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I instances in various places: algebra, representation theory, logic, semantic, etc.

I category of sets
I category of groups
I category of rings
I syntactic category
I etc.



2/39

Categories
I introduced by Eilenberg and MacLane in the 40s
I simple structures

Categories are made of objects and composable arrows between these objects

x y za
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b

together with an identity arrow idu for each object u such that
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Higher categories: why?
Example in topology
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⇓H1 ⇓H2⇓H1
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≡V⇓H ′
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I points
I paths between points
I homotopies between paths
I homotopies between homotopies
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Higher categories: categories with higher cells

w x y z

f

f ′

g

h

h′

⇓ φ ⇓ψ
A
≡V ⇓ψ′

I with regard the shape of the cells: globular, cubical, simplicial, etc.
I with regard to the axioms enforced, strict or weak
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Higher categories: categories with higher cells

w x y z

f

f ′

g

h

h′

⇓ φ ⇓ψ
A
≡V ⇓ψ′

Cells can be combined with different operations

x y zf g x y z
f

f ′

⇓φ

g

g ′

⇓ψ x y

f

g

h

⇓φ

⇓ψ
x y zf

g

g ′

⇓φ′
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Higher categories: why?
Higher categories: categories with higher cells

w x y z

f

f ′

g

h

h′

⇓ φ ⇓ψ
A
≡V ⇓ψ′

Different possible flavors
I with regard the shape of the cells: globular, cubical, simplicial, etc.

x y

f

g

⇓φ
x y

x ′ y ′

f

g ⇓φ h

f ′

y

x z

gf

h

⇓φ

I with regard to the axioms enforced, strict or weak
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Higher categories: why?
Higher categories: categories with higher cells

w x y z

f

f ′

g

h

h′

⇓ φ ⇓ψ
A
≡V ⇓ψ′

Different possible flavors
I with regard the shape of the cells: globular, cubical, simplicial, etc.
I with regard to the axioms enforced, strict or weak

x y

(f ∗0g)∗0h

f ∗0(g∗0h)

= vs x y

(f ∗0g)∗0h

f ∗0(g∗0h)

⇓∼
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Examples
Some classical examples of 2-dimensional higher categories
I strict 2-categories

I a composition in dimension 0 for 1-cells
I a composition in dimension 0 for 2-cells
I a composition in dimension 1 for 2-cells
I satisfying several axioms: unitality, associativity and exchange law
I instance: the 2-category of 1-categories, functors and nat. transformations.

I bicategories
I sesquicategories

I like strict 2-categories, but without the exchange law
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I a composition in dimension 0 for 1-cells
I a composition in dimension 0 for 2-cells

x y

f

g

⇓φ ∗0 y z

f ′

g′

⇓φ′ = x z

f ∗0f ′

g∗0g′

⇓φ∗0φ
′
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Examples
Some classical examples of 2-dimensional higher categories
I strict 2-categories
I bicategories

I same operations than for strict categories

∗0 : C1 ×0 C1 → C1 ∗0 : C2 ×0 C2 → C2 ∗1 : C2 ×1 C2 → C2

I ... but weak axioms
I instance: the points, paths and homotopies on a topological space X

not a strict 2-category because the composition of paths p, q : [0, 1] → X is not
strictly associative:

(p ∗0 q) ∗0 r 6= p ∗0 (q ∗0 r)

I sesquicategories

I like strict 2-categories, but without the exchange law
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Sequences of theories

In fact, we usually have sequences of theories of higher categories:
I strict n-categories
I weak n-categories
I n-precategories
I etc.

Given such a sequence of theories (e.g., strict categories), we usually want to do
several operations:
I truncate an (n+1)-category to an n-category
I embed an n-category as an (n+1)-category
I freely add (n+1)-cells to an n-category
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Presentation

We would also like to be able to present such structures, using generators and relations.

Let the 1-category generated by four 1-generators

x

w z

y

gf

f ′ g ′

and such that f ∗0 g = f ′ ∗0 g ′.
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Presentation

We would also like to be able to present such structures, using generators and relations.

Let the 2-category generated by four 1-generators and four 2-generators

x y z

f

f ′

α ⇓⇓ α′

g

g ′

β ⇓⇓ β′

and such that α ∗0 β = α′ ∗0 β
′.
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Complex generators

In fact, we would like to be able more complex generators than the simple ones...

x y

f

g

⇓φ , x y

f

g

φ⇓
F
≡V⇓ψ , etc.
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Complex generators

... but also ones with non-trivial source and target.

x

w z

x ′ y ′

ba

a′

⇓ α

b′

c′

x y z

a

a′

⇓ α

b

b′

⇓ β
A
V x y z

a

a′

⇓ α′

b

b′

⇓ β′
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Complex generators

A structure expressing such complex generators was defined by Street and Burroni for
strict n-categories: polygraphs (or computads).
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General definitions?

Thus, when considering a theory of higher categories, we usually need to define
I the truncation and inclusion functors between dimensions
I several free constructions allowing adding new cells
I ... in particular, a definition of polygraphs

All the above can be defined in an ad hoc way for each particular theory of higher cat.

But can we give a general definition for them?
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Batanin’s framework

Some general constructions

Avoiding the monad

Conclusion
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Before giving general definitions for constructions on “higher categories”, we first need
a general definition for “higher categories”.
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categories”: we will only handle

globular algebraic higher categories.
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x , x yf , x y

f

g
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f

g
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a general definition for “higher categories”.

For such a general definition to exist, we need to restrain the concept of “higher
categories”: we will only handle

globular algebraic higher categories.

non-algebraic definition of higher category:

I given x y zf g there exists x z
h

I given w x y zf g h there exists φ : (f ∗0 g) ∗0 h ⇒ f ∗0 (g ∗0 h)
I etc.
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Common definition
Before giving general definitions for constructions on “higher categories”, we first need
a general definition for “higher categories”.

For such a general definition to exist, we need to restrain the concept of “higher
categories”: we will only handle

globular algebraic higher categories.

algebraic definition of higher category:

I given x y zf g there is x z
f ∗0g

I given w x y zf g h there is φf ,g,h : (f ∗0 g) ∗0 h ⇒ f ∗0 (g ∗0 h)
I etc.
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Batanin’s perspective

Batanin gave a unifying perspective for these higher categories:

Definition (Batanin,98)
A theory of n-categories is a monad T on n-globular sets.

An instance structure of such theory is a T -algebra.

A general definition of categorical constructions can be given using this perspective.
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Globular sets
n-globular sets: graphs in higher dimensions with cells up to dimension n

Example of a 3-globular set X

w x y z

f

f ′

g

h

h′

⇓ φ ⇓ψ
A
≡V ⇓ψ′

X0 = {w , x , y , z}
X1 = {f , f ′, g , h, h′}
X2 = {φ, ψ, ψ′}
X3 = {A}
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Globular sets
n-globular sets: graphs in higher dimensions with cells up to dimension n

Example of a 3-globular set X

w x y z

f

f ′

g

h

h′

⇓ φ ⇓ψ
A
≡V ⇓ψ′

X0 = {w , x , y , z}
X1 = {f , f ′ : w → x , g : x → y , h, h′ : y → z}
X2 = {φ : f ⇒ f ′, ψ, ψ′ : h ⇒ h′}
X3 = {A : ψ V ψ′}
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Globular sets
n-globular sets: graphs in higher dimensions with cells up to dimension n

General form: X0 X1 X2 · · · Xn
∂−

0

∂+
0

∂−
1

∂+
1

∂−
2

∂+
2

∂−
n−1

∂+
n−1
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Globular sets
n-globular sets: graphs in higher dimensions with cells up to dimension n

General form: X0 X1 X2 · · · Xn
∂−

0

∂+
0

∂−
1

∂+
1

∂−
2

∂+
2

∂−
n−1

∂+
n−1

but we want to forbid non-globular shapes:

w x y z

a

b

⇓ α
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Globular sets
n-globular sets: graphs in higher dimensions with cells up to dimension n

General form: X0 X1 X2 · · · Xn
∂−

0

∂+
0

∂−
1

∂+
1

∂−
2

∂+
2

∂−
n−1

∂+
n−1

such that ∂εi ◦ ∂
−
i+1 = ∂εi ◦ ∂

+
i+1.

Globn: category of n-globular sets
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Monads and algebras
I monads

A monad (T , η, µ) on some category C is the data of a functor:

T : C → C

together with natural transformations

η : 1 → T µ : T ◦ T → T

such that

TTT TT

TT T

Tµ

µT µ

µ

TT T TT

T
µ

ηT Tη

1
µ

I algebras
I canonical adjunction
I example
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Monads and algebras
I monads
I algebras

An algebra for a monad T : C → C is a pair

(X , h : TX → X)

such that
X TX

X

ηX

idX
h and

TTX TX

TX X

T (h)

µX h

h

CT or Alg: category of algebras on T .

I canonical adjunction
I example
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Monads and algebras
I monads
I algebras
I canonical adjunction

Given a monad T : C → C , there is a canonical adjunction

C Alg
FT

UT

with
F T : X 7→ (TX , µX )
UT : (X , h) 7→ X

I example
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Monads and algebras
I monads
I algebras
I canonical adjunction
I example

Monad T : Set → Set of free monoids on sets.

X = {x , y , z}  [ ], [y ], [z, x , y ] ∈ TX

A T -algebra is then exactly a monoid: Alg ' Mon.

The canonical adjunction is then

Set Alg ' Mon
FT

UT



15/39

Monads and equational definitions

How do we retrieve monads from equational definitions?

Example: 1-categories
Sets C0,C1 with operations

∂−, ∂+ : C1 → C0 id : C0 → C1 ∗ : C1 ×0 C1 → C1

with
C1 ×0 C1 = {(u, v) ∈ C1 × C1 | ∂+(u) = ∂−(v)}

satisfying...

I every 1-category has an underlying 1-globular set

I it induces an adjunction Glob1 Cat
F

U
I we get a monad T = U ◦ F on Glob1 for which Alg ' Cat
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Batanin’s perspective

Definition (Batanin,98)
A theory of n-categories is a monad T on n-globular sets.

An instance structure of such theory is a T -algebra.

We saw how this perspective related to usual equational definitions.

Let’s see what we can do with it.
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Batanin’s framework

Some general constructions

Avoiding the monad

Conclusion
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Operations on globular algebras
Let (T , η, µ) be a theory of n-category (i.e. a monad on Globn)

By the properties of categories of algebras, we get an adjunction:

Globn Algn
Fn

Un

I Algn: category of algebras on T (a.k.a. n-globular algebras)
I Un and Fn: the canonical right and left adjoints

Un : (X , h) 7→ X
Fn : X 7→ (TX , µX )

 we have a notion of free n-category on an n-globular set
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Example

Suppose that n = 2 and T is the monad of strict 2-categories.
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Suppose that n = 2 and T is the monad of strict 2-categories.

We can use F2 to generate the free 2-category on the 2-globular set

u v w x ya c

b

d

⇓ α

⇓ β
f

e

g

h
⇓ γ

⇓ δ
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Example

Suppose that n = 2 and T is the monad of strict 2-categories.

We can use F2 to generate the free 2-category on the 2-globular set

u v w x ya c

b

d

⇓ α

⇓ β
f

e

g

h
⇓ γ

⇓ δ

and obtain a 2-category with the cells

a ∗0 b, d ∗0 (e ∗0 h), α ∗1 β, (α ∗0 γ) ∗1 (β ∗0 δ), etc.
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Example

Suppose that n = 2 and T is the monad of strict 2-categories.

But we can still not generate 2-categories from complex generators

x

w z

x ′ y ′

gf

f ′

⇓ α

g ′

h′
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Operations on globular sets

Truncation: given k < l , there is a functor

(−)Glob
l,≤k : Globl → Globk

X 7→ X≤k

mapping

X = X0 X1 X2 · · · Xl
∂−

0

∂+
0

∂−
1

∂+
1

∂−
2

∂+
2

∂−
l−1

∂+
l−1

to

X≤k = X0 X1 X2 · · · Xk
∂−

0

∂+
0

∂−
1

∂+
1

∂−
2

∂+
2

∂−
k−1

∂+
k−1
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Operations on globular sets

Inclusion: given k < l , there is a functor

(−)Glob
k,↑l : Globk → Globl

X 7→ X↑k

mapping

X = X0 X1 X2 · · · Xk
∂−

0

∂+
0

∂−
1

∂+
1

∂−
2

∂+
2

∂−
k−1

∂+
k−1

to

X↑l = X0 · · · Xk ∅ · · · ∅
∂−

0

∂+
0

∂−
k−1

∂+
k−1

∂−
k

∂+
k

∂−
k+1

∂+
k+1

∂−
l−1

∂+
l−1
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Other dimensions

Using the truncation and inclusion operations on globular sets, we can define monads

T k = Globk Globn Globn Globk
(−)Glob

k,↑n T (−)Glob
n,≤k

on Globk for k ∈ {0, . . . , n − 1}.

 derived theories of k-categories for k ∈ {0, . . . , n}!

Algk : the category of k-globular algebras / k-categories

We still have the canonical adjunction for the other dimensions:

Globk Algk
Fk

Uk
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Operations on globular algebras
Using truncation and inclusion on globular sets again, we can build a truncation functor

(−)Alg
k+1,≤k : Algk+1 → Algk

(X , h) 7→ (X≤k , h≤k) (approximately)
between (k+1)-categories and k-categories for k < n.
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Operations on globular algebras
Using truncation and inclusion on globular sets again, we can build a truncation functor

(−)Alg
k+1,≤k : Algk+1 → Algk

(X , h) 7→ (X≤k , h≤k) (approximately)
between (k+1)-categories and k-categories for k < n.

Proposition
The functor (−)Alg

k+1,≤k admits a left adjoint

(−)Alg
k,↑k+1 : Algk → Algk+1

 there is a free (k+1)-category on a k-category.
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Freely adding generators
Nice. But can we freely generate a (k+1)-category from a k-category and a set of
(k+1)-generators?

Example: starting from a 1-category C with 1-cells f , f ′, g , g ′ as in

x x ′

f

f ′

and y y ′

g

g ′

can we build a 2-category from C by freely adding two 2-cells

x x ′

f

f ′

⇓ α and y y ′

g

g ′

⇓ β ?
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Cellular extensions
k-cellular extensions: pair (C ,X) of a k-category C and a set of (k+1)-generators X .
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Cellular extensions
k-cellular extensions: pair (C ,X) of a k-category C and a set of (k+1)-generators X .

Previous example: a 1-cellular extension (C ,X) with

X = {α : f ⇒ f ′, β : g ⇒ g ′}
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Cellular extensions
k-cellular extensions: pair (C ,X) of a k-category C and a set of (k+1)-generators X .

Category Alg+
k of k-cellular extensions: defined as the pullback

Alg+
k Globk+1

Algk Globk

Gk+1

Ak (−)Glob
≤k

Uk
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Cellular extensions
k-cellular extensions: pair (C ,X) of a k-category C and a set of (k+1)-generators X .

Category Alg+
k of k-cellular extensions: defined as the pullback

Alg+
k Globk+1

Algk Globk

Gk+1

Ak (−)Glob
≤k

Uk

Alternatively, a k-cellular extension is a pair (C ,X) with C ∈ Algk , X ∈ Set equipped
with functions

d−k , d
+
k : X → Ck

such that ∂εk−1 ◦ d
−
k = ∂εk ◦ d+k for ε ∈ {−,+}.
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Free extensions
By the universal property of the pullback, there is a functor

Vk : Algk+1 → Alg+
k

which forgets the structure on the k+1 dimension.

Algk+1

Alg+
k Globk+1

Algk Globk

Uk+1

(−)Alg
≤k

Vk

Ak

Gk+1

(−)Glob
≤k

Uk
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k → Algk+1.

Given (C ,X) ∈ Alg+
k , the free (k+1)-category C [X ] on (C ,X) is expressed as a

pushout in Algk+1
C [X ] Fk+1X

C↑k+1 Fk+1((X≤k)↑k+1)
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Free extensions
By the universal property of the pullback, there is a functor

Vk : Algk+1 → Alg+
k

which forgets the structure on the k+1 dimension.

Theorem
The functor Vk admits a left adjoint −[−]k : Alg+

k → Algk+1.

Given (C ,X) ∈ Alg+
k , the free (k+1)-category C [X ] on (C ,X) is expressed as a

pushout in Algk+1
C [X ] Fk+1X

C↑k+1 Fk+1((X≤k)↑k+1)

 we can freely extend a k-category with (k+1)-generators!
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Free higher categories

We saw that higher categories can be freely generated on globular sets.

u v w x ya c

b

d

⇓ α

⇓ β
f

e

g

h
⇓ γ

⇓ δ

Generated cells:

a ∗0 b, d ∗0 (e ∗0 h), α ∗1 β, (α ∗0 γ) ∗1 (β ∗0 δ), etc.
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Free higher categories

We saw that higher categories can be freely generated on globular sets.

But this is not satisfactory: what about generators with composites as source and
target?

x

w z

x ′ y ′

gf

f ′

⇓ α

g ′

h′
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Polygraphs

X0 X1 · · · Xk−2 Xk−1 Xk
∂−

0

∂+
0

∂−
1

∂+
1

∂−
k−3

∂+
k−3

∂−
k−2

∂+
k−2

∂−
k−1

∂+
k−1

We need a more complex structure than globular sets
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X0 X1 X2 . . . Xk−1 Xk

X∗
0 X∗

1 . . . X∗
k−2 X∗

k−1

e0

d−0

d+0
e1

d−1

d+1 e2

d−k−2

d+k−2
ek

d−k−1

d+k−1
∂−

0

∂+
0

∂−
1

∂+
1

∂−
k−3

∂+
k−3

∂−
k−2

∂+
k−2

We need a more complex structure than globular sets: polygraphs [Street, Burroni]
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Polygraphs

X0 X1 X2 . . . Xk−1 Xk

X∗
0 X∗

1 . . . X∗
k−2 X∗

k−1

e0

d−0

d+0
e1

d−1

d+1 e2

d−k−2

d+k−2
ek

d−k−1

d+k−1
∂−

0

∂+
0

∂−
1

∂+
1

∂−
k−3

∂+
k−3

∂−
k−2

∂+
k−2

We need a more complex structure than globular sets: polygraphs [Street, Burroni]

Example: the 3-polygraph P of pseudomonoids

P0 = {∗} P1 = { : ∗ → ∗}
P2 = { , }

P3 = {L : V , R : V , A : V }
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Polygraphs from cellular extensions
We define by induction on k a category Polk and a functor

(−)∗,k : Polk → Algk

I Pol0 = Glob0 and (−)∗,0 = F T 0

I Polk+1 defined as the pullback

Polk+1 Alg+
k Algk+1

Polk Algk

(−)Pol
k+1,≤k

Ek+1

(−)∗,k+1

−[−]k

(−)∗,k

I (−)∗,k+1 defined as −[−]k ◦ Ek+1
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We define by induction on k a category Polk and a functor

(−)∗,k : Polk → Algk

I Pol0 = Glob0 and (−)∗,0 = F T 0

(−)∗,0 = Pol0 Glob0 Alg0
FT0

I Polk+1 defined as the pullback
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Polygraphs from cellular extensions
We define by induction on k a category Polk and a functor

(−)∗,k : Polk → Algk

I Pol0 = Glob0 and (−)∗,0 = F T 0

I Polk+1 defined as the pullback

Polk+1 Alg+
k Algk+1

Polk Algk

(−)Pol
k+1,≤k

Ek+1

(−)∗,k+1

−[−]k

(−)∗,k

I (−)∗,k+1 defined as −[−]k ◦ Ek+1

 notion of free k-category on a k-polygraph!
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Batanin revisited

Theorem (Batanin, F.)
Polygraphs and free categories on polygraphs are well-defined for globular algebras.
I Another proof using cellular extensions as intermediate constructions.



30/39

Batanin’s framework

Some general constructions

Avoiding the monad

Conclusion
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Avoiding the monad
Batanin viewpoint based on monads allows defining giving common definition for
several operations.
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Avoiding the monad
Batanin viewpoint based on monads allows defining giving common definition for
several operations.

However, higher categories are usually not defined by monads, but by equational
definitions.

Theory of 1-categories:

∂−, ∂+ : C1 → C0 id : C0 → C1 ∗ : C1 ×0 C1 → C1

with
C1 ×0 C1 = {(u, v) ∈ C1 × C1 | ∂+(u) = ∂−(v)}

satisfying...
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Avoiding the monad
Batanin viewpoint based on monads allows defining giving common definition for
several operations.

However, higher categories are usually not defined by monads, but by equational
definitions.

Computing the monad associated to an equational theory: doable but tedious.

Can we define some of the previous operations without computing the monad?



32/39

Truncation without monads

Given an equational definitions of k and (k+1)-categories, the functor

T : Catk+1 → Catk

is usually defined by
I removing the (k+1)-cells
I forgetting about the operations on the (k+1)-cells

How can we check that it is equivalent to the one on globular algebras?

(−)Alg
≤k : Algk+1 → Algk

(X , h) 7→ (X≤k , h≤k)
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Abstract criterion for truncation

Theorem (F.)
Given functors

T : Catk+1 → Catk U : Catk+1 → Globk+1 U ′ : Catk → Globk

such that (...), there exists equivalence of categories

H : Catk+1 → Algk+1 H ′ : Catk → Algk

such that the following diagram commutes

Catk+1 Algk+1

Catk Algk

H

T (−)Alg
≤k

H′
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Truncability

An important property of a theory of higher category is its truncability.

Given a monad T on Globn, T is truncable when

(−)Glob
≤k ◦ T ◦ (−)Glob

↑n ◦ (−)Glob
≤k = (−)Glob

≤k ◦ T

for all k ≤ n.

Truncability allows proving stability properties like

Proposition
If T is truncable, then, for all k-cellular extension (C ,X),

C [X ]≤k ' C .
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Counter-example

Theory of “weird” 1-categories:

∂−, ∂+ : C1 → C0 ∗ : C1 ×0 C1 → C0

satisfying nothing.

The monad T : Glob1 → Glob1 associated to it verifies that

(TX)0 ' X0 t (X1 ×0 X1) and (TX)1 ' X1

Thus, it is not truncable:

(T (X≤0))≤0 ' X0 6' X0 t (X1 ×0 X1) ' (TX)≤0
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Avoiding the monad, again

Truncability of a theory requires a priori to describe explicitly the associated monad.
But it can be avoided.

Theorem (F.)
The monad (T , η, µ) is truncable if and only if, for k ∈ Nn−1, the functor (−)Alg

n,≤k has
a right adjoint (−)Alg

k,⇑n, which satisfies that

jkUT (−)Alg
k,⇑n is an isomorphism

where jk is the unit of the adjunction (−)Glob
n,≤k a (−)Glob

k,⇑n .

By the first abstract criterion, we can replace (−)Alg
n,≤k : Algn → Algk by a concrete

truncation functor T : Catn → Catk and avoid the description of the monad.
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Conclusion

I General definitions for several operations on higher categories
I Categorical approach instead of a syntactic one
I Thus, shortcomings of the syntactic approach were avoided
I The shortcoming of the categorical approach (relying on monads) was dealt with

Perspectives:
I More general arguments using Street’s formal theory of monads
I Express more categorical constructions in Batanin’s framework



38/39

The end

Thank you!
Any questions?
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