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The model Rel of LL

Objects: sets A, B, C, etc.

Morphisms A — B: relations R C A x B, i.e., sets of elements
a—ob

Exponential: A is Mgy, (A), the set of finite multisets on A

(co)Kleisli category Rel;: morphisms A — B are morphisms !A — B of Rel, that is, sets

of elements
[al,...,an] —o b



Interpreting programs in Rel,

Since Rel, is cartesian closed, one can interpret programs inside it.

x: Bool |- if x then ff else tt : Bool

interpreted as
{[tt] - ff, [ff] ottt} (C M;zy(Bool) x Bool)
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Interpreting programs in Rel,

Since Rel, is cartesian closed, one can interpret programs inside it.

x: Bool I if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as
{ [tt, tt] — fF,  [tt ] — tt, [fF, ff] — ff }

Here, two different executions get identified in the interpretation.

Hence, Rel, aggregates different executions.



Problem

How to obtain a Rel-style proof-relevant model of LL?

Some existing answers:

» Generalized species of structures
Fiore, Gambino, et al. “The cartesian closed bicategory of generalised species of
structures”. 2008

» Template games
Mellies. “Template games and differential linear logic”. 2019

We aim at providing another answer focused on effectivity.



Spans as generalized relations

First: we need a more quantitative structure than relations.



Spans as generalized relations

A span between two sets A and B is 0 = (g, 09,0%) as in

Given (a, b) € A x B, there is a set g, of witnesses above (a, b).

Idea: A relation between A and B is a span with at most one witness above any (a, b).



Spans as generalized relations

Spans are composed using pullbacks: given spanso: A — B and 7: B — C,

TOO
///// 4 \\\‘\r
. . x’ Sy
T @ o is defined by g T
0% N e o
og g
~N 7
A B C

Intuitively: a witness of (a, b) and a witness of (b, ¢) give a witness of (a, ¢).



Spans as generalized relations

Since pullbacks are unique up to isomorphism, 7 @ o is defined up to isomorphism of

spans.

Given two spans o,7: A — B, a morphism between o and 7 is m: ¢ — 7 such that

m m
c———1 c—" 1
= and =
oa 4 g g
A B

One gets a bicategory Span = Span(Set) of sets, spans and morphisms of spans.



Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.



Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.

T = () is the terminal object of Span.
0

7N

A 0



Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.
A& B = AU B is the cartesian product on Span.

a T ot

8;?/ \8;" 8;/ \8:73' [0% ,8*/ \" uog
A

X A X B AUB
o X =+ A 7: X —=B (o,7): X - A&B



Some structure on Span

The cartesian structure of Set translates to a monoidal structure on Span.

A® B = A x B gives a tensor product on Span.

g T g XT
o2 % 9% g I % O <0,
N\ N L YN
A Al B B’ Ax B A x B

g T oRT



A model of LL on spans?
We thus have a quantitative generalization of Rel in the form of Span.

Do we still have an exponential for Span?



A model of LL on spans?
We thus have a quantitative generalization of Rel in the form of Span.

Do we still have an exponential for Span?
» First try: can we use Mg, (—) as exponential for Span?

Given o € Span, define

Mﬁn(g)
Me(o _ Min(89) Man ()
Mign(A) Man(B)

Problem: Mg, does not respect composition, because pullbacks are not
preserved. Thus, not a functor.
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A model of LL on spans?
We thus have a quantitative generalization of Rel in the form of Span.

Do we still have an exponential for Span?
» First try: can we use Mg, (—) as exponential for Span? No.

» Second try: can we use lists as exponential?
ai,...,an €A ~ [a1;---;an) € List(A)
List(o)

List(o) - "iSt(y \LiSt/‘(BE )

List(A) List(B)



A model of LL on spans?
We thus have a quantitative generalization of Rel in the form of Span.

Do we still have an exponential for Span?
» First try: can we use Mg, (—) as exponential for Span? No.

» Second try: can we use lists as exponential?

ai,...,an €A ~ [a1;---;an) € List(A)
List(o)
lst(0) = o)
List(A) List(B)

We now have a (pseudo)functor, but no Seely equivalence

seeap: List A® List B = List(A & B) € Span.



A model of LL on spans?
We thus have a quantitative generalization of Rel in the form of Span.

Do we still have an exponential for Span?
» First try: can we use Mg, (—) as exponential for Span? No.

» Second try: can we use lists as exponential? Probably no.

ai,...,an €A ~ [a1;---;an) € List(A)



Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
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Our definition of Span was based on the category Set of sets and functions.
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Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
Let Gpd be the 2-category of groupoids, functors and natural transformations.

We (re)define Span as Span(Gpd)
P 0O-cells: groupoids A, B, ...
> 1-cells: spans o,7,...
» 2-cells: pseudo-commutative triangles (F, ¢),(G,v),...

(Fg)io=r ~ \ / and \ /



Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
Let Gpd be the 2-category of groupoids, functors and natural transformations.
We (re)define Span as Span(Gpd)

Idea: the isomorphisms in groupoids express symmetries between x,y € A
and between witnesses s, t € .

[Q

9 %



Bipullbacks

We must now give a composition which respects symmetries.

TOOo
l/,// S
g It
g T
a5 N L ¢
9% 9%
N

One way is to say that the middle square above is a bipullback.



Bipullbacks

Let a diagram

in Gpd.



Bipullbacks

It is a bipullback when every pseudocone can be decomposed along it, i.e.,

// \\
// \\
. N
veL . Ver
// \
7/ \
7/ \
// VN/ \\
v — Yy

and additional conditions.

I
Py



Supple pullbacks

Problem:
» simple and effective composition of spans ~~ pullbacks
P taking symmetries into account ~~ bipullbacks

Can we have both? Yes.



Supple pullbacks

A supple pullback is a pullback which is also a bipullback.

For our span model of LL:
» spans will be composed by pullbacks ~~ effectivity

P we ensure that the pullbacks appearing are all supple ~» symmetry



Uniform groupoids

Given a groupoid A, a prestrategy o on A is a pair (o € Gpd, 97 : g — A).

s 2 A e Gpd



Uniform groupoids

Given a groupoid A, a prestrategy o on A is a pair (o € Gpd, 97 : g — A).
8(7
og— A € Gpd

Note: a prestrategy on A x B is canonically a span between A and B.

S L RN



Uniform groupoids

Two prestrategies o, 7 on A are said uniformly orthogonal, denoted o 1 7, when the
pullback

P
VN
x N
g T
N‘ %
A

is supple (i.e., is a bipullback).
Given a class S of prestrategies on A,

St 2 {7ePreStrat(A) |Yo €S, o L7}



Uniform groupoids

A uniform groupoid A = (A,U4) is a pair of
P> a groupoid A,
> a class Uy of prestrategies o = (g,97) on A, such that

Uit =Ua.



Uniform groupoids

Operations on uniform groupoids: given A = (A,U4) and B = (B,UR),
> AL = (A U);
> AR B2 (Ax B, (Ug @UR)*) where

Ur@Ug = {oxo|oelyando elUp}

!
079 X0
oxa LX% s Ax B

/
o X0o

Il>

> AR B = (A @ BY)Y,
> A—oBZ=AtZB  (=(AxB,(Us@Uz)L)).

Note: the prestrategies of U 4.5 C PreStrat(A x B) are canonically spans between A
and B.



A bicategory of uniform groupoids?

Let Unif be the structure with

» 0-cells: uniform groupoids A, B, .. .;

» 1-cells A — B: uniform spans ¢ € U4 _.p;

» 2-cells 0 = 7: morphism of spans (F,¢): 0 = 7 € Span.
Is it a bicategory?



A bicategory of uniform groupoids?

Let Unif be the structure with

» 0-cells: uniform groupoids A, B, .. .;

» 1-cells A — B: uniform spans ¢ € U4 _.p;

» 2-cells 0 = 7: morphism of spans (F,¢): 0 = 7 € Span.
Is it a bicategory?

No: the bipullback composition ensures existence, but not canonicity
~ missing unitality, associativity, ...



Thinness

Idea: add more structure to make the composition canonical.



Thinness
Let A = (A,U4) be a uniform groupoid.

Let 0 € Uy and TEL{j.
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is discrete (i.e., no non-identity morphisms).



Thinness
Let A = (A,U4) be a uniform groupoid.

Let 0 € Uy and TEL{j.

o and 7 are thinly orthogonal, denoted o 1L 7, when the vertex P of

P
I 7o Tl
gl Ty
g i
N %
A

is discrete (i.e., no non-identity morphisms).

Idea: Il constrains the overlapping between images of 9% and 07
~» unicity of decompositions in A.



Thinness
Let A = (A,U4) be a uniform groupoid.

Let 0 € Uy and TEL{j.

o and 7 are thinly orthogonal, denoted o 1L 7, when the vertex P of

is discrete (i.e., no non-identity morphisms).

Given S C Uy, we write

st = {reUy | YoeS, ol7}



Thinness

A thin £-groupoid A = (A, A_, A, , U4, T4) is the data of
» a uniform groupoid (A,U4);
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» a uniform groupoid (A,U4);
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Thinness

A thin £-groupoid A = (A, A_, A, , U4, T4) is the data of
» a uniform groupoid (A,U4);
> two subgroupoids A_ and A; of A with the same objects as A with injections

idy: A=A idj: A — A
> aclass T4 C Uy of thin prestrategies, such that

Tit=T4 and idyjeTy and id}eTH.

Constructions on thin £-groupoids: A+, A@ B, A — B, ...



Thinness
Proposition
Let A be a thin +-groupoid. Given an isomorphism
0:a—a cA

there are unique
0~ € A_ and 6t € A,

such that 6 = 0t o 6.
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Thinness
Proposition
Let A be a thin +-groupoid. Given an isomorphism
0:a—a cA

there are unique
0~ € A_ and 6t € A,

such that 6 = 0t o 6.
By definition, we have id, € T4 C U4 and idJAf € TjL C Z/{j.

Existence: since id, L idj.



Thinness
Proposition
Let A be a thin +-groupoid. Given an isomorphism
0:a—a cA

there are unique
0~ € A_ and 6t € A,

such that 6 = 0t o 6.
By definition, we have id, € T4 C U4 and idJAf € TjL C Z/{j.
Existence: since id, L idj.

Unicity: since id, 1L id;\r.



Positive 2-cells

Given a thin +-groupoid A = (A, A_, A, ,UA, T ), a 2-cell

f
VY

X o A
"

is said positive on A when ¢, € A, for every x € X.



Positive 2-cells

Proposition
Given o,7 € Ta_.g and (F,$): o = T, there exist unique

(Ftr,oT):o=r1 and p:Ft=F

such that
F F
¢ \ F+ /
= i o
a° ar o a° — ar
Ax B Ax B

with ¢ positive on A —o B.



The bicategory Thin™

We define Thin™
» O-cells: the thin +-groupoids A, B,C, .. ;
» 1-cells A — B: the thin spans o0 € T4 _.p;
» 2-cells 0 = 7: the span morphisms (F, ¢) with ¢ positive.



The bicategory Thin™

We define Thin™
» 0-cells: the thin +-groupoids A, B,C,...;
» 1-cells A — B: the thin spans o0 € T4 _.p;
» 2-cells 0 = 7: the span morphisms (F, ¢) with ¢ positive.

Composition of 2-cells can now be defined canonically with the positive factorization of
2-cells ~» unitality, associativity, ...



The bicategory Thin™

We define Thin™
» 0-cells: the thin +-groupoids A, B,C,...;
» 1-cells A — B: the thin spans o0 € T4 _.p;
» 2-cells 0 = 7: the span morphisms (F, ¢) with ¢ positive.

Composition of 2-cells can now be defined canonically with the positive factorization of

2-cells ~» unitality, associativity, ...

Theorem (C., F.)
Thin™ is a bicategory.



The pseudocomonad

Recall that the comonad !: Rel — Rel is derived from
the monad My, : Set — Set.

We derive a (pseudo)comonad !: Thin™ — Thin™ from
a (pseudo)monad Fam: Gpd — Gpd.
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The pseudocomonad

The monad Fam: Gpd — Gpd?

To A € Gpd, associates Fam(A) € Gpd:
» objects: families (a;)ie; with | Cs, N and a; € A;
» morphisms (a;)ie; — (a})jes: pairs (m, (fi)ic) where
» 7 is a bijection | — J;
» f; is a morphism a; — a;(,.).

The unit A — Fam(A): maps a € A to (a);c{o} € Fam(A);

The multiplication Fam(Fam(A)) — Fam(A): merges families of families into
simply-indexed families.



The pseudocomonad

We get a pseudocomonad

I: Thin™ — Thin™
where
A = (Fam(A),...)
for every thin +-groupoids A and
Fam(o)
lo S Famfy Q(ag)
Fam(A) Fam(B)

for every span o: A — B.



The Kleisli bicategory

We thus get a Kleisli bicategory Thin!+ with | = Fam, whose 1-cells A — B

are of the form
o

V_ oe

Fam(A) B
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The Kleisli bicategory

We thus get a Kleisli bicategory Thin!+ with | = Fam, whose 1-cells A — B

are of the form
o

V_ oe

Fam(A) B

o]

In categorical models of LL, the Kleisli category is cartesian closed.

Theorem (C., F.)

The bicategory Thin!+ is cartesian closed.



Examples

Notation: given a = (a;)ic; € !Awith A€ Gpd and | = { i1,....,in } Can N, we write

a=|[Lea;, ... , i,ea;l



Examples

Example 1:
x: Bool - if x then ff else tt : Bool

interpreted as the span (which happens to be a relation)

{[0ett] < ff, [Oeff] —tt}

N

IBool Bool



Examples

Example 2:
x: Bool I if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as the span (which happens to be a relation)

{[0Oett,1ott] < ff, [Oeott,1eff| ott, [Ooff lett] ott, [Oeff 1eff] —ff}

N

IBool Bool



Examples

Example 2:
x: Bool I if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as the span (which happens to be a relation)

{[0Oett,1ott] < ff, [Oeott,1eff| ott, [Ooff lett] ott, [Oeff 1eff] —ff}

N

Bool Bool
to compare with the interpretation in Rel,:

{ [tt,tt] — fF, [tt,ff] — tt, [fF fF] — tt }.



Examples

Example 3: a non-deterministic operator @
- ff @ tt : Bool

interpreted as the span (which happens to be a relation)

{inl(fF), inr(tt) }

N

10 Bool



Examples

Example 4:
+ ff © ff : Bool

interpreted as the span

{inl(ff), inr(ff) }

~

10 Bool

~ two witnesses for fF.



Other works

Source of the ideas of this work:

» Concurrent games: symmetries, thinness, proofs, ...
Castellan, Clairambault, et al. "Games and Strategies as Event Structures”. 2017

Related works:

» Generalized species of structures
Fiore, Gambino, et al. “The cartesian closed bicategory of generalised species of
structures”. 2008

> Template games
Mellies. “Template games and differential linear logic”. 2019

» Infinitary intersection types
Vial. “Infinitary intersection types as sequences: A new answer to Klop's problem”.
2017



The end

Any questions?



Whiteboard



Seely equivalence

Recall: a common approach for exhibiting a categorical model of LL is to find a Seely
isomorphism
seeap: !/A® B = 1(A& B).



Seely equivalence

In Thin™,
AB=(AxB,...) and A&B=(AUB,...).

We have the 2-categorical analogue of a Seely isomorphism, already in Gpd:

Proposition
Given A, B € Gpd, there is an adjoint equivalence of groupoids

Se€ea B

T

Fam(A) x Fam(B) 1 Fam(AU B) .

\_/

seea B

Idea: given a = (a;)ic; and b = (b;j)jey, one can merge a and b as ¢ = (ck)kek
with K = /U J.



The Seely 2-cell

Recall: the Seely isomorphism
seeap: |IA® !B — (A& B)

is supposed to verify the equality

IAR 1B —2%, (A& B)
J((sA&B
54568 = (A&B) -

li(!/m

HA® B —— I(IA& IB)

seela 1B



The Seely 2-cell

The Seely equality appears here as a non-trivial 2-cell in Gpd:

HAX B =—=

[
seeiq 18

~

(1AL IB)

![!(7)\;1(7)] SeeaB

(AL B)

|
HAauB
~

(AU B)

HA X B

[
HAX B
<+

IAxIB

SeeA B

I(AU B)



Cartesian structure

Definition
A bicategory C is cartesian when, for every objects Y, Z, there exist

an object Y& Z €C and morphisms [: Y& Z—Y and r:Y&Z—Z
such that, for every X, there is an adjoint equivalence of categories

(10(=):,r o(=))

/_\

C(X,Y & 2) 1 C(X,Y) x C(X,2)

\/

<_’_>

(+ there exists a terminal object expressed as an adjoint equivalence too).



Cartesian structure

Theorem
The bicategory Thin!+ is cartesian.



Cartesian structure

Theorem
The bicategory Thin!+ is cartesian.

Given two thin £-groupoids A and B, we take A& B = (AL B,...) and

AN 7a

= AL B da and  r= AL B s
77Au\B/ 77Au\B/
Fam(AU B) A Fam(AU B)

for/: A&B—Aandr: A&B — Bin Thin!+.



Closure
A cartesian bicategory C is closed when, for every object Y, Z, there exist
an object Y = Z€C and a morphism evy z: (Y = Z)& Y = Z

such that, for every X € C, there is an adjoint equivalence

evy z @(7&\/)
C(X,Y = 2) 1 C(X&Y,Z) .



Closure
A cartesian bicategory C is closed when, for every object Y, Z, there exist
an object Y = Z€C and a morphism evy z: (Y = Z)& Y = Z

such that, for every X € C, there is an adjoint equivalence

evy z @(7&\/)
C(X,Y = 2) 1 C(X&Y,Z) .

Theorem
The cartesian bicategory Thin!Jr is closed.



The closed structure for Thin;"

Given thin +-groupoids B,C, we take B=C = (1B x C,...) and

IBx C

</J7l)/

IBx Cx 1B
evge: (B=C)&B—C — U!Bxcx17
I(!1Bx C)x !B

SeeiBx C,B/

I((!B x C)U B)

(writting directly ! for Fam).
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