Coherence of Gray categories via rewriting

Simon Forest and Samuel Mimram

July $12^{\text {th }} 2018$

Coherence

We want to show coherence properties:
all the ways to prove that two objects are equivalent are equal
Think: MacLane's coherence theorem

Coherence: all morphisms made of α, λ, ρ and their inverses between two objects are equal

Coherence

- Structural isomorphisms of a monoidal category

$$
\begin{array}{cccc}
\alpha: & (A \otimes B) \otimes C & \xrightarrow{\sim} & A \otimes(B \otimes C) \\
\lambda: & (I \otimes A) & \xrightarrow{\sim} & A \\
\rho: & (A \otimes I) & \xrightarrow[\rightarrow]{\sim} & A
\end{array}
$$

- These isos satisfy axioms that imply coherence

Idea: such coherence conditions can be obtained by orienting the isos and considering the associated rewriting system

Coherence from rewriting

- Rewriting system

Get a rewriting system: choose a "good" orientation for the isos of the considered structure

$$
\begin{array}{cccc}
\alpha: & (A \otimes B) \otimes C & \xrightarrow{\sim} & A \otimes(B \otimes C) \\
\lambda: & (I \otimes A) & \xrightarrow{\sim} & A \\
\rho: & (A \otimes I) & \xrightarrow{\sim} & A
\end{array}
$$

Coherence from rewriting

- Rewriting system

Get a rewriting system: choose a "good" orientation for the isos of the considered structure

$$
\begin{array}{cccc}
\alpha: & (A \otimes B) \otimes C & \rightarrow & A \otimes(B \otimes C) \\
\lambda: & (I \otimes A) & \rightarrow & A \\
\rho: & (A \otimes I) & \rightarrow & A
\end{array}
$$

In particular, we want \rightarrow terminating

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent

then

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence

$$
\forall\left(R_{1}, R_{2}\right) \text { rewrite steps }
$$

then

$$
\forall\left(R_{1}, R_{2}\right) \text { rewrite paths }
$$

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

First case: paths to a normal form $\hat{\psi}$

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

First case: paths to a normal form $\hat{\psi}$

by Newman's lemma

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

First case: paths to a normal form $\hat{\psi}$

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

Second case: paths to an arbitrary object ψ

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

Second case: paths to an arbitrary object ψ

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

Second case: paths to an arbitrary object ψ

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

Second case: paths to an arbitrary object ψ

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

Second case: paths to an arbitrary object ψ

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

Second case: paths to an arbitrary object ψ

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

Third case: paths with inverses $\left(\alpha^{-}, \lambda^{-} \ldots\right)$

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

Third case: paths with inverses $\left(\alpha^{-}, \lambda^{-} \ldots\right)$
\rightarrow Analogous to the proof of the Church-Rosser lemma

Coherence from rewriting

- Rewriting system
- Critical pair lemma: if critical branchings are confluent, then all local branchings are confluent
- Newman's lemma: \rightarrow terminating and local confluence imply confluence
- Coherence

Axioms for coherence:

Algebraic structures in higher categories

- Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category

Algebraic structures in higher categories

- Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category
- For strict-categories, it is well-known how to do rewriting using polygraphs

Algebraic structures in higher categories

- Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category
- For strict-categories, it is well-known how to do rewriting using polygraphs
- What we would like: adapt these techniques and results to weak-categories

Algebraic structures in higher categories

- Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category
- For strict-categories, it is well-known how to do rewriting using polygraphs
- What we would like: adapt these techniques and results to weak-categories
- In dimension $n \geq 3$, weak categories are hard !

Algebraic structures in higher categories

- Coherence of monoidal categories is a special case of the coherence of monoids in a 2-category
- For strict-categories, it is well-known how to do rewriting using polygraphs
- What we would like: adapt these techniques and results to weak-categories
- In dimension $n \geq 3$, weak categories are hard !
- An easier step: semi-strict categories in dimension 3

Gray categories

Known results

- A coherent approach to pseudomonads, Lack, 2000
- Coherence for Frobenius pseudomonoids and the geometry of linear proofs,Dunn and Vicary, 2016
- Coherence for braided and symmetric pseudomonoids, Verdon, 2017

This work

Summary of the work:

- reflect the properties of Gray categories in a rewriting system
- adapt the usual tools of rewriting theory to show coherence
- give some automation to find the coherence conditions
- apply it on examples

Rewriting in Gray setting

Critical branchings

Examples

Rewriting in Gray setting

Gray categories

Elements of a Gray category:

- 0-cells and 1-cells
- 2-cells:

- 3-cells:

Gray categories

- composition of 2-cells with identities on the left and the right

Gray categories

- composition of 2-cells with identities on the left and the right

- composition: 2-cells can be composed vertically

Gray categories

- composition of 2-cells with identities on the left and the right

- composition: 2-cells can be composed vertically

- 3-cells can be composed horizontally

Gray categories

- properties of associativity and unitality

Gray categories

- properties of associativity and unitality

- ... but no exchange law !

Gray categories

- properties of associativity and unitality

- ... but no exchange law !
- instead, invertible 3-cell

Signatures

A signature S is given by:

- a set of elementary 2-dimensional diagrams called 2-generators

$$
\{\forall, i\}
$$

- some typing information about the source and target of these diagrams

Terms

- slice: a 2-generators with identities on the left and the right

- terms (or 2-cells): a sequence of composable slices

in particular, in this formalism, the following cell does not exist

because there is only one 2-generator per slice

Rewriting system

- A rewriting system is given by:
- a signature S
- a set P of rewriting rules (called 3-generators) on the terms of the signature

Rewriting step

Rewriting step: a rewriting rule in a context

- identities on the left and the right
- 2-cells above and below

Start from a rewriting rule, say:

Rewriting step

Rewriting step: a rewriting rule in a context

- identities on the left and the right
- 2-cells above and below

Put it inside a context:

Coherence

- Rewriting path: a sequence of rewriting steps

Coherence

- Rewriting path: a sequence of rewriting steps

- Rewriting zigzag: a sequence of rewriting steps or inverse rewriting steps

Coherence

- Rewriting path: a sequence of rewriting steps

- Rewriting zigzag: a sequence of rewriting steps or inverse rewriting steps
- Let \equiv a congruence on the zigzags

Coherence

- Rewriting path: a sequence of rewriting steps

- Rewriting zigzag: a sequence of rewriting steps or inverse rewriting steps
- Let \equiv a congruence on the zigzags
- Coherence property: between two 2-cells, at most one zigzag up to \equiv

Gray rewriting

- Goal: reflect the structure of Gray category in rewriting

Gray rewriting

- Goal: reflect the structure of Gray category in rewriting
- More precisely: give P and \equiv that will present a Gray category

Gray rewriting

- Goal: reflect the structure of Gray category in rewriting
- More precisely: give P and \equiv that will present a Gray category
- For this purpose:
- interchangers
- parallels paths
- naturally equivalent paths
- inverses

Interchangers

- Let S a signature and $\alpha, \beta \in \mathrm{S}$ and u a sequence of identities

Interchangers

- Let S a signature and $\alpha, \beta \in \mathrm{S}$ and u a sequence of identities
- Gray-cats induce interchanger $X_{\alpha, u, \beta}$: rewriting rule that exchanges α and β when separated by u

$$
x_{m, \overline{3}, e}: Y| |_{i} \Rightarrow \forall| | \mid i
$$

Interchangers

- Let S a signature and $\alpha, \beta \in \mathrm{S}$ and u a sequence of identities
- Gray-cats induce interchanger $X_{\alpha, u, \beta}$: rewriting rule that exchanges α and β when separated by u

$$
x_{m, \overline{3}, e}: Y| |_{i} \Rightarrow \forall| | \mid i
$$

- Nice, because we had branchings that could not be closed

Interchangers

- Let S a signature and $\alpha, \beta \in \mathrm{S}$ and u a sequence of identities
- Gray-cats induce interchanger $X_{\alpha, u, \beta}$: rewriting rule that exchanges α and β when separated by u

$$
x_{m, \overline{3}, e}: Y| |_{i} \Rightarrow \forall| | \mid i
$$

- Nice, because we had branchings that could not be closed

- From now on, interchangers are allowed rewriting steps

Parallel paths

- Consider the following two paths:

and

Parallel paths

- Consider the following two paths:

and

- Parallel paths: the two paths obtained by applying two rules at independent positions

Parallel paths

- Consider the following two paths:

and

- Parallel paths: the two paths obtained by applying two rules at independent positions
- In a Gray-cat, two parallel paths are equal

Parallel paths

- Consider the following two paths:

and

- Parallel paths: the two paths obtained by applying two rules at independent positions
- In a Gray-cat, two parallel paths are equal
- Nice because for coherence, these two paths need to be三-equivalent

Naturally-equivalent paths

- Consider the two following rewriting paths:

Naturally-equivalent paths

- Consider the two following rewriting paths:

- First path: "move down the unit" then A rule

Naturally-equivalent paths

- Consider the two following rewriting paths:

- First path: "move down the unit" then A rule
- Second path: A rule then "move down the unit"

Naturally-equivalent paths

- Consider the two following rewriting paths:

- First path: "move down the unit" then A rule
- Second path: A rule then "move down the unit"
- These two paths are naturally-equivalent

Naturally-equivalent paths

- Consider the two following rewriting paths:

- First path: "move down the unit" then A rule
- Second path: A rule then "move down the unit"
- These two paths are naturally-equivalent
- In a Gray-cat, two naturally-equivalent paths are equal

Naturally-equivalent paths

- Consider the two following rewriting paths:

- First path: "move down the unit" then A rule
- Second path: A rule then "move down the unit"
- These two paths are naturally-equivalent
- In a Gray-cat, two naturally-equivalent paths are equal
- Nice because for coherence, these two paths need to be三-equivalent

Inverses

- Recall that we want to consider structures with invertible 3-cells ($\alpha^{-}, \lambda^{-}, \ldots$)

Inverses

- Recall that we want to consider structures with invertible 3-cells $\left(\alpha^{-}, \lambda^{-}, \ldots\right)$
- If $R: \alpha \Rightarrow \beta \in \mathrm{P}$ a rewriting rule, denote $R^{-}: \beta \Rightarrow \alpha$ the formal inverse

Inverses

- Recall that we want to consider structures with invertible 3-cells $\left(\alpha^{-}, \lambda^{-}, \ldots\right)$
- If $R: \alpha \Rightarrow \beta \in \mathrm{P}$ a rewriting rule, denote $R^{-}: \beta \Rightarrow \alpha$ the formal inverse
- As an example, for monoids

Inverses

- Recall that we want to consider structures with invertible 3-cells $\left(\alpha^{-}, \lambda^{-}, \ldots\right)$
- If $R: \alpha \Rightarrow \beta \in \mathrm{P}$ a rewriting rule, denote $R^{-}: \beta \Rightarrow \alpha$ the formal inverse
- As an example, for monoids

- For coherence, equations like $A * A^{-} \equiv 1_{\alpha}$ are needed

Inverses

- Recall that we want to consider structures with invertible 3-cells $\left(\alpha^{-}, \lambda^{-}, \ldots\right)$
- If $R: \alpha \Rightarrow \beta \in \mathrm{P}$ a rewriting rule, denote $R^{-}: \beta \Rightarrow \alpha$ the formal inverse
- As an example, for monoids

- For coherence, equations like $A * A^{-} \equiv 1_{\alpha}$ are needed
- Nice: in a Gray-cat, these equations hold already

Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)

Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that

Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
- if P_{1}, P_{2} parallel paths, then $P_{1} \equiv P_{2}$

Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
- if P_{1}, P_{2} parallel paths, then $P_{1} \equiv P_{2}$
- if P_{1}, P_{2} naturally-equivalent, then $P_{1} \equiv P_{2}$

Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
- if P_{1}, P_{2} parallel paths, then $P_{1} \equiv P_{2}$
- if P_{1}, P_{2} naturally-equivalent, then $P_{1} \equiv P_{2}$
- $R * R^{-} \equiv 1, R^{-} * R \equiv 1$

Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
- if P_{1}, P_{2} parallel paths, then $P_{1} \equiv P_{2}$
- if P_{1}, P_{2} naturally-equivalent, then $P_{1} \equiv P_{2}$
- $R * R^{-} \equiv 1, R^{-} * R \equiv 1$

Theorem: the set of zigzag quotiented by \equiv induces canonically a Gray category.

Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
- if P_{1}, P_{2} parallel paths, then $P_{1} \equiv P_{2}$
- if P_{1}, P_{2} naturally-equivalent, then $P_{1} \equiv P_{2}$
- $R * R^{-} \equiv 1, R^{-} * R \equiv 1$

Theorem: the set of zigzag quotiented by \equiv induces canonically a Gray category.

- Coherence problem: what other axioms on \equiv for the coherence property If Z_{1}, Z_{2} are rewriting zigzags between ϕ and ψ, then

$$
Z_{1} \equiv Z_{2}
$$

to hold?

Gray presentation

- Let S a signature and P a set of rewriting rules (with interchangers)
- Let \equiv a congruence on the zigzags (paths with inverses) such that
- if P_{1}, P_{2} parallel paths, then $P_{1} \equiv P_{2}$
- if P_{1}, P_{2} naturally-equivalent, then $P_{1} \equiv P_{2}$
- $R * R^{-} \equiv 1, R^{-} * R \equiv 1$

Theorem: the set of zigzag quotiented by \equiv induces canonically a Gray category.

- Coherence problem: what other axioms on \equiv for the coherence property If Z_{1}, Z_{2} are rewriting zigzags between ϕ and ψ, then

$$
Z_{1} \equiv Z_{2}
$$

to hold?

- Solution: squares given by "critical branchings"

Critical branchings

Critical branchings

Let $P_{1}: \phi \Rightarrow \psi_{1}, P_{2}: \phi \Rightarrow \psi_{2}$ a local branching:

- it is trivial when $P_{1}=P_{2}$

Critical branchings

Let $P_{1}: \phi \Rightarrow \psi_{1}, P_{2}: \phi \Rightarrow \psi_{2}$ a local branching:

- it is trivial when $P_{1}=P_{2}$
- it is non-minimal when a smaller context can be found

Critical branchings

Let $P_{1}: \phi \Rightarrow \psi_{1}, P_{2}: \phi \Rightarrow \psi_{2}$ a local branching:

- it is trivial when $P_{1}=P_{2}$
- it is non-minimal when a smaller context can be found
- it is independent when P_{1} and P_{2} act on different parts of ϕ

Critical branchings

Let $P_{1}: \phi \Rightarrow \psi_{1}, P_{2}: \phi \Rightarrow \psi_{2}$ a local branching:

- it is trivial when $P_{1}=P_{2}$
- it is non-minimal when a smaller context can be found
- it is independent when P_{1} and P_{2} act on different parts of ϕ
- it is natural when P_{1} and P_{2} are the first steps of two naturally equivalent paths

Critical branchings

Let $P_{1}: \phi \Rightarrow \psi_{1}, P_{2}: \phi \Rightarrow \psi_{2}$ a local branching:

- it is trivial when $P_{1}=P_{2}$
- it is non-minimal when a smaller context can be found
- it is independent when P_{1} and P_{2} act on different parts of ϕ
- it is natural when P_{1} and P_{2} are the first steps of two naturally equivalent paths
- it is critical when none of the above ones

Critical branchings

Let $P_{1}: \phi \Rightarrow \psi_{1}, P_{2}: \phi \Rightarrow \psi_{2}$ a local branching:

- it is trivial when $P_{1}=P_{2}$
- it is non-minimal when a smaller context can be found
- it is independent when P_{1} and P_{2} act on different parts of ϕ
- it is natural when P_{1} and P_{2} are the first steps of two naturally equivalent paths
- it is critical when none of the above ones

Theorem(Critical pair lemma): if critical branchings are confluent then all local branchings are confluent

Finite number of critical pairs

- There is an infinite number of interchangers

$$
X_{m, \overline{3}, e}
$$

$$
X_{m, \overline{4}, e}
$$

$$
X_{m, \bar{n}, e} \text { for all } n
$$

Finite number of critical pairs

- There is an infinite number of interchangers

$$
X_{m, \overline{3}, e}
$$

$$
X_{m, \bar{n}, e} \text { for all } n
$$

- So potentially an infinite number of critical branchings

Finite number of critical pairs

- There is an infinite number of interchangers

$$
\begin{aligned}
& \rangle\left|\left.\right|_{i} \Rightarrow \forall\right||\mid \\
& X_{m, \overline{3}, e} \\
& \begin{array}{r}
\mid{ }_{i} \Rightarrow \\
X_{m, \overline{4}, e}
\end{array} \\
& X_{m, \bar{n}, e} \text { for all } n
\end{aligned}
$$

- So potentially an infinite number of critical branchings
- In fact, no!

Theorem: A finite number of operational rules (and ...) gives a finite number of critical branchings.
(operational $=$ that are not interchangers)

Finite number of critical pairs

- There is an infinite number of interchangers

$$
X_{m, \overline{3}, e}
$$

$$
X_{m, \overline{4}, e}
$$

$$
X_{m, \bar{n}, e} \text { for all } n
$$

- So potentially an infinite number of critical branchings
- In fact, no!

Theorem: A finite number of operational rules (and ...) gives a finite number of critical branchings.
(operational $=$ that are not interchangers)

- Concerning computability

An algorithm exists to compute the critical branchings

Why finiteness?

Three kinds of branchings:

- between two operational rules
- finite number of operational rules implies finite number of critical branchings of this kind

Why finiteness?

Three kinds of branchings:

- between two operational rules
- finite number of operational rules implies finite number of critical branchings of this kind
- between an operational rule and an interchanger
- for n big enough, branchings with an operational rule and $X_{\alpha, n, \beta}$ can not be critical

Why finiteness?

Three kinds of branchings:

- between two operational rules
- finite number of operational rules implies finite number of critical branchings of this kind
- between an operational rule and an interchanger
- for n big enough, branchings with an operational rule and $X_{\alpha, n, \beta}$ can not be critical
- between two interchangers
- they are never critical and are usually "natural branchings"

Why finiteness?

Three kinds of branchings:

- between two operational rules
- finite number of operational rules implies finite number of critical branchings of this kind
- between an operational rule and an interchanger
- for n big enough, branchings with an operational rule and $X_{\alpha, n, \beta}$ can not be critical
- between two interchangers
- they are never critical and are usually "natural branchings"

Examples

Summing up

Method to show coherence

- Start from an algebraic structure

Summing up

Method to show coherence

- Start from an algebraic structure
- Orient the isos to get a rewriting system

Summing up

Method to show coherence

- Start from an algebraic structure
- Orient the isos to get a rewriting system
- Show that it is terminating

Summing up

Method to show coherence

- Start from an algebraic structure
- Orient the isos to get a rewriting system
- Show that it is terminating
- Find the critical branchings (an algorithm exists)

Theorem: if the critical branchings are confluent, then the structure is coherent
$\forall\left(C_{1}, C_{2}\right)$ critical

Termination

Termination of \Rightarrow :

- Taking into account operational rules and interchangers

Termination

Termination of \Rightarrow :

- Taking into account operational rules and interchangers
- We can reduce the problem to operational rules

Theorem: (under reasonable conditions on the 2-generators) rewriting using only interchangers terminates.

Termination

Termination of \Rightarrow :

- Taking into account operational rules and interchangers
- We can reduce the problem to operational rules

Theorem: (under reasonable conditions on the 2-generators) rewriting using only interchangers terminates.

- Normal forms for planar connected string diagrams, Delpeuch and Vicary, 2018

Termination

Termination of \Rightarrow :

- Taking into account operational rules and interchangers
- We can reduce the problem to operational rules

Theorem: (under reasonable conditions on the 2-generators) rewriting using only interchangers terminates.

- Normal forms for planar connected string diagrams, Delpeuch and Vicary, 2018
- Method for the operational rules:

Find a measure that is left unvariant by interchangers

Example of monoids

With monoids, we find five critical pairs

Example of monoids

With monoids, we find five critical pairs and they are confluent

$\psi \Leftarrow \psi^{\Downarrow}$

Example of monoids

With monoids, we find five critical pairs and they are confluent

We deduce constraints on \equiv for coherence

Other examples

- Adjunctions
- Signature

$$
S=\{\cup, \cap\}
$$

- Rules

$$
\mathrm{P}=\{\text { zig }: \bigcup \Rightarrow \mid, z a g: \bigcap \Rightarrow\}
$$

- Self-dualities
- Signature

$$
S=\{\cup, \cap\}
$$

- Rules

$$
\mathrm{P}=\{\text { zig }: \bigcup \Rightarrow \mid, z a g: \bigcap \Rightarrow\}
$$

- Frobenius monoid

Frobenius monoid (without units)

Signature

Rules

Coherence relations

19 relations found by the algorithm

\Downarrow

Coherence relations

Coherence relations

\sqrt{V}

Coherence relations

Coherence relations

Coherence relations

Conclusion

- A rewriting system that reflects the structure of Gray categories
- Adapted tools to show coherence in this setting
- More automated method for coherence
- Algorithm to compute the coherence conditions
- Another proof of the coherence of monoids
- Coherence of other examples

