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The model Rel of LL

Objects: sets A,B,C , etc.

Morphisms A → B: relations R ⊆ A × B, i.e., sets of elements

a( b

Exponential: !A is Mfin(A), the set of finite multisets on A

(co)Kleisli category Rel!: morphisms A → B are morphisms !A → B of Rel, that is, sets
of elements

[a1, . . . , an]( b
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Interpreting programs in Rel!

Since Rel! is cartesian closed, one can interpret programs inside it.

x : Bool ` if x then ff else tt : Bool

interpreted as
{ [tt]( ff, [ff]( tt } (⊆ Mfin(Bool) × Bool)
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Interpreting programs in Rel!

Since Rel! is cartesian closed, one can interpret programs inside it.

x : Bool ` if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as
{ [tt, tt]( ff, [tt,ff]( tt, [ff,ff]( ff }

Here, two different executions get identified in the interpretation.

Hence, Rel! aggregates different executions.
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Problem

How to obtain a Rel-style proof-relevant model of LL?

Some existing answers:
I Generalized species of structures

Fiore, Gambino, et al. “The cartesian closed bicategory of generalised species of
structures”. 2008

I Template games
Melliès. “Template games and differential linear logic”. 2019

We aim at providing another answer focused on effectivity.
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Spans as generalized relations

First: we need a more quantitative structure than relations.
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Spans as generalized relations

A span between two sets A and B is σ = (σ, ∂σ
A, ∂

σ
B) as in

σ

A B

∂σ
A ∂σ

B

Given (a, b) ∈ A × B, there is a set σa,b of witnesses above (a, b).

Idea: A relation between A and B is a span with at most one witness above any (a, b).
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Spans as generalized relations

Spans are composed using pullbacks: given spans σ : A → B and τ : B → C ,

τ � σ is defined by

τ � σ

σ τ

A B C

l r

∂σ
A ∂σ

B ∂τ
B

∂τ
C

.

Intuitively: a witness of (a, b) and a witness of (b, c) give a witness of (a, c).
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Spans as generalized relations

Since pullbacks are unique up to isomorphism, τ � σ is defined up to isomorphism of
spans.

Given two spans σ, τ : A → B, a morphism between σ and τ is m : σ → τ such that

σ τ

A

m

∂σ
A ∂τ

A

= and
σ τ

B

m

∂σ
B ∂τ

B

= .

One gets a bicategory Span = Span(Set) of sets, spans and morphisms of spans.
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Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.
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Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.

> =̂ ∅ is the terminal object of Span.

∅

A ∅

[] []
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Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.

A & B =̂ A t B is the cartesian product on Span.

σ

X A

σ : X → A

∂σ
X ∂σ

A

τ

X B

τ : X → B

∂τ
X ∂τ

B

 

σ t τ

X A t B

〈σ, τ〉 : X → A & B

[∂σ
X ,∂τ

X ] ∂σ
A t∂σ

B
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Some structure on Span

The cartesian structure of Set translates to a monoidal structure on Span.

A ⊗ B =̂ A × B gives a tensor product on Span.

σ

A A′

σ

∂σ
A

∂σ
A′

τ

B B′

τ

∂τ
B

∂τ
B′

 

σ × τ

A × B A′ × B′

σ ⊗ τ

∂σ
A ×∂τ

B
∂σ

A′ ×∂σ
B′
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A model of LL on spans?
We thus have a quantitative generalization of Rel in the form of Span.

Do we still have an exponential for Span?

I First try: can we use Mfin(−) as exponential for Span?

I Second try: can we use lists as exponential?
a1, . . . , an ∈ A  [a1; · · · ; an] ∈ List(A)



7/20

A model of LL on spans?
We thus have a quantitative generalization of Rel in the form of Span.

Do we still have an exponential for Span?
I First try: can we use Mfin(−) as exponential for Span?

Given σ ∈ Span, define

Mfin(σ) =
Mfin(σ)

Mfin(A) Mfin(B)

Mfin(∂σ
A ) Mfin(∂σ

B )

Problem: Mfin does not respect composition, because pullbacks are not
preserved. Thus, not a functor.

I Second try: can we use lists as exponential?
a1, . . . , an ∈ A  [a1; · · · ; an] ∈ List(A)
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A model of LL on spans?
We thus have a quantitative generalization of Rel in the form of Span.

Do we still have an exponential for Span?
I First try: can we use Mfin(−) as exponential for Span? No.

I Second try: can we use lists as exponential?
a1, . . . , an ∈ A  [a1; · · · ; an] ∈ List(A)

List(σ) =
List(σ)

List(A) List(B)

List(∂σ
A ) List(∂σ

B )

We now have a (pseudo)functor, but no Seely equivalence

seeA,B : List A ⊗ List B '−→ List(A & B) ∈ Span.
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A model of LL on spans?
We thus have a quantitative generalization of Rel in the form of Span.

Do we still have an exponential for Span?
I First try: can we use Mfin(−) as exponential for Span? No.

I Second try: can we use lists as exponential? Probably no.
a1, . . . , an ∈ A  [a1; · · · ; an] ∈ List(A)
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Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
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Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.

Let Gpd be the 2-category of groupoids, functors and natural transformations.

We (re)define Span as Span(Gpd)

Idea: the isomorphisms in groupoids express symmetries between x , y ∈ A
and between witnesses s, t ∈ σ.

σ

A B

∂σ
A ∂σ

B



9/20

Bipullbacks

We must now give a composition which respects symmetries.

τ � σ

σ τ

A B C

l r

∂σ
A ∂σ

B ∂τ
B

∂τ
C

One way is to say that the middle square above is a bipullback.
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Bipullbacks
Let a diagram

P

L R

M

l r

f L f R

in Gpd.
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Bipullbacks
It is a bipullback when every pseudocone can be decomposed along it, i.e.,

∀X

L R

M

∀gL ∀gR

∀µ=⇒

f L f R

=

X

P

L R

M

gL gR∃λ=⇒ ∃ρ=⇒

∃k

l r

=

f L f R

and additional conditions.
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Supple pullbacks

Problem:
I simple and effective composition of spans  pullbacks
I taking symmetries into account  bipullbacks

Can we have both? Yes.
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Supple pullbacks

A supple pullback is a pullback which is also a bipullback.

For our span model of LL:
I spans will be composed by pullbacks  effectivity
I we ensure that the pullbacks appearing are all supple  symmetry
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Uniform groupoids

Given a groupoid A, a prestrategy σ on A is a pair (σ ∈ Gpd, ∂σ : σ → A).

σ
∂σ

−→ A ∈ Gpd

Note: a prestrategy on A × B is canonically a span between A and B.

σ
∂σ

−→ A × B  

σ

A B

∂σ
A ∂σ

B
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Uniform groupoids

Two prestrategies σ, τ on A are said uniformly orthogonal, denoted σ ⊥ τ , when the
pullback

P

σ τ

A

l r

∂σ ∂τ

is supple (i.e., is a bipullback).

Given a class S of prestrategies on A,

S⊥ =̂ { τ ∈ PreStrat(A) | ∀σ ∈ S, σ ⊥ τ }.
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Uniform groupoids

A uniform groupoid A = (A,UA) is a pair of
I a groupoid A,
I a class UA of prestrategies σ = (σ, ∂σ) on A, such that

U⊥⊥
A = UA.
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Uniform groupoids

Operations on uniform groupoids: given A = (A,UA) and B = (B,UB),
I A⊥ =̂ (A,U⊥

A );
I A ⊗ B =̂ (A × B, (UA ⊗ UB)⊥⊥) where

UA ⊗ UB =̂ { σ × σ′ | σ ∈ UA and σ′ ∈ UB }

σ × σ′ =̂ σ × σ′ ∂σ×∂σ′

−−−−−→ A × B ;

I A ` B =̂ (A⊥ ⊗ B⊥)⊥;
I A( B =̂ A⊥ ` B ( = (A × B, (UA ⊗ U⊥

B )⊥) ).
Note: the prestrategies of UA(B ⊆ PreStrat(A × B) are canonically spans between A
and B.
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A bicategory of uniform groupoids?

Let Unif be the structure with
I 0-cells: uniform groupoids A,B, . . .;
I 1-cells A → B: uniform spans σ ∈ UA(B;
I 2-cells σ ⇒ τ : morphism of spans (F , φ) : σ ⇒ τ ∈ Span.

Is it a bicategory?

No: the bipullback composition ensures existence, but not canonicity
 missing unitality, associativity, . . .
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Thinness

Idea: add more structure to make the composition canonical.
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Thinness
Let A = (A,UA) be a uniform groupoid.

Let σ ∈ UA and τ ∈ U⊥
A .

σ and τ are thinly orthogonal, denoted σ ⊥⊥ τ , when the vertex P of

P

σ τ

A

l r

∂σ ∂τ

is discrete (i.e., no non-identity morphisms).
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Thinness
Let A = (A,UA) be a uniform groupoid.

Let σ ∈ UA and τ ∈ U⊥
A .

σ and τ are thinly orthogonal, denoted σ ⊥⊥ τ , when the vertex P of

P

σ τ

A

l r

∂σ ∂τ

is discrete (i.e., no non-identity morphisms).

Idea: ⊥⊥ constrains the overlapping between images of ∂σ and ∂τ

 unicity of decompositions in A.
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Thinness
Let A = (A,UA) be a uniform groupoid.

Let σ ∈ UA and τ ∈ U⊥
A .

σ and τ are thinly orthogonal, denoted σ ⊥⊥ τ , when the vertex P of

P

σ τ

A

l r

∂σ ∂τ

is discrete (i.e., no non-identity morphisms).

Given S ⊆ UA, we write

S⊥⊥ =̂ { τ ∈ U⊥
A | ∀σ ∈ S, σ ⊥⊥ τ }.
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Thinness

A thin ±-groupoid A = (A,A−,A+,UA,TA) is the data of
I a uniform groupoid (A,UA);

I two subgroupoids A− and A+ of A with the same objects as A with injections

id−
A : A− ↪→ A; id+

A : A+ ↪→ A

I a class TA ⊆ UA of thin prestrategies, such that

T ⊥⊥⊥⊥
A = TA and id−

A ∈ TA and id+
A ∈ T ⊥⊥

A .

Constructions on thin ±-groupoids: A⊥, A ⊗ B, A( B, . . .
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Thinness

Proposition
Let A be a thin ±-groupoid. Given an isomorphism

θ : a → a′ ∈ A

there are unique
θ− ∈ A− and θ+ ∈ A+

such that θ = θ+ ◦ θ−.

By definition, we have id−
A ∈ TA ⊆ UA and id+

A ∈ T ⊥⊥
A ⊆ U⊥

A .

Existence: since id−
A ⊥ id+

A .

Unicity: since id−
A ⊥⊥ id+

A .
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Positive 2-cells

Given a thin ±-groupoid A = (A,A−,A+,UA,TA), a 2-cell

X A

f

f ′

⇓φ

is said positive on A when φx ∈ A+ for every x ∈ X .
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Positive 2-cells
Proposition
Given σ, τ ∈ TA(B and (F , φ) : σ ⇒ τ , there exist unique

(F +, φ+) : σ ⇒ τ and µ : F + ⇒ F

such that

σ τ

A × B

∂σ

F

∂τ

φ=⇒ =

σ τ

A × B

∂σ

F

F +

∂τ
φ+
=⇒

⇑ µ

with φ+ positive on A( B.
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The bicategory Thin+

We define Thin+

I 0-cells: the thin ±-groupoids A,B, C, . . .;
I 1-cells A → B: the thin spans σ ∈ TA(B;
I 2-cells σ ⇒ τ : the span morphisms (F , φ) with φ positive.

Composition of 2-cells can now be defined canonically with the positive factorization of
2-cells  unitality, associativity, . . .

Theorem (C., F.)
Thin+ is a bicategory.
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The pseudocomonad

Recall that the comonad ! : Rel → Rel is derived from
the monad Mfin : Set → Set.

We derive a (pseudo)comonad ! : Thin+ → Thin+ from
a (pseudo)monad Fam : Gpd → Gpd.
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The pseudocomonad

The monad Fam : Gpd → Gpd?

To A ∈ Gpd, associates Fam(A) ∈ Gpd:

I objects: families (ai)i∈I with I ⊆fin N and ai ∈ A;
I morphisms (ai)i∈I → (a′

j)j∈J : pairs (π, (fi)i∈I) where

I π is a bijection I → J ;
I fi is a morphism ai → a′

π(i).

The unit A → Fam(A): maps a ∈ A to (a)i∈{ 0 } ∈ Fam(A);

The multiplication Fam(Fam(A)) → Fam(A): merges families of families into
simply-indexed families.
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simply-indexed families.
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The pseudocomonad

We get a pseudocomonad
! : Thin+ → Thin+

where
!A =̂ (Fam(A), . . .)

for every thin ±-groupoids A and

!σ =̂
Fam(σ)

Fam(A) Fam(B)

Fam(∂σ
A ) Fam(∂σ

B )

for every span σ : A → B.
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The Kleisli bicategory

We thus get a Kleisli bicategory Thin+
! with ! = Fam, whose 1-cells A → B

are of the form
σ

Fam(A) B

∂σ
!A ∂σ

B .

In categorical models of LL, the Kleisli category is cartesian closed.

Theorem (C., F.)
The bicategory Thin+

! is cartesian closed.



17/20

The Kleisli bicategory

We thus get a Kleisli bicategory Thin+
! with ! = Fam, whose 1-cells A → B

are of the form
σ

Fam(A) B

∂σ
!A ∂σ

B .

In categorical models of LL, the Kleisli category is cartesian closed.

Theorem (C., F.)
The bicategory Thin+

! is cartesian closed.



17/20

The Kleisli bicategory

We thus get a Kleisli bicategory Thin+
! with ! = Fam, whose 1-cells A → B

are of the form
σ

Fam(A) B

∂σ
!A ∂σ

B .

In categorical models of LL, the Kleisli category is cartesian closed.

Theorem (C., F.)
The bicategory Thin+

! is cartesian closed.



18/20

Examples

Notation: given a = (ai)i∈I ∈ !A with A ∈ Gpd and I = { i1, . . . , in } ⊆fin N, we write

a = [i1 • ai1 , . . . , in • ain ].
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Examples

Example 1:

x : Bool ` if x then ff else tt : Bool

interpreted as the span (which happens to be a relation)

{ [0 • tt]( ff, [0 • ff]( tt }

!Bool Bool

.
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Examples

Example 2:

x : Bool ` if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as the span (which happens to be a relation)

{ [0 • tt, 1 • tt]( ff, [0 • tt, 1 • ff]( tt, [0 • ff, 1 • tt]( tt, [0 • ff, 1 • ff]( ff }

!Bool Bool

to compare with the interpretation in Rel!:

{ [tt, tt]( ff, [tt,ff]( tt, [ff,ff]( tt }.
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Examples

Example 3: a non-deterministic operator >

` ff > tt : Bool

interpreted as the span (which happens to be a relation)

{ inl(ff), inr(tt) }

!∅ Bool
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Examples

Example 4:

` ff > ff : Bool

interpreted as the span

{ inl(ff), inr(ff) }

!∅ Bool

 two witnesses for ff.
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Other works

Source of the ideas of this work:
I Concurrent games: symmetries, thinness, proofs, . . .

Castellan, Clairambault, et al. “Games and Strategies as Event Structures”. 2017

Related works:
I Generalized species of structures

Fiore, Gambino, et al. “The cartesian closed bicategory of generalised species of
structures”. 2008

I Template games
Melliès. “Template games and differential linear logic”. 2019

I Infinitary intersection types
Vial. “Infinitary intersection types as sequences: A new answer to Klop’s problem”.
2017
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The end

Any questions?
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Whiteboard
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Seely equivalence

Recall: a common approach for exhibiting a categorical model of LL is to find a Seely
isomorphism

seeA,B : !A ⊗ !B → !(A & B).



2/6

Seely equivalence
In Thin+,

A ⊗ B =̂ (A × B, . . .) and A & B =̂ (A t B, . . .).

We have the 2-categorical analogue of a Seely isomorphism, already in Gpd:

Proposition
Given A,B ∈ Gpd, there is an adjoint equivalence of groupoids

Fam(A) × Fam(B) ⊥ Fam(A t B)

seeA,B

seeA,B

.

Idea: given a = (ai)i∈I and b = (bj)j∈J , one can merge a and b as c = (ck)k∈K
with K ∼= I t J .
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The Seely 2-cell

Recall: the Seely isomorphism

seeA,B : !A ⊗ !B → !(A & B)

is supposed to verify the equality

!A ⊗ !B !(A & B)

!!(A & B)

!!A ⊗ !!B !(!A & !B)

seeA,B

δA⊗δB =

δA&B

!〈!l ,!r〉

see!A,!B

.



3/6

The Seely 2-cell

The Seely equality appears here as a non-trivial 2-cell in Gpd:

!!A × !!B !!A × !!B

!(!A t !B) !A × !B

!!(A t B)

!(A t B) !(A t B)

see!A,!B

SeeA,B===⇒

µA×µB

![!(l),!(r)]

seeA,B

µAtB

.
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Cartesian structure

Definition
A bicategory C is cartesian when, for every objects Y ,Z , there exist

an object Y & Z ∈ C and morphisms l : Y & Z → Y and r : Y & Z → Z

such that, for every X , there is an adjoint equivalence of categories

C(X ,Y & Z ) ⊥ C(X ,Y ) × C(X ,Z )

(l �(−),r �(−))

〈−,−〉

(+ there exists a terminal object expressed as an adjoint equivalence too).
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Cartesian structure

Theorem
The bicategory Thin+

! is cartesian.

Given two thin ±-groupoids A and B, we take A & B =̂ (A t B, . . .) and

l =

A

A t B

Fam(A t B) A

l

idA

ηAtB

and r =

B

A t B

Fam(A t B) B

r

idB

ηAtB

for l : A & B → A and r : A & B → B in Thin+
! .



4/6

Cartesian structure

Theorem
The bicategory Thin+

! is cartesian.

Given two thin ±-groupoids A and B, we take A & B =̂ (A t B, . . .) and

l =

A

A t B

Fam(A t B) A

l

idA

ηAtB

and r =

B

A t B

Fam(A t B) B

r

idB

ηAtB

for l : A & B → A and r : A & B → B in Thin+
! .



5/6

Closure
A cartesian bicategory C is closed when, for every object Y ,Z , there exist

an object Y ⇒ Z ∈ C and a morphism evY ,Z : (Y ⇒ Z ) & Y → Z

such that, for every X ∈ C, there is an adjoint equivalence

C(X ,Y ⇒ Z ) ⊥ C(X & Y ,Z )

evY ,Z �(−&Y )

(−)†

.

Theorem
The cartesian bicategory Thin+

! is closed.
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The closed structure for Thin+
!

Given thin ±-groupoids B, C, we take B ⇒ C =̂ (!B × C , . . .) and

evB,C : (B ⇒ C) & B → C =

!B × C

!B × C × !B

!(!B × C) × !B

!((!B × C) t B) C

〈l ,r ,l〉

rη!B×C ×!B

see!B×C,B

(writting directly ! for Fam).
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