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Coherence

We want to show coherence properties:

all the ways to prove that two objects are equivalent are
equal

Think: MacLane’s coherence theorem

(A⊗B)⊗I

A⊗B ((A⊗I )⊗B)⊗I

A⊗(I⊗B) (A⊗I )⊗(B⊗I )

(A⊗I )⊗B

ρ ρ−

λ− α=

α− ρ

Coherence: all morphisms made of α, λ, ρ and their inverses
between two objects are equal
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Coherence
I Structural isomorphisms of a monoidal category

α : (A⊗ B)⊗ C
∼→ A⊗ (B ⊗ C )

λ : (I ⊗ A)
∼→ A

ρ : (A⊗ I )
∼→ A

I These isos satisfy axioms that imply coherence

((A⊗B)⊗C)⊗D (A⊗(B⊗C))⊗D A⊗((B⊗C)⊗D)

(A⊗B)⊗(C⊗D) A⊗(B⊗(C⊗D))

α

α =

α

α

α

(A⊗I )⊗B A⊗(I⊗B)

A⊗B

λ

α

=
ρ

Idea: such coherence conditions can be obtained by orienting
the isos and considering the associated rewriting system
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Coherence from rewriting

I Rewriting system
Get a rewriting system: choose a “good” orientation for the
isos of the considered structure

α : (A⊗ B)⊗ C
∼→ A⊗ (B ⊗ C )

λ : (I ⊗ A)
∼→ A

ρ : (A⊗ I )
∼→ A

In particular, we want → terminating

I Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

I Newman’s lemma: → terminating and local confluence
imply confluence

I Coherence
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

∀(C1,C2) critical

φ

φ1 = φ2

ψ

C1 C2

∗ ∗

then

∀(R1,R2)

φ

φ1 = φ2

ψ

R1 R2

∗ ∗

I Newman’s lemma: → terminating and local confluence
imply confluence
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

I Newman’s lemma: → terminating and local confluence
imply confluence

∀(R1,R2) rewrite steps

φ

φ1 = φ2

ψ

R1 R2

∗ ∗

then

∀(R1,R2) rewrite paths

φ

φ1 = φ2

ψ

R1

∗
R2

∗

∗ ∗

I Coherence
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

I Newman’s lemma: → terminating and local confluence
imply confluence

I Coherence

First case: paths to a normal form ψ̂

φ

ψ̂

R1 ∗ R2∗
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φ

ψ̂ = ψ̂
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R1
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∗
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

I Newman’s lemma: → terminating and local confluence
imply confluence

I Coherence

Second case: paths to an arbitrary object ψ

φ

ψ

ψ̂

R1 ∗ R2∗

S∗
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

I Newman’s lemma: → terminating and local confluence
imply confluence

I Coherence

Third case: paths with inverses (α−,λ− ...)
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

I Newman’s lemma: → terminating and local confluence
imply confluence

I Coherence

Third case: paths with inverses (α−,λ− ...)

→ Analogous to the proof of the Church-Rosser lemma
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then
all local branchings are confluent

I Newman’s lemma: → terminating and local confluence
imply confluence

I Coherence

Axioms for coherence:

∀(C1,C2) critical

φ

φ1 = φ2

ψ

C1 C2

∗ ∗
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Algebraic structures in higher categories

I Coherence of monoidal categories is a special case of the
coherence of monoids in a 2-category

I For strict-categories, it is well-known how to do rewriting
using polygraphs

I What we would like: adapt these techniques and results to
weak-categories

I In dimension n ≥ 3, weak categories are hard !

I An easier step: semi-strict categories in dimension 3

Gray categories
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Known results

I A coherent approach to pseudomonads, Lack, 2000

I Coherence for Frobenius pseudomonoids and the geometry of
linear proofs,Dunn and Vicary, 2016

I Coherence for braided and symmetric pseudomonoids, Verdon,
2017

I ...
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This work

Summary of the work:

I reflect the properties of Gray categories in a rewriting system

I adapt the usual tools of rewriting theory to show coherence

I give some automation to find the coherence conditions

I apply it on examples
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Rewriting in Gray setting

Critical branchings

Examples
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Rewriting in Gray setting

9 / 40



Gray categories

Elements of a Gray category:

I 0-cells and 1-cells

I 2-cells:

I 3-cells:
α V β
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Gray categories

I composition of 2-cells with identities on the left and the right

∗0 =

∗0 =

I composition: 2-cells can be composed vertically

∗1 =

I 3-cells can be composed horizontally

( α V β ) ∗2 ( β V γ ) = ( α V γ )
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Gray categories

I properties of associativity and unitality

α

β

∗1
γ

=

α

∗1
β

γ

=
α

β

γ

∗1

α

= α

I ... but no exchange law !

I instead, invertible 3-cell

α

β
V

β

α
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Signatures

A signature S is given by:

I a set of elementary 2-dimensional diagrams called 2-generators

{ , }

I some typing information about the source and target of these
diagrams
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Terms

I slice: a 2-generators with identities on the left and the right

I terms (or 2-cells): a sequence of composable slices

in particular, in this formalism, the following cell does not exist

because there is only one 2-generator per slice
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Rewriting system

I A rewriting system is given by:
I a signature S
I a set P of rewriting rules (called 3-generators) on the terms of

the signature

A : V

L : V

R : V
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Rewriting step

Rewriting step: a rewriting rule in a context

I identities on the left and the right

I 2-cells above and below

Start from a rewriting rule, say:

A : V
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Rewriting step

Rewriting step: a rewriting rule in a context

I identities on the left and the right

I 2-cells above and below

Put it inside a context:

V
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Coherence
I Rewriting path: a sequence of rewriting steps

L
V

A
V

A
V

A
V

I Rewriting zigzag: a sequence of rewriting steps or inverse
rewriting steps

I Let == a congruence on the zigzags
I Coherence property: between two 2-cells, at most one

zigzag up to ==

====
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Gray rewriting

I Goal: reflect the structure of Gray category in rewriting

I More precisely: give P and == that will present a Gray
category

I For this purpose:

I interchangers
I parallels paths
I naturally equivalent paths
I inverses
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Interchangers
I Let S a signature and α, β ∈ S and u a sequence of identities

I Gray-cats induce interchanger Xα,u,β: rewriting rule that
exchanges α and β when separated by u

Xm,3̄,e : V

I Nice, because we had branchings that could not be closed

Xe,0̄,mXe,0̄,m

I From now on, interchangers are allowed rewriting steps

19 / 40
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Parallel paths

I Consider the following two paths:

A
V

A
V

and

A
V

A
V

I Parallel paths: the two paths obtained by applying two rules
at independent positions

I In a Gray-cat, two parallel paths are equal

I Nice because for coherence, these two paths need to be
==-equivalent

20 / 40



Parallel paths

I Consider the following two paths:

A
V

A
V

and

A
V

A
V

I Parallel paths: the two paths obtained by applying two rules
at independent positions

I In a Gray-cat, two parallel paths are equal

I Nice because for coherence, these two paths need to be
==-equivalent

20 / 40



Parallel paths

I Consider the following two paths:

A
V

A
V

and

A
V

A
V

I Parallel paths: the two paths obtained by applying two rules
at independent positions

I In a Gray-cat, two parallel paths are equal

I Nice because for coherence, these two paths need to be
==-equivalent

20 / 40



Parallel paths

I Consider the following two paths:

A
V

A
V

and

A
V

A
V

I Parallel paths: the two paths obtained by applying two rules
at independent positions

I In a Gray-cat, two parallel paths are equal

I Nice because for coherence, these two paths need to be
==-equivalent

20 / 40



Naturally-equivalent paths

I Consider the two following rewriting paths:

X
V

X
V

A
V

A
V

X
V

X
V

I First path: “move down the unit” then A rule
I Second path: A rule then “move down the unit”

I These two paths are naturally-equivalent

I In a Gray-cat, two naturally-equivalent paths are equal

I Nice because for coherence, these two paths need to be
==-equivalent
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Inverses

I Recall that we want to consider structures with invertible
3-cells (α−, λ−, ...)

I If R : αV β ∈ P a rewriting rule, denote R− : β V α the
formal inverse

I As an example, for monoids

A− : V

I For coherence, equations like A ∗ A−==1α are needed

I Nice: in a Gray-cat, these equations hold already
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Gray presentation

I Let S a signature and P a set of rewriting rules (with
interchangers)

I Let == a congruence on the zigzags (paths with inverses) such
that

I if P1,P2 parallel paths, then P1
==P2

I if P1,P2 naturally-equivalent, then P1
==P2

I R ∗ R−==1, R− ∗ R==1

I Coherence problem: what other axioms on == for the
coherence property

If Z1,Z2 are rewriting zigzags between φ and ψ, then
Z1

==Z2

to hold?

I Solution: squares given by “critical branchings”
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Critical branchings

Let P1 : φV ψ1, P2 : φV ψ2 a local branching:

I it is trivial when P1 = P2

I it is non-minimal when a smaller context can be found

I it is independent when P1 and P2 act on different parts of φ

I it is natural when P1 and P2 are the first steps of two
naturally equivalent paths

I it is critical when none of the above ones
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Critical branchings

Let P1 : φV ψ1, P2 : φV ψ2 a local branching:

I it is trivial when P1 = P2

I it is non-minimal when a smaller context can be found

I it is independent when P1 and P2 act on different parts of φ

I it is natural when P1 and P2 are the first steps of two
naturally equivalent paths

I it is critical when none of the above ones

Theorem(Critical pair lemma): if critical branchings are
confluent then all local branchings are confluent
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Finite number of critical pairs

I There is an infinite number of interchangers

V V ...

Xm,3̄,e Xm,4̄,e ...

Xm,n̄,e for all n

I So potentially an infinite number of critical branchings

I In fact, no!

Theorem: A finite number of operational rules (and ...) gives
a finite number of critical branchings.

(operational = that are not interchangers)

I Concerning computability

An algorithm exists to compute the critical branchings
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Why finiteness ?
Three kinds of branchings:

I between two operational rules
I finite number of operational rules implies finite number of

critical branchings of this kind

AA AA

I between an operational rule and an interchanger

I for n big enough, branchings with an operational rule and
Xα,n,β can not be critical

I between two interchangers

I they are never critical and are usually “natural branchings”

XX

XX XX

XX

XX XX
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Examples

28 / 40



Summing up

Method to show coherence

I Start from an algebraic structure

I Orient the isos to get a rewriting system

I Show that it is terminating

I Find the critical branchings (an algorithm exists)

Theorem: if the critical branchings are confluent, then
the structure is coherent

∀(C1,C2) critical

φ

φ1
== φ2

ψ

C1C1 C2C2

∗∗ ∗∗
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Termination

Termination of V:

I Taking into account operational rules and interchangers

I We can reduce the problem to operational rules

Theorem: (under reasonable conditions on the 2-generators)
rewriting using only interchangers terminates.

I Normal forms for planar connected string diagrams, Delpeuch
and Vicary, 2018

I Method for the operational rules:

Find a measure that is left unvariant by interchangers

x y

2x+y+1

x y z

4x+2y+z+3

A
V

x y z

2x+2y+z+2
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Example of monoids
With monoids, we find five critical pairs

and they are confluent

== == =
=
=
=

==

We deduce constraints on == for coherence

31 / 40



Example of monoids
With monoids, we find five critical pairs and they are confluent

== == =
=
=
=

==

We deduce constraints on == for coherence

31 / 40



Example of monoids
With monoids, we find five critical pairs and they are confluent

== == =
=
=
=

==
=
=
=
=

We deduce constraints on == for coherence
31 / 40



Other examples

I Adjunctions
I Signature

S = { , }
I Rules

P = {zig : V , zag : V }

I Self-dualities
I Signature

S = { , }
I Rules

P = {zig : V , zag : V }

I Frobenius monoid
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Frobenius monoid (without units)

Signature

Rules

V V V V

V V
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Coherence relations
19 relations found by the algorithm
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Coherence relations
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Conclusion

I A rewriting system that reflects the structure of Gray
categories

I Adapted tools to show coherence in this setting

I More automated method for coherence
I Algorithm to compute the coherence conditions

I Another proof of the coherence of monoids

I Coherence of other examples
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