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Usual questions in category theory

Given a category C, examples of things that we want to know:
I is C complete or cocomplete?
I is C closed?

Given a functor F : C → D, examples of things that we want to know:
I does F preserve limits or colimits?
I is F part of an adjunction?
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Towards automation

Goal: automate or assist with some reasonings for solving these questions.

This requires:
I good computational representations
I efficient algorithms
I interaction with the user in case of partial decidability

Tools exist for higher categories (Globular, Homotopy.io, Opetopy, etc.) but not as
many for simple categories.
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Computational representations
Presentations as computational representations of algebraic structures.
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Computational representations
Presentations as computational representations of algebraic structures.

Example: one can consider a category C with
I objects u, v ,w
I generating arrows a : u → v , b : v → w and c : u → v

u

w

v

a

c

b

F−−−−−−−−−→ x y zd e
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Computational representations
Presentations as computational representations of algebraic structures.

Also a category D with
I objects x , y , z
I generating arrows d : x → y and e : y → z

u

w

v

a

c

b

F−−−−−−−−−→

x y zd e
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Computational representations
Presentations as computational representations of algebraic structures.

Then one can consider the functor F such that

F (u) = x F (v) = y F (w) = z
F (a) = d F (b) = e F (c) = d ∗ e

u

w

v

a

c

b

F−−−−−−−−−→ x y zd e
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Computational representations
Presentations as computational representations of algebraic structures.

Such data can be given to a computer.

A := category {
obj := {u,v,w},
arr := {a : u => v, b : v => w, c : u => w}

}
B := category {

obj := {x,y,z},
arr := {d : x => y, e : y => z}

}
F := functor A => B {

u -> x, v -> y, w -> z,
a -> d, b -> e, c -> d * e

}
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Computational representations
Presentations as computational representations of algebraic structures.

u

w

v

a

c

b

F−−−−−−−−−→ x y zd e

One can ask questions like
I is C complete?
I is F limit-preserving?
I etc.
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Computational representations
Presentations as computational representations of algebraic structures.

u

w

v

a

c

b

F−−−−−−−−−→ x y zd e

But C , D and F are very artificial objects that might not be of interest.

What about “real” categories: categories of sets, groups, etc. and functors between
them?
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Another notion of presentation

Idea: large categories can also be presented in another sense.

 notion of locally presentable categories
I category of sets
I category of groups, rings, monoids
I category of sheaves and presheaves
I etc.



6/39

Outline

Locally presentable categories

Computational descriptions of functors

Method for left adjointness

Applications

Playing a game

Proof of the criterion
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Locally presentable categories: idea

Often, we deal with categories whose object can be presented.
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Locally presentable categories: idea

Take Gph, the category of graphs.

Every graph can be presented as 〈SV ,SA | E〉 where
I SV is a set of generating vertices
I SA is a set of generating arrows
I E is a set of equations between sources and targets of arrows, and objects

x y za b

〈∅, {a, b} | ∂+(a) = ∂−(b)〉
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Locally presentable categories: idea

Take Grp, the category of groups.

Every group G can be presented as 〈S | E〉 where
I S is a set of generators
I E is a set of equations

Free commutative group on two elements

〈{a, b} | ab = ba〉
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Locally presentable categories: idea

Take Cat, the category of small categories.

Every group C can be presented as 〈SO ,SM | E〉 where
I SO is a set of generating objects
I SM is a set of generating morphisms
I E is a set of equations on objects and morphisms.

N seen as a category with one object

〈∅, {1} | ∂+(1) = ∂−(1)〉
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Locally presentable categories: idea

The notion of locally finitely presentable categories describes such theories.

It encompasses a lot of very common categories.
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Locally finitely presentable categories

The abstract definition: a category is locally finitely presentable when
1. it is locally small
2. it has all colimits
3. its class of objects which can be finitely presented is essentially small
4. every objects is a directed colimits of finitely presentable objects
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A more concrete definition

Proposition (Adámek, Rosický)
A locally presentable category is the category of models of an essentially algebraic
theory.

Essentially algebraic theory T: data of
I sorts
I operations between sorts
I equations that should be satisfied
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A more concrete definition
Example: the ess. alg. theory of monoids.

1 sort:
M

2 generating operations:

e : 1 → M c : M × M → M
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A more concrete definition
Example: the ess. alg. theory of monoids.

1 sort:
M

2 generating operations:

e : 1 → M c : M × M → M

Note: the domains of the operations are limit cones over the only sort.
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A more concrete definition
Example: the ess. alg. theory of monoids.

1 sort:
M

2 generating operations:

e : 1 → M c : M × M → M

satisfying the equations

c(e(x), y) = y c(x , e(y)) = x c(c(x , y), z) = c(x , c(y , z))



10/39

A more concrete definition
Example: the ess. alg. theory of monoids.

1 sort:
M

2 generating operations:

e : 1 → M c : M × M → M

A model M is then the data of
I a set M(M),
I functions M(e) : 1 → M(M) and M(c) : M(M)×M(M) → M(M) satisfying

the equations.

Proposition
The category of models (i.e., monoids) is a locally finitely presentable category.
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A more concrete definition
Example: the ess. alg. theory of small categories.

2 sorts:
C0 and C1

4 operations:

id : C0 → C1 ∂− : C1 → C0 ∂+ : C1 → C0 c : C1 ×0 C1 → C1

together with equations

∂ε(id(x)) = x c(id(x), g) = g c(f , id(y)) = f c(c(f , g), h) = c(f , c(g , h))
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A more concrete definition
Example: the ess. alg. theory of small categories.

2 sorts:
C0 and C1

4 operations:

id : C0 → C1 ∂− : C1 → C0 ∂+ : C1 → C0 c : C1 ×0 C1 → C1

A model M is then the data of
I two sets M(C0) and M(C1),
I functions M(id) : M(C0) → M(C1) and etc. satisfying the equations.

Proposition
The category of models (i.e., small categories) is a locally presentable category.
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A more concrete definition

So there are a lot of locally finitely presentable categories:
I category of sets
I categories of groups, rings, etc.
I categories of presheaves, sheaves
I categories of strict n-categories, (algebraic) weak n-categories
I etc.
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Another description of locally presentable categories

Consider again the ess. alg. theory of monoids:

1 sort:
M

2 generating operations:

e : 1 → M c : M2 → M

Let’s build a category out of this.
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Another description of locally presentable categories

M

Start with sorts as objects.
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Another description of locally presentable categories

1 M M2

Add objects for the domains of the operations.

e : 1 → M c : M2 → M
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Another description of locally presentable categories

1 M M2e c

Add the arrows for these operations.
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Another description of locally presentable categories

1 M M2e
πR

πL
c

Add arrows for the cone projections.
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Another description of locally presentable categories

1 M M2e c
πL

πR

Reverse all arrows.
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Another description of locally presentable categories

1 M M2e c
πL

πR

A model M of T is then a particular presheaf on the above category C , i.e., a functor

X : Cop → Set
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Another description of locally presentable categories

1 M M2e c
πL

πR

A model M of T is then a particular presheaf on the above category C , i.e., a functor

X : Cop → Set

Which presheaf X ∈ Ĉ are actual models, i.e., monoids?
I X(1) must be a terminal set
I (X(M2),X(πL),X(πR)) must be the product of X(M) and X(M)

I the equations of monoids must hold: X(c)(X(e)(x), y) = y , etc.
These conditions can be expressed through orthogonality conditions.
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Orthogonality

Let C be a category, g : A → B and X ∈ C.

X is orthogonal to g when, for all h : A → X , there is a unique h̄ : B → X such that
h = h̄ ◦ g .

A B

X

g

∀h ∃!h̄
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Orthogonality
Let OC ⊆ C1 be a chosen set of orthogonality morphisms.

C⊥: full subcategory of objects of C orthogonal to the arrows of OC .

There is then a canonical inclusion functor

J : C⊥ → C.

Proposition (Adámek, Rosický)
If C is loc. fin. presentable, the canonical inclusion functor J : C⊥ → C has a left
adjoint (−)⊥:

C C⊥

(−)⊥

⊥
J
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

1 M M2e c
πR

πL

Example for monoids:

Let B be the presheaf freely generated from one element ∗ in B(1).

M2

M

1

c πRπL

e

•
∗

B
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

1 M M2e c
πR

πL

Example for monoids:

Let B be the presheaf freely generated from one element ∗ in B(1).

Let X in Ĉ . Then, X(1) is a terminal set when X is orthogonal to ∅ → B

∅ B

X

∅

∀H ∃!H̄

Indeed, Ĉ(B,X) ' X(1), so that the condition says X(1) ' {∗}.
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

Let

I A ∈ Ĉ freely gen. from two element l , r in B(M)

I B ∈ Ĉ freely gen. from an element u ∈ B(M2)

I G : A → B such that G(l) = πL(u) and G(r) = πR(u).
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

Let
I A ∈ Ĉ freely gen. from two element l , r in B(M)

I B ∈ Ĉ freely gen. from an element u ∈ B(M2)

I G : A → B such that G(l) = πL(u) and G(r) = πR(u).

M2

M

1

c πRπL

e

•
l

•
r

A

G−−−−−→

•
u

•
πL(u)
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

Let
I A ∈ Ĉ freely gen. from two element l , r in B(M)

I B ∈ Ĉ freely gen. from an element u ∈ B(M2)

I G : A → B such that G(l) = πL(u) and G(r) = πR(u).

(X(M2),X(πL),X(πR)) is a product iif X is orthogonal to G : A → B.

Indeed, Ĉ(A,X) ' X(M)× X(M) and Ĉ(B,X) ' X(M2).
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

The equations of monoids can also be expressed as orthogonality conditions.

AL GL
−→ BL AR GR

−−→ BR AA GA
−−→ BA

Thus, Mon ' Ĉ⊥ for a set OC ⊆ Ĉ1 of orthogonality morphisms.

C = 1 M M2e c
πL

πR
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

More generally,

Proposition
Every loc. fin. pres. category C can be described as

C ' Ĉ⊥

for some C ∈ Cat and OC ⊆ (Ĉ)1.
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Summary

I A lot of categories of interest are locally presentable categories.
I Such categories can be seen as orthogonality classes of presheaf categories.
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Outline

Locally presentable categories

Computational descriptions of functors

Method for left adjointness

Applications

Playing a game

Proof of the criterion
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Describe functors

F : C → D

Goal: describe (some) functors between two loc. pres. categories C and D.

We will need to filter some out.
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Describe functors

F : Ĉ⊥ → D̂⊥

First, we use the characterization: C ' Ĉ⊥ and D ' D̂⊥.



16/39

Describe functors

F̄ ′ : Ĉ → D̂⊥

Then, let’s actually define a functor F̄ ′ on a larger domain.

In good cases, F can then be recovered by precomposition with J : Ĉ⊥ → Ĉ .
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Describe functors

F̄ : Ĉ → D̂

Also, let’s actually define a functor F̄ on a larger domain.

In good cases, F̄ ′ can be recovered by post-composition with (−)⊥.
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Describe functors

F̃ : C → D̂

Then, let’s actually only define F̄ ◦ y where y is the Yoneda embedding

y : c 7→ Hom(−, c)
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Describe functors

F̃ : C → D̂

If F̄ is nice enough, it can be recovered using a left Kan extension:

Ĉ

C D̂

F̄

F̃

y
⇑ α
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Describe functors

F̃ : C → D̂

Under some finiteness hypothesis on C , D and F̃ , the latter can be described
computationally.
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Describe functors

Summary: nice functors F between presentable categories C ' Ĉ⊥ and D ' D̂⊥ can
be described computationally by a functor

F̃ : C → D̂

and recovered using the diagram

Ĉ⊥

Ĉ D̂ D̂⊥

C

FJ
F̄

(−)⊥

F̃
y
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Kan extensions

What is actually a Kan extension doing?

Some intuition with a particular case but essential for the following.
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Kan extensions

Ĉ

C D̂

y

F̃

Given F̃ : C → D̂ and y : C → Ĉ the Yoneda embedding,
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Kan extensions

Ĉ

C D̂

F
⇑ α

y

F̃

a left Kan extension of F̃ along y is a pair (F , α) which is universal in some sense.
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Kan extensions

Ĉ

C D̂

F
⇑ α

y

F̃

Concretely:

F (X) =

∫ c∈C
F̃ (c)⊗ X(c)

Idea: for each e ∈ X(c), there is one copy of F̃ (c) in F (X), adequately glued to other
copies.
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Kan extensions

Ĉ

C D̂

F
⇑ α

y

F̃

Even more concretely:
F (X) = (

∐
c∈C ,e∈X(c)

F̃ (c))/ ∼

where
(c ′, e′, F̃ (g)(u)) ∼ (c,X(g)(e), u)

for every g : c → c ′ ∈ C , e′ ∈ X(c ′), u ∈ F̃ (c).

Note: under finiteness conditions, this is computable.
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Examples of functor descriptions
Taking
I Set ' 1̂⊥ with OSet = ∅
I Set × Set ' 1̂

∐
1
⊥

with OSet×Set = ∅

the functor
F : (X ,Y ) ∈ Set × Set 7→ X ∈ Set

can be described by F̃ : 1
∐

1 → 1̂ where F̃ (0L) = {∗} and F̃ (0R) = ∅.

Set × Set

1
∐

1 Set

F

[{∗},∅]

y
⇑ α

Idea: in Set × Set, 0L  ({∗}, ∅), 0R  (∅, {∗})
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Examples of functor descriptions
Taking
I Set ' 1̂⊥ with OSet = ∅
I Mon ' Ĉ⊥ with OMon = {GT ,GP ,GL,GR ,GA} and

C = 1 M M2e c
πL

πR

the free monoid functor

F : S ∈ Set 7→ S∗ ∈ Mon

can be described by F̃ : 1 → Ĉ where F̃ (0) = y(M).
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Examples of functor descriptions
Taking
I Set ' 1̂⊥ with OSet = ∅
I Mon ' Ĉ⊥ with OMon = {GT ,GP ,GL,GR ,GA} and

C = 1 M M2e c
πL

πR

the free monoid functor

F : S ∈ Set 7→ S∗ ∈ Mon

can be described by F̃ : 1 → Ĉ where F̃ (0) = y(M).

Set

1 Ĉ Mon

F

y(M)

y
⇑ α

(−)⊥
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Examples of functor descriptions
Taking
I Set ' 1̂⊥ with OSet = ∅
I Mon ' Ĉ⊥ with OMon = {GT ,GP ,GL,GR ,GA} and

C = 1 M M2e c
πL

πR

the free monoid functor

F : S ∈ Set 7→ S∗ ∈ Mon

can be described by F̃ : 1 → Ĉ where F̃ (0) = y(M).

Idea:
I in Set, 0 {∗}
I in Mon, y(M) corresponds to the free monoid {∗}∗
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Outline

Locally presentable categories

Computational descriptions of functors

Method for left adjointness

Applications

Playing a game

Proof of the criterion
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Problem

Given a functor
F : C → D

described by a functor
F̃ : C → D̂

how can we check that F is a left adjoint?
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A solution

Proposition (Adámek, Rosický)
A functor F : C → D between loc. fin. pres. cat. is a left adjoint if and only if it
preserves all small colimits.

So: when is F preserving all small colimits?
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A solution

Using C ' Ĉ⊥ and D ' D̂⊥,

Theorem
If the functor (−)⊥ ◦ F̄ : Ĉ → D̂⊥ sends the elements of OC to isomorphisms, then
F : C → D preserves all colimits (and thus is a left adjoint).

The above property is very computational in nature

I C , D, OC , OD can be described to a computer
I the images of G : A → B ∈ OC by the functor F̄ : Ĉ → D̂ can be computed
I checking that a functor G ′ : A′ → B ′ ∈ D̂ is sent to an isomorphism by (−)⊥ can

be done by playing a game
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Non-example
Consider the functor

F : Set × Set → Set
(X ,Y ) 7→ X × Y

It is not a left adjoint. Let’s see where the criterion fails.

First, let’s get a description for F :
I Set ' 1̂
I Set × Set ' 1̂

∐
1

But, F cannot be expressed by F̃ : 1
∐

1 → 1̂.

Indeed,
I 0L  ({∗}, ∅), 0R  (∅, {∗})
I ({∗}, ∅) and (∅, {∗}) are mapped to ∅ by F .
I but F̃ = ∅ describes the functor (X ,Y ) 7→ ∅.
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(X ,Y ) 7→ X × Y

It is not a left adjoint. Let’s see where the criterion fails.

First, let’s get a description for F :
I Set ' 1̂
I Set × Set ' 1̂

∐
1

But, F cannot be expressed by F̃ : 1
∐

1 → 1̂.

Indeed,
I 0L  ({∗}, ∅), 0R  (∅, {∗})
I ({∗}, ∅) and (∅, {∗}) are mapped to ∅ by F .
I but F̃ = ∅ describes the functor (X ,Y ) 7→ ∅.
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Non-example
Another try: we add a (useless) product in the description of Set × Set
I Set ' 1̂
I Set × Set ' Ĉ⊥

where

C =
p

0L 0R

πL πR

Idea: 0L  ({∗}, ∅), 0R  (∅, {∗}), p  ({∗}, {∗})
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Non-example
Another try: we add a (useless) product in the description of Set × Set
I Set ' 1̂
I Set × Set ' Ĉ⊥

where

C =
p

0L 0R

πL πR

and where we require orthogonality to G : A → B:

{∗} {∗}

πRπL G7−→
{∗}

{∗} {∗}

πRπL

i.e., given X ∈ Ĉ⊥, X(p) must be the product of X(0L) and X(0R).
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Non-example
Another try: we add a (useless) product in the description of Set × Set
I Set ' 1̂
I Set × Set ' Ĉ⊥

where

C =
p

0L 0R

πL πR

Now, we can describe F : (X ,Y ) 7→ X × Y with

F̃ : C → 1̂
0L 7→ ∅
0R 7→ ∅
p 7→ {∗}
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Non-example
F : (X ,Y ) 7→ X × Y is not a left adjoint (coproducts are not preserved), so the
criterion should not be satisfied.

We thus check that (−)⊥ ◦ F̄ : Ĉ → D̂⊥ does not map G : A → B to an isomorphism.
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Non-example
F : (X ,Y ) 7→ X × Y is not a left adjoint (coproducts are not preserved), so the
criterion should not be satisfied.

We thus check that (−)⊥ ◦ F̄ : Ĉ → D̂⊥ does not map G : A → B to an isomorphism.

{∗} {∗}

πRπL G−→
{∗}

{∗} {∗}

πRπL
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Non-example
F : (X ,Y ) 7→ X × Y is not a left adjoint (coproducts are not preserved), so the
criterion should not be satisfied.

We thus check that (−)⊥ ◦ F̄ : Ĉ → D̂⊥ does not map G : A → B to an isomorphism.

F̄ (A)

∅ ∅

F̄(G)−−−→ F̄ (B)

{∗}

∅ ∅
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Non-example
F : (X ,Y ) 7→ X × Y is not a left adjoint (coproducts are not preserved), so the
criterion should not be satisfied.

We thus check that (−)⊥ ◦ F̄ : Ĉ → D̂⊥ does not map G : A → B to an isomorphism.

∅ F̄(G)−−−→ {∗}
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A small application

We recover the following well-known property using our criterion:

Proposition
Every functor F : Set → D of the form F (X) =

∐
X B is a left adjoint.

Indeed,
I functors as above are described by functors 1 → D̂,
I Set ' 1̂⊥ with an empty set of orthogonality morphisms

so that our criterion is verified automatically.
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0
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Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Consider the presentations of Cat ' Ĉ⊥ and Set ' 1̂ with

C = C0 C1 C2
1

∂−

∂+

id c
πR

πL
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Consider the presentations of Cat ' Ĉ⊥ and Set ' 1̂ with

C = C0 C1 C2
1

∂−

∂+

id c
πR

πL

Consider the functor F̃ : C → Set where
F̃ (C0) = {∗}
F̃ (C1) = {∗0, ∗1}
F̃ (C2

1) = {∗0, ∗1, ∗2}
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Consider the presentations of Cat ' Ĉ⊥ and Set ' 1̂ with

C = C0 C1 C2
1

∂−

∂+

id c
πR

πL

Consider the functor F̃ : C → Set where
F̃ (C0) = {∗}
F̃ (C1) = {∗0, ∗1}
F̃ (C2

1) = {∗0, ∗1, ∗2}

Proposition
The functor F is presented by F̃ .
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Let’s compute whether OC = {GP ,GL,GR ,GA} is sent to isomorphisms by
F̄ : Ĉ → Set
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Let’s compute whether OC = {GP ,GL,GR ,GA} is sent to isomorphisms by
F̄ : Ĉ → Set

C2
1

C1

C0

id

cπL πR

∂− ∂+

•
l

•
r

•
x0

•
x1

•
x2

A

GP
−−−−−→

•
u

•
πL(u)

•
πR(u)

•
x0

•
x1

•
x2

B
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Let’s compute whether OC = {GP ,GL,GR ,GA} is sent to isomorphisms by
F̄ : Ĉ → Set

C2
1

C1

C0

id

cπL πR

∂− ∂+

•
x0

•
x1

•
x2

F̄A

F̄(GP )−−−−−→ •
x0

•
x1

•
x2

F̄B
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Let’s compute whether OC = {GP ,GL,GR ,GA} is sent to isomorphisms by
F̄ : Ĉ → Set
Similarly, we have

C2
1

C1

C0

id

cπL πR

∂− ∂+

•
x0

•
x1

F̄AL

F̄(GL)−−−−−→ •
x0

•
x1

F̄B
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Let’s compute whether OC = {GP ,GL,GR ,GA} is sent to isomorphisms by
F̄ : Ĉ → Set
Similarly, we have

C2
1

C1

C0

id

cπL πR

∂− ∂+

•
x0

•
x1

F̄AR

F̄(GR )−−−−−→ •
x0

•
x1

F̄BR
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Let’s compute whether OC = {GP ,GL,GR ,GA} is sent to isomorphisms by
F̄ : Ĉ → Set
Similarly, we have

C2
1

C1

C0

id

cπL πR

∂− ∂+

•
x0

•
x1

•
x2

•
x3

F̄AA

F̄(GA)−−−−−→ •
x0

•
x1

•
x2

•
x3

F̄BA
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A bigger example
Let’s show that this functor is a left adjoint:

F : Cat → Set
D 7→ D0

Let’s compute whether OC = {GP ,GL,GR ,GA} is sent to isomorphisms by
F̄ : Ĉ → Set
Proposition
The functor F is a left adjoint.
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Product functors

Product functors can be given as inputs to the criterion:

Proposition
Given C ' Ĉ⊥ and A ∈ C, the functor

X 7→ A × X

can be described by a functor C → Ĉ .

Thus, our criterion can be used to show that functors A× (−) : A → C are left adjoints.
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A criterion for closedness?
A category C is closed when, for every A,B ∈ C, there is BA such that

Hom(A × X ,B) ' Hom(X ,BA)
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A category C is closed when the functors

A × (−) : C → C

are left adjoint for all A ∈ C.
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A criterion for closedness?
A category C is closed when, for every A,B ∈ C, there is BA such that

Hom(A × X ,B) ' Hom(X ,BA)

Proposition
A category C is closed when the functors

A × (−) : C → C

are left adjoint for all A ∈ C.

This suggests that closedness could be a computable property by the earlier criterion.

Problem: the above quantification on A is infinite.

Future work: how can we change that?
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Example

We can use the criterion to show that 2 × (−) : Cat → Cat is a left adjoint where
Cat ' Ĉ⊥ with

C = C0 C1 C2
1

∂−

∂+

īd c̄
π̄L

π̄R

Indeed, by computation, we check that every orthogonality morphism is sent to an
isomorphism.



29/39

Outline
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Method for left adjointness

Applications

Playing a game

Proof of the criterion
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The reflection construction
Recall the adjunction

D̂ D̂⊥

(−)⊥

⊥
J

Given H : X → Y , we have
X Y

JX⊥ JY ⊥

H

ηX ηY

JH⊥
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The reflection construction
Recall the adjunction

D̂ D̂⊥

(−)⊥

⊥
J

Given H : X → Y , we have
X Y

X⊥ Y ⊥

H

ηX ηY

H⊥

How to compute whether H⊥ is an isomorphism?
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The reflection construction
Recall the adjunction

D̂ D̂⊥

(−)⊥

⊥
J

Given H : X → Y , we have
X Y

X⊥ Y ⊥

H

ηX ηY

H⊥

First: given X ∈ D̂, what is ηX : X → X⊥?

Idea: if X is not orthogonal, ηX is adding and merging the elements as required.
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The reflection construction
Let G : A → B ∈ OD be an orthogonality morphism.
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The reflection construction
Let G : A → B ∈ OD be an orthogonality morphism.

If some liftings are missing, as in

B

X

A

??

H

G

we correct that using a pushout:

B X ′

A XH

G
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The reflection construction
Let G : A → B ∈ OD be an orthogonality morphism.

If some liftings are non-unique, as in

B

X

A

H̄1

H̄2

H

G

we correct that using a coequalizer:

B X X ′H̄1

H̄2
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The reflection construction

ηX is then the transfinite composition

X = X0 X1 X2 · · · X⊥
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The game

Given H : X → Y ∈ D̂, how can we check that H⊥ : X⊥ → Y ⊥ is an isomorphism?

Idea: progressively apply the moves of the reflection procedure until an isomorphism is
obtained.
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The game

H : X → Y ∈ D̂

Four possible moves

I add elements to X using a pushout with G ∈ OD

I merge elements in X using a coequalizer of liftings of G ∈ OD

I add elements to Y using a pushout with G ∈ OD

I merge elements in Y using a coequalizer of liftings of G ∈ OD
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H : X → Y ∈ D̂

Four possible moves

I add elements to X using a pushout with G ∈ OD

H ′ : X ′ → Y
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I add elements to Y using a pushout with G ∈ OD

I merge elements in Y using a coequalizer of liftings of G ∈ OD
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The game

H : X → Y ∈ D̂

Four possible moves

I add elements to X using a pushout with G ∈ OD

I merge elements in X using a coequalizer of liftings of G ∈ OD

I add elements to Y using a pushout with G ∈ OD

I merge elements in Y using a coequalizer of liftings of G ∈ OD

H ′ : X → Y ′
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Play the game
Consider the category D where

D =

e

b

πl πr

and with OD = {G : A → B} ⊆ D̂ with

e

b

πLπR

•
l

•
r

A

G−−−−−→
•
u′

•
πL(u′)

•
πR(u′)

B
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Play the game
Show that H : X → Y ∈ D̂ is sent to an isomorphism:

e

b

πRπL

•
l

•
r

X

H−−−−−→
•
u′

•
v ′

•
l ′

•
r ′

Y

with l ′ = πl(u′) = πl(v ′) and r ′ = πr (u′) = πr (v ′)
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Play the game
Show that H : X → Y ∈ D̂ is sent to an isomorphism:

e

b

πRπL

•
u

•
l

•
r

X

H1

−−−−−→
•
u′

•
v ′

•
l ′

•
r ′

Y

First, create a preimage for u′.
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Play the game
Show that H : X → Y ∈ D̂ is sent to an isomorphism:

e

b

πRπL

•
u

•
v

•
l

•
r

X

H2

−−−−−→
•
u′

•
v ′

•
l ′

•
r ′

Y

Then, create a preimage for v ′.
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Play the game
Show that H : X → Y ∈ D̂ is sent to an isomorphism:

e

b

πRπL

•
u

•
v

•
l

•
r

X

H2

−−−−−→
•
u′

•
v ′

•
l ′

•
r ′

Y

Then, create a preimage for v ′.

We thus get an isomorphism.



32/39

Play the game
Show that H : X → Y ∈ D̂ is sent to an isomorphism:

e

b

πRπL

•
u

•
v

•
l

•
r

X

H2

−−−−−→
•
u′

•
v ′

•
l ′

•
r ′

Y

Then, create a preimage for v ′.

We used a “greedy strategy”: add/merge when required and possible.

Proposition
The greedy strategy can decide whether H⊥ is an isomorphism for finite
H : X → Y ∈ D̂.
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Play the game
Another strategy:

e

b

πRπL

•
l

•
r

X

H−−−−−→
•
u′

•
v ′

•
l ′

•
r ′

Y

with l ′ = πl(u′) = πl(v ′) and r ′ = πr (u′) = πr (v ′)
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Play the game
Another strategy:

e

b

πRπL

•
l

•
r

X

H1

−−−−−→
•
u′
1

•
l ′

•
r ′

Y

First, merge u′ and v ′, since they lift the same morphism.
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Play the game
Another strategy:

e

b

πRπL

•
l

•
r

X

H2

−−−−−→
•
u′
1

•
u′
2

•
u′
3

•
u′
4

•
l ′

•
r ′

Y

Then, create all the possible liftings in Y .

u′
1 = (l ′, r ′) u′

2 = (l ′, l ′) u′
3 = (r ′, r ′) u′

4 = (r ′, l ′)
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Play the game
Another strategy:

e

b

πLπR

•
u1

•
u2

•
u3

•
u4

•
l

•
r

X

H3

−−−−−→
•
u′
1

•
u′
2

•
u′
3

•
u′
4

•
l ′

•
r ′

Y

Then, create all the possible liftings in X .
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Play the game
Another strategy:

e

b

πLπR

•
u1

•
u2

•
u3

•
u4

•
l

•
r

X

H3

−−−−−→
•
u′
1

•
u′
2

•
u′
3

•
u′
4

•
l ′

•
r ′

Y

Then, create all the possible liftings in X .

We thus get an isomorphism.
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Play the game
Another strategy:

e

b

πLπR

•
u1

•
u2

•
u3

•
u4

•
l

•
r

X

H3

−−−−−→
•
u′
1

•
u′
2

•
u′
3

•
u′
4

•
l ′

•
r ′

Y

Then, create all the possible liftings in X .

We used an “exhaustive strategy”: add/merge whenever possible.

Proposition
The exhaustive strategy can decide whether H⊥ is an isomorphism for finite
H : X → Y ∈ D̂.
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Strategies in general

Winning the game can answer positively whether a morphism is sent to an
isomorphism.

However,
I greedy strategies can be too stupid and miss some winnable games
I exhaustive strategies might not terminate

Future work: characterize the categories D and sets OD for which these strategies
terminate.

In any case: one can enter “manual mode” and provide a winning play.



34/39

Outline

Locally presentable categories

Computational descriptions of functors

Method for left adjointness

Applications

Playing a game

Proof of the criterion
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Colimit preservation
Recall the definition of F :

Ĉ⊥

Ĉ D̂ D̂⊥

C

FJ
F̄

(−)⊥

F̃
y

Proposition
The functor F̄ : Ĉ → D̂ preserves colimits.

Proof.
Indeed we have

F̄ (colimi Xi) '
∫ c∈C0

F̃ (c)⊗ (colimi Xi)(c)
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Colimit preservation
Recall the definition of F :

Ĉ⊥

Ĉ D̂ D̂⊥

C
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F̃
y

Proposition
The functor F̄ : Ĉ → D̂ preserves colimits.

Proof.
Indeed we have

F̄ (colimi Xi) '
∫ c∈C0

F̃ (c)⊗ colimi(Xi(c))
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Colimit preservation
Recall the definition of F :

Ĉ⊥

Ĉ D̂ D̂⊥

C

FJ
F̄

(−)⊥

F̃
y

Proposition
The functor F̄ : Ĉ → D̂ preserves colimits.

Proof.
Indeed we have

F̄ (colimi Xi) '
∫ c∈C0

colimi(F̃ (c)⊗ Xi(c))
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Colimit preservation
Recall the definition of F :

Ĉ⊥

Ĉ D̂ D̂⊥

C

FJ
F̄

(−)⊥

F̃
y

Proposition
The functor F̄ : Ĉ → D̂ preserves colimits.

Proof.
Indeed we have

F̄ (colimi Xi) ' colimi(

∫ c∈C0

F̃ (c)⊗ Xi(c))
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Colimit preservation
Recall the definition of F :

Ĉ⊥

Ĉ D̂ D̂⊥

C

FJ
F̄

(−)⊥

F̃
y

Proposition
The functor F̄ : Ĉ → D̂ preserves colimits.

Proof.
Indeed we have

F̄ (colimi Xi) ' colimi(

∫ c∈C0

F̃ (c)⊗ Xi(c)) ' colimi F̄ (Xi)
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Colimit preservation

Ĉ⊥

Ĉ D̂⊥

FJ

F̄ ′

Knowing that F̄ ′ =̂ (−)⊥ ◦ F̄ is preserving colimits, when F is?
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Colimit preservation

Ĉ⊥

Ĉ D̂⊥

FJ

F̄ ′

Proposition (A-R)
The colimits in Ĉ⊥ are the reflection of the ones computed in Ĉ :

colimĈ⊥
i Ai ' (colimĈ

i J(Ai))
⊥

Thus, the unit of the reflection gives a canonical morphism

η : colimĈ
i JAi → J(colimĈ⊥

i Ai)
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Proposition (A-R)
The colimits in Ĉ⊥ are the reflection of the ones computed in Ĉ :

colimĈ⊥
i Ai ' (colimĈ

i J(Ai))
⊥

Thus, the unit of the reflection gives a canonical morphism

F̄ ′η : F̄ ′(colimĈ
i JAi) → F̄ ′J(colimĈ⊥

i Ai)
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Proposition (A-R)
The colimits in Ĉ⊥ are the reflection of the ones computed in Ĉ :

colimĈ⊥
i Ai ' (colimĈ

i J(Ai))
⊥

Thus, the unit of the reflection gives a canonical morphism

F̄ ′η : F̄ ′(colimĈ
i JAi) → F (colimĈ⊥

i Ai)



36/39

Colimit preservation

Ĉ⊥

Ĉ D̂⊥

FJ

F̄ ′

Proposition (A-R)
The colimits in Ĉ⊥ are the reflection of the ones computed in Ĉ :

colimĈ⊥
i Ai ' (colimĈ

i J(Ai))
⊥

Thus, the unit of the reflection gives a canonical morphism

F̄ ′η : colimD̂⊥
i (F̄ ′JAi) → F (colimĈ⊥

i Ai)
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Colimit preservation

Ĉ⊥

Ĉ D̂⊥

FJ

F̄ ′

Proposition (A-R)
The colimits in Ĉ⊥ are the reflection of the ones computed in Ĉ :

colimĈ⊥
i Ai ' (colimĈ

i J(Ai))
⊥

Thus, the unit of the reflection gives a canonical morphism

F̄ ′η : colimD̂⊥
i (FAi) → F (colimĈ⊥

i Ai)
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Colimit preservation

Ĉ⊥

Ĉ D̂⊥

FJ

F̄ ′

Proposition
The functor F : Ĉ⊥ → D̂⊥ preserves colimits (and is a left adjoint) if and only if
F̄ ′ηcolimĈ

i JAi
is an isomorphism for all diagrams i 7→ Ai in Ĉ⊥.

Corollary
If F̄ ′η is an isomorphism, then F preserves colimits (and is a left adjoint).
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The functor F : Ĉ⊥ → D̂⊥ preserves colimits (and is a left adjoint) if and only if
F̄ ′ηcolimĈ

i JAi
is an isomorphism for all diagrams i 7→ Ai in Ĉ⊥.

Corollary
If F̄ ′η is an isomorphism, then F preserves colimits (and is a left adjoint).
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Theorem
Suppose now that, for every orthogonality morphism G ∈ OC , F̄ (G) is an isomorphism.
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Theorem
Suppose now that, for every orthogonality morphism G ∈ OC , F̄ (G) is an isomorphism.

If some liftings are missing for X , as in

B

X

A

??

H

G

…and we obtain the pushout
F̄B F̄X ′

F̄A F̄X
F̄(H)

F̄(G)

where F̄ (G) is an isomorphism. Thus, F̄X ' F̄X ′.
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Suppose now that, for every orthogonality morphism G, F̄ (G) is an isomorphism.

If liftings are non-unique, as in
B

X

A

H̄1

H̄2

H

G

we correct that using a coequalizer:

B X X ′H̄1

H̄2
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Theorem
Suppose now that, for every orthogonality morphism G, F̄ (G) is an isomorphism.

If liftings are non-unique, as in
B

X

A

H̄1

H̄2

H

G

…and we obtain the coequalizer:

F̄B F̄X F̄X ′
F̄(H̄1)

F̄(H̄2)

with F̄ (H̄1) ◦ F̄ (G) = F̄ (H̄2) ◦ F̄ (G), thus F̄ (H̄1) = F̄ (H̄2) and F̄X ' F̄X ′
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Theorem

Thus, F̄ηX is a transfinite composition of isomorphism

F̄X = F̄X0 F̄X1 F̄X2 · · · F̄X⊥∼ ∼ ∼ ∼

Theorem
If, for all G ∈ OC , F̄ (G) is an isomorphism, then F̄η is an isomorphism.

Corollary
With the same hypothesis, F preserves colimits and is a left adjoint.
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Theorem

Thus, F̄ηX is a transfinite composition of isomorphism

F̄X = F̄X0 F̄X1 F̄X2 · · · F̄X⊥∼ ∼ ∼ ∼

Theorem
If, for all G ∈ OC , F̄ (G) is an isomorphism, then F̄η is an isomorphism.

Corollary
With the same hypothesis, F preserves colimits and is a left adjoint.
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The end

Thank you!
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