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Categories
Categories (a.k.a 1-categories): 0-cells and composable 1-cells
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satisfying
I associativity

(e ∗0 g) ∗0 h = e ∗0 (g ∗0 h)
I unitality

f ∗0 idw = f idx ∗0 f = f

Examples: categories of sets, of groups, etc.

Might not be enough. Take categories:
I categories, functors and natural transformations
 need for 2-cells



2-categories
2-categories: 0-, 1-cells between 0-cells, 2-cells between 1-cells
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2-categories
2-categories: 0-, 1-cells between 0-cells, 2-cells between 1-cells
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with compositions and identities
satisfying
I associativity

(α ∗0 β) ∗0 idh = α ∗0 (β ∗0 idh)

I unitality
δ ∗1 idk′′ = δ idk′ ∗1 δ = δ

I exchange law

(γ ∗1 δ) ∗0 (µ ∗1 ν) = (γ ∗0 µ) ∗1 (δ ∗0 ν)



2-categories
2-categories: 0-, 1-cells between 0-cells, 2-cells between 1-cells
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with compositions and identities

Might still not be enough  need for higher cells



ω-categories
ω-categories: n+1-cells between n-cells (n ∈ N)

x , x yf , x y

f

g

⇓α , x y

f

g

α⇓
A
V⇓β , etc.

with n composition operations to compose pairs of n-cells
I for 2-cells: compositions in dimensions 0 and 1
I for n-cells: compositions in dimensions 0, 1, . . . , n−1

and identies, satisfying
I associativity: (α ∗i β) ∗i γ = α ∗i (β ∗i γ)
I unitality: idx ∗i α = α and α ∗i idx = α

I exchange law: (α ∗i β) ∗j (γ ∗i δ) = (α ∗j γ) ∗i (β ∗j δ)



ω-categories
ω-categories: n+1-cells between n-cells (n ∈ N)

x , x yf , x y

f

g

⇓α , x y

f

g

α⇓
A
V⇓β , etc.

What we would like to do with these objects?
I combine them using operations (product, tensor product, etc.)
I compute invariants (homotopy)
I define simple instances easily



Exemple of computation
From [Street,91]:

 quite complex already!



Representations for free higher categories

Goal: implement ω-categories
I in practice: only a subclass of free ω-categories
I we want efficient representations
 using structures with fast operations: lists, sets

I we want the representation to be faithful: the equalities
holding in the representation hold in the higher category



Representations for free higher categories

Goal: implement ω-categories
I in practice: only a subclass of free ω-categories
I we want efficient representations
 using structures with fast operations: lists, sets

I we want the representation to be faithful: the equalities
holding in the representation hold in the higher category

Several representation formalisms were already introduced:
I parity complexes [Street,91]
I pasting schemes [Johnson,89]
I augmented directed complexes [Steiner,04]

In the following, we focus on parity complexes.



In this work

I Counter-example to Street’s claim that parity complexes
represent faithfully free ω-categories

I It relies on an inequality in a free ω-category

φ 6= ψ

but, in free ω-categories, showing an inequality is difficult,
with poor confidence in hand-written proofs

I It motivated an Agda formalization of the counter-example
I Finally: proposition of a fix for parity complexes



Free ω-categories as parity complexes

Counter-example and formalization

Torsion-free complexes

Conclusion



Free (1-)categories
Free monoid Σ∗: words on Σ ∈ Set

Σ = {a, b}  ε, aa, abb ∈ Σ∗

Graph G : data of two sets G0 (nodes) and G1 (arrows)

w x y

z

f g

hk

G0 = {w , x , y , z}
G1 = {f : w → x , g : x → y ,

h : y → z , k : z → x}

Free category G∗: G0 as 0-cells, G∗1 (paths on G) as 1-cells

w x y

z

idw
f

ghk

g

gh
h

k
f , idw , ghk, gh ∈ G∗1



Cells as sets of generators
Consider the free category on the graph

G = v w x y zfe g

p

q

h

What is the 1-cell made of the following sets of generators?

I  gh
I  fgh
I  several: fp, fpp, fppp, etc.
I  several: pq, qp, pqp, etc.
I  none
I  none



Cells as sets of generators
Consider the free category on the graph

G = v w x y zfe g

p

q

h
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Cells as sets of generators
Consider the free category on the graph

G = v w x y zfe g

p

q

h

What is the 1-cell made of the following sets of generators?
I {g,h}  gh
I {g,f,h}  fgh
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I  none



Cells as sets of generators
Consider the free category on the graph

G = v w x y zfe g

p

q

h

What is the 1-cell made of the following sets of generators?
I {g,h}  gh
I {g,f,h}  fgh
I {f,p}  several: fp, fpp, fppp, etc.

I  several: pq, qp, pqp, etc.
I  none
I  none



Cells as sets of generators
Consider the free category on the graph

G = v w x y zfe g

p

q

h

What is the 1-cell made of the following sets of generators?
I {g,h}  gh
I {g,f,h}  fgh
I {f,p}  several: fp, fpp, fppp, etc.
I {p,q}  several: pq, qp, pqp, etc.

I  none
I  none



Cells as sets of generators
Consider the free category on the graph

G = v w x y zfe g

p

q

h

What is the 1-cell made of the following sets of generators?
I {g,h}  gh
I {g,f,h}  fgh
I {f,p}  several: fp, fpp, fppp, etc.
I {p,q}  several: pq, qp, pqp, etc.
I {e,f}  none

I  none



Cells as sets of generators
Consider the free category on the graph

G = v w x y zfe g

p

q

h

What is the 1-cell made of the following sets of generators?
I {g,h}  gh
I {g,f,h}  fgh
I {f,p}  several: fp, fpp, fppp, etc.
I {p,q}  several: pq, qp, pqp, etc.
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Cells as sets of generators
Consider the free category on the graph

G = v w x y zfe g

p

q

h

What is the 1-cell made of the following sets of generators?
I {g,h}  gh
I {g,f,h}  fgh
I {f,p}  several: fp, fpp, fppp, etc.
I {p,q}  several: pq, qp, pqp, etc.
I {e,f}  none
I {e,h}  none

Some sets of generators represent unambiguously a 1-cell of G∗



Free 2-categories
Start from a 1-category signature, i.e. a graph G

G =

v y

u w x z

v ′ y ′

g lf

f ′

h
k

k′g ′ l ′



Free 2-categories
Start from a 1-category signature, i.e. a graph G

G =

v y

u w x z

v ′ y ′

g

⇓α ⇓β
lf

f ′

h
k

k′g ′ l ′

G2 = {α : fg ⇒ f ′g ′, β : kl ⇒ k ′l ′}

A 2-category signature is given by another graph G ′:
I arrows of G ′  set G2 of 2-generators
I nodes of G ′  G∗1 (paths on G)

This induces a free 2-category G ′∗ with G∗2 as 2-cells, G∗1 as 1-cells
and G0 as 0-cells



Free 2-categories
Start from a 1-category signature, i.e. a graph G

G =

v y

u w x z

v ′ y ′

g

⇓α ⇓β
lf

f ′

h
k

k′g ′ l ′

G2 = {α : {f , g} ⇒ {f ′, g ′}, β : {k, l} ⇒ {k ′, l ′}}

A 2-category signature is given by another graph G ′:
I arrows of G ′  set G2 of 2-generators
I nodes of G ′  G∗1 (paths on G)

This induces a free 2-category G ′∗ with G∗2 as 2-cells, G∗1 as 1-cells
and G0 as 0-cells
If there is no ambiguity, we can use sets to represent the source
and target of each element of G2



Polygraphs

Signature for ω-categories?

A polygraph G is given by
I a sequence of sets (Gi )i≥0

Gi  set of generators of dimension i
I for each x ∈ Gi+1, a source and target in G∗i

G∗i  i-cells freely generated from the set Gi

G∗: free ω-category induced by G .

 complicated but can be simplified using the set representation



Parity complexes

A parity complex is a graded set P = tn≥0Pn with, for n ≥ 0 and
x ∈ Pn+1, subsets

x−, x+ ⊂ Pn

with conditions. . . v y

u w x z

v ′ y ′

e

⇓α
A
V⇓β

h
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d
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P0 = {u, v , v ′,w , x , y , y ′, z}, P2 = {α, β, γ},
P1 = {d , d ′, e, e′, f , g , g ′, h, h′}, P3 = {A}

f − = {w} γ− = {g , h} A− = {α} . . .

f + = {x} γ+ = {g ′, h′} A+ = {β} . . .



Parity complexes

A parity complex is a graded set P = tn≥0Pn with, for n ≥ 0 and
x ∈ Pn+1, subsets

x−, x+ ⊂ Pn
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cellular sets: subsets of P that represent categorical cells
Cellular:
{x} {w , x , y , f , g} {u, v , v ′,w , x , d , d ′, e, e′, f , α, β,A}

Not cellular:
{x , y} {u, v , x , y , d , g} {x , y , z , g , g ′, h, h′, γ}
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Parity complexes

A parity complex is a graded set P = tn≥0Pn with, for n ≥ 0 and
x ∈ Pn+1, subsets

x−, x+ ⊂ Pn

with conditions. . . v y

u w x z

v ′ y ′

e

⇓α
A
V⇓β

h

⇓γ
d

d ′

f

g

g ′e′ h′

generating set 〈u〉: cellular set associated to some u ∈ P

x  〈x〉 = {x}
g  〈g〉 = {x , y , g}
α 〈A〉 = {u, v , v ′,w , d , d ′, e, e′, α, β,A}
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Parity complexes

A parity complex is a graded set P = tn≥0Pn with, for n ≥ 0 and
x ∈ Pn+1, subsets
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composition as union:

〈g〉 ∗0 〈h〉 = 〈g〉 ∪ 〈h〉
〈A〉 ∗0 〈f 〉 = 〈A〉 ∪ 〈f 〉



Parity complexes

A parity complex is a graded set P = tn≥0Pn with, for n ≥ 0 and
x ∈ Pn+1, subsets
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Parity complexes

A parity complex is a graded set P = tn≥0Pn with, for n ≥ 0 and
x ∈ Pn+1, subsets

x−, x+ ⊂ Pn

with conditions. . . v y
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composition as union:

〈g〉 ∗0 〈h〉 = 〈g〉 ∪ 〈h〉
〈A〉 ∗0 〈f 〉 = 〈A〉 ∪ 〈f 〉



Parity complexes

A parity complex is a graded set P = tn≥0Pn with, for n ≥ 0 and
x ∈ Pn+1, subsets

x−, x+ ⊂ Pn

with conditions. . .

P∗: set of cellular sets on P

 P∗ has a structure of ω-category



Summary
Parity complexes implement polygraphs:

polygraph G  parity complex P

cell of G∗  cellular set in P∗

test “=”: at least exponential O(n log n)



Summary
Parity complexes implement polygraphs:

polygraph G  parity complex P

cell of G∗  cellular set in P∗

test “=”: at least exponential O(n log n)

But, does P∗ represents faithfully G∗?

More formally: by universal property of polygraph, there is

eval : G∗ → P∗

sending generating cell to generating set. Rephrasing:

Is eval an isomorphism?



Street results

Street claimed that P∗ is indeed isomorphic G∗, in his own words:

I “O(C)”: P∗

I “freely generated by the atoms”: be isomorphic to G∗

However, we found a counter-example to this theorem.



Free ω-categories as parity complexes

Counter-example and formalization

Torsion-free complexes

Conclusion



Counter-example
Consider the following polygraph G

G0 = {x , y , z} G1 = {a, b, c, d , e, f }
G2 = {α, α′, β, β′, γ, γ′, δ, δ′} G3 = {A,B}

where the 0-, 1- and 2-generating cells are as in

x y zb

a

c

α⇓ ⇓α′

β⇓ ⇓β′
e

d

f

γ⇓ ⇓γ′

δ⇓ ⇓δ′

that is

a, b, c : x → y d , c, f : y → z
α, α′ : a⇒ b β, β : b ⇒ c

. . . . . .



Counter-example
Consider the following polygraph G

G0 = {x , y , z} G1 = {a, b, c, d , e, f }
G2 = {α, α′, β, β′, γ, γ′, δ, δ′} G3 = {A,B}

. . . and the 3-generating cells are as in

x y zb

a

⇓ α
e

f

⇓ δ

A
V x y zb

a

⇓ α′
e

f

⇓ δ′
,

x y zb

c
⇓ β

e

d

⇓ γ B
V x y zb

c
⇓ β′

e

d

⇓ γ′
.

i.e. A : α ∗0 δ V α′ ∗0 δ′, B : β ∗0 δ V β′ ∗0 γ′



Counter-example
It can be encoded as a parity complex P with

P0 = {x , y , z} P1 = {a, b, c, d , e, f }
P2 = {α, α′, β, β′, γ, γ′, δ, δ′} P3 = {A,B}

where the configuration of the 0-, 1- and 2-generators is

x y zb

a

c

α⇓ ⇓α′

β⇓ ⇓β′
e

d

f

γ⇓ ⇓γ′

δ⇓ ⇓δ′

that is

a− = b− = c− = {x} α− = α′− = {a} . . .

a+ = b+ = c+ = {y} α+ = α′+ = {b} . . .



Counter-example
It can be encoded as a parity complex P with

P0 = {x , y , z} P1 = {a, b, c, d , e, f }
P2 = {α, α′, β, β′, γ, γ′, δ, δ′} P3 = {A,B}

. . . and the configuration of the 3-generators is

x y zb

a

⇓ α
e

f

⇓ δ

A
V x y zb

a

⇓ α′
e

f

⇓ δ′
,

x y zb

c
⇓ β

e

d

⇓ γ B
V x y zb

c
⇓ β′

e

d

⇓ γ′
.

i.e. A− = {α, δ}, A+ = {α′, δ′}, B− = {β, γ}, B+ = {β′, γ′}.



Counter-example
There are two composites of all the generators

x y zb

a

c

⇓α

⇓β
e

d

f

⇓γ

⇓δ
x y zb

a

c

⇓α

⇓β
e

d

f

⇓γ

⇓δ

V

A
V

B

x y zb

a

c

⇓α′

⇓β
e

d

f

⇓γ

⇓δ′
x y zb

a

c

⇓α

⇓β′
e

d

f

⇓γ′

⇓δ

V

B

V

A

x y zb

a

c

⇓α′

⇓β′
e

d

f

⇓γ′

⇓δ′
x y zb

a

c

⇓α′

⇓β′
e

d

f

⇓γ′

⇓δ′



Counter-example
There are two composites of all the generators

they correspond to two 3-terms

t1 = ((a ∗0 γ) ∗1 A ∗1 (β ∗0 f )) ∗2 ((α′ ∗0 d) ∗1 B ∗1 (c ∗0 δ′)) ∈ G∗

and

t2 = ((α ∗0 d) ∗1 B ∗1 (c ∗0 δ)) ∗2 ((a ∗0 γ′) ∗1 A ∗1 (β′ ∗0 f )) ∈ G∗

both translating to the same cellular set

eval(t1) = eval(t2) = {x , y , z , a, b, c, d , e, f , α, α′, β, β′, γ, γ′, δ, δ′,A,B}



Counter-example
There are two composites of all the generators

they correspond to two 3-terms

t1 = ((a ∗0 γ) ∗1 A ∗1 (β ∗0 f )) ∗2 ((α′ ∗0 d) ∗1 B ∗1 (c ∗0 δ′)) ∈ G∗

and

t2 = ((α ∗0 d) ∗1 B ∗1 (c ∗0 δ)) ∗2 ((a ∗0 γ′) ∗1 A ∗1 (β′ ∗0 f )) ∈ G∗

but t1 6= t2 ∈ G∗, disproving Street’s theorem:

Theorem
We have

t1 6= t2 ∈ G∗ and eval(t1) = eval(t2) ∈ P∗

so eval : G∗ → P∗ is not an isomorphism.



Showing an inequality
Proof that t1 6= t2 in G∗?

description of G∗: quotient of all terms on the generators by the
axioms of ω-categories
I associativity: (f ∗0 g) ∗0 h = f ∗0 (g ∗0 h)
I unitality: idx ∗0 f = f and f ∗0 idy = f
I exchange law: (α ∗1 β) ∗0 (γ ∗1 δ) = (α ∗0 γ) ∗1 (β ∗0 δ)



Showing an inequality
Proof that t1 6= t2 in G∗?

description of G∗: quotient of all terms on the generators by the
axioms of ω-categories
I associativity: (f ∗0 g) ∗0 h = f ∗0 (g ∗0 h)
I unitality: idx ∗0 f = f and f ∗0 idy = f
I exchange law: (α ∗1 β) ∗0 (γ ∗1 δ) = (α ∗0 γ) ∗1 (β ∗0 δ)

showing an equality: easy, just exhibit a path between two terms

showing an inequality: harder, with error-prone proofs by hand
I solution: formalize G∗ in a proof assistant
 higher confidence



Agda model
First step: define 3-categories

I define the operations

record 3Cat (C : Set)
(_→1_ : (x y : C) → Set)
(_→2_ : {x y : C} (f g : x →1 y) → Set)
(_→3_ : {x y : C} {f g : x →1 y} (F G : f →2 g) → Set)
: Set where
field
id0 : (x : C) → x →1 x
id1 : {x y : C} (f : x →1 y) → f →2 f
. . .
comp10 : {x y z : C} (f : x →1 y) (g : y →1 z) → x →1 z
comp20 : {x y z : C} {f f’ : x →1 y} {g g’ : y →1 z}

(F : f →2 f’) (G : g →2 g’) →
(comp10 f g) →2 (comp10 f’ g’)

. . .

I . . . then the axioms



Agda model
First step: define 3-categories

I define the operations
I . . . then the axioms

. . .
unit10-l : {x y : C} {f : x →1 y} → comp10 (id0 x) f ∼= f
. . .
assoc10 : {x y z w : C} (f : x →1 y) (g : y →1 z) (h : z →1 w)

→ comp10 (comp10 f g) h ∼= comp10 f (comp10 g h)
. . .



Agda model

Second step: formalize the counter-example
I define the cells

data C0 : Set where
x : C0
y : C0
z : C0

data C1 : C0 → C0 → Set where
id-x : C1 x x
a : C1 x y
d : C1 y z
a-d : C1 x z
. . .

I define the identities and the compositions
I prove that the ω-category axioms are satisfied

assoc10 : {x y z w : C} (f : x →1 y) (g : y →1 z) (h : z →1 w)
→ comp10 (comp10 f g) h ∼= comp10 f (comp10 g h)

. . .
assoc10 id-x a d = refl
. . .

Correct since
comp10 (comp10 id-x a) d = comp10 a d = a-d
comp10 id-x (comp10 a d) = comp10 id-x a-d = a-d

x y zb
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β⇓ ⇓β′
e

d
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γ⇓ ⇓γ′

δ⇓ ⇓δ′



Agda model

Second step: formalize the counter-example
I define the cells
I define the identities and the compositions

id0 x = id-x
id0 y = id-y
. . .
comp10 id-x a = a
comp10 a d = a-d
. . .

I prove that the ω-category axioms are satisfied

assoc10 : {x y z w : C} (f : x →1 y) (g : y →1 z) (h : z →1 w)
→ comp10 (comp10 f g) h ∼= comp10 f (comp10 g h)

. . .
assoc10 id-x a d = refl
. . .

Correct since
comp10 (comp10 id-x a) d = comp10 a d = a-d
comp10 id-x (comp10 a d) = comp10 id-x a-d = a-d

x y zb
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Agda model

Second step: formalize the counter-example
I define the cells
I define the identities and the compositions
I prove that the ω-category axioms are satisfied

assoc10 : {x y z w : C} (f : x →1 y) (g : y →1 z) (h : z →1 w)
→ comp10 (comp10 f g) h ∼= comp10 f (comp10 g h)

. . .
assoc10 id-x a d = refl
. . .

Correct since
comp10 (comp10 id-x a) d = comp10 a d = a-d
comp10 id-x (comp10 a d) = comp10 id-x a-d = a-d



Agda model
Last step: get the inequality
I write the terms

t1 = ((a∗0 γ)∗1 A∗1 (β ∗0 f ))∗2 ((α′ ∗0 d)∗1 B ∗1 (c ∗0 δ′)) ∈ G∗

and

t2 = ((α∗0 d)∗1 B ∗1 (c ∗0 δ))∗2 ((a∗0 γ′)∗1 A∗1 (β′ ∗0 f )) ∈ G∗

in Agda
I prove the inequality

main-lemma : ¬ t1 ∼= t2
main-lemma ()

The proof is trivial since t1 and t2 evaluate to two different
constructors of A-B and B-A of C3!



Some facts

I 10k lines of code
I Agda code generated by OCaml
I takes approximately 45 min to check
I good test case for formal verification in higher categories



Free ω-categories as parity complexes

Counter-example and formalization

Torsion-free complexes

Conclusion



Fix for parity complexes

A−

B−
x y zb

a

c

⇓α

⇓β
e

d

f

⇓γ

⇓δ

A : {α, δ}V {α′, δ′}
B : {β, γ}V {β′, γ′}

A acts both above and below B (they are in torsion)
I α ∈ A− is above β ∈ B−

I δ ∈ A− is below γ ∈ B−

Idea behind the fix: forbid parity complexes with generators in
torsion

torsion-free complexes: fixed parity complexes with generalized
axioms



Freeness property

Theorem
If P is a torsion-free complex, then P∗ is freely induced by the
generators.



Conclusion

I Flaw discovered in 25 year-old parity complexes:
they do not describe free ω-categories in general

I Agda formalization to be confident in the counter-example
I Same story for pasting schemes: flaw in freeness property
I Proposed fix and generalization: torsion-free complexes

Simon Forest, Unifying notions of pasting diagrams,
arXiv:1903.00282
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