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Coherence in higher categories:

all parallel cells are equal.
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Coherence in higher categories:

all parallel cells are equal.

Classical example: MacLane’s coherence theorem for monoidal categories.

(A⊗B)⊗I

A⊗B ((A⊗I )⊗B)⊗I

A⊗(I⊗B) (A⊗I )⊗(B⊗I )

(A⊗I )⊗B

ρ ρ−1

λ−1 α=

α−1 ρ

Theorem (MacLane’s coherence property for monoidal categories)

All morphisms made of λ, ρ, α and their inverses between two objects are equal.
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Coherence tiles

Coherence tiles: the axioms allowing the coherence property

((A⊗B)⊗C)⊗D (A⊗(B⊗C))⊗D A⊗((B⊗C)⊗D)

(A⊗B)⊗(C⊗D) A⊗(B⊗(C⊗D))

α

α =

α

α

α

(A⊗I )⊗B A⊗(I⊗B)

A⊗B
λ

α

=
ρ
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Coherence tiles

Coherence tiles: the axioms allowing the coherence property

((w rx) ry) rz (w r(x ry)) rz w r((x ry) rz)

(w rx) r(y rz) w r(x r(y rz))

α

α

α

α

α

(w re) rx w r(e rx)

w rxλ

α

=
ρ

Observation: these coherence tiles are the critical branchings of a rewriting system.

(x re)  x (e rx)  x (x ry) rz  x r(y rz)
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Coherence in strict categories

Several weak structures can be expressed in strict categories (paradoxically!):

I pseudomonoids

I pseudoadjunctions

I Frobenius pseudoalgebras

I etc.

Guiraud and Malbos developed a rewriting framework for finding coherence definitions
for them.

Theorem ([G-M,08])

If a strict n-category is presented using a terminating and confluent n-polygraph, then
a set of coherence conditions is given by the confluence diagrams of the critical
branchings.
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Coherence in strict categories

In particular, they recover MacLane’s coherence theorem for monoidal categories:

I a monoidal category is a pseudomonoid in an adequate 3-category

I pseudomonoids can be presented using a terminating and confluent 3-polygraph P

P0 = {∗} P1 = {1̄ : ∗ → ∗}

P2 = { : 0̄⇒ 1̄, : 2̄⇒ 1̄ }

P3 = { L : V , R : V , A : V }

I the coherence conditions derived from the critical branchings entail coherence

I these conditions are essentially the same than the ones of MacLane



4/56

Coherence in strict categories

In particular, they recover MacLane’s coherence theorem for monoidal categories:

I a monoidal category is a pseudomonoid in an adequate 3-category

I pseudomonoids can be presented using a terminating and confluent 3-polygraph P

P0 = {∗} P1 = {1̄ : ∗ → ∗}

P2 = { : 0̄⇒ 1̄, : 2̄⇒ 1̄ }

P3 = { L : V , R : V , A : V }

I the coherence conditions derived from the critical branchings entail coherence

I these conditions are essentially the same than the ones of MacLane



4/56

Coherence in strict categories

In particular, they recover MacLane’s coherence theorem for monoidal categories:

I a monoidal category is a pseudomonoid in an adequate 3-category

I pseudomonoids can be presented using a terminating and confluent 3-polygraph P

P0 = {∗} P1 = {1̄ : ∗ → ∗}

P2 = { : 0̄⇒ 1̄, : 2̄⇒ 1̄ }

P3 = { L : V , R : V , A : V }

I the coherence conditions derived from the critical branchings entail coherence

I these conditions are essentially the same than the ones of MacLane



4/56

Coherence in strict categories

In particular, they recover MacLane’s coherence theorem for monoidal categories:

I a monoidal category is a pseudomonoid in an adequate 3-category

I pseudomonoids can be presented using a terminating and confluent 3-polygraph P

P0 = {∗} P1 = {1̄ : ∗ → ∗}

P2 = { : 0̄⇒ 1̄, : 2̄⇒ 1̄ }

P3 = { L : V , R : V , A : V }

I the coherence conditions derived from the critical branchings entail coherence

I these conditions are essentially the same than the ones of MacLane



4/56

Coherence in strict categories

In particular, they recover MacLane’s coherence theorem for monoidal categories:

I a monoidal category is a pseudomonoid in an adequate 3-category

I pseudomonoids can be presented using a terminating and confluent 3-polygraph P

P0 = {∗} P1 = {1̄ : ∗ → ∗}

P2 = { : 0̄⇒ 1̄, : 2̄⇒ 1̄ }

P3 = { L : V , R : V , A : V }

I the coherence conditions derived from the critical branchings entail coherence

I these conditions are essentially the same than the ones of MacLane



5/56

Strict categories and homotopy

Strict categories are “easy” but have bad homotopical properties. Depending on the
definitions:

I no good realization functor from strict categories to Top

I not all homotopy type can be modeled with strict categories

I vanishing Whitehead products

I etc.

Thus, weakened structures expressed in strict categories are not the most general
somehow.

The most general definitions can be obtained by considering structures expressed in
weak categories.
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Bicategories

The standard definition of weak 2-dimensional categories are bicategories.

A priori, weakened 2-dimensional structures should be considered in bicategories in
order to obtain the most general definitions.

But actually, studying strict 2-categories is enough since

Theorem ([MacLane,85])

Every bicategory is “equivalent” to a strict 2-category.
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Tricategories

The standard definition of weak 3-dimensional categories are tricategories.

Is it enough to study 3-dimensional structures in strict 3-categories?

No, since

Observation
Not all tricategories are “equivalent” to strict 3-categories.

This is a shame since tricategories are terrible to work with.
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Tricategories

The standard definition of weak 3-dimensional categories are tricategories.

Is it enough to study 3-dimensional structures in strict 3-categories?

No, since

Observation
Not all tricategories are “equivalent” to strict 3-categories.

This is a shame since tricategories are terrible to work with.
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Gray categories

However, we have the following coherence property:

Theorem ([Gordon, Power, Street, 95])

Every tricategory is “equivalent” to a Gray category.
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Gray categories

Gray categories

I almost like strict 3-categories

I unital and associative compositions

I but no exchange law for 2-cells
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Gray categories

I almost like strict 3-categories

I unital and associative compositions

I but no exchange law for 2-cells

f g

φ

ψ

f ′ g ′

6=

f g

φ

ψ

f ′ g ′
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Gray categories

I almost like strict 3-categories

I unital and associative compositions

I but no exchange law for 2-cells

Xφ,ψ :

f g

φ

ψ

f ′ g ′

V

f g

φ

ψ

f ′ g ′
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Extending rewriting theory

For finding coherent definitions of Gray categories, rewriting techniques are desirable.

But Gray categories are not “equivalent” to strict 3-categories, so existing tools can
not be used readily.

Thus, we need to develop rewriting theory for an other kind of higher categories.



9/56

Extending rewriting theory

For finding coherent definitions of Gray categories, rewriting techniques are desirable.

But Gray categories are not “equivalent” to strict 3-categories, so existing tools can
not be used readily.

Thus, we need to develop rewriting theory for an other kind of higher categories.



9/56

Extending rewriting theory

For finding coherent definitions of Gray categories, rewriting techniques are desirable.

But Gray categories are not “equivalent” to strict 3-categories, so existing tools can
not be used readily.

Thus, we need to develop rewriting theory for an other kind of higher categories.



9/56

Extending rewriting theory

In fact, considering other higher categories is good since

I recent works on higher dimensional rewriting are biased towards strict categories

I strict categories are not “that” special regarding rewriting

I several shortcomings with strict categories (shapes of critical branchings, no good
finiteness property)
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Rewriting for Gray categories

One might think:

“If strict categories were used for rewriting in strict categories,
well,

Gray categories should be used for rewriting in Gray categories.”

But the interactions between interchange cells and operational cells must be studied.

X A

Thus, another setting is needed: precategories.
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Strict categories

A strict n-category is an n-globular set C equipped with operations

idi+1 : Ci → Ci+1

and, for i < k ≤ n,
(−) ∗i (−) : Ck ×i Ck → Ck

which are unital and associative

, and should satisfy an exchange law

x y z

f1

f2

f3

g1

g2

g3

⇓φ

⇓φ′

⇓ψ

⇓ψ′

(φ ∗1 φ
′) ∗0 (ψ ∗1 ψ

′) = (φ ∗0 ψ) ∗1 (φ′ ∗0 ψ
′)
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Strict categories

Exchange law: alternatively described using a distributivity and a smaller exchange
condition.
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Strict categories

Exchange law: alternatively described using a distributivity and a smaller exchange
condition.

Distributivity property:

(x yf ) ∗i


y z

g

g ′
⇓φ
∗i+1

y zg ′

g ′′

⇓φ′

 =

(x yf ) ∗i y z

g

g ′
⇓φ

∗i+1

(x yf ) ∗i y zg ′

g ′′

⇓φ′

and similarly on the right.
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Strict categories

Exchange law: alternatively described using a distributivity and a smaller exchange
condition.

Smaller exchange property:

x y

f

f ′

⇓u
∗i (y z

g
)

∗i+1

(x yf ′ ) ∗i y z
g

g ′

⇓v

=

(x yf ) ∗i y z

g

g ′

⇓v

∗i+1

x yf

f ′

⇓u
∗i (y z

g ′
)
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Strict categories

Exchange law: alternatively described using a distributivity and a smaller exchange
condition.

Smaller exchange property:

f g

u

v

f ′ g ′

=

f g

u

v

f ′ g ′
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Free constructions on strict categories

By general constructions, we have

I a category Cat+
n of n-cellular extensions (n-categories + generating (n+1)-cells)

I a free extension functor

−[−]n : Cat+
n → Catn+1

(C ,X ) → C [X ]

I a category Poln of n-polygraphs

I a free-category-on-polygraph functor

(−)∗,n : Poln → Catn
P → P∗



15/56

Word problem on strict categories

Given an n-polygraph P, the elements of P∗ are quotients of valid terms that can be
written on P:

id1
x , (a ∗0 b) ∗0 c , a ∗0 (b ∗0 c), (α ∗1 β) ∗0 id

2
d , etc.

Word problem: deciding whether two terms denote the same cell in P∗.

Theorem ([Makkai,05])

The word problem for strict categories is decidable.

I however, the procedure is intricate and expensive

I arguably, rewriting algorithms on str. cat. must be as expensive
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Precategories
An n-precategory is an n-globular set C equipped with operations

idi+1 : Ci → Ci+1

and, for k, l ≤ n,
(−) r

k,l (−) : Ck ×min(k,l)−1 Cl → Cmax(k,l)

which are unital, associative, and distributive.

But not required to satisfy the exchange condition.

f g

φ

ψ

f ′ g ′

6=

f g

φ

ψ

f ′ g ′
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Precategories

As expected, the following property holds:

Theorem
A strict n-category is exactly an n-precategory satisfying the exchange condition.



17/56

Free constructions on precategories

By general constructions, we have

I a category PCat+
n of n-cellular extensions (n-precategories + generating

(n+1)-cells)

I a free extension functor

−[−]n : PCat+
n → PCatn+1

(C ,X ) → C [X ]

I a category PPoln of n-polygraphs

I a free-category-on-polygraph functor

(−)∗,n : PPoln → PCatn
P → P∗
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Free extensions on precategories

Given an n-cellular extension (C ,X ), the elements of C [X ] are easily described: those
are the sequences

u1
r
n · · · rn uk

where each ui is a whiskered generator, i.e., is of the form

ln r
n−1 (· · · (l1 r

0 g r
0 r1) · · · ) r

n−1 rn

for some lj , rj ∈ Cj and g ∈ X .

The case of polygraphs: given an n-polygraph P, the cells of P∗ can be described as
inductive sequences of whiskered generators.
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Word problem on precategories

As a consequence,

Theorem
The word problem for precategories is decidable.

Indeed, the decision procedure is quite simple:

let test_pcat_eq c1 c2 =

c1 = c2

I good sign for developing a rewriting framework on precategories
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Enriched definition

Higher categories can also be defined through enrichment.
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Enriched definition

Given a monoidal category (V, 1,⊗), a V-enriched category is the data of

I a set C0

I objects C (x , y) ∈ V for all x , y ∈ C0

together with

I morphisms ix : 1→ C (x , x) for x ∈ C0

I morphisms cx ,y ,z : C (x , y)⊗ C (y , z)→ C (x , z) for x , y , z ∈ C0

that are unital and associative.
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I objects C (x , y) ∈ V for all x , y ∈ C0

together with

I morphisms ix : 1→ C (x , x) for x ∈ C0

I morphisms cx ,y ,z : C (x , y)⊗ C (y , z)→ C (x , z) for x , y , z ∈ C0

that are unital and associative.

(C (w , x)⊗ C (x , y))⊗ C (y , z)

C (w , y)⊗ C (y , z)

C (w , x)⊗ (C (x , y)⊗ C (y , z)) C (w , x)⊗ C (x , z)

C (w , z)

cw,x,y⊗C(y ,z) cw,y,z

αC(w,x),C(x,y),C(y,z)

C(w ,x)⊗cx,y,z

cw,x,z
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Enriched definition

Example: a strict 2-category is a category enriched over (Cat, 1,×)

C = f f ′
φ

D = g g ′
ψ

C × D =

(f , g) (f , g ′)

(f ′, g) (f ′, g ′)

(f ,ψ)

(φ,g) = (φ,g ′)

(f ′,ψ)
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f g

φ

ψ

f ′ g ′

=

f g

φ

ψ

f ′ g ′
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Tensor product on Cat2

The two previous tensor products on Cat1 can be easily generalized to Cat2

C × D =

(f , g) (f , g ′)

(f ′, g) (f ′, g ′)

(f ,ψ)

(φ,g) = (φ,g ′)

(f ′,ψ)

C � D =

(f , g) (f , g ′)

(f ′, g) (f ′, g ′)

(f ,ψ)

(φ,g) 6= (φ,g ′)

(f ′,ψ)
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Tensor product on Cat2

A new tensor product on Cat2 is given by the Gray tensor product �

C � D =

(f , g) (f , g ′)

(f ′, g) (f ′, g ′)

(f ,ψ)

(φ,g)
χ
⇒ (φ,g ′)

(f ′,ψ)
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Tensor product on Cat2

A new tensor product on Cat2 is given by the Gray tensor product �

Xφ,ψ :

f g

φ

ψ

f ′ g ′

V

f g

φ

ψ

f ′ g ′
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Gray categories

A Gray category is then a category enriched over Cat2 equipped with Gray tensor
product.

Idea: it is a 3-precategory with interchange 3-cells for 2-cells with some axioms on
3-cells.

Xφ,ψ :

f g

φ

ψ

f ′ g ′

V

f g

φ

ψ

f ′ g ′
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Gray categories
Elements of a Gray category:

I 0-cells and 1-cells

I 2-cells:

I 3-cells:
φ V ψ

I among them, interchangers:

Xφ,ψ :

f g

φ

ψ

f ′ g ′

V

f g

φ

ψ

f ′ g ′
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Gray categories

I composition of 2-cells with 1-cells on the left and the right

r
0 =

r
0 =

I composition: 2-cells can be composed vertically

r
1 =

I 3-cells can be composed horizontally

( α V β ) r
2 ( β V γ ) = ( α V γ )
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Gray categories

I properties of associativity and unitality

α

βr
1

γ

=

αr
1

β

γ

=
α

β

γ

r
1

α

= α
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Gray categories

Additional conditions are required:

I some compatibilities for X−,−
I an exchange law for 3-cells

I a naturality condition between 3-cells and interchangers
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Gray categories

Additional conditions are required:

I some compatibilities for X−,−

Xφ q1φ′,ψ = ((φ r
0 g) r

1 Xφ′,ψ) r
2 (Xφ,ψ r

1 (φ′ r0 g ′))
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Additional conditions are required:

I some compatibilities for X−,−
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Gray categories

Additional conditions are required:

I some compatibilities for X−,−

Xe q0φ,ψ = e r
0 Xφ,ψ Xφ q0f ,ψ = Xφ,f q0ψ Xφ,ψ q0h = Xφ,ψ r

0 h.

I an exchange law for 3-cells

I a naturality condition between 3-cells and interchangers
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Gray categories

Additional conditions are required:

I some compatibilities for X−,−

and others. . .

I an exchange law for 3-cells

I a naturality condition between 3-cells and interchangers
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Gray categories

Additional conditions are required:

I some compatibilities for X−,−
I an exchange law for 3-cells

A : φV φ′

B : ψ V ψ′

φ

ψ

φ

ψ′

φ′

ψ

φ′

ψ′

B

A = A

B

I a naturality condition between 3-cells and interchangers
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Gray categories

Additional conditions are required:

I some compatibilities for X−,−
I an exchange law for 3-cells

I a naturality condition between 3-cells and interchangers

A : φV φ′

φ

ψ φ

ψ

φ′

ψ φ′

ψ

Xφ,ψ

A = A

Xφ′,ψ
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Gray presentation

In order to use rewriting methods on Gray categories, we need a notion of
presentation.
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Gray presentation

A Gray presentation is the data of a 4-polygraph (of precategories) P such that:

I for each (α : f ⇒ f ′, g , β : h⇒ h′) ∈ P2 ×0 P∗1 ×0 P2, there is a 3-generator Xα,g ,β
I for each instance of the axiom of Gray categories w.r.t. the gererators of P, there

is a 4-generator in P4
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A Gray presentation is the data of a 4-polygraph (of precategories) P such that:

I for each (α : f ⇒ f ′, g , β : h⇒ h′) ∈ P2 ×0 P∗1 ×0 P2, there is a 3-generator Xα,g ,β

Xα,g ,β : (α r
0 g r

0 h) r
1 (f ′ r0 g r

0 β) V (f r
0 g r

0 β) r
1 (α r

0 g r
0 h
′)

α

β

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

f

f ′

g

g

h

h′

V
α

β

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

f

f ′

g

g

h

h′

,

I for each instance of the axiom of Gray categories w.r.t. the gererators of P, there
is a 4-generator in P4
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Gray presentation
Example: given a Gray presentation P, for each

A : φV φ′ B : ψ V ψ′ ∈ P3

and χ ∈ P∗2 (sufficiently composable), there is a 4-generator in P4

φ

χ

ψ

φ

χ

ψ′

φ′

χ

ψ

φ′

χ

ψ′

B

A A

B
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Gray presentation
Example: given a Gray presentation P and

A : φ1
r
1 φ2

r
1 φ3 V ψ1

r
1 ψ2 ∈ P3

with φi = li r
0 αi

r
0 ri and ψi = l ′i

r
0 βi r

0 r
′
i , and

f ∈ P∗1 γ ∈ P2

(sufficiently composable), there is a 4-generator in P4

φ1

φ2

φ3

γ

· · ·

· · ·

φ1

φ2

φ3

γ

· · ·

· · ·

φ1

φ2

φ3

γ

· · ·

· · ·

φ1

φ2

φ3

γ
· · ·

· · ·

ψ1

ψ2

γ

· · ·

· · ·

ψ1

ψ2

γ

· · ·

· · ·

ψ1

ψ2

γ
· · ·

· · ·

Xα3,r3
q
0f ,γ

Xα2,r2
q
0f ,γ

Xα1,r1
q
0f ,γ

Xβ2,r
′
2
q
0f ,γ

Xβ1,r
′
1
q
0f ,γ

A A
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Example: pseudomonoids

The Gray presentation P of pseudomonoids

P0 = {∗} P1 = {1̄ : ∗ → ∗}

P2 = { : 0̄⇒ 1̄, : 2̄⇒ 1̄ }
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Example: pseudomonoids

The Gray presentation P of pseudomonoids

P3 = Pst
3 t Pop

3

with Pst
3 made of generators of the form

Xµ,n̄,µ : V Xµ,n̄,η : V

Xη,n̄,µ : V Xη,n̄,η : V
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Example: pseudomonoids

The Gray presentation P of pseudomonoids

P3 = Pst
3 t Pop

3

with Pst
3 made of generators of the form

Xµ,n̄,µ : V Xµ,n̄,η : V

Xη,n̄,µ : V Xη,n̄,η : V

and

Pop
3 = { L : V , R : V , A : V }
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Example: pseudomonoids

The Gray presentation P of pseudomonoids

P4 = Pst
4 t Pcoh

4
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with Pst
4 made of the different generators required by the definition of Gray presentation

Example:

A

A

A

A
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Example: pseudomonoids

The Gray presentation P of pseudomonoids

P4 = Pst
4 t Pcoh

4

with Pst
4 made of the different generators required by the definition of Gray presentation

Example:

X

A X

X

X A
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Example: pseudomonoids

The Gray presentation P of pseudomonoids

P4 = Pst
4 t Pcoh

4

and Pcoh
4 made of additional generators required for coherence.

Example:

Note: these generators can involve interchange generators.
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Presented category

Let P be a 4-polygraph P.

P: 3-precategory obtained from (P∗)≤3 by quotienting the 3-cells with ∼, where

F ∼ G for all Γ : F V G ∈ P4.



28/56

Presented category

Let C be a 3-precategory.

C>: 3-precategory obtained by formally inverting the 3-cells.
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Presented category

Theorem
Given a Gray presentation P, the 3-precategory P is canonically a lax Gray category.
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Presented category

Theorem
Given a Gray presentation P, the 3-precategory P is canonically a lax Gray category.

The difficult part is showing that the different definitions of X−,− are coherent

Example for X , :

V V V V

V V V V
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Presented category

Theorem
Given a Gray presentation P, the 3-precategory P is canonically a lax Gray category.

Corollary

Given a Gray presentation P, the 3-precategory P
>

is canonically a (3, 2)-Gray category.
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Coherence

We want to show coherence properties:

all the ways to prove that two objects are equivalent are equal

Example for pseudomonoids:

(A⊗B)⊗I

A⊗B ((A⊗I )⊗B)⊗I

A⊗(I⊗B) (A⊗I )⊗(B⊗I )

(A⊗I )⊗B

ρ ρ−1

λ−1 α=

α−1 ρ



30/56

Content

Precategories

Gray categories

Rewriting

Examples
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Coherence from rewriting

I Rewriting system Get a rewriting system: choose a “good” orientation for the
isos of the considered structure

α : (A⊗ B)⊗ C
∼→ A⊗ (B ⊗ C )

λ : (I ⊗ A)
∼→ A

ρ : (A⊗ I )
∼→ A

In particular, we want → terminating

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

∀(C1,C2) critical

φ

φ1 = φ2

ψ

C1 C2

∗ ∗

then

∀(R1,R2)

φ

φ1 = φ2

ψ

R1 R2

∗ ∗

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

∀(R1,R2) rewrite steps

φ

φ1 = φ2

ψ

R1 R2

∗ ∗

then

∀(R1,R2) rewrite paths

φ

φ1 = φ2

ψ

R1

∗
R2

∗

∗ ∗

I Coherence
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence

First case: paths to a normal form ψ̂

φ

ψ̂

R1 ∗ R2∗
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence

First case: paths to a normal form ψ̂

φ

ψ̂ = ψ̂

ψ̂

R1

∗
R2

∗

by Newman’s lemma
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I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence
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First case: paths to a normal form ψ̂

φ

ψ̂
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence

Second case: paths to an arbitrary object ψ

φ

ψ

ψ̂

R1 ∗ R2∗

S∗
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence

Second case: paths to an arbitrary object ψ

φ

ψ = ψ

ψ̂

ψ

R1

∗
R2

∗

S
∗

S
∗

S−1 ∗
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I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence

Second case: paths to an arbitrary object ψ

φ

ψ = ψ

ψ̂

ψ

R1

∗
R2

∗

S
∗

S
∗

S−1 ∗



31/56

Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence

Second case: paths to an arbitrary object ψ

φ

=

ψ

R1
∗

R2
∗
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence

Third case: paths with inverses (α−1,λ−1 ...)
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence

Third case: paths with inverses (α−1,λ−1 ...)

→ Analogous to the proof of the Church-Rosser lemma
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Coherence from rewriting

I Rewriting system

I Critical pair lemma: if critical branchings are confluent, then all local branchings
are confluent

I Newman’s lemma: → terminating and local confluence imply confluence

I Coherence

Axioms for coherence:

∀(C1,C2) critical

φ

φ1 = φ2

ψ

C1 C2

∗ ∗
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Coherence

A 3-precategory C is coherent when, for all parallel F ,G ∈ C3, F = G .

A Gray presentation P is coherent when the (3, 2)-Gray category P
>

is coherent.

Question:

starting from a Gray presentation P, what generators need to be added in Pcoh
4

so that the presentation becomes coherent?
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Coherence

A 3-precategory C is coherent when, for all parallel F ,G ∈ C3, F = G .

A Gray presentation P is coherent when the (3, 2)-Gray category P
>

is coherent.

Question:

starting from a Gray presentation P, what generators need to be added in Pcoh
4

so that the presentation becomes coherent?
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Confluence

A 3-precategory C is confluent when, for 2-cells φ, φ1, φ2 ∈ C2 and 3-cells

F1 : φV φ1 and F2 : φV φ2

of C , there exist a 2-cell ψ ∈ C2 and 3-cells

G1 : φ1 V ψ ∈ C3 and G2 : φ2 V ψ ∈ C3

of C such that F1
r
2 G1 = F2

r
2 G2.

φ

φ1
== φ2

ψ

F1 F2

G1 G2
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Confluence

Confluence implies a Church-Rosser property:

Proposition

Given a confluent 3-precategory C , all

F : φV φ′ ∈ C>3

can be written
F = G r

2 H
−1

for some ψ ∈ C2, G : φV ψ ∈ C3 and H : φ′ V ψ ∈ C3.
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Confluence

Criterion for coherence in C> from confluence in C :

Proposition

Let C be a confluent 3-precategory satisfying that, for all pair of parallel 3-cells

F1,F2 : φV φ′ ∈ C3

there exists
G : φ′ V φ′′ ∈ C3

such that
F1

r
2 G = F2

r
2 G

then C> is coherent.
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Confluence

The hypothesis of the proposition can be obtained with rewriting

φ

ψ

ψ̂

R1 ∗ R2∗

S∗
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Confluence

The hypothesis of the proposition can be obtained with rewriting

φ

ψ = ψ

ψ̂

R1

∗
R2

∗

S
∗

S
∗

By generalized critical pair and Newman lemmas.
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Rewriting system

Rewriting system: data of a 3-polygraph P together with a congruence == on P∗3.

Note: a Gray presentation Q induces a rewriting system (Q≤3,==).

Since P∗ is a 3-precategory, every F ∈ P∗3 uniquely decomposes as

F = S1
r
2 · · · r2 Sk

where
Si = λi r

1 (li r
0 Ai

r
0 ri ) r

1 ρi

with Ai ∈ P3, li , ri ∈ P∗1, λi , ρi ∈ P∗2.

k is called the length of F .

rewriting step: a 3-cell F of length 1.
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Rewriting system

Given a rewriting system (P,==), a (local) branching

φ

φ1 φ2

F1 F2

is confluent when there exist G1 and G2 such that

φ

φ1
== φ2

ψ

F1 F2

G1 G2

(P,==) is said (locally) confluent when every (local) branching is confluent.
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Rewriting system

(P,==) is said terminating when there is no infinite sequence of rewriting steps

φ0 φ1 φ2 · · ·F1 F2 F3

We have the following generalized version of Newman’s lemma:

Proposition

If (P,==) is terminating and locally confluent, then it is confluent.
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Classification of branchings

Given a Gray presentation P, the local branchings

φ

φ1 φ2

S1 S2

can be classified into different categories

I trivial

I non-minimal

I independent

I natural

I critical
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Trivial branchings

Those are the branchings involving the same rewriting steps

φ

φ′ φ′

S S
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Non-minimal branchings

Those are the branchings with some parts that can be contextually factored out

A A

These branchings are not interesting since they can be reduced to minimal branchings
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Independent branchings

Those are the branchings that act on non-overlapping heights of the source 2-cell

A A
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Independent branchings

Those are the branchings that act on non-overlapping heights of the source 2-cell

==

A A

A A

They are uninteresting since they are confluent by the generators of Pst
4
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Natural branchings

Those are the branchings that involve an interchanger and an operational 3-generator

X A
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Natural branchings

Those are the branchings that involve an interchanger and an operational 3-generator

X A

X X

A X

==

They are also uninteresting since they are confluent by the generators of Pst
4
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Critical branchings

Those are the branchings that do not fit in other categories

A A

We can recover the classical critical pair lemma:

Theorem
Given a Gray presentation P, if every critical branching is confluent, then the
associated rewriting system is locally confluent.
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Critical branchings

Those are the branchings that do not fit in other categories

A A

We can recover the classical critical pair lemma:

Theorem
Given a Gray presentation P, if every critical branching is confluent, then the
associated rewriting system is locally confluent.
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Coherence

We obtain a Squier-like theorem for Gray categories

Theorem
Given a terminating Gray presentation P where every critical branching is confluent,
P is coherent.
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Theorem
Given a terminating Gray presentation P where every critical branching is confluent,
P is coherent.

Proof.
By the critical pair lemma, P is locally confluent.
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Coherence

We obtain a Squier-like theorem for Gray categories

Theorem
Given a terminating Gray presentation P where every critical branching is confluent,
P is coherent.

Proof.
Since P is terminating, by Newman lemma, P is confluent.
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Coherence

We obtain a Squier-like theorem for Gray categories

Theorem
Given a terminating Gray presentation P where every critical branching is confluent,
P is coherent.

Proof.
Given F ,G : φV φ̂ ∈ P∗3 where φ̂ is a normal form, we have F = G ∈ P.

φ

φ̂ == φ̂

φ̂

F

∗
G

∗
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Coherence

We obtain a Squier-like theorem for Gray categories

Theorem
Given a terminating Gray presentation P where every critical branching is confluent,
P is coherent.

Proof.
Given F ,G : φV ψ ∈ P∗3, there exists H : ψ V ψ̂, so that, by the previous case,

F r
2 H = G r

2 H ∈ P

We conclude by the earlier “confluence implies coherence” criterion for precategories.
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Finite number of critical pairs

I There is an infinite number of interchangers

V V ...

Xm,3̄,e Xm,4̄,e ...

Xm,n̄,e for all n

I So potentially an infinite number of critical branchings

I In fact, no!

Theorem: A finite number of operational rules (and ...) gives a finite number
of critical branchings.

(operational = that are not interchangers)

I Concerning computability

An algorithm exists to compute the critical branchings
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Why finiteness ?
Three kinds of branchings:

I between two operational rules
I finite number of operational rules implies finite number of critical branchings of this

kind

A A

I between an operational rule and an interchanger

I for n big enough, branchings with an operational rule and Xα,n,β can not be critical

I between two interchangers

I they are never critical and are usually “natural branchings”

X

X X

X

X X
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Summing up

Method to show coherence in Gray categories

I Start from a Gray presentation P

I Show that the rewriting system is terminating

I Find the critical branchings (an algorithm exists)

I Add a generator in Pcoh
4 for each confluence diagram

I The resulting Gray presentation is then coherent
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Termination

Termination of V:

I Taking into account operational rules and interchangers

I We can reduce the problem to operational rules

Theorem: (under reasonable conditions on the 2-generators) rewriting using
only interchangers terminates.

I Normal forms for planar connected string diagrams, Delpeuch and Vicary, 2018

I Method for the operational rules:

Find a measure that is left unvariant by interchangers

x y

2x+y+1

x y z

4x+2y+z+3

A
V

x y z

2x+2y+z+2
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Example of monoids

With monoids, we find five critical pairs

and they are confluent

==
== =

=

==

We deduce constraints on == for coherence
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Other examples

I Adjunctions
P1 = {f , g : ∗ → ∗}

P2 = { , }

P3 = {zig : V , zag : V }

I Self-dualities

I Frobenius monoid
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Other examples

I Adjunctions

I Self-dualities

I Frobenius monoid
P2 = { , }

P3 = {N: V , A: V , M: V ,

N: V , Aco : V , Mco : V }
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Coherence relations
19 relations found by the algorithm
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Other results

I A coherent approach to pseudomonads, Lack, 2000

I Coherence for Frobenius pseudomonoids and the geometry of linear proofs,Dunn
and Vicary, 2016

I Coherence for braided and symmetric pseudomonoids, Verdon, 2017
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Conclusion

I A rewriting system that reflects the structure of Gray categories

I Adapted tools to show coherence in this setting

I More automated method for coherence
I Algorithm to compute the coherence conditions

I Proof of termination are still hard and tools should be developed
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