Describing free ω-categories

Simon Forest and Samuel Mimram

LICS, June 25, 2019

Categories

Categories (a.k.a 1-categories): 0-cells and composable 1-cells
satisfying

- associativity

$$
\left(e *_{0} g\right) *_{0} h=e *_{0}\left(g *_{0} h\right)
$$

- unitality

$$
f *_{0} \operatorname{id}_{w}=f \quad \operatorname{id}_{x} *_{0} f=f
$$

Examples: categories of sets, of groups, etc.
Might not be enough. Take categories:

- categories, functors and natural transformations \rightsquigarrow need for 2-cells

2-categories

2-categories: 0-, 1-cells between 0-cells, 2-cells between 1-cells

2-categories

2-categories: 0-, 1-cells between 0-cells, 2-cells between 1-cells

satisfying

- associativity

$$
\left(\alpha *_{0} \beta\right) *_{0} \operatorname{id}_{h}=\alpha *_{0}\left(\beta *_{0} \operatorname{id}_{h}\right)
$$

- unitality

$$
\delta *_{1} \operatorname{id}_{k^{\prime \prime}}=\delta \quad \operatorname{id}_{k^{\prime}} *_{1} \delta=\delta
$$

- exchange law

$$
\left(\gamma *_{1} \delta\right) *_{0}\left(\mu *_{1} \nu\right)=\left(\gamma *_{0} \mu\right) *_{1}\left(\delta *_{0} \nu\right)
$$

2-categories

2-categories: 0-, 1-cells between 0-cells, 2-cells between 1-cells

Might still not be enough \rightsquigarrow need for higher cells

ω-categories

ω-categories: $n+1$-cells between n-cells $(n \in \mathbb{N})$

with n composition operations to compose pairs of n-cells

- for 2-cells: compositions in dimensions 0 and 1
- for n-cells: compositions in dimensions $0,1, \ldots, n-1$ and identies, satisfying
- associativity: $\left(\alpha *_{i} \beta\right) *_{i} \gamma=\alpha *_{i}\left(\beta *_{i} \gamma\right)$
- unitality: $\mathrm{id}_{x} *_{i} \alpha=\alpha$ and $\alpha *_{i} \mathrm{id}_{x}=\alpha$
- exchange law: $\left(\alpha *_{i} \beta\right) *_{j}\left(\gamma *_{i} \delta\right)=\left(\alpha *_{j} \gamma\right) *_{i}\left(\beta *_{j} \delta\right)$

ω-categories

ω-categories: $n+1$-cells between n-cells $(n \in \mathbb{N})$

What we would like to do with these objects?

- combine them using operations (product, tensor product, etc.)
- compute invariants (homotopy)
- define simple instances easily

Exemple of computation

From [Street,91]:

Representations for free higher categories

Goal: implement ω-categories

- in practice: only a subclass of free ω-categories
- we want efficient representations \rightsquigarrow using structures with fast operations: lists, sets
- we want the representation to be faithful: the equalities holding in the representation hold in the higher category

Representations for free higher categories

Goal: implement ω-categories

- in practice: only a subclass of free ω-categories
- we want efficient representations
\rightsquigarrow using structures with fast operations: lists, sets
- we want the representation to be faithful: the equalities holding in the representation hold in the higher category

Several representation formalisms were already introduced:

- parity complexes [Street,91]
- pasting schemes [Johnson,89]
- augmented directed complexes [Steiner,04]

In the following, we focus on parity complexes.

In this work

- Counter-example to Street's claim that parity complexes represent faithfully free ω-categories
- It relies on an inequality in a free ω-category

$$
\phi \neq \psi
$$

but, in free ω-categories, showing an inequality is difficult, with poor confidence in hand-written proofs

- It motivated an Agda formalization of the counter-example
- Finally: proposition of a fix for parity complexes

Free ω-categories as parity complexes

Counter-example and formalization

Torsion-free complexes

Conclusion

Free (1-)categories

Free monoid Σ^{*} : words on $\Sigma \in$ Set

$$
\Sigma=\{a, b\} \quad \rightsquigarrow \quad \epsilon, a a, a b b \in \Sigma^{*}
$$

Graph G : data of two sets G_{0} (nodes) and G_{1} (arrows)

$$
\begin{aligned}
G_{0}= & \{w, x, y, z\} \\
G_{1}= & \{f: w \rightarrow x, g: x \rightarrow y, \\
& h: y \rightarrow z, k: z \rightarrow x\}
\end{aligned}
$$

Free category $G^{*}: G_{0}$ as 0 -cells, G_{1}^{*} (paths on G) as 1-cells

$$
\begin{aligned}
& f, \operatorname{id}_{w}, \text { ghk, } g h \in G_{1}^{*}
\end{aligned}
$$

Cells as sets of generators

Consider the free category on the graph

$$
G=v \stackrel{e}{\longleftrightarrow} w \xrightarrow{f} \underset{\substack{f \\ q}}{\substack{p \\ x}} \xrightarrow{g} y \xrightarrow{h} z
$$

What is the 1 -cell made of the following sets of generators?

Cells as sets of generators

Consider the free category on the graph

$$
G=v \stackrel{e}{\longleftrightarrow} w \xrightarrow{f} \underset{\substack{\bigcup_{q} \\ x}}{\substack{p \\ \\ \hline}} y \xrightarrow{h} z
$$

What is the 1 -cell made of the following sets of generators?

- $\{\mathrm{g}, \mathrm{h}\} \rightsquigarrow \mathrm{gh}$

Cells as sets of generators

Consider the free category on the graph

$$
G=v \stackrel{e}{\longleftrightarrow} w \xrightarrow{f} \underset{\substack{\bigcup_{q} \\ x}}{\substack{p \\ \\ \hline}} y \xrightarrow{h} z
$$

What is the 1 -cell made of the following sets of generators?

- $\{\mathrm{g}, \mathrm{h}\} \rightsquigarrow \mathrm{gh}$
- $\{\mathrm{g}, \mathrm{f}, \mathrm{h}\} \rightsquigarrow \mathrm{fg} h$

Cells as sets of generators

Consider the free category on the graph

$$
G=v \stackrel{e}{\longleftrightarrow} w \xrightarrow{f} \underset{\substack{\mathrm{U} \\ q}}{\substack{p \\ x}} \xrightarrow{g} y \xrightarrow{h} z
$$

What is the 1 -cell made of the following sets of generators?

- $\{\mathrm{g}, \mathrm{h}\} \rightsquigarrow \mathrm{gh}$
- $\{\mathrm{g}, \mathrm{f}, \mathrm{h}\} \rightsquigarrow f g h$
- $\{\mathrm{f}, \mathrm{p}\} \rightsquigarrow$ several: $f p, f p p, f p p p$, etc.

Cells as sets of generators

Consider the free category on the graph

$$
G=v \stackrel{e}{\longleftrightarrow} w \xrightarrow{f} \underset{\substack{f \\ q}}{\substack{p \\ x}} \xrightarrow{g} y \xrightarrow{h} z
$$

What is the 1-cell made of the following sets of generators?

- $\{\mathrm{g}, \mathrm{h}\} \rightsquigarrow \mathrm{gh}$
- $\{\mathrm{g}, \mathrm{f}, \mathrm{h}\} \rightsquigarrow f g h$
- $\{\mathrm{f}, \mathrm{p}\} \rightsquigarrow$ several: $f p, f p p, f p p p$, etc.
- $\{p, q\} \rightsquigarrow$ several: $p q, q p, p q p$, etc.

Cells as sets of generators

Consider the free category on the graph

$$
G=v \stackrel{e}{\longleftrightarrow} w \xrightarrow{f} \underset{\substack{f \\ q}}{\substack{p \\ x}} \xrightarrow{g} y \xrightarrow{h} z
$$

What is the 1 -cell made of the following sets of generators?

- $\{\mathrm{g}, \mathrm{h}\} \rightsquigarrow \mathrm{gh}$
- $\{\mathrm{g}, \mathrm{f}, \mathrm{h}\} \rightsquigarrow \mathrm{fg} h$
- $\{\mathrm{f}, \mathrm{p}\} \rightsquigarrow$ several: $f p, f p p, f p p p$, etc.
- $\{p, q\} \rightsquigarrow$ several: $p q, q p, p q p$, etc.
- $\{e, f\} \rightsquigarrow$ none

Cells as sets of generators

Consider the free category on the graph

$$
G=v \stackrel{e}{\longleftrightarrow} w \xrightarrow{f} \underset{\substack{f \\ q}}{\substack{p \\ x}} \xrightarrow{g} y \xrightarrow{h} z
$$

What is the 1 -cell made of the following sets of generators?

- $\{\mathrm{g}, \mathrm{h}\} \rightsquigarrow \mathrm{gh}$
- $\{\mathrm{g}, \mathrm{f}, \mathrm{h}\} \rightsquigarrow \mathrm{fg} h$
- $\{\mathrm{f}, \mathrm{p}\} \rightsquigarrow$ several: $f p, f p p, f p p p$, etc.
- $\{p, q\} \rightsquigarrow$ several: $p q, q p, p q p$, etc.
- $\{\mathrm{e}, \mathrm{f}\} \rightsquigarrow$ none
- $\{\mathrm{e}, \mathrm{h}\} \rightsquigarrow$ none

Cells as sets of generators

Consider the free category on the graph

$$
G=v \stackrel{e}{\longleftrightarrow} w \xrightarrow{f} \underset{\substack{f \\ q}}{\substack{p \\ x}} \xrightarrow{g} y \xrightarrow{h} z
$$

What is the 1 -cell made of the following sets of generators?

- $\{\mathrm{g}, \mathrm{h}\} \rightsquigarrow \mathrm{gh}$
- $\{\mathrm{g}, \mathrm{f}, \mathrm{h}\} \rightsquigarrow f g h$
- $\{\mathrm{f}, \mathrm{p}\} \rightsquigarrow$ several: $f p, f p p, f p p p$, etc.
- $\{p, q\} \rightsquigarrow$ several: $p q, q p, p q p$, etc.
- $\{\mathrm{e}, \mathrm{f}\} \rightsquigarrow$ none
- $\{\mathrm{e}, \mathrm{h}\} \rightsquigarrow$ none

Some sets of generators represent unambiguously a 1-cell of G^{*}

Free 2-categories

Start from a 1-category signature, i.e. a graph G

Free 2-categories

Start from a 1-category signature, i.e. a graph G

A 2-category signature is given by another graph G^{\prime} :

- arrows of $G^{\prime} \rightsquigarrow$ set G_{2} of 2-generators
- nodes of $G^{\prime} \rightsquigarrow G_{1}^{*}$ (paths on G)

This induces a free 2-category G^{*} with G_{2}^{*} as 2 -cells, G_{1}^{*} as 1-cells and G_{0} as 0 -cells

Free 2-categories

Start from a 1-category signature, i.e. a graph G

$$
\begin{aligned}
& G_{2}=\left\{\alpha:\{f, g\} \Rightarrow\left\{f^{\prime}, g^{\prime}\right\}, \beta:\{k, /\} \Rightarrow\left\{k^{\prime}, I^{\prime}\right\}\right\}
\end{aligned}
$$

A 2-category signature is given by another graph G^{\prime} :

- arrows of $G^{\prime} \rightsquigarrow$ set G_{2} of 2-generators
- nodes of $G^{\prime} \rightsquigarrow G_{1}^{*}$ (paths on G)

This induces a free 2-category G^{*} with G_{2}^{*} as 2 -cells, G_{1}^{*} as 1-cells and G_{0} as 0 -cells
If there is no ambiguity, we can use sets to represent the source and target of each element of G_{2}

Polygraphs

Signature for ω-categories?
A polygraph G is given by

- a sequence of sets $\left(G_{i}\right)_{i \geq 0}$
$G_{i} \rightsquigarrow$ set of generators of dimension i
- for each $x \in G_{i+1}$, a source and target in G_{i}^{*} $G_{i}^{*} \rightsquigarrow i$-cells freely generated from the set G_{i}
G^{*} : free ω-category induced by G.
\rightsquigarrow complicated but can be simplified using the set representation

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

$$
\begin{aligned}
& P_{0}=\left\{u, v, v^{\prime}, w, x, y, y^{\prime}, z\right\}, \\
& P_{1}=\left\{d, d^{\prime}, e, e^{\prime}, f, g, g^{\prime}, h, h^{\prime}\right\}, \\
& f_{v^{\prime}}=\{\alpha, \beta, \gamma\}, \\
& f_{3}=\{w\} \\
& f^{+}=\{x\} \\
& \gamma^{-}=\{g, h\} \\
& \gamma^{+}=\left\{g^{\prime}, h^{\prime}\right\}
\end{aligned} \quad A^{-}=\{\alpha\} \quad A^{+}=\{\beta\} \quad \ldots,
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

cellular sets: subsets of P that represent categorical cells
Cellular:

$$
\{x\} \quad\{w, x, y, f, g\} \quad\left\{u, v, v^{\prime}, w, x, d, d^{\prime}, e, e^{\prime}, f, \alpha, \beta, A\right\}
$$

Not cellular:

$$
\{x, y\} \quad\{u, v, x, y, d, g\} \quad\left\{x, y, z, g, g^{\prime}, h, h^{\prime}, \gamma\right\}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

cellular sets: subsets of P that represent categorical cells
Cellular:

$$
\{x\} \quad\{w, x, y, f, g\} \quad\left\{u, v, v^{\prime}, w, x, d, d^{\prime}, e, e^{\prime}, f, \alpha, \beta, A\right\}
$$

Not cellular:

$$
\{x, y\} \quad\{u, v, x, y, d, g\} \quad\left\{x, y, z, g, g^{\prime}, h, h^{\prime}, \gamma\right\}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

cellular sets: subsets of P that represent categorical cells
Cellular:

$$
\{x\} \quad\{w, x, y, f, g\} \quad\left\{u, v, v^{\prime}, w, x, d, d^{\prime}, e, e^{\prime}, f, \alpha, \beta, A\right\}
$$

Not cellular:

$$
\{x, y\} \quad\{u, v, x, y, d, g\} \quad\left\{x, y, z, g, g^{\prime}, h, h^{\prime}, \gamma\right\}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

cellular sets: subsets of P that represent categorical cells
Cellular:

$$
\{x\} \quad\{w, x, y, f, g\} \quad\left\{u, v, v^{\prime}, w, x, d, d^{\prime}, e, e^{\prime}, f, \alpha, \beta, A\right\}
$$

Not cellular:

$$
\{x, y\} \quad\{u, v, x, y, d, g\} \quad\left\{x, y, z, g, g^{\prime}, h, h^{\prime}, \gamma\right\}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

cellular sets: subsets of P that represent categorical cells
Cellular:

$$
\{x\} \quad\{w, x, y, f, g\} \quad\left\{u, v, v^{\prime}, w, x, d, d^{\prime}, e, e^{\prime}, f, \alpha, \beta, A\right\}
$$

Not cellular:

$$
\{x, y\} \quad\{u, v, x, y, d, g\} \quad\left\{x, y, z, g, g^{\prime}, h, h^{\prime}, \gamma\right\}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

cellular sets: subsets of P that represent categorical cells
Cellular:

$$
\{x\} \quad\{w, x, y, f, g\} \quad\left\{u, v, v^{\prime}, w, x, d, d^{\prime}, e, e^{\prime}, f, \alpha, \beta, A\right\}
$$

Not cellular:

$$
\{x, y\} \quad\{u, v, x, y, d, g\} \quad\left\{x, y, z, g, g^{\prime}, h, h^{\prime}, \gamma\right\}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

cellular sets: subsets of P that represent categorical cells
Cellular:

$$
\{x\} \quad\{w, x, y, f, g\} \quad\left\{u, v, v^{\prime}, w, x, d, d^{\prime}, e, e^{\prime}, f, \alpha, \beta, A\right\}
$$

Not cellular:

$$
\{x, y\} \quad\{u, v, x, y, d, g\} \quad\left\{x, y, z, g, g^{\prime}, h, h^{\prime}, \gamma\right\}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

generating set $\langle u\rangle$: cellular set associated to some $u \in P$

$$
\begin{aligned}
& x \rightsquigarrow\langle x\rangle=\{x\} \\
& g \rightsquigarrow\langle g\rangle=\{x, y, g\} \\
& \alpha \rightsquigarrow\langle A\rangle=\left\{u, v, v^{\prime}, w, d, d^{\prime}, e, e^{\prime}, \alpha, \beta, A\right\}
\end{aligned}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

generating set $\langle u\rangle$: cellular set associated to some $u \in P$

$$
\begin{aligned}
& x \rightsquigarrow\langle x\rangle=\{x\} \\
& g \rightsquigarrow\langle g\rangle=\{x, y, g\} \\
& \alpha \rightsquigarrow\langle A\rangle=\left\{u, v, v^{\prime}, w, d, d^{\prime}, e, e^{\prime}, \alpha, \beta, A\right\}
\end{aligned}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

generating set $\langle u\rangle$: cellular set associated to some $u \in P$

$$
\begin{aligned}
& x \rightsquigarrow\langle x\rangle=\{x\} \\
& g \rightsquigarrow\langle g\rangle=\{x, y, g\} \\
& \alpha \rightsquigarrow\langle A\rangle=\left\{u, v, v^{\prime}, w, d, d^{\prime}, e, e^{\prime}, \alpha, \beta, A\right\}
\end{aligned}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

generating set $\langle u\rangle$: cellular set associated to some $u \in P$

$$
\begin{aligned}
& x \rightsquigarrow\langle x\rangle=\{x\} \\
& g \rightsquigarrow\langle g\rangle=\{x, y, g\} \\
& \alpha \rightsquigarrow\langle A\rangle=\left\{u, v, v^{\prime}, w, d, d^{\prime}, e, e^{\prime}, \alpha, \beta, A\right\}
\end{aligned}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

composition as union:

$$
\begin{aligned}
& \langle g\rangle *_{0}\langle h\rangle=\langle g\rangle \cup\langle h\rangle \\
& \langle A\rangle *_{0}\langle f\rangle=\langle A\rangle \cup\langle f\rangle
\end{aligned}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

composition as union:

$$
\begin{aligned}
& \langle g\rangle *_{0}\langle h\rangle=\langle g\rangle \cup\langle h\rangle \\
& \langle A\rangle *_{0}\langle f\rangle=\langle A\rangle \cup\langle f\rangle
\end{aligned}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...

composition as union:

$$
\begin{aligned}
& \langle g\rangle *_{0}\langle h\rangle=\langle g\rangle \cup\langle h\rangle \\
& \langle A\rangle *_{0}\langle f\rangle=\langle A\rangle \cup\langle f\rangle
\end{aligned}
$$

Parity complexes

A parity complex is a graded set $P=\sqcup_{n \geq 0} P_{n}$ with, for $n \geq 0$ and $x \in P_{n+1}$, subsets

$$
x^{-}, x^{+} \subset P_{n}
$$

with conditions...
P^{*} : set of cellular sets on P
$\rightsquigarrow P^{*}$ has a structure of ω-category

Summary

Parity complexes implement polygraphs:

$$
\begin{aligned}
\text { polygraph } G & \rightsquigarrow \text { parity complex } P \\
\text { cell of } G^{*} & \rightsquigarrow \text { cellular set in } P^{*} \\
\text { test "=": at least exponential } & \rightsquigarrow O(n \log n)
\end{aligned}
$$

Summary

Parity complexes implement polygraphs:

$$
\begin{aligned}
\text { polygraph } G & \rightsquigarrow \text { parity complex } P \\
\text { cell of } G^{*} & \rightsquigarrow \text { cellular set in } P^{*} \\
\text { test "=": at least exponential } & \rightsquigarrow O(n \log n)
\end{aligned}
$$

But, does P^{*} represents faithfully G^{*} ?
More formally: by universal property of polygraph, there is

$$
\text { eval: } G^{*} \rightarrow P^{*}
$$

sending generating cell to generating set. Rephrasing:
Is eval an isomorphism?

Street results

Street claimed that P^{*} is indeed isomorphic G^{*}, in his own words:
Theorem 4.2 The ω-category $\alpha($) is freely generated by the atoms.

- " $O(C)$ ": P^{*}
- "freely generated by the atoms": be isomorphic to G^{*}

However, we found a counter-example to this theorem.

Free ω-categories as parity complexes

Counter-example and formalization

Torsion-free complexes

Conclusion

Counter-example

Consider the following polygraph G

$$
\begin{array}{ll}
G_{0}=\{x, y, z\} & G_{1}=\{a, b, c, d, e, f\} \\
G_{2}=\left\{\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}, \delta, \delta^{\prime}\right\} & G_{3}=\{A, B\}
\end{array}
$$

where the 0 -, 1- and 2-generating cells are as in

that is

$$
\begin{array}{rr}
a, b, c: x \rightarrow y & d, c, f: y \rightarrow z \\
\alpha, \alpha^{\prime}: a \Rightarrow b & \beta, \beta: b \Rightarrow c
\end{array}
$$

Counter-example

Consider the following polygraph G

$$
\begin{array}{ll}
G_{0}=\{x, y, z\} & G_{1}=\{a, b, c, d, e, f\} \\
G_{2}=\left\{\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}, \delta, \delta^{\prime}\right\} & G_{3}=\{A, B\}
\end{array}
$$

... and the 3-generating cells are as in

i.e. $\quad A: \alpha *_{0} \delta \Rightarrow \alpha^{\prime} *_{0} \delta^{\prime}$,
$B: \beta *_{0} \delta \Rightarrow \beta^{\prime} *_{0} \gamma^{\prime}$

Counter-example

It can be encoded as a parity complex P with

$$
\begin{array}{ll}
P_{0}=\{x, y, z\} & P_{1}=\{a, b, c, d, e, f\} \\
P_{2}=\left\{\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}, \delta, \delta^{\prime}\right\} & P_{3}=\{A, B\}
\end{array}
$$

where the configuration of the 0 -, 1- and 2-generators is

that is

$$
\begin{array}{ll}
a^{-}=b^{-}=c^{-}=\{x\} & \alpha^{-}=\alpha^{\prime-}=\{a\} \\
a^{+}=b^{+}=c^{+}=\{y\} & \alpha^{+}=\alpha^{\prime+}=\{b\}
\end{array}
$$

Counter-example

It can be encoded as a parity complex P with

$$
\begin{array}{ll}
P_{0}=\{x, y, z\} & P_{1}=\{a, b, c, d, e, f\} \\
P_{2}=\left\{\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}, \delta, \delta^{\prime}\right\} & P_{3}=\{A, B\}
\end{array}
$$

\ldots. and the configuration of the 3-generators is

i.e. $A^{-}=\{\alpha, \delta\}, A^{+}=\left\{\alpha^{\prime}, \delta^{\prime}\right\}, B^{-}=\{\beta, \gamma\}, B^{+}=\left\{\beta^{\prime}, \gamma^{\prime}\right\}$.

Counter-example

There are two composites of all the generators

$\Downarrow A$

$\Downarrow \downarrow B$

$\Downarrow-B$

$\Downarrow \downarrow A$

Counter-example

There are two composites of all the generators
they correspond to two 3-terms

$$
\begin{aligned}
& t_{1}=\left(\left(a *_{0} \gamma\right) *_{1} A *_{1}\left(\beta *_{0} f\right)\right) *_{2}\left(\left(\alpha^{\prime} *_{0} d\right) *_{1} B *_{1}\left(c *_{0} \delta^{\prime}\right)\right) \in G^{*} \\
& \text { and }
\end{aligned}
$$

$t_{2}=\left(\left(\alpha *_{0} d\right) *_{1} B *_{1}\left(c *_{0} \delta\right)\right) *_{2}\left(\left(a *_{0} \gamma^{\prime}\right) *_{1} A *_{1}\left(\beta^{\prime} *_{0} f\right)\right) \in G^{*}$
both translating to the same cellular set
$\operatorname{eval}\left(t_{1}\right)=\operatorname{eval}\left(t_{2}\right)=\left\{x, y, z, a, b, c, d, e, f, \alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}, \delta, \delta^{\prime}, A, B\right\}$

Counter-example

There are two composites of all the generators
they correspond to two 3-terms
$t_{1}=\left(\left(a *_{0} \gamma\right) *_{1} A *_{1}\left(\beta *_{0} f\right)\right) *_{2}\left(\left(\alpha^{\prime} *_{0} d\right) *_{1} B *_{1}\left(c *_{0} \delta^{\prime}\right)\right) \in G^{*}$
and
$t_{2}=\left(\left(\alpha *_{0} d\right) *_{1} B *_{1}\left(c *_{0} \delta\right)\right) *_{2}\left(\left(a *_{0} \gamma^{\prime}\right) *_{1} A *_{1}\left(\beta^{\prime} *_{0} f\right)\right) \in G^{*}$
but $t_{1} \neq t_{2} \in G^{*}$, disproving Street's theorem:
Theorem
We have

$$
t_{1} \neq t_{2} \in G^{*} \quad \text { and } \quad \operatorname{eval}\left(t_{1}\right)=\operatorname{eval}\left(t_{2}\right) \in P^{*}
$$

so eval: $G^{*} \rightarrow P^{*}$ is not an isomorphism.

Showing an inequality

Proof that $t_{1} \neq t_{2}$ in G^{*} ?
description of G^{*} : quotient of all terms on the generators by the axioms of ω-categories

- associativity: $\left(f *_{0} g\right) *_{0} h=f *_{0}\left(g *_{0} h\right)$
- unitality: $\operatorname{id}_{x} *_{0} f=f$ and $f *_{0} \mathrm{id}_{y}=f$
- exchange law: $\left(\alpha *_{1} \beta\right) *_{0}\left(\gamma *_{1} \delta\right)=\left(\alpha *_{0} \gamma\right) *_{1}\left(\beta *_{0} \delta\right)$

Showing an inequality

Proof that $t_{1} \neq t_{2}$ in G^{*} ?
description of G^{*} : quotient of all terms on the generators by the axioms of ω-categories

- associativity: $\left(f *_{0} g\right) *_{0} h=f *_{0}\left(g *_{0} h\right)$
- unitality: $\operatorname{id}_{x} *_{0} f=f$ and $f *_{0} \mathrm{id}_{y}=f$
- exchange law: $\left(\alpha *_{1} \beta\right) *_{0}\left(\gamma *_{1} \delta\right)=\left(\alpha *_{0} \gamma\right) *_{1}\left(\beta *_{0} \delta\right)$
showing an equality: easy, just exhibit a path between two terms showing an inequality: harder, with error-prone proofs by hand
- solution: formalize G^{*} in a proof assistant
\rightsquigarrow higher confidence

Agda model

First step: define 3-categories

- define the operations

$$
\begin{aligned}
& \text { record 3Cat }(C: \text { Set }) \\
& \left(\rightarrow_{1}:(x y: C) \rightarrow \text { Set }\right) \\
& \left(\rightarrow_{2}:\{x y: C\}\left(f g: x \rightarrow_{1} y\right) \rightarrow \text { Set }\right) \\
& \left(__{3}-\{x y: C\}\left\{f g: x \rightarrow_{1} y\right\}\left(F G: f \rightarrow_{2} g\right) \rightarrow \text { Set }\right)
\end{aligned}
$$

: Set where
field

$$
\begin{aligned}
& \mathrm{id}_{0}:(x: C) \rightarrow x \rightarrow_{1} x \\
& \text { id }_{1}:\{x y: C\}\left(f: x \rightarrow_{1} y\right) \rightarrow f \rightarrow_{2} f
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{comp}_{10}: & \{x y z: C\}\left(f: x \rightarrow_{1} y\right)\left(g: y \rightarrow_{1} z\right) \rightarrow_{x} \rightarrow_{1} z \\
\operatorname{comp}_{20}: & \{x y z: C\}\left\{f f^{\prime}: x \rightarrow_{1} y\right\}\left\{g g^{\prime}: y \rightarrow_{1} z\right\} \\
& \left(F: f \rightarrow_{2} f^{\prime}\right)\left(G: g \rightarrow_{2} g^{\prime}\right) \rightarrow \\
& \left(\text { comp }_{10} f g\right) \rightarrow_{2}\left(\text { comp }_{10} f^{\prime} g^{\prime}\right)
\end{aligned}
$$

Agda model

First step: define 3-categories

- define the operations
- ...then the axioms
unit $_{10^{-}}:\{x y: C\}\left\{f: x \rightarrow_{1} y\right\} \rightarrow \operatorname{comp}_{10}\left(\operatorname{id}_{0} x\right) f \cong f$
$\operatorname{assoc}_{10}:\{x y z w: C\}\left(f: x \rightarrow_{1} y\right)\left(g: y \rightarrow_{1} z\right)\left(h: z \rightarrow_{1} w\right)$
$\rightarrow \operatorname{comp}_{10}\left(\operatorname{comp}_{10} f g\right) h \cong \operatorname{comp}_{10} f\left(\operatorname{comp}_{10} g h\right)$

Agda model

Second step: formalize the counter-example

- define the cells

$$
\begin{array}{cl}
\text { data } C_{0}: \text { Set where } & \text { data } C_{1}: C_{0} \rightarrow C_{0} \rightarrow \text { Set where } \\
\text { x: } C_{0} & \text { id-x }: C_{1} \times x \\
\text { y: } C_{0} & \text { a }: C_{1} \times y \\
\text { z: } C_{0} & \text { d: } C_{1} y z \\
& \text { a-d: } C_{1} \times z \\
& \ldots
\end{array}
$$

Agda model

Second step: formalize the counter-example

- define the cells
- define the identities and the compositions

$$
\begin{aligned}
& \mathrm{id}_{0} x=\mathrm{id}-\mathrm{x} \\
& \mathrm{id}_{0} \mathrm{y}=\mathrm{id}-\mathrm{y} \\
& \ldots \\
& \operatorname{comp}_{10} \text { id- }-\mathrm{a}=\mathrm{a} \\
& \operatorname{comp}_{10} \text { a } \mathrm{d}=\mathrm{a}-\mathrm{d}
\end{aligned}
$$

Agda model

Second step: formalize the counter-example

- define the cells
- define the identities and the compositions
- prove that the ω-category axioms are satisfied

$$
\begin{aligned}
\operatorname{assoc}_{10}: & \{x y z w: C\}\left(f: x \rightarrow_{1} y\right)\left(g: y \rightarrow_{1} z\right)\left(h: z \rightarrow_{1} w\right) \\
& \rightarrow \operatorname{comp}_{10}\left(\operatorname{comp}_{10} f g\right) h \cong \operatorname{comp}_{10} f\left(\operatorname{comp}_{10} g h\right)
\end{aligned}
$$

$\operatorname{assoc}_{10}$ id-x a d $=$ refl

Correct since
$\operatorname{comp}_{10}\left(\right.$ comp $_{10}$ id-x a) $d=$ comp $_{10}$ a $d=a-d$
comp_{10} id-x $\left(\operatorname{comp}_{10}\right.$ a d $)=$ comp $_{10}$ id-x a-d $=a-d$

Agda model

Last step: get the inequality

- write the terms

$$
\begin{aligned}
& t_{1}=\left(\left(a *_{0} \gamma\right) *_{1} A *_{1}\left(\beta *_{0} f\right)\right) *_{2}\left(\left(\alpha^{\prime} *_{0} d\right) *_{1} B *_{1}\left(c *_{0} \delta^{\prime}\right)\right) \in G^{*} \\
& \text { and }
\end{aligned}
$$

$t_{2}=\left(\left(\alpha *_{0} d\right) *_{1} B *_{1}\left(c *_{0} \delta\right)\right) *_{2}\left(\left(a *_{0} \gamma^{\prime}\right) *_{1} A *_{1}\left(\beta^{\prime} *_{0} f\right)\right) \in G^{*}$
in Agda

- prove the inequality

$$
\begin{aligned}
& \text { main-lemma : } \neg \mathrm{t}_{1} \cong \mathrm{t}_{2} \\
& \text { main-lemma }()
\end{aligned}
$$

The proof is trivial since t_{1} and t_{2} evaluate to two different constructors of $A-B$ and $B-A$ of C_{3} !

Some facts

- 10k lines of code
- Agda code generated by OCaml
- takes approximately 45 min to check
- good test case for formal verification in higher categories

Free ω-categories as parity complexes

Counter-example and formalization

Torsion-free complexes

Conclusion

Fix for parity complexes

A acts both above and below B (they are in torsion)

- $\alpha \in A^{-}$is above $\beta \in B^{-}$
- $\delta \in A^{-}$is below $\gamma \in B^{-}$

Idea behind the fix: forbid parity complexes with generators in torsion
torsion-free complexes: fixed parity complexes with generalized axioms

Freeness property

Theorem
If P is a torsion-free complex, then P^{*} is freely induced by the generators.

Conclusion

- Flaw discovered in 25 year-old parity complexes: they do not describe free ω-categories in general
- Agda formalization to be confident in the counter-example
- Same story for pasting schemes: flaw in freeness property
- Proposed fix and generalization: torsion-free complexes Simon Forest, Unifying notions of pasting diagrams, arXiv:1903.00282

