The cartesian closed bicategory of thin spans

Pierre Clairambault ${ }^{1} \quad$ Simon Forest ${ }^{2}$

${ }^{1}$ LIS, CNRS
${ }^{2}$ I2M, Aix-Marseille Université
October 13, 2022

The model Rel of LL

Objects: sets A, B, C, etc.
Morphisms $A \rightarrow B$: relations $R \subseteq A \times B$, i.e., sets of elements

$$
a \multimap b
$$

Exponential: ! A is $\mathcal{M}_{\mathrm{fin}}(A)$, the set of finite multisets on A
(co)Kleisli category Rel!: morphisms $A \rightarrow B$ are morphisms ! $A \rightarrow B$ of Rel, that is, sets of elements

$$
\left[a_{1}, \ldots, a_{n}\right] \multimap b
$$

Interpreting programs in Rel

Since Rel! is cartesian closed, one can interpret programs inside it.

$$
x: \text { Bool } \vdash \text { if } x \text { then ff else } \mathbf{t t}: \text { Bool }
$$

interpreted as

$$
\{[\mathbf{t t}] \multimap \mathbf{f f}, \quad[\mathbf{f f}] \multimap \mathbf{t t}\} \quad\left(\subseteq \mathcal{M}_{\text {fin }}(\text { Bool }) \times \text { Bool }\right)
$$

Interpreting programs in Rel!

Since Rel! is cartesian closed, one can interpret programs inside it.
x : Bool \vdash if x then (if x then $\mathbf{f f}$ else $\mathbf{t t}$) else (if x then $\mathbf{t t}$ else $\mathbf{f f}$): Bool interpreted as

$$
\{[\mathbf{t t}, \mathbf{t t}] \multimap \mathbf{f f}, \quad[\mathbf{t t}, \mathbf{f f}] \multimap \mathbf{t t}, \quad[\mathbf{f f}, \mathbf{f f}] \multimap \mathbf{f f}\}
$$

Interpreting programs in Rel

Since Rel! is cartesian closed, one can interpret programs inside it.
x : Bool \vdash if x then (if x then $\mathbf{f f}$ else $\mathbf{t t}$) else (if x then tt else $\mathbf{f f}$): Bool interpreted as

$$
\{[\mathbf{t t}, \mathbf{t t}] \multimap \mathbf{f f}, \quad[\mathbf{t t}, \mathbf{f f}] \multimap \mathbf{t t}, \quad[\mathbf{f f}, \mathbf{f f}] \multimap \mathbf{f f}\}
$$

Here, two different executions get identified in the interpretation.

Interpreting programs in Rel

Since Rel! is cartesian closed, one can interpret programs inside it.
x : Bool \vdash if x then (if x then $\mathbf{f f}$ else $\mathbf{t t}$) else (if x then tt else $\mathbf{f f}$): Bool interpreted as

$$
\{[\mathbf{t t}, \mathbf{t t}] \multimap \mathbf{f f}, \quad[\mathbf{t t}, \mathbf{f f}] \multimap \mathbf{t t}, \quad[\mathbf{f f}, \mathbf{f f}] \multimap \mathbf{f f}\}
$$

Here, two different executions get identified in the interpretation.
Hence, Rel! aggregates different executions.

Problem

How to obtain a Rel-style proof-relevant model of LL?
Some existing answers:

- Generalized species of structures

Fiore, Gambino, et al. "The cartesian closed bicategory of generalised species of structures". 2008

- Template games

Melliès. "Template games and differential linear logic". 2019
We aim at providing another answer focused on effectivity.

Spans as generalized relations

First: we need a more quantitative structure than relations.

Spans as generalized relations

A span between two sets A and B is $\sigma=\left(\underline{\sigma}, \partial_{A}^{\sigma}, \partial_{B}^{\sigma}\right)$ as in

Given $(a, b) \in A \times B$, there is a set $\underline{\sigma}_{a, b}$ of witnesses above (a, b).
Idea: A relation between A and B is a span with at most one witness above any (a, b).

Spans as generalized relations

Spans are composed using pullbacks: given spans $\sigma: A \rightarrow B$ and $\tau: B \rightarrow C$,

Intuitively: a witness of (a, b) and a witness of (b, c) give a witness of (a, c).

Spans as generalized relations

Since pullbacks are unique up to isomorphism, $\tau \odot \sigma$ is defined up to isomorphism of spans.

Given two spans $\sigma, \tau: A \rightarrow B$, a morphism between σ and τ is $m: \underline{\sigma} \rightarrow \underline{\tau}$ such that

and

One gets a bicategory Span $=\mathbf{S p a n}($ Set $)$ of sets, spans and morphisms of spans.

Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.

Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.
$T \hat{=} \emptyset$ is the terminal object of Span.

Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.
$A \& B \hat{=} A \sqcup B$ is the cartesian product on Span.

Some structure on Span

The cartesian structure of Set translates to a monoidal structure on Span.
$A \otimes B \hat{=} A \times B$ gives a tensor product on Span.

A model of LL on spans?

We thus have a quantitative generalization of Rel in the form of Span
Do we still have an exponential for Span?

A model of $\mathbf{L L}$ on spans?

We thus have a quantitative generalization of Rel in the form of Span.
Do we still have an exponential for Span?

- First try: can we use $\mathcal{M}_{\text {fin }}(-)$ as exponential for Span?

Given $\sigma \in$ Span, define

$$
\mathcal{M}_{\mathrm{fin}}(\sigma)=\mathcal{M}_{\mathrm{fin}}(A)^{\mathcal{M}_{\mathrm{fin}}\left(\partial_{A}^{\sigma}\right)}
$$

Problem: $\mathcal{M}_{\text {fin }}$ does not respect composition, because pullbacks are not preserved. Thus, not a functor.

A model of LL on spans?

We thus have a quantitative generalization of Rel in the form of Span.
Do we still have an exponential for Span?

- First try: can we use $\mathcal{M}_{\text {fin }}(-)$ as exponential for Span? No.
- Second try: can we use lists as exponential?

$$
a_{1}, \ldots, a_{n} \in A \quad \rightsquigarrow \quad\left[a_{1} ; \cdots ; a_{n}\right] \in \operatorname{List}(A)
$$

A model of LL on spans?

We thus have a quantitative generalization of Rel in the form of Span.
Do we still have an exponential for Span?

- First try: can we use $\mathcal{M}_{\text {fin }}(-)$ as exponential for Span? No.
- Second try: can we use lists as exponential?

$$
a_{1}, \ldots, a_{n} \in A \quad \rightsquigarrow \quad\left[a_{1} ; \cdots ; a_{n}\right] \in \operatorname{List}(A)
$$

A model of LL on spans?

We thus have a quantitative generalization of Rel in the form of Span.
Do we still have an exponential for Span?

- First try: can we use $\mathcal{M}_{\text {fin }}(-)$ as exponential for Span? No.
- Second try: can we use lists as exponential?

$$
a_{1}, \ldots, a_{n} \in A \quad \rightsquigarrow \quad\left[a_{1} ; \cdots ; a_{n}\right] \in \operatorname{List}(A)
$$

We now have a (pseudo)functor, but no Seely equivalence
$\operatorname{see}_{A, B}: \operatorname{List} A \otimes \operatorname{List} B \xrightarrow{\simeq} \boldsymbol{\operatorname { L i s t }}(A \& B) \in \mathbf{S p a n}$.

A model of LL on spans?

We thus have a quantitative generalization of Rel in the form of Span.
Do we still have an exponential for Span?

- First try: can we use $\mathcal{M}_{\mathrm{fin}}(-)$ as exponential for Span? No.
- Second try: can we use lists as exponential? Probably no.

$$
a_{1}, \ldots, a_{n} \in A \quad \rightsquigarrow \quad\left[a_{1} ; \cdots ; a_{n}\right] \in \operatorname{List}(A)
$$

Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.

Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
Let Gpd be the 2-category of groupoids, functors and natural transformations.

Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
Let Gpd be the 2-category of groupoids, functors and natural transformations.
We (re)define Span as Span(Gpd)

Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
Let Gpd be the 2-category of groupoids, functors and natural transformations.
We (re)define Span as Span(Gpd)

- 0-cells: groupoids A, B, \ldots

Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
Let Gpd be the 2-category of groupoids, functors and natural transformations.
We (re)define Span as Span(Gpd)

- 0-cells: groupoids A, B, \ldots
- 1-cells: spans σ, τ, \ldots

Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
Let Gpd be the 2-category of groupoids, functors and natural transformations.
We (re)define Span as Span(Gpd)

- 0-cells: groupoids A, B, \ldots
- 1-cells: spans σ, τ, \ldots
- 2-cells: pseudo-commutative triangles $(F, \phi),(G, \psi), \ldots$

$$
\begin{aligned}
& (F, \phi): \sigma \Rightarrow \tau \rightsquigarrow \\
& \text { and }
\end{aligned}
$$

Span is dead, long live Span!

Our definition of Span was based on the category Set of sets and functions.
Let Gpd be the 2-category of groupoids, functors and natural transformations.
We (re)define Span as Span(Gpd)
Idea: the isomorphisms in groupoids express symmetries between $x, y \in A$ and between witnesses $s, t \in \underline{\sigma}$.

Bipullbacks

We must now give a composition which respects symmetries.

One way is to say that the middle square above is a bipullback.

Bipullbacks

Let a diagram

in Gpd.

Bipullbacks

It is a bipullback when every pseudocone can be decomposed along it, i.e.,

and additional conditions.

Supple pullbacks

Problem:

- simple and effective composition of spans \rightsquigarrow pullbacks
- taking symmetries into account \rightsquigarrow bipullbacks

Can we have both? Yes.

Supple pullbacks

A supple pullback is a pullback which is also a bipullback.
For our span model of LL:

- spans will be composed by pullbacks \rightsquigarrow effectivity
- we ensure that the pullbacks appearing are all supple \rightsquigarrow symmetry

Uniform groupoids

Given a groupoid A, a prestrategy σ on A is a pair ($\underline{\sigma} \in \mathbf{G p d}, \partial^{\sigma}: \underline{\sigma} \rightarrow A$).

$$
\underline{\underline{\sigma}} \xrightarrow{\partial^{\sigma}} A \quad \in \quad \text { Gpd }
$$

Uniform groupoids

Given a groupoid A, a prestrategy σ on A is a pair ($\underline{\sigma} \in \mathbf{G p d}, \partial^{\sigma}: \underline{\sigma} \rightarrow A$).

$$
\underline{\sigma} \xrightarrow{\partial^{\sigma}} A \quad \in \quad \text { Gpd }
$$

Note: a prestrategy on $A \times B$ is canonically a span between A and B.

$$
\underline{\sigma} \stackrel{\partial^{\sigma}}{\longrightarrow} A \times B \quad A^{\partial_{A}^{\sigma}}{ }_{B}^{\underline{\sigma}}
$$

Uniform groupoids

Two prestrategies σ, τ on A are said uniformly orthogonal, denoted $\sigma \perp \tau$, when the pullback

is supple (i.e., is a bipullback).
Given a class S of prestrategies on A,

$$
S^{\perp} \hat{=} \quad\{\tau \in \operatorname{PreStrat}(A) \mid \forall \sigma \in S, \sigma \perp \tau\}
$$

Uniform groupoids

A uniform groupoid $\mathcal{A}=\left(A, \mathcal{U}_{\mathcal{A}}\right)$ is a pair of

- a groupoid A,
- a class $\mathcal{U}_{\mathcal{A}}$ of prestrategies $\sigma=\left(\underline{\sigma}, \partial^{\sigma}\right)$ on A, such that

$$
\mathcal{U}_{\mathcal{A}}^{\perp \perp}=\mathcal{U}_{\mathcal{A}} .
$$

Uniform groupoids

Operations on uniform groupoids: given $\mathcal{A}=\left(A, \mathcal{U}_{\mathcal{A}}\right)$ and $\mathcal{B}=\left(B, \mathcal{U}_{\mathcal{B}}\right)$,

- $\mathcal{A}^{\perp} \hat{=}\left(A, \mathcal{U}_{\mathcal{A}}^{\perp}\right)$;
- $\mathcal{A} \otimes \mathcal{B} \hat{=}\left(A \times B,\left(\mathcal{U}_{\mathcal{A}} \otimes \mathcal{U}_{\mathcal{B}}\right)^{\perp \perp}\right)$ where

$$
\begin{aligned}
\mathcal{U}_{\mathcal{A}} \otimes \mathcal{U}_{\mathcal{B}} & \hat{=}\left\{\sigma \times \sigma^{\prime} \mid \sigma \in \mathcal{U}_{\mathcal{A}} \text { and } \sigma^{\prime} \in \mathcal{U}_{\mathcal{B}}\right\} \\
\sigma \times \sigma^{\prime} & \hat{=} \underline{\sigma \times \underline{\sigma^{\prime}} \xrightarrow{\partial^{\sigma} \times \partial^{\sigma^{\prime}}} A \times B ;}
\end{aligned}
$$

- $\mathcal{A} \times \mathcal{B} \hat{=}\left(\mathcal{A}^{\perp} \otimes \mathcal{B}^{\perp}\right)^{\perp} ;$
$-\mathcal{A} \multimap \mathcal{B} \hat{=} \mathcal{A}^{\perp} \not 又 \mathcal{B} \quad\left(=\left(A \times B,\left(\mathcal{U}_{\mathcal{A}} \otimes \mathcal{U}_{\mathcal{B}}^{\perp}\right)^{\perp}\right)\right)$.
Note: the prestrategies of $\mathcal{U}_{\mathcal{A} \rightarrow \mathcal{B}} \subseteq \operatorname{PreStrat}(A \times B)$ are canonically spans between A and B.

A bicategory of uniform groupoids?

Let Unif be the structure with

- 0-cells: uniform groupoids $\mathcal{A}, \mathcal{B}, \ldots$;
- 1-cells $\mathcal{A} \rightarrow \mathcal{B}$: uniform spans $\sigma \in \mathcal{U}_{\mathcal{A} \rightarrow \mathcal{B}}$;
- 2-cells $\sigma \Rightarrow \tau$: morphism of spans $(F, \phi): \sigma \Rightarrow \tau \in$ Span.

Is it a bicategory?

A bicategory of uniform groupoids?

Let Unif be the structure with

- 0-cells: uniform groupoids $\mathcal{A}, \mathcal{B}, \ldots$;
- 1-cells $\mathcal{A} \rightarrow \mathcal{B}$: uniform spans $\sigma \in \mathcal{U}_{\mathcal{A} \rightarrow \mathcal{B}}$;
- 2-cells $\sigma \Rightarrow \tau$: morphism of spans $(F, \phi): \sigma \Rightarrow \tau \in$ Span.

Is it a bicategory?
No: the bipullback composition ensures existence, but not canonicity
\rightsquigarrow missing unitality, associativity, ...

Thinness

Idea: add more structure to make the composition canonical.

Thinness

Let $\mathcal{A}=\left(A, \mathcal{U}_{\mathcal{A}}\right)$ be a uniform groupoid.
Let $\sigma \in \mathcal{U}_{\mathcal{A}}$ and $\tau \in \mathcal{U}_{\mathcal{A}}^{\perp}$.

Thinness

Let $\mathcal{A}=\left(A, \mathcal{U}_{\mathcal{A}}\right)$ be a uniform groupoid.
Let $\sigma \in \mathcal{U}_{\mathcal{A}}$ and $\tau \in \mathcal{U}_{\mathcal{A}}^{\perp}$.
σ and τ are thinly orthogonal, denoted $\sigma \Perp \tau$, when the vertex P of

is discrete (i.e., no non-identity morphisms).

Thinness

Let $\mathcal{A}=\left(A, \mathcal{U}_{\mathcal{A}}\right)$ be a uniform groupoid.
Let $\sigma \in \mathcal{U}_{\mathcal{A}}$ and $\tau \in \mathcal{U}_{\mathcal{A}}^{\perp}$.
σ and τ are thinly orthogonal, denoted $\sigma \Perp \tau$, when the vertex P of

is discrete (i.e., no non-identity morphisms).
Idea: \Perp constrains the overlapping between images of ∂^{σ} and ∂^{τ} \rightsquigarrow unicity of decompositions in A.

Thinness

Let $\mathcal{A}=\left(A, \mathcal{U}_{\mathcal{A}}\right)$ be a uniform groupoid.
Let $\sigma \in \mathcal{U}_{\mathcal{A}}$ and $\tau \in \mathcal{U}_{\mathcal{A}}^{\perp}$.
σ and τ are thinly orthogonal, denoted $\sigma \Perp \tau$, when the vertex P of

is discrete (i.e., no non-identity morphisms).
Given $S \subseteq \mathcal{U}_{\mathcal{A}}$, we write

$$
S^{\Perp} \quad \hat{=} \quad\left\{\tau \in \mathcal{U}_{\mathcal{A}}^{\perp} \quad \mid \quad \forall \sigma \in S, \quad \sigma \Perp \tau\right\} .
$$

Thinness

A thin \pm-groupoid $\mathcal{A}=\left(A, A_{-}, A_{+}, \mathcal{U}_{\mathcal{A}}, T_{\mathcal{A}}\right)$ is the data of

- a uniform groupoid $\left(A, \mathcal{U}_{\mathcal{A}}\right)$;

Thinness

A thin \pm-groupoid $\mathcal{A}=\left(A, A_{-}, A_{+}, \mathcal{U}_{\mathcal{A}}, T_{\mathcal{A}}\right)$ is the data of

- a uniform groupoid $\left(A, \mathcal{U}_{\mathcal{A}}\right)$;
- two subgroupoids A_{-}and A_{+}of A with the same objects as A with injections

$$
\mathrm{id}_{A}^{-}: \quad A_{-} \hookrightarrow A ; \quad \mathrm{id}_{A}^{+}: \quad A_{+} \hookrightarrow A
$$

Thinness

A thin \pm-groupoid $\mathcal{A}=\left(A, A_{-}, A_{+}, \mathcal{U}_{\mathcal{A}}, T_{\mathcal{A}}\right)$ is the data of

- a uniform groupoid $\left(A, \mathcal{U}_{\mathcal{A}}\right)$;
- two subgroupoids A_{-}and A_{+}of A with the same objects as A with injections

$$
\mathrm{id}_{A}^{-}: \quad A_{-} \hookrightarrow A ; \quad \mathrm{id}_{A}^{+}: \quad A_{+} \hookrightarrow A
$$

- a class $T_{\mathcal{A}} \subseteq \mathcal{U}_{\mathcal{A}}$ of thin prestrategies, such that

$$
T_{\mathcal{A}}^{\Perp}=T_{\mathcal{A}} \quad \text { and } \quad \operatorname{id}_{A}^{-} \in T_{\mathcal{A}} \quad \text { and } \quad \mathrm{id}_{A}^{+} \in T_{\mathcal{A}}^{\Perp} .
$$

Thinness

A thin \pm-groupoid $\mathcal{A}=\left(A, A_{-}, A_{+}, \mathcal{U}_{\mathcal{A}}, T_{\mathcal{A}}\right)$ is the data of

- a uniform groupoid $\left(A, \mathcal{U}_{\mathcal{A}}\right)$;
- two subgroupoids A_{-}and A_{+}of A with the same objects as A with injections

$$
\mathrm{id}_{A}^{-}: \quad A_{-} \hookrightarrow A ; \quad \mathrm{id}_{A}^{+}: \quad A_{+} \hookrightarrow A
$$

- a class $T_{\mathcal{A}} \subseteq \mathcal{U}_{\mathcal{A}}$ of thin prestrategies, such that

$$
T_{\mathcal{A}}^{\Perp \Perp}=T_{\mathcal{A}} \quad \text { and } \quad \mathrm{id}_{A}^{-} \in T_{\mathcal{A}} \quad \text { and } \quad \mathrm{id}_{A}^{+} \in T_{\mathcal{A}}^{\Perp} .
$$

Constructions on thin \pm-groupoids: $\mathcal{A}^{\perp}, \mathcal{A} \otimes \mathcal{B}, \mathcal{A} \multimap \mathcal{B}, \ldots$

Thinness

Proposition

Let \mathcal{A} be a thin \pm-groupoid. Given an isomorphism

$$
\theta: a \rightarrow a^{\prime} \in A
$$

there are unique

$$
\theta^{-} \in A_{-} \quad \text { and } \quad \theta^{+} \in A_{+}
$$

such that $\theta=\theta^{+} \circ \theta^{-}$.

Thinness

Proposition

Let \mathcal{A} be a thin \pm-groupoid. Given an isomorphism

$$
\theta: a \rightarrow a^{\prime} \in A
$$

there are unique

$$
\theta^{-} \in A_{-} \quad \text { and } \quad \theta^{+} \in A_{+}
$$

such that $\theta=\theta^{+} \circ \theta^{-}$.
By definition, we have $\mathrm{id}_{A}^{-} \in T_{\mathcal{A}} \subseteq \mathcal{U}_{\mathcal{A}}$ and $\mathrm{id}_{A}^{+} \in T_{\mathcal{A}}^{\Perp} \subseteq \mathcal{U}_{\mathcal{A}}^{\perp}$.

Thinness

Proposition

Let \mathcal{A} be a thin \pm-groupoid. Given an isomorphism

$$
\theta: a \rightarrow a^{\prime} \in A
$$

there are unique

$$
\theta^{-} \in A_{-} \quad \text { and } \quad \theta^{+} \in A_{+}
$$

such that $\theta=\theta^{+} \circ \theta^{-}$.
By definition, we have $\mathrm{id}_{A}^{-} \in T_{\mathcal{A}} \subseteq \mathcal{U}_{\mathcal{A}}$ and $\mathrm{id}_{A}^{+} \in T_{\mathcal{A}}^{\Perp} \subseteq \mathcal{U}_{\mathcal{A}}^{\perp}$.
Existence: since $\mathrm{id}_{A}^{-} \perp \mathrm{id}_{A}^{+}$.

Thinness

Proposition

Let \mathcal{A} be a thin \pm-groupoid. Given an isomorphism

$$
\theta: a \rightarrow a^{\prime} \in A
$$

there are unique

$$
\theta^{-} \in A_{-} \quad \text { and } \quad \theta^{+} \in A_{+}
$$

such that $\theta=\theta^{+} \circ \theta^{-}$.
By definition, we have $\mathrm{id}_{A}^{-} \in T_{\mathcal{A}} \subseteq \mathcal{U}_{\mathcal{A}}$ and $\mathrm{id}_{A}^{+} \in T_{\mathcal{A}}^{\Perp} \subseteq \mathcal{U}_{\mathcal{A}}^{\perp}$.
Existence: since $\mathrm{id}_{A}^{-} \perp \mathrm{id}_{A}^{+}$.
Unicity: since $\mathrm{id}_{A}^{-} \Perp \mathrm{id}_{A}^{+}$.

Positive 2-cells

Given a thin \pm-groupoid $\mathcal{A}=\left(A, A_{-}, A_{+}, \mathcal{U}_{\mathcal{A}}, T_{\mathcal{A}}\right)$, a 2-cell

is said positive on \mathcal{A} when $\phi_{x} \in A_{+}$for every $x \in X$.

Positive 2-cells

Proposition

Given $\sigma, \tau \in T_{\mathcal{A} \rightarrow \mathcal{B}}$ and $(F, \phi): \sigma \Rightarrow \tau$, there exist unique

$$
\left(F^{+}, \phi^{+}\right): \sigma \Rightarrow \tau \quad \text { and } \quad \mu: F^{+} \Rightarrow F
$$

such that

with ϕ^{+}positive on $\mathcal{A} \multimap \mathcal{B}$.

The bicategory Thin ${ }^{+}$

We define Thin ${ }^{+}$

- 0-cells: the thin \pm-groupoids $\mathcal{A}, \mathcal{B}, \mathcal{C}, \ldots$;
- 1-cells $\mathcal{A} \rightarrow \mathcal{B}$: the thin spans $\sigma \in T_{\mathcal{A} \rightarrow \mathcal{B}}$;
- 2-cells $\sigma \Rightarrow \tau$: the span morphisms (F, ϕ) with ϕ positive.

The bicategory Thin ${ }^{+}$

We define Thin ${ }^{+}$

- 0-cells: the thin \pm-groupoids $\mathcal{A}, \mathcal{B}, \mathcal{C}, \ldots$;
- 1-cells $\mathcal{A} \rightarrow \mathcal{B}$: the thin spans $\sigma \in T_{\mathcal{A} \rightarrow \mathcal{B}}$;
- 2-cells $\sigma \Rightarrow \tau$: the span morphisms (F, ϕ) with ϕ positive.

Composition of 2-cells can now be defined canonically with the positive factorization of 2-cells \rightsquigarrow unitality, associativity, ...

The bicategory Thin ${ }^{+}$

We define Thin ${ }^{+}$

- 0-cells: the thin \pm-groupoids $\mathcal{A}, \mathcal{B}, \mathcal{C}, \ldots$;
- 1-cells $\mathcal{A} \rightarrow \mathcal{B}$: the thin spans $\sigma \in T_{\mathcal{A} \rightarrow \mathcal{B}}$;
- 2-cells $\sigma \Rightarrow \tau$: the span morphisms (F, ϕ) with ϕ positive.

Composition of 2-cells can now be defined canonically with the positive factorization of 2-cells \rightsquigarrow unitality, associativity, ...

Theorem (C., F.)
Thin ${ }^{+}$is a bicategory.

The pseudocomonad

Recall that the comonad !: Rel \rightarrow Rel is derived from the monad $\mathcal{M}_{\text {fin }}$: Set \rightarrow Set.

We derive a (pseudo)comonad !: Thin ${ }^{+} \rightarrow$ Thin $^{+}$from a (pseudo) monad Fam: Gpd \rightarrow Gpd.

The pseudocomonad

The monad Fam: Gpd \rightarrow Gpd?
To $A \in \mathbf{G p d}$, associates $\operatorname{Fam}(A) \in \mathbf{G p d}$:

The pseudocomonad

The monad Fam: Gpd \rightarrow Gpd?
To $A \in \mathbf{G p d}$, associates $\operatorname{Fam}(A) \in \mathbf{G p d}$:

- objects: families $\left(a_{i}\right)_{i \in I}$ with $I \subseteq_{\text {fin }} \mathbb{N}$ and $a_{i} \in A$;

The pseudocomonad

The monad Fam: Gpd \rightarrow Gpd?
To $A \in \mathbf{G p d}$, associates $\operatorname{Fam}(A) \in \mathbf{G p d}$:

- objects: families $\left(a_{i}\right)_{i \in I}$ with $I \subseteq_{\text {fin }} \mathbb{N}$ and $a_{i} \in A$;
- morphisms $\left(a_{i}\right)_{i \in I} \rightarrow\left(a_{j}^{\prime}\right)_{j \in J}$: pairs $\left(\pi,\left(f_{i}\right)_{i \in I}\right)$ where
- π is a bijection $I \rightarrow J$;
- f_{i} is a morphism $a_{i} \rightarrow a_{\pi(i)}^{\prime}$.

The pseudocomonad

The monad Fam: Gpd \rightarrow Gpd?
To $A \in \mathbf{G p d}$, associates $\operatorname{Fam}(A) \in \mathbf{G p d}$:

- objects: families $\left(a_{i}\right)_{i \in I}$ with $I \subseteq_{\text {fin }} \mathbb{N}$ and $a_{i} \in A$;
- morphisms $\left(a_{i}\right)_{i \in I} \rightarrow\left(a_{j}^{\prime}\right)_{j \in J}$: pairs $\left(\pi,\left(f_{i}\right)_{i \in I}\right)$ where
- π is a bijection $I \rightarrow J$;
- f_{i} is a morphism $a_{i} \rightarrow a_{\pi(i)}^{\prime}$.

The unit $A \rightarrow \boldsymbol{\operatorname { F a m }}(A):$ maps $a \in A$ to $(a)_{i \in\{0\}} \in \operatorname{Fam}(A)$;

The pseudocomonad

The monad Fam: Gpd \rightarrow Gpd?

To $A \in \mathbf{G p d}$, associates $\operatorname{Fam}(A) \in \mathbf{G p d}$:

- objects: families $\left(a_{i}\right)_{i \in I}$ with $I \subseteq_{\text {fin }} \mathbb{N}$ and $a_{i} \in A$;
- morphisms $\left(a_{i}\right)_{i \in I} \rightarrow\left(a_{j}^{\prime}\right)_{j \in J}$: pairs $\left(\pi,\left(f_{i}\right)_{i \in I}\right)$ where
- π is a bijection $I \rightarrow J$;
- f_{i} is a morphism $a_{i} \rightarrow a_{\pi(i)}^{\prime}$.

The unit $A \rightarrow \boldsymbol{\operatorname { F a m }}(A)$: maps $a \in A$ to $(a)_{i \in\{0\}} \in \operatorname{Fam}(A)$;
The multiplication $\operatorname{Fam}(\operatorname{Fam}(A)) \rightarrow \operatorname{Fam}(A)$: merges families of families into simply-indexed families.

The pseudocomonad

We get a pseudocomonad

$$
\text { !: } \text { Thin }^{+} \rightarrow \text { Thin }^{+}
$$

where

$$
!\mathcal{A} \quad \hat{=} \quad(\operatorname{Fam}(A), \ldots)
$$

for every thin \pm-groupoids \mathcal{A} and

for every span $\sigma: \mathcal{A} \rightarrow \mathcal{B}$.

The Kleisli bicategory

We thus get a Kleisli bicategory Thin! $_{+}^{+}$with ! = Fam, whose 1 -cells $\mathcal{A} \rightarrow \mathcal{B}$ are of the form

The Kleisli bicategory

We thus get a Kleisli bicategory Thin! $_{+}^{+}$with ! = Fam, whose 1 -cells $\mathcal{A} \rightarrow \mathcal{B}$ are of the form

In categorical models of LL, the Kleisli category is cartesian closed.

The Kleisli bicategory

We thus get a Kleisli bicategory Thin! $_{+}^{+}$with ! = Fam, whose 1 -cells $\mathcal{A} \rightarrow \mathcal{B}$ are of the form

In categorical models of LL, the Kleisli category is cartesian closed.
Theorem (C., F.)
The bicategory Thin ${ }_{!}^{+}$is cartesian closed.

Examples

Notation: given $a=\left(a_{i}\right)_{i \in I} \in!A$ with $A \in \mathbf{G p d}$ and $I=\left\{i_{1}, \ldots, i_{n}\right\} \subseteq_{\text {fin }} \mathbb{N}$, we write

$$
a=\left[\begin{array}{lll}
i_{1} \bullet a_{i_{1}} & , & \cdots
\end{array}, \quad i_{n} \bullet a_{i_{n}}\right] .
$$

Examples

Example 1:

$$
x: \text { Bool } \vdash \text { if } x \text { then ff else tt : Bool }
$$

interpreted as the span (which happens to be a relation)

$$
\{[0 \bullet \mathbf{t t}] \multimap \mathbf{f f}, \quad[0 \bullet \mathbf{f f}] \multimap \mathbf{t t}\}
$$

!Bool
Bool

Examples

$$
\begin{aligned}
& \text { Example 2: } \\
& \qquad x: \text { Bool } \vdash \text { if } x \text { then (if } x \text { then } \mathbf{f f} \text { else } \mathbf{t t} \text {) else (if } x \text { then } \mathbf{t t} \text { else } \mathbf{f f}): \text { Bool } \\
& \text { interpreted as the span (which happens to be a relation) } \\
& \{[0 \bullet \mathbf{t t}, 1 \bullet \mathbf{t t}] \multimap \mathbf{f f}, \quad[0 \bullet \mathbf{t t}, 1 \bullet \mathbf{f f}] \multimap \mathbf{t t}, \quad[0 \bullet \mathbf{f f}, 1 \bullet \mathbf{t t}] \multimap \mathbf{t t}, \quad[0 \bullet \mathbf{f f}, 1 \bullet \mathbf{f f}] \multimap \mathbf{f f}\}
\end{aligned}
$$

Examples

Example 2:

$$
x: \text { Bool } \vdash \text { if } x \text { then (if } x \text { then } \mathbf{f f} \text { else } \mathbf{t t} \text {) else (if } x \text { then } \mathbf{t t} \text { else } \mathbf{f f} \text {) : Bool }
$$

interpreted as the span (which happens to be a relation)
$\{[0 \bullet \mathbf{t t}, 1 \bullet \mathbf{t t}] \multimap \mathbf{f f}, \quad[0 \bullet \mathbf{t t}, 1 \bullet \mathbf{f f}] \multimap \mathbf{t t}, \quad[0 \bullet \mathbf{f f}, 1 \bullet \mathbf{t t}] \multimap \mathbf{t t}, \quad[0 \bullet \mathbf{f f}, 1 \bullet \mathbf{f f}] \multimap \mathbf{f f}\}$
!Bool
Bool
to compare with the interpretation in Rel!:

$$
\{[\mathbf{t t}, \mathbf{t} \mathbf{t}] \multimap \mathbf{f f}, \quad[\mathbf{t t}, \mathbf{f f}] \multimap \mathbf{t t}, \quad[\mathbf{f f}, \mathbf{f f}] \multimap \mathbf{t t}\}
$$

Examples

Example 3: a non-deterministic operator \otimes
$\vdash \mathbf{f f} \otimes \mathbf{t t}:$ Bool
interpreted as the span (which happens to be a relation)

Examples

Example 4:

$$
\vdash \mathbf{f f} \otimes \mathbf{f f}: \text { Bool }
$$

interpreted as the span

\rightsquigarrow two witnesses for $\mathbf{f f}$.

Other works

Source of the ideas of this work:

- Concurrent games: symmetries, thinness, proofs, ... Castellan, Clairambault, et al. "Games and Strategies as Event Structures". 2017

Related works:

- Generalized species of structures Fiore, Gambino, et al. "The cartesian closed bicategory of generalised species of structures". 2008
- Template games

Melliès. "Template games and differential linear logic". 2019

- Infinitary intersection types

Vial. "Infinitary intersection types as sequences: A new answer to Klop's problem". 2017

The end

Any questions?

Whiteboard

Seely equivalence

Recall: a common approach for exhibiting a categorical model of LL is to find a Seely isomorphism

$$
\operatorname{see}_{A, B}:!A \otimes!B \rightarrow!(A \& B)
$$

Seely equivalence

In Thin ${ }^{+}$,

$$
\mathcal{A} \otimes \mathcal{B} \hat{=}(A \times B, \ldots) \quad \text { and } \quad \mathcal{A} \& \mathcal{B} \hat{=}(A \sqcup B, \ldots)
$$

We have the 2-categorical analogue of a Seely isomorphism, already in Gpd:

Proposition

Given $A, B \in \mathbf{G p d}$, there is an adjoint equivalence of groupoids

Idea: given $a=\left(a_{i}\right)_{i \in I}$ and $b=\left(b_{j}\right)_{j \in J}$, one can merge a and b as $c=\left(c_{k}\right)_{k \in K}$ with $K \cong I \sqcup J$.

The Seely 2-cell

Recall: the Seely isomorphism

$$
\operatorname{see}_{A, B}:!A \otimes!B \rightarrow!(A \& B)
$$

is supposed to verify the equality

$$
\begin{aligned}
& !A \otimes!B \xrightarrow{\text { see }_{A, B}}!(A \& B) \\
& \delta_{A} \otimes \delta_{B} \left\lvert\, \quad=\begin{array}{r}
\downarrow \delta_{A \& B} \\
!!(A \& B) \\
\downarrow!!!!!r\rangle
\end{array} .\right. \\
& !!A \otimes!!B \underset{\text { see } \mid A,!B}{ }!(!A \&!B)
\end{aligned}
$$

The Seely 2-cell

The Seely equality appears here as a non-trivial 2-cell in Gpd:

Cartesian structure

Definition

A bicategory \mathcal{C} is cartesian when, for every objects Y, Z, there exist an object $Y \& Z \in \mathcal{C} \quad$ and \quad morphisms $I: Y \& Z \rightarrow Y$ and $r: Y \& Z \rightarrow Z$ such that, for every X, there is an adjoint equivalence of categories

(+ there exists a terminal object expressed as an adjoint equivalence too).

Cartesian structure

Theorem
The bicategory Thin ${ }_{!}^{+}$is cartesian.

Cartesian structure

Theorem

The bicategory Thin ${ }_{!}^{+}$is cartesian.
Given two thin \pm-groupoids \mathcal{A} and \mathcal{B}, we take $\mathcal{A} \& \mathcal{B} \hat{=}(A \sqcup B, \ldots)$ and

for $I: \mathcal{A} \& \mathcal{B} \rightarrow \mathcal{A}$ and $r: \mathcal{A} \& \mathcal{B} \rightarrow \mathcal{B}$ in Thin $_{!}^{+}$.

Closure

A cartesian bicategory \mathcal{C} is closed when, for every object Y, Z, there exist

$$
\text { an object } Y \Rightarrow Z \in \mathcal{C} \quad \text { and } \quad \text { a morphism } \operatorname{ev}_{Y, Z}:(Y \Rightarrow Z) \& Y \rightarrow Z
$$

such that, for every $X \in \mathcal{C}$, there is an adjoint equivalence

Closure

A cartesian bicategory \mathcal{C} is closed when, for every object Y, Z, there exist

$$
\text { an object } Y \Rightarrow Z \in \mathcal{C} \quad \text { and } \quad \text { a morphism } \operatorname{ev}_{Y, Z}:(Y \Rightarrow Z) \& Y \rightarrow Z
$$

such that, for every $X \in \mathcal{C}$, there is an adjoint equivalence

Theorem
The cartesian bicategory Thin $_{!}^{+}$is closed.

The closed structure for $\mathbf{T h i n}_{!}^{+}$

Given thin \pm-groupoids \mathcal{B}, \mathcal{C}, we take $\mathcal{B} \Rightarrow \mathcal{C} \hat{=}(!B \times C, \ldots)$ and

(writting directly! for Fam).

