An extension of Batanin framework for higher categories

Simon Forest

IRIF, Université de Paris

March 18, 2021

Categories

- introduced by Eilenberg and MacLane in the 40s

Categories

- introduced by Eilenberg and MacLane in the 40s
- simple structures

Categories are made of objects and composable arrows between these objects

together with an identity arrow id_{u} for each object u such that

$$
\operatorname{id}_{u} * f=f \quad f * \operatorname{id}_{u}=f \quad(f * g) * h=f *(g * h)
$$

Categories

- introduced by Eilenberg and MacLane in the 40s
- simple structures
- instances in various places: algebra, representation theory, logic, semantic, etc.
- category of sets
- category of groups
- category of rings
- syntactic category
- etc.

Higher categories: why?
Example in topology

Higher categories: why?
Example in topology
$\underset{ }{x}$!

- points

Higher categories: why?

Example in topology

- points
- paths between points

Higher categories: why?

Example in topology

- points
- paths between points
- homotopies between paths

Higher categories: why?

Example in topology

- points
- paths between points
- homotopies between paths
- homotopies between homotopies

Higher categories: why?

Higher categories: categories with higher cells

Higher categories: why?

Higher categories: categories with higher cells

Cells can be combined with different operations

$$
x \xrightarrow{f} y \xrightarrow{g} z
$$

Higher categories: why?

Higher categories: categories with higher cells

Different possible flavors

- with regard the shape of the cells: globular, cubical, simplicial, etc.

Higher categories: why?

Higher categories: categories with higher cells

Different possible flavors

- with regard the shape of the cells: globular, cubical, simplicial, etc.
- with regard to the axioms enforced, strict or weak

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- a composition in dimension 0 for 1-cells

$$
(x \longrightarrow) y) *_{0}(y \xrightarrow{f} z)=x \xrightarrow{f *_{0} g} z
$$

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- a composition in dimension 0 for 1 -cells
- a composition in dimension 0 for 2-cells

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- a composition in dimension 0 for 1 -cells
- a composition in dimension 0 for 2-cells
- a composition in dimension 1 for 2-cells

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- a composition in dimension 0 for 1-cells
- a composition in dimension 0 for 2-cells
- a composition in dimension 1 for 2-cells
- satisfying several axioms: unitality, associativity and exchange law

$$
\left(\phi *_{1} \phi^{\prime}\right) *_{0}\left(\psi *_{1} \psi^{\prime}\right)=\left(\phi *_{0} \psi\right) *_{1}\left(\phi^{\prime} *_{0} \psi^{\prime}\right)
$$

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- a composition in dimension 0 for 1 -cells
- a composition in dimension 0 for 2-cells
- a composition in dimension 1 for 2-cells
- satisfying several axioms: unitality, associativity and exchange law
- instance: the 2-category of 1-categories, functors and nat. transformations.

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- bicategories
- same operations than for strict categories

$$
*_{0}: C_{1} \times_{0} C_{1} \rightarrow C_{1} \quad *_{0}: C_{2} \times_{0} C_{2} \rightarrow C_{2} \quad *_{1}: C_{2} \times_{1} C_{2} \rightarrow C_{2}
$$

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- bicategories
- same operations than for strict categories
- ... but weak axioms
for all 1-composable $f, g, h \in C_{1}$,

$$
\alpha_{f, g, h}: \quad\left(f *_{0} g\right) *_{0} h \Rightarrow f *_{0}\left(g *_{0} h\right)
$$

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- bicategories
- same operations than for strict categories
- ... but weak axioms
- instance: the points, paths and homotopies on a topological space X not a strict 2-category because the composition of paths $p, q:[0,1] \rightarrow X$ is not strictly associative:

$$
\left(p *_{0} q\right) *_{0} r \quad \neq \quad p *_{0}\left(q *_{0} r\right)
$$

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- bicategories
- same operations than for strict categories
- ... but weak axioms
- instance: the points, paths and homotopies on a topological space X not a strict 2-category because the composition of paths $p, q:[0,1] \rightarrow X$ is not strictly associative:

$$
\left(p *_{0} q\right) *_{0} r \Rightarrow p *_{0}\left(q *_{0} r\right)
$$

Examples

Some classical examples of 2-dimensional higher categories

- strict 2-categories
- bicategories
- sesquicategories
- like strict 2-categories, but without the exchange law

Sequences of theories

In fact, we usually have sequences of theories of higher categories:

- strict n-categories
- weak n-categories
- n-precategories
- etc.

Sequences of theories

In fact, we usually have sequences of theories of higher categories:

- strict n-categories
- weak n-categories
- n-precategories
- etc.

Given such a sequence of theories (e.g., strict categories), we usually want to do several operations:

- truncate an ($n+1$)-category to an n-category
- embed an n-category as an ($n+1$)-category
- freely add ($n+1$)-cells to an n-category

Presentation

We would also like to be able to present such structures, using generators and relations.

Let the 1-category generated by four 1-generators

and such that $f *_{0} g=f^{\prime} *_{0} g^{\prime}$.

Presentation

We would also like to be able to present such structures, using generators and relations.

Let the 2-category generated by four 1-generators and four 2-generators

and such that $\alpha *_{0} \beta=\alpha^{\prime} *_{0} \beta^{\prime}$.

Complex generators

In fact, we would like to be able more complex generators than the simple ones...

etc.

Complex generators

... but also ones with non-trivial source and target.

Complex generators

A structure expressing such complex generators was defined by Street and Burroni for strict n-categories: polygraphs (or computads).

General definitions?

Thus, when considering a theory of higher categories, we usually need to define

- the truncation and inclusion functors between dimensions
- several free constructions allowing adding new cells
- ... in particular, a definition of polygraphs

General definitions?

Thus, when considering a theory of higher categories, we usually need to define

- the truncation and inclusion functors between dimensions
- several free constructions allowing adding new cells
- ... in particular, a definition of polygraphs

All the above can be defined in an ad hoc way for each particular theory of higher cat.

General definitions?

Thus, when considering a theory of higher categories, we usually need to define

- the truncation and inclusion functors between dimensions
- several free constructions allowing adding new cells
- ... in particular, a definition of polygraphs

All the above can be defined in an ad hoc way for each particular theory of higher cat.
But can we give a general definition for them?

Outline

Batanin's framework

Some general constructions

Avoiding the monad

Conclusion

Outline

Batanin's framework

Some general constructions

Avoiding the monad

Conclusion

Common definition

Before giving general definitions for constructions on "higher categories", we first need a general definition for "higher categories".

Common definition

Before giving general definitions for constructions on "higher categories", we first need a general definition for "higher categories".

For such a general definition to exist, we need to restrain the concept of "higher categories": we will only handle
globular algebraic higher categories.

Common definition

Before giving general definitions for constructions on "higher categories", we first need a general definition for "higher categories".

For such a general definition to exist, we need to restrain the concept of "higher categories": we will only handle

globular algebraic higher categories.

globular: with globular cells
 etc.

Common definition

Before giving general definitions for constructions on "higher categories", we first need a general definition for "higher categories".

For such a general definition to exist, we need to restrain the concept of "higher categories": we will only handle

globular algebraic higher categories.

non-algebraic definition of higher category:

- given $x \xrightarrow{f} y \xrightarrow{g} z$ there exists $x \xrightarrow{h} z$
- given $w \xrightarrow{f} x \xrightarrow{g} y \xrightarrow{h} z$ there exists $\phi:\left(f *_{0} g\right) *_{0} h \Rightarrow f *_{0}\left(g *_{0} h\right)$
- etc.

Common definition

Before giving general definitions for constructions on "higher categories", we first need a general definition for "higher categories".

For such a general definition to exist, we need to restrain the concept of "higher categories": we will only handle

globular algebraic higher categories.

algebraic definition of higher category:

- given $x \xrightarrow{f} y \xrightarrow{g} z$ there is $x \xrightarrow{f *_{0} g} z$
- given $w \xrightarrow{f} x \xrightarrow{g} y \xrightarrow{h} z$ there is $\phi_{f, g, h}:\left(f *_{0} g\right) *_{0} h \Rightarrow f *_{0}\left(g *_{0} h\right)$
- etc.

Batanin's perspective

Batanin gave a unifying perspective for these higher categories:

Definition (Batanin,98)
A theory of n-categories is a monad T on n-globular sets.
An instance structure of such theory is a T-algebra.

A general definition of categorical constructions can be given using this perspective.

Globular sets

\boldsymbol{n}-globular sets: graphs in higher dimensions with cells up to dimension n Example of a 3-globular set X

$$
\begin{aligned}
& X_{0}=\{w, x, y, z\} \\
& X_{1}=\left\{f, f^{\prime}, g, h, h^{\prime}\right\} \\
& X_{2}=\left\{\phi, \psi, \psi^{\prime}\right\} \\
& X_{3}=\{A\}
\end{aligned}
$$

Globular sets

\boldsymbol{n}-globular sets: graphs in higher dimensions with cells up to dimension n Example of a 3-globular set X

$$
\begin{aligned}
& X_{0}=\{w, x, y, z\} \\
& X_{1}=\left\{f, f^{\prime}: w \rightarrow x, \quad g: x \rightarrow y, \quad h, h^{\prime}: y \rightarrow z\right\} \\
& X_{2}=\left\{\phi: f \Rightarrow f^{\prime}, \quad \psi, \psi^{\prime}: h \Rightarrow h^{\prime}\right\} \\
& X_{3}=\left\{A: \psi \Rightarrow \psi^{\prime}\right\}
\end{aligned}
$$

Globular sets

\boldsymbol{n}-globular sets: graphs in higher dimensions with cells up to dimension n

General form: $\quad X_{0} \underset{\partial_{0}^{+}}{\stackrel{\partial_{0}^{-}}{\leftrightarrows}} X_{1} \underset{\partial_{1}^{+}}{\stackrel{\partial_{1}^{-}}{\leftrightarrows}} X_{2} \underset{\partial_{2}^{+}}{\stackrel{\partial_{2}^{-}}{\leftrightarrows}} \cdots \underset{\partial_{n-1}^{+}}{\stackrel{\partial_{n-1}^{-}}{\leftrightarrows}} X_{n}$

Globular sets

\boldsymbol{n}-globular sets: graphs in higher dimensions with cells up to dimension n

General form: $\quad X_{0} \underset{\partial_{0}^{+}}{\stackrel{\partial_{0}^{-}}{\leftrightarrows}} X_{1} \underset{\partial_{1}^{+}}{\stackrel{\partial_{1}^{-}}{\leftrightarrows}} X_{2} \underset{\partial_{2}^{+}}{\stackrel{\partial_{2}^{-}}{\leftrightarrows}} \cdots \underset{\partial_{n-1}^{+}}{\stackrel{\partial_{n-1}^{-}}{\leftrightarrows}} X_{n}$
but we want to forbid non-globular shapes:

Globular sets

\boldsymbol{n}-globular sets: graphs in higher dimensions with cells up to dimension n

such that $\partial_{i}^{\epsilon} \circ \partial_{i+1}^{-}=\partial_{i}^{\epsilon} \circ \partial_{i+1}^{+}$.
Glob $_{n}$: category of n-globular sets

Monads and algebras

- monads

A monad (T, η, μ) on some category C is the data of a functor:

$$
T: C \rightarrow C
$$

together with natural transformations

$$
\eta: 1 \rightarrow T \quad \mu: T \circ T \rightarrow T
$$

such that

Monads and algebras

- monads
- algebras

An algebra for a monad $T: C \rightarrow C$ is a pair

$$
(X, h: T X \rightarrow X)
$$

such that

C^{T} or Alg: category of algebras on T.

Monads and algebras

- monads
- algebras
- canonical adjunction

Given a monad $T: C \rightarrow C$, there is a canonical adjunction

$$
C \underset{U^{\top}}{\stackrel{F^{T}}{\leftrightarrows}} \mathbf{A l g}
$$

with

$$
\begin{array}{cccc}
F^{T}: & X & \mapsto & \left(T X, \mu_{X}\right) \\
U^{T}: & (X, h) & \mapsto & X
\end{array}
$$

Monads and algebras

- monads
- algebras
- canonical adjunction
- example

Monad T : Set \rightarrow Set of free monoids on sets.

$$
X=\{x, y, z\} \quad \rightsquigarrow \quad[],[y],[z, x, y] \in T X
$$

A T-algebra is then exactly a monoid: $\mathbf{A l g} \simeq$ Mon.
The canonical adjunction is then

$$
\text { Set } \underset{U^{T}}{\stackrel{F^{T}}{\rightleftarrows}} \mathbf{A l g} \simeq \text { Mon }
$$

Monads and equational definitions

How do we retrieve monads from equational definitions?

Monads and equational definitions

How do we retrieve monads from equational definitions?
Example: 1-categories
Sets C_{0}, C_{1} with operations

$$
\partial^{-}, \partial^{+}: C_{1} \rightarrow C_{0} \quad \text { id }: C_{0} \rightarrow C_{1} \quad *: C_{1} \times 0 C_{1} \rightarrow C_{1}
$$

with

$$
C_{1} \times{ }_{0} C_{1}=\left\{(u, v) \in C_{1} \times C_{1} \mid \partial^{+}(u)=\partial^{-}(v)\right\}
$$

satisfying...

Monads and equational definitions

How do we retrieve monads from equational definitions?
Example: 1-categories
Sets C_{0}, C_{1} with operations

$$
\partial^{-}, \partial^{+}: C_{1} \rightarrow C_{0} \quad \text { id }: C_{0} \rightarrow C_{1} \quad *: C_{1} \times 0 C_{1} \rightarrow C_{1}
$$

with

$$
C_{1} \times{ }_{0} C_{1}=\left\{(u, v) \in C_{1} \times C_{1} \mid \partial^{+}(u)=\partial^{-}(v)\right\}
$$

satisfying...

- every 1-category has an underlying 1-globular set

Monads and equational definitions

How do we retrieve monads from equational definitions?
Example: 1-categories
Sets C_{0}, C_{1} with operations

$$
\partial^{-}, \partial^{+}: C_{1} \rightarrow C_{0} \quad \text { id }: C_{0} \rightarrow C_{1} \quad *: C_{1} \times 0 C_{1} \rightarrow C_{1}
$$

with

$$
C_{1} \times{ }_{0} C_{1}=\left\{(u, v) \in C_{1} \times C_{1} \mid \partial^{+}(u)=\partial^{-}(v)\right\}
$$

satisfying...

- every 1-category has an underlying 1-globular set
- it induces an adjunction Glob $_{1} \underset{U}{\stackrel{F}{\rightleftarrows}}$ Cat

Monads and equational definitions

How do we retrieve monads from equational definitions?
Example: 1-categories
Sets C_{0}, C_{1} with operations

$$
\partial^{-}, \partial^{+}: C_{1} \rightarrow C_{0} \quad \text { id }: C_{0} \rightarrow C_{1} \quad *: C_{1} \times 0 C_{1} \rightarrow C_{1}
$$

with

$$
C_{1} \times{ }_{0} C_{1}=\left\{(u, v) \in C_{1} \times C_{1} \mid \partial^{+}(u)=\partial^{-}(v)\right\}
$$

satisfying...

- every 1-category has an underlying 1-globular set
- it induces an adjunction Glob $_{1} \underset{U}{\stackrel{F}{\leftrightarrows}}$ Cat
- we get a monad $T=U \circ F$ on $\mathbf{G l o b}_{1}$ for which $\mathbf{A l g} \simeq$ Cat

Batanin's perspective

Definition (Batanin, 98)

A theory of n-categories is a monad T on n-globular sets.
An instance structure of such theory is a T-algebra.

Batanin's perspective

Definition (Batanin, 98)

A theory of n-categories is a monad T on n-globular sets.
An instance structure of such theory is a T-algebra.

We saw how this perspective related to usual equational definitions.
Let's see what we can do with it.

Batanin's framework

Some general constructions

Avoiding the monad

Conclusion

Operations on globular algebras

Let (T, η, μ) be a theory of n-category (i.e. a monad on $\mathbf{G l o b}_{n}$)

Operations on globular algebras

Let (T, η, μ) be a theory of n-category (i.e. a monad on $\mathbf{G l o b}_{n}$)
By the properties of categories of algebras, we get an adjunction:

$$
\mathbf{G l o b}_{n} \underset{\mathcal{U}_{n}}{\stackrel{\mathcal{F}_{n}}{\longleftarrow}} \mathbf{A l g}_{n}
$$

- $\mathbf{A l g}_{n}$: category of algebras on T (a.k.a. n-globular algebras)
- \mathcal{U}_{n} and \mathcal{F}_{n} : the canonical right and left adjoints

$$
\begin{array}{cccc}
\mathcal{U}_{n}: & (X, h) & \mapsto & X \\
\mathcal{F}_{n}: & X & \mapsto & \left(T X, \mu_{X}\right)
\end{array}
$$

Operations on globular algebras

Let (T, η, μ) be a theory of n-category (i.e. a monad on $\mathbf{G l o b}_{n}$)
By the properties of categories of algebras, we get an adjunction:

$$
\mathbf{G l o b}_{n} \underset{\mathcal{U}_{n}}{\stackrel{\mathcal{F}_{n}}{\longleftarrow}} \mathbf{A l g}_{n}
$$

- $\mathbf{A l g}_{n}$: category of algebras on T (a.k.a. n-globular algebras)
- \mathcal{U}_{n} and \mathcal{F}_{n} : the canonical right and left adjoints

$$
\begin{array}{cccc}
\mathcal{U}_{n}: & (X, h) & \mapsto & X \\
\mathcal{F}_{n}: & X & \mapsto & \left(T X, \mu_{X}\right)
\end{array}
$$

\rightsquigarrow we have a notion of free n-category on an n-globular set

Example

Suppose that $n=2$ and T is the monad of strict 2-categories.

Example

Suppose that $n=2$ and T is the monad of strict 2-categories.
We can use \mathcal{F}_{2} to generate the free 2-category on the 2-globular set

Example

Suppose that $n=2$ and T is the monad of strict 2-categories.
We can use \mathcal{F}_{2} to generate the free 2-category on the 2-globular set

and obtain a 2-category with the cells

$$
a *_{0} b, \quad d *_{0}\left(e *_{0} h\right), \quad \alpha *_{1} \beta, \quad\left(\alpha *_{0} \gamma\right) *_{1}\left(\beta *_{0} \delta\right), \quad \text { etc. }
$$

Example

Suppose that $n=2$ and T is the monad of strict 2-categories.
But we can still not generate 2-categories from complex generators

Operations on globular sets

Truncation: given $k<1$, there is a functor

$$
\begin{array}{rccc}
(-)_{l, \leq k}^{\text {Glob }}: & \text { Glob }_{/} & \rightarrow & \text { Glob }_{k} \\
X & \mapsto & X_{\leq k}
\end{array}
$$

mapping

$$
X=X_{0} \underset{\partial_{0}^{+}}{\stackrel{\partial_{0}^{-}}{\leftrightarrows}} X_{1} \underset{\partial_{1}^{+}}{\stackrel{\partial_{1}^{-}}{\leftrightarrows}} X_{2} \underset{\partial_{2}^{+}}{\stackrel{\partial_{2}^{-}}{\leftrightarrows}} \cdots \underset{\partial_{l-1}^{+}}{\partial_{l-1}^{-}} X_{l}
$$

to

$$
X_{\leq k}=X_{0} \underset{\partial_{0}^{+}}{\stackrel{\partial_{0}^{-}}{\leftrightarrows}} X_{1} \underset{\partial_{1}^{+}}{\stackrel{\partial_{1}^{-}}{\leftrightarrows}} X_{2} \underset{\partial_{2}^{+}}{\stackrel{\partial_{2}^{-}}{\leftrightarrows}} \cdots \underset{\partial_{k-1}^{+}}{\stackrel{\partial_{k-1}^{-}}{\leftrightarrows}} X_{k}
$$

Operations on globular sets

Inclusion: given $k<I$, there is a functor

$$
\begin{aligned}
(-)_{k, \uparrow l}^{\text {Glob }: \mathbf{G l o b}_{k}} & \rightarrow \mathbf{G l o b}_{/} \\
X & \mapsto
\end{aligned} X_{\uparrow k}
$$

mapping
to

Other dimensions

Using the truncation and inclusion operations on globular sets, we can define monads

$$
T^{k}=\mathbf{G l o b}_{k} \xrightarrow{(-)_{k, \uparrow n}^{G} \mathrm{Glob}} \mathbf{G l o b}_{n} \xrightarrow{T} \mathbf{G l o b}_{n} \xrightarrow{(-)_{n, \leq k}^{\text {Glob }}} \mathbf{G l o b}_{k}
$$

on $\mathbf{G l o b}_{k}$ for $k \in\{0, \ldots, n-1\}$.

Other dimensions

Using the truncation and inclusion operations on globular sets, we can define monads

$$
T^{k}=\mathbf{G l o b}_{k} \xrightarrow{(-)_{k, \uparrow n}^{\text {Glob }}} \mathbf{G l o b}_{n} \xrightarrow{T} \mathbf{G l o b}_{n} \xrightarrow{(-)_{n, \leq k}^{\text {Glob }}} \mathbf{G l o b}_{k}
$$

on $\mathbf{G l o b}_{k}$ for $k \in\{0, \ldots, n-1\}$.
\rightsquigarrow derived theories of k-categories for $k \in\{0, \ldots, n\}$!
$\mathbf{A l g}_{k}$: the category of k-globular algebras / k-categories

Other dimensions

Using the truncation and inclusion operations on globular sets, we can define monads

$$
T^{k}=\mathbf{G l o b}_{k} \xrightarrow{(-)_{k, \uparrow n}^{\text {Glob }}} \mathbf{G l o b}_{n} \xrightarrow{T} \mathbf{G l o b}_{n} \xrightarrow{(-)_{n, \leq k}^{\text {Glob }}} \mathbf{G l o b}_{k}
$$

on $\mathbf{G l o b}_{k}$ for $k \in\{0, \ldots, n-1\}$.
\rightsquigarrow derived theories of k-categories for $k \in\{0, \ldots, n\}$!
$\mathbf{A l g}_{k}$: the category of k-globular algebras / k-categories
We still have the canonical adjunction for the other dimensions:

Operations on globular algebras

Using truncation and inclusion on globular sets again, we can build a truncation functor

$$
\begin{array}{rllc}
(-)_{k+1, \leq k}^{\mathrm{Alg}}: & \mathbf{A l g}_{k+1} & \rightarrow & \mathbf{A l g}_{k} \\
& (X, h) & \mapsto & \left(X_{\leq k}, h_{\leq k}\right)
\end{array} \quad \text { (approximately) }
$$

between $(k+1)$-categories and k-categories for $k<n$.

Operations on globular algebras

Using truncation and inclusion on globular sets again, we can build a truncation functor

$$
\begin{array}{rllc}
(-)_{k+1, \leq k}^{\mathrm{Alg}}: & \mathbf{A l g}_{k+1} & \rightarrow & \mathbf{A l g}_{k} \\
(X, h) & \mapsto & \left(X_{\leq k}, h_{\leq k}\right)
\end{array} \quad \text { (approximately) }
$$

between $(k+1)$-categories and k-categories for $k<n$.
Proposition
The functor $(-)_{k+1, \leq k}^{\mathrm{Alg}}$ admits a left adjoint

$$
(-)_{k, \uparrow k+1}^{\mathrm{Alg}}: \mathbf{A l g}_{k} \rightarrow \mathbf{A} \mathbf{I g}_{k+1}
$$

Operations on globular algebras

Using truncation and inclusion on globular sets again, we can build a truncation functor

$$
\begin{array}{rllc}
(-)_{k+1, \leq k}^{\mathrm{Alg}}: & \mathbf{A l g}_{k+1} & \rightarrow & \mathbf{A l g}_{k} \\
(X, h) & \mapsto & \left(X_{\leq k}, h_{\leq k}\right)
\end{array} \quad \text { (approximately) }
$$

between $(k+1)$-categories and k-categories for $k<n$.
Proposition
The functor $(-)_{k+1, \leq k}^{\mathrm{Alg}}$ admits a left adjoint

$$
(-)_{k, \uparrow k+1}^{\mathrm{Alg}}: \mathbf{A l g}_{k} \rightarrow \mathbf{A} \mathbf{I g}_{k+1}
$$

\rightsquigarrow there is a free $(k+1)$-category on a k-category.

Freely adding generators

Nice. But can we freely generate a $(k+1)$-category from a k-category and a set of $(k+1)$-generators?

Example: starting from a 1 -category C with 1 -cells $f, f^{\prime}, g, g^{\prime}$ as in

can we build a 2-category from C by freely adding two 2-cells

and

?

Cellular extensions

k-cellular extensions: pair (C, X) of a k-category C and a set of $(k+1)$-generators X.

Cellular extensions

k-cellular extensions: pair (C, X) of a k-category C and a set of $(k+1)$-generators X.
Previous example: a 1-cellular extension (C, X) with

$$
X=\left\{\alpha: f \Rightarrow f^{\prime}, \quad \beta: g \Rightarrow g^{\prime}\right\}
$$

Cellular extensions

k-cellular extensions: pair (C, X) of a k-category C and a set of $(k+1)$-generators X.
Category $\mathbf{A l g}_{k}^{+}$of k-cellular extensions: defined as the pullback

Cellular extensions

k-cellular extensions: pair (C, X) of a k-category C and a set of $(k+1)$-generators X.
Category $\mathbf{A l g}_{k}^{+}$of k-cellular extensions: defined as the pullback

Alternatively, a k-cellular extension is a pair (C, X) with $C \in \mathbf{A l g}_{k}, X \in$ Set equipped with functions

$$
\mathrm{d}_{k}^{-}, \mathrm{d}_{k}^{+}: X \rightarrow C_{k}
$$

such that $\partial_{k-1}^{\epsilon} \circ \mathrm{d}_{k}^{-}=\partial_{k}^{\epsilon} \circ \mathrm{d}_{k}^{+}$for $\epsilon \in\{-,+\}$.

Free extensions

By the universal property of the pullback, there is a functor

$$
\mathcal{V}_{k}: \mathbf{A l g}_{k+1} \rightarrow \mathbf{A l g}_{k}^{+}
$$

which forgets the structure on the $k+1$ dimension.

Free extensions

By the universal property of the pullback, there is a functor

$$
\mathcal{V}_{k}: \mathbf{A l g}_{k+1} \rightarrow \mathbf{A l g}_{k}^{+}
$$

which forgets the structure on the $k+1$ dimension.
Theorem
The functor \mathcal{V}_{k} admits a left adjoint $-[-]^{k}: \mathbf{A l g}_{k}^{+} \rightarrow \mathbf{A l g}_{k+1}$.

Free extensions

By the universal property of the pullback, there is a functor

$$
\mathcal{V}_{k}: \mathbf{A l g}_{k+1} \rightarrow \mathbf{A l g}_{k}^{+}
$$

which forgets the structure on the $k+1$ dimension.

Theorem

The functor \mathcal{V}_{k} admits a left adjoint $-[-]^{k}: \mathbf{A l g}_{k}^{+} \rightarrow \mathbf{A l g}_{k+1}$.
Given $(C, X) \in \mathbf{A l g}_{k}^{+}$, the free $(k+1)$-category $C[X]$ on (C, X) is expressed as a pushout in $\mathbf{A l g}_{k+1}$

Free extensions

By the universal property of the pullback, there is a functor

$$
\mathcal{V}_{k}: \mathbf{A l g}_{k+1} \rightarrow \mathbf{A l g}_{k}^{+}
$$

which forgets the structure on the $k+1$ dimension.

Theorem

The functor \mathcal{V}_{k} admits a left adjoint $-[-]^{k}: \mathbf{A l g}_{k}^{+} \rightarrow \mathbf{A l g}_{k+1}$.
Given $(C, X) \in \mathbf{A l g}_{k}^{+}$, the free $(k+1)$-category $C[X]$ on (C, X) is expressed as a pushout in $\mathbf{A l g}_{k+1}$

\rightsquigarrow we can freely extend a k-category with $(k+1)$-generators!

Free higher categories

We saw that higher categories can be freely generated on globular sets.

Generated cells:

$$
a *_{0} b, \quad d *_{0}\left(e *_{0} h\right), \quad \alpha *_{1} \beta, \quad\left(\alpha *_{0} \gamma\right) *_{1}\left(\beta *_{0} \delta\right), \quad \text { etc. }
$$

Free higher categories

We saw that higher categories can be freely generated on globular sets.
But this is not satisfactory: what about generators with composites as source and target?

Polygraphs

We need a more complex structure than globular sets

Polygraphs

We need a more complex structure than globular sets: polygraphs [Street, Burroni]

Polygraphs

We need a more complex structure than globular sets: polygraphs [Street, Burroni]
Example: the 3-polygraph P of pseudomonoids

$$
\begin{aligned}
& \mathrm{P}_{0}=\{*\} \quad \mathrm{P}_{1}=\{\mid: * \rightarrow *\} \\
& \left.P_{2}=\{\quad, \quad\rangle\right\} \\
& P_{3}=\{L: Q \Rightarrow 1, \quad R: \vartheta \Rightarrow 1, \quad A: \vee \Rightarrow \forall
\end{aligned}
$$

Polygraphs from cellular extensions

We define by induction on k a category $\mathbf{P o l}_{k}$ and a functor

$$
(-)^{*, k}: \mathbf{P o l}_{k} \rightarrow \mathbf{A l g}_{k}
$$

Polygraphs from cellular extensions

We define by induction on k a category $\mathbf{P o l}_{k}$ and a functor

$$
(-)^{*, k}: \mathbf{P o l}_{k} \rightarrow \mathbf{A l g}_{k}
$$

- $\mathbf{P o l}_{0}=\mathbf{G l o b}_{0}$ and $(-)^{*, 0}=F^{T^{0}}$

$$
(-)^{*, 0}=\mathbf{P o l}_{0}=\mathbf{G l o b}_{0} \xrightarrow{F^{T^{0}}} \mathbf{A l g}_{0}
$$

Polygraphs from cellular extensions

We define by induction on k a category $\mathbf{P o l}_{k}$ and a functor

$$
(-)^{*, k}: \mathbf{P o l}_{k} \rightarrow \mathbf{A l g}_{k}
$$

- $\mathbf{P o l}_{0}=\mathbf{G l o b}_{0}$ and $(-)^{*, 0}=F^{T^{0}}$
- $\mathbf{P o l}_{k+1}$ defined as the pullback

$$
\begin{aligned}
& \mathbf{P o l}_{k+1} \ldots \mathcal{E}_{k+1} \rightarrow \mathbf{A l g}_{k}^{+} \\
& (-)_{k+1, \leq k}^{\mathrm{Pol}} \stackrel{\vdots}{\vdots} \\
& \mathbf{P o I}_{k} \xrightarrow[(-)^{*, k}]{ } \mathbf{A l g}_{k}
\end{aligned}
$$

Polygraphs from cellular extensions

We define by induction on k a category $\mathbf{P o l}_{k}$ and a functor

$$
(-)^{*, k}: \mathbf{P o l}_{k} \rightarrow \mathbf{A l g}_{k}
$$

- $\mathbf{P o l}_{0}=\mathbf{G l o b}_{0}$ and $(-)^{*, 0}=F^{T^{0}}$
- $\mathbf{P o l}_{k+1}$ defined as the pullback

$$
\begin{gathered}
(-)_{k+1, \leq k}^{\mathrm{Pol}, \leq \vdots} \vdots \\
\mathbf{P o l}_{k} \xrightarrow[(-)^{*, k}]{ } \mathbf{A l g}_{k}
\end{gathered}
$$

- $(-)^{*, k+1}$ defined as $-[-]^{k} \circ \mathcal{E}_{k+1}$

Polygraphs from cellular extensions

We define by induction on k a category $\mathbf{P o l}_{k}$ and a functor

$$
(-)^{*, k}: \mathbf{P o l}_{k} \rightarrow \mathbf{A l g}_{k}
$$

- $\mathbf{P o l}_{0}=\mathbf{G l o b}_{0}$ and $(-)^{*, 0}=F^{T^{0}}$
- $\mathbf{P o l}_{k+1}$ defined as the pullback

$$
\begin{gathered}
(-)_{k+1, \leq k}^{\mathrm{Pol}, \leq k} \vdots \\
\mathbf{P o l}_{k} \xrightarrow[(-)^{*, k}]{ } \mathbf{A l g}_{k}
\end{gathered}
$$

- $(-)^{*, k+1}$ defined as $-[-]^{k} \circ \mathcal{E}_{k+1}$
\rightsquigarrow notion of free k-category on a k-polygraph!

Batanin revisited

Theorem (Batanin, F.)

Polygraphs and free categories on polygraphs are well-defined for globular algebras.

- Another proof using cellular extensions as intermediate constructions.

Batanin's framework

Some general constructions

Avoiding the monad

Conclusion

Avoiding the monad

Batanin viewpoint based on monads allows defining giving common definition for several operations.

Avoiding the monad

Batanin viewpoint based on monads allows defining giving common definition for several operations.

However, higher categories are usually not defined by monads, but by equational definitions.

Theory of 1-categories:

$$
\partial^{-}, \partial^{+}: C_{1} \rightarrow C_{0} \quad \text { id }: C_{0} \rightarrow C_{1} \quad *: C_{1} \times{ }_{0} C_{1} \rightarrow C_{1}
$$

with

$$
C_{1} \times_{0} C_{1}=\left\{(u, v) \in C_{1} \times C_{1} \mid \partial^{+}(u)=\partial^{-}(v)\right\}
$$

satisfying...

Avoiding the monad

Batanin viewpoint based on monads allows defining giving common definition for several operations.

However, higher categories are usually not defined by monads, but by equational definitions.

Computing the monad associated to an equational theory: doable but tedious.
Can we define some of the previous operations without computing the monad?

Truncation without monads

Given an equational definitions of k and $(k+1)$-categories, the functor

$$
\mathcal{T}: \mathbf{C a t}_{k+1} \rightarrow \text { Cat }_{k}
$$

is usually defined by

- removing the ($k+1$)-cells
- forgetting about the operations on the ($k+1$)-cells

Truncation without monads

Given an equational definitions of k and $(k+1)$-categories, the functor

$$
\mathcal{T}: \mathbf{C a t}_{k+1} \rightarrow \text { Cat }_{k}
$$

is usually defined by

- removing the ($k+1$)-cells
- forgetting about the operations on the $(k+1)$-cells

How can we check that it is equivalent to the one on globular algebras?

$$
\begin{array}{rllc}
(-)_{\leq k}^{\mathrm{Alg}}: & \mathbf{A l g}_{k+1} & \rightarrow & \mathbf{A l g}_{k} \\
(X, h) & \mapsto & \left(X_{\leq k}, h_{\leq k}\right)
\end{array}
$$

Abstract criterion for truncation

Theorem (F.)
Given functors

$$
\mathcal{T}: \text { Cat }_{k+1} \rightarrow \text { Cat }_{k} \quad U: \text { Cat }_{k+1} \rightarrow \text { Glob }_{k+1} \quad U^{\prime}: \text { Cat }_{k} \rightarrow \text { Glob }_{k}
$$

such that (...), there exists equivalence of categories

$$
H: \mathbf{C a t}_{k+1} \rightarrow \mathbf{A l g}_{k+1} \quad H^{\prime}: \mathbf{C a t}_{k} \rightarrow \mathbf{A l g}_{k}
$$

such that the following diagram commutes

Truncability

An important property of a theory of higher category is its truncability.

Truncability

An important property of a theory of higher category is its truncability.
Given a monad T on $\mathbf{G l o b}_{n}, T$ is truncable when

$$
(-)_{\leq k}^{\text {Glob }} \circ T \circ(-)_{\uparrow n}^{\text {Glob }} \circ(-)_{\leq k}^{\text {Glob }}=(-)_{\leq k}^{\text {Glob }} \circ T
$$

for all $k \leq n$.

Truncability

An important property of a theory of higher category is its truncability.
Given a monad T on Glob $_{n}, T$ is truncable when

$$
(-)_{\leq k}^{\text {Glob }} \circ T \circ(-)_{\uparrow n}^{\text {Glob }} \circ(-)_{\leq k}^{\text {Glob }}=(-)_{\leq k}^{\text {Glob }} \circ T
$$

for all $k \leq n$.
Truncability allows proving stability properties like
Proposition
If T is truncable, then, for all k-cellular extension (C, X),

$$
C[X]_{\leq k} \simeq C .
$$

Counter-example

Theory of "weird" 1-categories:

$$
\partial^{-}, \partial^{+}: C_{1} \rightarrow C_{0} \quad *: C_{1} \times{ }_{0} C_{1} \rightarrow C_{0}
$$

satisfying nothing.

The monad $T: \mathbf{G l o b}_{1} \rightarrow \mathbf{G l o b}_{1}$ associated to it verifies that

$$
(T X)_{0} \simeq X_{0} \sqcup\left(X_{1} \times_{0} X_{1}\right) \quad \text { and } \quad(T X)_{1} \simeq X_{1}
$$

Thus, it is not truncable:

$$
\left(T\left(X_{\leq 0}\right)\right)_{\leq 0} \simeq X_{0} \not \nsim \quad X_{0} \sqcup\left(X_{1} \times_{0} X_{1}\right) \simeq(T X)_{\leq 0}
$$

Avoiding the monad, again
Truncability of a theory requires a priori to describe explicitly the associated monad. But it can be avoided.

Avoiding the monad, again

Truncability of a theory requires a priori to describe explicitly the associated monad. But it can be avoided.

Theorem (F.)

The monad (T, η, μ) is truncable if and only if, for $k \in \mathbb{N}_{n-1}$, the functor $(-)_{n, \leq k}^{\mathrm{Alg}}$ has a right adjoint $(-)_{k, \Uparrow n}^{\mathrm{Alg}}$, which satisfies that

$$
\mathrm{j}^{k} U^{T}(-)_{k, \Uparrow n}^{\mathrm{Alg}} \text { is an isomorphism }
$$

where j^{k} is the unit of the adjunction $(-)_{n, \leq k}^{\text {Glob }} \dashv(-)_{k, \Uparrow n}^{\text {Glob }}$.

Avoiding the monad, again

Truncability of a theory requires a priori to describe explicitly the associated monad. But it can be avoided.

Theorem (F.)

The monad (T, η, μ) is truncable if and only if, for $k \in \mathbb{N}_{n-1}$, the functor $(-)_{n, \leq k}^{\mathrm{Alg}}$ has a right adjoint $(-)_{k, \uparrow n}^{\text {Alg }}$, which satisfies that

$$
\mathrm{j}^{k} U^{T}(-)_{k, \uparrow n}^{\mathrm{Alg}} \text { is an isomorphism }
$$

where j^{k} is the unit of the adjunction $(-)_{n, \leq k}^{\text {Glob }} \dashv(-)_{k, \Uparrow n}^{\text {Glob }}$.
By the first abstract criterion, we can replace $(-)_{n, \leq k}^{\mathrm{Alg}}: \mathbf{A l g}_{n} \rightarrow \mathbf{A l g}_{k}$ by a concrete truncation functor $\mathcal{T}: \mathbf{C a t}_{n} \rightarrow \mathbf{C a t}_{k}$ and avoid the description of the monad.

Conclusion

- General definitions for several operations on higher categories
- Categorical approach instead of a syntactic one
- Thus, shortcomings of the syntactic approach were avoided
- The shortcoming of the categorical approach (relying on monads) was dealt with

Perspectives:

- More general arguments using Street's formal theory of monads
- Express more categorical constructions in Batanin's framework

The end

Thank you!
Any questions?

