2 act on different parts of ϕ
- it is natural when P₁ and P₂ are the first steps of two naturally equivalent paths

- it is *trivial* when $P_1 = P_2$
- ▶ it is non-minimal when a smaller context can be found
- ▶ it is *independent* when P_1 and P_2 act on different parts of ϕ
- it is natural when P₁ and P₂ are the first steps of two naturally equivalent paths
- it is critical when none of the above ones

Let $P_1: \phi \Rightarrow \psi_1$, $P_2: \phi \Rightarrow \psi_2$ a local branching:

- it is *trivial* when $P_1 = P_2$
- it is non-minimal when a smaller context can be found
- ▶ it is *independent* when P_1 and P_2 act on different parts of ϕ
- it is natural when P₁ and P₂ are the first steps of two naturally equivalent paths
- it is critical when none of the above ones

Theorem(Critical pair lemma): if critical branchings are confluent then all local branchings are confluent

 $X_{m,\bar{n},e}$ for all n

 $X_{m,\bar{n},e}$ for all n

So potentially an infinite number of critical branchings

► There is an infinite number of interchangers $\begin{array}{c|c} & & \\ &$

 $X_{m,\bar{n},e}$ for all n

- So potentially an infinite number of critical branchings
- In fact, no!

Theorem: A finite number of operational rules (and ...) gives a finite number of critical branchings. (operational = that are not interchangers)

► There is an infinite number of interchangers $\begin{array}{c|c} & & \\ &$

 $X_{m,\bar{n},e}$ for all n

- So potentially an infinite number of critical branchings
- In fact, no!

Theorem: A finite number of operational rules (and ...) gives a finite number of critical branchings. (operational = that are not interchangers)

Concerning computability

An algorithm exists to compute the critical branchings

- between two operational rules
 - finite number of operational rules implies finite number of critical branchings of this kind

- between two operational rules
 - finite number of operational rules implies finite number of critical branchings of this kind
- between an operational rule and an interchanger
 - for *n* big enough, branchings with an operational rule and X_{α,n,β} can not be critical

- between two operational rules
 - finite number of operational rules implies finite number of critical branchings of this kind
- between an operational rule and an interchanger
 - for *n* big enough, branchings with an operational rule and X_{α,n,β} can not be critical
- between two interchangers
 - they are never critical and are usually "natural branchings"

- between two operational rules
 - finite number of operational rules implies finite number of critical branchings of this kind
- between an operational rule and an interchanger
 - for *n* big enough, branchings with an operational rule and X_{α,n,β} can not be critical
- between two interchangers
 - they are never critical and are usually "natural branchings"

Examples

Method to show coherence

Start from an algebraic structure

Method to show coherence

- Start from an algebraic structure
- Orient the isos to get a rewriting system

Method to show coherence

- Start from an algebraic structure
- Orient the isos to get a rewriting system
- Show that it is terminating

Method to show coherence

- Start from an algebraic structure
- Orient the isos to get a rewriting system
- Show that it is terminating
- Find the critical branchings (an algorithm exists)

Theorem: if the critical branchings are confluent, then the structure is coherent

$$\forall (C_1, C_2) \text{ critical } \phi_1$$

Termination of \Rightarrow :

Taking into account operational rules and interchangers

Termination of \Rightarrow :

- Taking into account operational rules and interchangers
- We can reduce the problem to operational rules

Theorem: (under reasonable conditions on the 2-generators) rewriting using only interchangers terminates.

Termination of \Rightarrow :

- Taking into account operational rules and interchangers
- We can reduce the problem to operational rules
 - **Theorem**: (under reasonable conditions on the 2-generators) rewriting using only interchangers terminates.
 - Normal forms for planar connected string diagrams, Delpeuch and Vicary, 2018

Termination of \Rightarrow :

- Taking into account operational rules and interchangers
- We can reduce the problem to operational rules

Theorem: (under reasonable conditions on the 2-generators) rewriting using only interchangers terminates.

 Normal forms for planar connected string diagrams, Delpeuch and Vicary, 2018

Method for the operational rules: Find a measure that is left unvariant by interchangers

Example of monoids

With monoids, we find five critical pairs

Example of monoids

With monoids, we find five critical pairs and they are confluent

Example of monoids

With monoids, we find five critical pairs and they are confluent

We deduce constraints on \equiv for coherence

Other examples

Frobenius monoid

Frobenius monoid (without units)

19 relations found by the algorithm

Conclusion

- A rewriting system that reflects the structure of Gray categories
- Adapted tools to show coherence in this setting
- More automated method for coherence
 - Algorithm to compute the coherence conditions
- Another proof of the coherence of monoids
- Coherence of other examples