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Résumé en francais

As required by the French law concerning PhD manuscripts written in English, here are some para-
graphs written in French which summarize the content of this manuscript. English speakers can
safely skip this section.

La sophistication des mathématiques modernes incite a représenter divers objets mathéma-
tiques ainsi que les constructions associées de facon unifiée par un langage commun. Depuis les
travaux de MacLane et Eilenberg dans les années 1940, un tel point de vue unifiant est fourni
par la théorie des catégories. En effet, initialement développées dans le cadre de la topologie
algébrique, les catégories permettent de représenter des objets mathématiques différents de la
méme facon : ensembles, groupes, anneaux, espaces topologiques, variétés différentiables, etc.
Loin de se restreindre aux mathématiques « pures », les catégories peuvent étre utilisées pour
fournir un point de vue simple pour des objets venant d’autres domaines, comme la physique et
I'informatique.

Cependant, pour décrire certaines situations que ’'on peut rencontrer en mathématiques (et,
a fortiori, dans d’autres domaines), la structure élémentaire de catégorie peut s’avérer insuffisante.
En effet, tandis que les catégories ne permettent que de représenter des interactions de « bas
niveau » entre des objets mathématiques, on cherche souvent a comprendre les interactions de
plus « haut niveau » (les interactions entre les interactions, les interactions entre ces dernieres,
etc.). Dans ce genre de situation, il est ainsi utile d’avoir recours aux catégories supérieures. Ces
derniéres sont des généralisations multidimensionnelles des catégories simples. En effet, tandis
que l'on peut voir les catégories simples comme des structures avec des cellules de dimension 0
et 1, les catégories supérieures peuvent avoir des cellules de dimensions arbitraires. Ces cellules de
différentes dimensions peuvent alors étre composées par diverses opérations qui satisfont divers
axiomes qui varient suivant la théorie de catégories supérieures considérée.

La complexité des différentes axiomiatiques fait que les catégories supérieures sont des struc-
tures complexes, et le but de cette theése est d’introduire plusieurs outils informatiques facilitant
la manipulation et I’étude de ces structures.

Catégories supérieures

Une premiére tache de ce travail fut de développer un cadre unifié pour considérer les catégories
supérieures permettant de donner des définitions génériques a un certain nombre de constructions

ix



X RESUME EN FRANCAIS

sur ces structures. Un tel programme fut partiellement mis en ceuvre par Batanin [Bat98a] afin de
généraliser a toute une classe de catégories supérieures la notion de polygraphe. Cette derniere
structure fut en effet initialement introduite uniquement dans le cadre des catégories supérieures
strictes par Street [Str76] (sous le nom de computad) et par Burroni [Bur93]. Les polygraphes
sont des structures particuliérement intéressantes par rapport au sujet de cette thése dans la
mesure ol elles fournissent un moyen d’encoder finiment des catégories supérieures potentielle-
ment infinies, permettant ainsi de les transmettre comme entrées a des programmes. Le travail de
Batanin généralise ces polygraphes a toute la classe des catégories supérieures dites globulaires
algébriques finitaires, qui englobe la plupart des catégories supérieures usuelles. Cependant, plu-
sieurs constructions intervenant dans la définition des polygraphes de catégories strictes et qui
apparaissaient chez Burroni n’ont pas été considérées par Batanin, qui s’est strictement focalisé
sur les polygraphes. Etant donné que ces constructions interviennent fréquemment dans I’étude
des catégories supérieures, il parut utile de donner une définition générique de ces constructions
en utilisant le cadre de Batanin.

Dans ce dernier, une théorie de catégories supérieures de dimension n est simplement vue
comme une monade

T: Glob,, — Glob,

sur la catégorie Glob,, des ensembles n-globulaires. Les n-catégories qui sont les instances de cette
théorie de catégories supérieures sont alors les algebres de la catégorie d’Eilenberg-Moore Alg,
associée a T. De plus, a partir de T, on peut obtenir des théories de catégories supérieures de

dimensions 0, ..., n — 1 en tronquant la monade T en dimensions 0, ..., n — 1 respectivement. On
obtient ainsi des monades T°, ..., T" ! sur les catégories Globy, . . ., Glob,_;, qui induisent donc
des catégories Alg,, ..., Alg,_, d’algébres sur ces monades. Nous définissons alors des foncteurs

de troncations et d’inclusions

L 1
(_):kg,l‘ Alg, — Alg; et (—)S,it Alg, — Alg,

qui forment naturellement une adjonction pour k,! € N, avec k < [.

Une opération que 'on cherche souvent a faire dans les catégories supérieures est la défini-
tion d’'une (k+1)-catégorie en ajoutant librement des (k+1)-générateurs a une k-catégorie. Il est
possible d’écrire cette construction dans ce cadre. Pour cela, on introduit les catégories Algy des
k-catégories équipées d’ensembles de (k+1)-générateurs. On parvient alors a définir un foncteur

—[-1": Alg; — Algy,,

qui représente la construction libre de (k+1)-catégories a partir d’objets de Alg,. On donne aussi
des propriétés plus précises de ce foncteur dans le cas ot la monade T est troncable. Cette derniére
définition apparaissait déja chez Batanin et stipule la compatibilité de T avec la troncation sur
les ensembles globulaires. En utilisant cette construction, on obtient alors une autre définition
générique des polygraphes pour toute la classe de catégories supérieures évoquée plus tét. On
énonce ensuite quelques propriétés de ces polygraphes et de leurs catégories qui n’apparaissent
pas chez Batanin, comme la présentabilité localement finie. Pour finir, on instancie ces proprié-
tés et constructions pour deux exemples de catégories supérieures : les catégories strictes et les
précatégories.

Le probléeme du mot

Comme énoncé plus tot, une théorie de catégories supérieures consiste en un certain nombre
d’opérations pour composer les cellules de différentes dimensions, ainsi que des axiomes que sa-
tisfont ces différentes opérations. Etant donné un ensemble de cellules d’une catégorie supérieure,
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il est souvent possible de les composer formellement de plusieurs maniéres. Le probléme du mot
consiste alors a déterminer si deux composées formelles de cellules représente la méme cellule
d’aprés la théorie considérée.

Une solution a ce probleme a été donnée par Makkai dans le cas des catégories strictes [Mak05].
Cependant, sa solution est relativement inefficace et ne permet pas de résoudre des instances
concrétes qui sont trop sophistiquées. Une partie du travail de cette thése a consisté a améliorer
I’algorithme proposé par Makkai en donnant une meilleure description calculatoire des catégories
strictes libres. Pour cela, il a fallu clarifier la notion de calculabilité dans le cadre des catégories
supérieures, ce que nous avons fait en utilisant le formalisme des fonctions récursives. Finalement,
nous avons produit une implémentation utilisable de notre algorithme résolvant le probleme du
mot pour les catégories strictes.

Diagrammes de recollement

Les diagrammes de recollement (pasting diagrams en anglais) sont un outil standard dans I’étude
des catégories strictes et, plus généralement, d’un certain nombre de catégories supérieures. Ils
permettent de désigner une cellule d’une catégorie supérieure simplement en dessinant la facon
de recoller les cellules qui la composent sur un diagramme comme le suivant :

b e

~

> c S w f S x
Up Ué
MU AN,

Il est en effet possible de vérifier que toutes les facons de composer les cellules de ce diagramme
induisent la méme cellule, et donc que ce diagramme permet bien de représenter une unique
cellule sans que 'on ait besoin de préciser une composée formelle des cellules la constituant.
Cependant, cette propriété n’est pas satisfaite par tous les diagrammes de cellules : certains
sont associés a plusieurs compositions formelles différentes, et d’autres sont associés a aucune
composition. Ainsi, afin de pouvoir utiliser des diagrammes dans I’étude des catégories strictes, il
est important de pouvoir distinguer les diagrammes qui sont associés a une unique composition.
Pour cela, trois formalismes différents ont été introduits jusqu’a présent : les complexes de parité de
Street [Str91], les schémas de recollement de Johnson [Joh89] et les complexes dirigés augmentés
de Steiner [Ste04].

Une partie du travail de cette thése a consisté a essayer de mieux comprendre les liens entre
ces différents formalismes ainsi que les différences entre leurs expressivités. Durant cette étude,
il fut découvert que 'axiomatique des complexes de parité et des schémas de recollement étaient
défectueuses, dans le sens ou ces formalismes acceptaient des diagrammes qui n’étaient pas asso-
ciés a des compositions formelles uniques. Cela motiva I'introduction d’un nouveau formalisme,
appelé complexes sans torsion, généralisant les trois introduits et corrigeant les défauts des com-
plexes de parité et des schémas de recollement. Nous avons prouvé en détail la correction de ce
nouveau formalisme en adaptant et complétant les preuves données par Street pour les complexes
de parité. Nous avons ensuite effectué la comparaison avec les autres formalismes et montré,
selon des restrictions raisonnables, que ceux-ci étaient des cas particuliers de complexes sans
torsion. Pour finir, nous avons illustré 1'utilité de cette nouvelle structure en en fournissant une
implémentation qui permet de faciliter 'interaction avec le programme résolvant le probléme du
mot évoqué plus haut.
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Cohérence dans les catégories de Gray

Les définitions des structures algébriques usuelles, comme celle des monoides, peuvent étre gé-
néralisées dans des catégories supérieures. On s’intéresse généralement aux définitions qui sont
cohérentes, c’est-a-dire ou tous les diagrammes commutent. Par exemple, on peut généraliser la
définition des monoides aux 2-catégories monoidales. Les conditions d’unitalité et d’associativité
des monoides sont alors exprimées sous forme d’isomorphismes de dimension 2. Le célébre théo-
réme de cohérence de MacLane nous dit qu'une définition cohérente est obtenue en demandant
la commutativité de deux classes de diagrammes, dont le fameux pentagone de MacLane

WeX)e((YeZz)
(WeX)®Y)®Z NW®(X®(Y®Z)) ‘

Y

WeX®Y)®Z —— > W (X®Y)®Z)

La question se pose alors de comment trouver de telles classes de diagrammes, appelés diagrammes
de cohérence, pour les autres structures algébriques afin de rendre les définitions cohérentes.

Généralisant un résultat de Squier sur les monoides, Guiraud et Malbos [GM09] ont introduit
une technique permettant de trouver de tels diagrammes de confluence pour des structures algé-
briques exprimées dans des catégories strictes. Ils ont montré que, dans le cas ou les axiomes de
ces structures pouvaient étre orientés de facon a constituer un systeme de réécriture convergent,
les diagrammes de cohérence pouvaient étre obtenus comme étant les diagrammes de confluence
de ce systéme de réécriture.

Une partie du travail de cette thése a consisté a adapter cette technique aux catégories de Gray.
Ces derniéres sont des catégories 3-dimensionnelles qui sont intéressantes car assez simples et
qui pourtant sont équivalentes aux tricatégories, qui modélisent tous les types d’homotopie de
dimension 3. Pour faire cette adaptation, nous avons développé un cadre permettant de faire de
la réécriture dans les catégories de Gray basé sur les précatégories. L’utilisation de ces dernieres
est justifiée par le fait qu’elles permettent d’avoir de meilleures propriétés calculatoires que les
catégories strictes par exemple. Nous obtenons ainsi un résultat analogue a celui de Guiraud
et Malbos qui stipule que, dans le cas ou les 3-cellules d’une catégories de Gray induisent un
systéme de réécriture convergent, les diagrammes de confluence de ce systeme de réécriture
peuvent étre choisis comme diagrammes de cohérence pour la structure algébrique considérée.
Nous appliquons ensuite ce résultat sur quelques exemples, ce qui nécessite entre autres de
développer des résultats de terminaison pour les systémes de réécriture dans ce cadre.
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Notations

In this thesis, we use the following notations:

— w denotes the smallest infinite ordinal,

N denotes the set of natural integers and N* denotes the set N \ {0},
- given n € N, N,, denotes the set {0,...,n} and N}, denotes the set {1,...,n},
- we extend the previous notation to infinity by putting N, = N and N7, = N*,

w

- in accordance with the above notations, given n € N U {w}, we often write N,, U {n} to
denote either N, whenn € N, or NU {w} when n = w,

- given a product [];c; X; of objects X; of some category indexed by the elements of a set I,
we write 7j: [];c; Xi — Xj for the projection on the j-component for j € I,

- given a coproduct [];<; X; of objects X; of some category indexed by the elements of a set I,
we write 1j: [[;c; X; — X for the coprojection on the j-component for j € I.
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Introduction

The sophistication of modern mathematics incites to take into account not only the mathematical
objects at stack, but also the way they interact, the interaction between those interactions, and
so on. We have entered a higher-dimensional approach to the mathematical world. The algebraic
structures involved in such studies, called higher categories, are becoming more and more complex
and computationally involved. The aim of this PhD thesis is to introduce several computational
tools to assist with the manipulation of some of these higher categories.

We shall first give some general background about this work before introducing the topics of this
thesis in more details.

General background

Higher categories. The beginnings of category theory can be traced back to the 1940s, with the
work of Eilenberg and MacLane in algebraic topology, when they investigated the notion of natural
transformation [EM42; EM45]. A category is a simple structure: objects (or 0-cells) and arrows (or
1-cells) between them that can be composed associatively by a binary operation, together with an
identity arrow for each object. Yet, its generality allowed it to become an important abstraction
tool in modern mathematics, physics and computer science, for considering algebraic structures
equipped with some notion of composition [BS10].

Even though the scope of categories is broad, there are some situations where they fail to
apply. One kind of such situations is when there is additional structure, such as other composi-
tion operations, that does not fit in the structure of a category. This is the case when describing
categories themselves: categories and functors form a category, but this description does not
encompass the natural transformations between functors and the associated composition opera-
tions (the one with between functors and natural transformations, and the one between natural
transformations). Another kind of situtations is when the unitality and associativity properties of
the composition operation of categories are too strong. For example, when considering the paths
on some topological space X, two paths can be composed by concatenation, but this operation is
then neither unital nor associative. Of course, one can instead consider the paths up to homotopy,
for which the above composition operation is unital and associative, and obtain the category of
paths up to homotopy of X, called the fundamental groupoid of X. But one might still be inter-
ested in representing the structure of these homotopies, for which categories are not expressive
enough, so that we fall back into the first situation.
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A better treatment of the two above situations can be obtained by considering generalizations
of the notion of category that have higher cells, i.e,, (i+1)-cells between i-cells for i > 1, and
several composition operations for the different cells that can satisfy multiple axioms. We call
higher category an instance of this informal class of structures, and call n-category a higher cate-
gory that has cells up to dimension n. The two above situations can then be properly represented
by considering the adequate notion of higher category. For instance, the categories, functors,
natural transformations and the different compositions between them fit in a strict 2-category,
which is a 2-category with unital and associative compositions of the 1- and 2-cells, first intro-
duced by Ehresmann [Ehr65]; the paths on the space X and their homotopies fit in a bicategory,
which is 2-category whose composition of 1-cells is associative up to a 2-cell, introduced by
Bénabou [Bén67].

By definition, there is an infinity of notions of higher categories. Indeed, the different notions
can differ with regard to the maximal dimension of cells which are handled, the shape of the cells
(globular, cubical, simplicial, efc.), the operations allowed on these cells, and the axioms satisfied
by these operations. Each notion of higher category is usually informally situated in the strict-
weak spectrum: the higher categories whose axiomatic consists of equalities between composites
of cells are called strict, whereas the ones whose axiomatic consists of the existence of coherence
cells between two composites of cells are called weak. For example, categories and strict 2-cate-
gories require that the composition of 1-cells be strictly associative, and thus lie on the ‘strict’ side
of the strict-weak spectrum, whereas bicategories require the mere existence of invertible 2-cells
between 1-cells composed using different parenthesizing schemes (e.g., there exists a coherence
2-cell between (u*¢0)*ow and us, (v*ow) for composable 1-cells u, v, w), and thus lie on the ‘weak’
side of the strict-weak spectrum. Strict higher categories have usually simpler definitions and
are easier to work with, but, as suggested above, they are not adequate for encoding homotopical
information, and one usually turns to weak higher categories for such matters. The downside is
that the axiomatics of weak higher categories are usually technically quite involved, the situation
becoming worse and worse as the dimension of the considered categories increases because of
the multiple coherence cells between the composition operations [GPS95]. Indeed, in addition
to the already evoked coherence cells for associativity, particular definitions of weak categories
can also involve coherence cells for identities, that witness that identities are weakly unital, and
exchange coherence cell, that witness that two parallel cells that appear one after the other in
some cell can be exchanged, and many more. All these coherence cells should moreover satisfy
several compatibility conditions which are difficult to list exhaustively.

In between those two ends of the spectrum, there is the so-called semi-strict definitions of
higher categories, which involve a balanced mixture of strict equations and coherence cells,
so that such higher categories are expressive enough for encoding homotopical information,
while keeping the complexity of the axiomatic at bay. Notably, in dimension 3, a fundamental
result of Gordon, Power and Street [GPS95] is that tricategories, the 3-dimensional analogues of
bicategories, are equivalent (for the right notion of equivalence) to semi-strict 3-categories called
Gray categories. The latter are ‘strict’ in every respect except for the exchange of 2-cells. Other
interesting semi-strict 3-categories are the ones that we call Kock categories, which were shown to
correctly model 3-dimensional homotopical properties [JK06]. Those are ‘strict’ in every respect
except that identities are only weakly unital. See Figure 1 for a comparison of the axiomatics of
the 3-dimensional categories introduced so far. Similar semi-strict definitions are still looked for
in higher dimensions, even though some propositions were made [BV17].

The case for strict categories. Even though strict categories do not represent as well homotopi-
cal properties as weak categories, there are still interesting objects that are worth studying. First,
they have already found several applications. As remarked by Burroni [Bur93], strict 3-categories
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3-categories unitality associativity exchange
strict categories equality equality equality
Gray categories equality equality coherence cell
Kock categories  coherence cell equality equality

weak categories coherence cell coherence cell coherence cell

Figure 1 — Strict-weak characteristics of some 3-dimensional categories

can be used as a framework which generalizes classical term rewriting systems, and this fact
motivated the interpretation of n-categories for n > 4 as “higher rewriting systems”. This idea
led to several developments and applications [Laf03; Mim14; CM17]. In a related manner, strict
categories found some applications in the study of homological properties of monoids, mainly in
the work of Guiraud and Malbos [GMM13; GGM15; GM18]. Moreover, strict categories play a role
in the definition of other (possibly weak) higher categories. For example, Gray categories can be
defined from the Gray tensor product, which is a construction on strict 2-categories. Another ex-
ample is the notion of globular operad, developed by Batanin and Leinster [Bat98b; Lei98], which
is a device based on strict categories that allows defining other higher categories. In particular,
weak categories admit an elegant definition in this setting [Lei04]. In a related manner, Henry was
able to define semi-strict higher categories which exhibit the same good homotopical properties
of weak categories using several constructions on strict categories [Hen18]. Finally, as suggested
by Ara and Maltsiniotis [AM18], since weak categories are quite complicated objects which are
hard to manipulate, the study of properties and constructions on strict categories, as a simpler
case, seems a necessary step before considering the general case of weak categories.

In addition to the above motivations and applications, strict categories exhibit some nice
properties which make them more pleasant to work with than other higher categories. In partic-
ular, they possess a graphical language which enables to easily consider cells that are composites
of other cells. Indeed, whereas one introduce such composites in a general higher-dimensional
category by expressions which precisely state how some given cells are composed, it is often
enough, in strict categories, to simply draw these cells. For example, in usual categories, i.e., strict
1-categories, a diagram like

fl fZ \ fn—l\ fn \

X0 > X1 7 7 Xn-1 7 Xn (1)
which represents a sequence of 1-cells fi, ..., f,; of some category C unambiguously defines “the”
composite of fi, ..., f,. This is simply a consequence of the fact that the composition of 1-cells is

associative, so that all the expressions one can think of to compose the f;’s together are equivalent.
This property, which is rather trivial for 1-categories, generalizes to higher dimensions, so that,

for example, a diagram like
w 4
Y oy
/' I a\ . Up

[

X——y—f—>z
N
g
can be used to define unambiguously a 2-cell in some strict 2-category, thus without the need

for an explicit expression which states precisely how to compose the generators of the diagram
together. Such diagrams are called pasting diagrams, since they express how a given set of cells of
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a strict category are “pasted” together. They first appeared for strict 2-categories in the work of
Bénabou [Bén67]. The use of such pasting diagrams facilitate the manipulation of strict categories
and is widespread in the literature about these categories.

Computability. The notion of computation appeared long before the first modern computers.
Written calculation procedures were identified on Babylonian clay tablets [Knu72] (circa 1600 B.C.)
and some well-known arithmetical algorithms still used today were invented in ancient Greece,
like Euclid’s algorithm and the sieve of Eratosthenes (circa 300 B.C.). But it was only in the 20th
century that the notions of computation and computability were seriously formalized. In 1923,
Skolem first defined a class of functions that can be computed by finite procedures [Sko23],
now known as primitive recursive functions. Later, Godel gave a more general class of computable
functions [G6d34], now known as recursive functions. Other models of computation were proposed
at the time, like Church’s lambda calculus [Chu36] and Turing machines [Tur36], that in fact turned
out to be equivalent to recursive functions. This led to the introduction of the Church-Turing
thesis, which asserts that any “computable procedure” can be expressed in one of these models.

The latter were introduced in order to provide answers to foundational problems of mathe-
matics raised by Hilbert and others at the time. On the one hand, Hilbert’s second problem asked
whether the axiomatic of arithmetics could be shown consistent, considering the advances in the
logical aspects of mathematics at the time. Using his formalism of primitive recursive functions,
Godel provided a negative answer to this question, in the form of his famous incompleteness
theorem. On the other hand, Hilbert and Ackermann’s Entscheidungsproblem (“decision problem”)
asked whether there existed a general computable procedure that would decide whether a given
mathematical statement is true or false. Church and Turing gave two different negative answers
to this question, by showing more generally the existence of undecidable problems, i.e., problems
that can not be solved by computable procedures. In particular, Turing showed that the halting
problem, i.e., the problem that consists in deciding whether a given Turing machine stops after a
finite number of steps, was undecidable.

Since then, a lot of other undecidable problems were discovered. The proof of undecidability of
a given problem usually relies on reducing the halting problem or some other known undecidable
problem to it. A common source for undecidable problems are the word problems associated
with presentations. Recall that mathematical objects are often defined by means of presentations,
i.e., as sets of generators that can be combined into terms, or words, such that the evaluation
of these terms satisfy several equations. In particular, monoids can be defined by presentations,
where the words that appear in the equations are simply sequences of generators. For example,
the monoid (N2, (0,0),+) can be presented as the monoid induced by two generators a and b
satisfying the equation ab = ba. Instances other algebraic theories (groups, rings, etc.) can be
presented by a similar fashion. In fact, theories themselves are usually defined by means of
presentations. The words in this case are finite trees which represent expressions that can be
written in the considered theory. For example, the theory of monoids can be presented as the
theory of structures consisting in a unit e and a binary operation e such that the equations

eex =X Xee =X (x.y)oz:x.(y.z)

are satisfied for all elements x, y, z of the structure. Other algebraic theories can be presented in a
similar fashion. Given any kind of presentation, the word problem consists in deciding whether
two given words are equal with regard to the equations of the presentation. Before the appearance
of recursive functions and the other computation models, it was already asked whether there
existed a procedure to decide the word problem for presentations of groups by Dehn [Deh11],
and for presentation of monoids by Thue [Thu14]. It was shown not to be the case, since there
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are examples of presentations with undecidable word problems: this was shown by Post [Pos47]
and Markov [Mar47] for monoids, and by Novikov [Nov55] for groups.

Rewriting. Even though there is no general procedure to solve the word problem for all pre-
sentations of monoids, groups, theories, etc. solutions might exist for some presentations. In
particular, one can derive a solution to the word problem when the considered presentation is
associated with a rewriting system with good properties. Formally, one obtains a rewriting system
from a presentation by simply orienting the equations of the presentation. Such orientations
should be thought as defining a set of allowed moves, or rewrite rules, from a word to another.
In order for the rewriting system to exhibit good properties, the orientations of the equations
should be chosen so that the word obtained after applying a rewrite rule is simpler than the word
one started from. The definition of “simpler” here is relative to each situation. It can mean for
example “being smaller” or “being better bracketed” (on the left or on the right, depending on
convention). By combining all the rewrite rules, one then obtains a rewrite relation on the words.
For example, one can orient the equations of the theory of monoids as follows:

eex = X Xee > x (xoey)ez=x0(yez2).
The above rewrite rules induce a rewrite relation = for which we have the rewrite sequence

(xe(yee))e(zee) = (xey)e(zee) = (xoy)ez = xe(ye2)

where the final word is simpler than the one we started from.

Once a rewriting system is introduced for a presentation, one can try a normal form strategy
to solve the word problem: given two words that are to be compared, we reduce both words
with the rewrite relation until they can not be reduced further, and then compare the resulting
normal forms. For this strategy to work, several additional conditions should be satisfied. First,
the rewriting system should have a finite number of rewrite rules, so that we are able to detect
when we have found a normal form. Moreover, the rewrite relation = should be terminating, i.e.,
it should not allow infinite rewrite sequences. Finally, the relation = should satisfy a property
of confluence, which states that all the different possible rewrite sequences starting from a given
word lead to the same normal form. When these conditions are satisfied, the normal form strategy
provides a computational procedure which solves the word problem.

The aim of rewriting theory is, among others, to provide generic criteria for showing several
properties of rewrite relations, including termination and confluence, even though such proper-
ties are undecidable in general [Ter03]. In particular, as a consequence of two classical results,
namely Newman’s lemma and the critical pair lemma, the confluence of a terminating rewrite
relation reduces to the confluence of rewrite sequences associated to the critical branchings of the
rewriting system: those are pairs of the generating rewrite rules that are minimally overlapping.
The confluence of the theory of monoids can be deduced this way, since the associated rewrite
relation can be shown terminating, and since moreover each of its critical branching can be shown
confluent. For example, this theory admits the critical branching

(we(xey)) ez &= ((Wex)ey)ez= (wex)e(ye2)

and this branching is witnessed confluent by the diagram

(wex)e(ye2)

\

((wex)ey)ez we(xe(yez)) ()

\

(We(xey))ez=——=we((x2y)e2)
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The use of confluent and terminating rewriting systems for providing a decidable solution to
the word problem naturally led to the question, initially raised by Jantzen [Jan84], of whether any
monoid with decidable word problem can be presented by a finite terminating confluent rewriting
system, so that the normal form strategy apply. This question was answered by Squier [Squ87].
He showed that monoids which can be presented with finite terminating confluent rewriting
systems satisfy a finiteness homological property which does not depend on the presentation.
He then gave an example of a monoid which has a decidable word problem but does not satisty
this homological condition, answering negatively Jantzen’s question. The work of Squier on this
problem had deep consequences, since it establishes a link between presentations and homological
invariants of monoids. In fact, this connection extends to homotopical invariants of monoids, as
was shown in a posthumous article [SOK94]. The latter result formalizes the idea that confluence
diagrams of critical branchings like (2) are the elementary “holes” of a space associated to a
presented monoid.

Coherence. In mathematics, coherence properties are an informal class of results which can
appear in various contexts and take different forms. Maybe one of the first coherence result is
the coherence of an associative binary operation [Bou07, Théoréme 1]. This result states that,
given a binary operation e on a set which satisfies that (xey) ez = x ¢ (y+z), one does not need to
parenthesize an expression xj e - - - ¢ X, since all parenthesizing schemes induce the same result.
This is a fundamental fact about associative operations that is used daily by most mathematicians.
More generally, coherence properties assert that the choices we can have in using the operations
of some structure do not matter in the end, since all possible choices lead to the same result.

Coherence results are particularly present in (higher) category theory. They usually ap-
pear when considering weakened versions of algebraic structures expressed in some category.
Such weakened versions are obtained by replacing the equalities of the algebraic theories by
isomorphisms. A classical example is monoidal categories, which are weakened monoids, or
pseudomonoids, expressed in the category of categories. The “associativity” here takes the form
of isomorphisms

X®Y)Z->X®(Y®Z)

which allow to change the bracketing. Given a sequence of objects Xj, ..., X, there are then
different possible ways one can use the above associativity morphisms to relate the left and right
bracketings

(- (X1®X)® ) ®Xp-1) ®Xn  Xi®(X2® (- ® (Xp-1®Xp) ).

MacLane’s coherence theorem for monoidal categories [Mac63] asserts that all the different iso-
morphisms one can build between the two above objects using the associativity isomorphisms
are equal. The proof of this fact reduces to the commutation of the pentagon diagrams

WeX)e(Y®Z)

(WeX)®Y)®Z NW®(X®(Y®Z)) 3)

We(X®Y)®Z — > WR(X®Y)®Z)

which is required by the definition of monoidal categories. Several coherence results were
proved for other weak structures: symmetric monoidal categories [Mac63], braided monoidal
categories [JS93], Frobenius pseudomonoids [DV16], efc. Like MacLane’s theorem, these coher-
ence properties are the consequence of the commutation of a finite number of classes of diagrams,
that we call coherence tiles, which are required by the definitions of the structures. In fact, the
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coherence tiles of the definitions of these structures are chosen so that the coherence properties
hold.

Coherence properties are particularly interesting in higher category theory, since they often
imply strictification results, which state that the considered weak structures are equivalent to
stricter ones (for a case-dependent notion of “equivalent”). Such results are useful since they allow
replacing weak structures by stricter ones, the latter being simpler in practice. For example, from
the coherence property for monoidal categories, one can deduce that monoidal categories are
equivalent to stricter versions where the associativity isomorphisms are identities [Mac13]. Simi-
larly, one can derived the equivalence between bicategories and strict 2-categories [MP85; Lei04],
and the equivalence between tricategories and Gray categories [GPS95] from coherence results.
This justifies that we are mainly interested in finding coherent definitions of weak structures, i.e.,
definitions for which the coherence properties hold.

Topics of this thesis

Higher categories as globular algebras. As we have seen, there are various ways of axioma-
tizing the notion of higher category. In order to unify several shared constructions among the
different theories, it is necessary to set some common ground. Here, we mostly focus on the
approach laid out by Batanin [Bat98a], in which a particular theory of globular higher categories
is encoded as an algebraic theory on globular sets. More precisely, a theory of n-categories is de-
scribed there as a monad on the category of n-globular sets, and the category of n-categories that
are instances of this theory is then simply the Eilenberg-Moore category on this monad. Sadly,
this definition does not exhaust the concept of higher category since, in particular, there are
definitions of higher categories that are not algebraic [Lei04; Gur06]. Still, this perspective encom-
passes a lot of higher categories that are frequently encountered. In particular, theories of globular
higher categories with equational definitions, like strict n-categories, fit in this description.

The formalism of Batanin is interesting for us since it allows defining for all globular algebraic
theory of higher categories the notion of polygraph. An n-polygraph is a system of generating
i-cells, also called i-generators, for i € Ny from which a free n-category can be constructed. Such
structure allows extending to higher categories the classical notion of presentation by generators
and relations. In particular, it enables to encode higher categories with possibly infinitely many
cells as finite data, which can then be given as input to a program. Before their general definitions
for all globular algebraic higher categories given by Batanin [Bat98a], polygraphs were first
introduced by Street [Str76] for strict 2-categories under the name computad, and then extended to
arbitraty dimension by Power [Pow91]. The definition (for strict categories) was later rediscovered
by Burroni [Bur93], who introduced the name polygraph.

The article of Batanin is mainly concerned with the generalization of polygraphs to other
globular categories and does not say much more about other constructions that can be done in
the setting he introduced. In particular, even though it is noted that a notion of n-category (i.e., a
monad on n-globular sets) automatically induces notions of 0, ..., (n—1)-categories, no functors
relating the different dimensions is introduced. Moreover, since the definition of polygraph of
Batanin is rather direct, it does not involve a structure, that we call cellular extension, which
appears in the definition of polygraphs of strict categories of Burroni. This structure encodes a
strict n-category equipped with a set of (n+1)-generators from which one can consider the strict
(n+1)-category obtained by freely extending the n-category with the (n+1)-generators.

Another concern about the setting of Batanin is that it relies on the monad on globular sets
associated to a given notion of higher category in order to define the structure of polygraph.
However, a notion of higher categories is rarely introduced by a monad. Instead, it is usually
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presented, like other algebraic theories, as a structure with operations satisfying several equations.
Even though the task of describing the associated monad is not conceptually difficult, it is still
tedious and one usually prefers avoiding it. But some properties introduced by Batanin often
require verifying that the considered monad is truncable, i.e., exhibits some compatibility with the
truncation operations on globular sets, so that it seems difficult to escape an explicit description
of the monad at first glance. These technicalities likely hinder a wider use of the general results
that can be formulated in the setting of Batanin.

Word problem. Like usual free algebraic objects, the cells of the n-category freely generated on
an n-polygraph can be described by words which combine the generators of the polygraphs with
the operations the considered theory of n-category. Since these operations can be required to
satisfy several axioms, there are usually several words that can represent the same cell. The word
problem on polygraphs of higher categories consists in deciding whether two words represent the
same cell. Solving this problem is important for providing efficient computational descriptions
and helping with the study of higher categories.

Given the role that strict categories play in higher categories, finding an efficient and usable
solution to the word problem on (polygraphs of) strict categories is particularly important. In this
context, it seems that the usual normal form strategy can not be applied, since there is no known
orientation of the axioms of strict categories that would induce a confluent and terminating
rewriting system. In [Mak05], Makkai gave a solution to this problem. He showed that, even
though there is no known unique normal form for the words, they still admit canonical forms.
Moreover, the canonical forms of two equivalent words can be related by a sequence of moves,
and these canonical forms can be enumerated by a terminating procedure. This solves the word
problem, since two words are equivalent if and only if they have canonical forms which can be
related by a sequence of moves. However, the resulting procedure is computationally expensive
and quickly overwhelmed by rather simple instances (Makkai deemed himself its procedure as
“infeasible”), which prevents its use on concrete instances.

The work of Makkai revealed that the canonical forms for the cells exist for a more primitive
structure than the one of strict n-category, that we call n-precategory: the latter are a variant
of strict categories that do not satisfy the exchange identity of strict categories (c.f: Figure 1).
The word problem on polygraphs of precategories then admits a simple solution: two words
are equivalent if they have the same unique canonical form. These good computational proper-
ties motivate searching for other situations in which n-precategories can be used. Interestingly,
they are already the underlying structure of Globular, a diagrammatic proof assistant for higher
categories [BKV16; BV17].

The article of Makkai on the word problem [Mak05] introduced several notions and tools
that are of more general interest to the study of strict categories. In particular, he introduced a
“content function”, that we call Makkai’s measure, which assesses the complexity of the cells of
strict categories freely generated on polygraphs. More precisely, this function gives some account
on how many times each generator of the polygraph is used in the definition of a given cell. This
function admits a simple inductive definition and moreover possesses several good properties.
Makkai used it to show that his procedure which computes all the canonical forms of a given word
terminates. His measure appears to have one shortcoming though: it counts multiple times low-
dimensional generators. This defect raised the question, formulated by Makkai, of the existence of
another measure that would not display this bad behavior. The existence of such a measure would
be useful, since it could help to characterize a class of polygraphs called computopes by Makkai,
and later studied by Henry [Hen17] under the name polyplexes, which seem to play an important
role in the study of polygraphs. In particular, they were used to show that some subcategories of
the category of polygraphs are presheaf categories or not [Mak05; Hen17].
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Pasting diagrams. Even though the word problem for polygraphs of strict n-categories is
decidable, using words to manipulate the cells of strict n-categories can be cuambersome in practice.
As already mentioned, one can instead use pasting diagrams to describe cells of such categories.
However, not all cells can be unambiguously described this way, since not all diagrams are pasting
diagrams. A first issue is that some diagrams might be associated to several possible cells. For
example, in dimension 1, given the diagram

the “composite of a, b, ¢” is not uniquely defined because of the loop. It could denote
either a=xo(b=xgc), or (b=xpc)=*ga, or (a=gb)x*y(cxa), etc

that are not the same cells. Another issue is that it might not be possible to compose the generators
of a given diagram at all. For example, given the diagram

w—">x y by,
the “composite of a and b” does not make any sense. Still, the pasting diagrams are easily charac-
terized in dimension 1: they are finite connected linear diagrams without loops like (1).

However, it is harder to characterize precisely what a 2-dimensional pasting diagram is and,
more generally, what an n-dimensional pasting diagram is. We can only say that the latter is a
diagram that satisfy conditions which ensure that the generators it is made of can be composed
together in a unique way (up to the axioms of strict n-categories). As suggested by the 1-dimen-
sional case, one can expect n-dimensional pasting diagrams to be finite set of generators that are
at least “without loops” and “conected” (for the right generalizations of these notions). But these
conditions can be shown insufficient already in dimension 2.

Several formalisms for pasting diagrams were introduced until now, which aim at helping
identify pasting diagrams among general diagrams. The three most important of them are parity
complexes [Str91], pasting schemes [Joh89], and augmented directed complexes [Ste04]. Each of
these formalisms introduces a structure to represent general diagrams and provides a set of
conditions under which a diagram is to be considered as a pasting diagram. Moreover, each
formalism defines a structure of w-category on the set of sub-pasting diagrams of a diagram, and
proves that this w-category is freely generated on the generators of the diagram, which formalizes
the property that pasting diagrams describe cells of strict categories unambiguously. Even though
the ideas underlying the definitions of these pasting diagram formalisms are quite similar, they
differ on many subtle points and comparing them precisely is uneasy, and actually, to the best of
our knowledge, no comparison of the formalisms was ever made.

Pasting diagrams appear as important tools in the study of strict n-categories and, indirectly,
of other higher categories. First, they provide a simpler solution to the word problem on strict
categories: two words are equal if their associated pasting diagrams (when they exist) are the
same. They also allow defining w-categories from structures that satisfy combinatorial properties.
This way, Street [Str87; Str91] was able to define a higher-dimensional analogue of simplices,
called orientals, from which he derived a nerve functor for strict w-categories. Moreover, pasting
diagrams are dense in strict w-categories, so that the definitions of constructions on general
strict w-categories can often be reduced to their definitions on pasting diagrams. This way,
Steiner [Ste04] sketched a simple definition of the Gray tensor product on w-categories, which was
later completed by Ara and Maltsiniotis [AM16]. In a related manner, Kapranov and Voevodsky,
after extending the theory of pasting schemes [KV91b], attempted to give a description of weak
w-groupoids using pasting diagrams [KV91a], but their results were shown paradoxical [Sim98].
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Coherence for Gray categories. In order to make a weakened definition of some algebraic
structure expressed in a higher category coherent, one faces the problem of finding a correct set
of coherence tiles. Recently, it was shown by Guiraud and Malbos [GMO09] that, in the context
of strict categories, these coherence tiles can be found using an extension of Squier theorems to
“higher rewriting systems” on strict categories.

A higher rewriting system in their setting is simply a polygraph of strict categories. Indeed,
it was noted by Burroni when he introduced his definition of polygraphs [Bur93] that polygraphs
generalize the classical notion of rewriting system. For example, one can encode the earlier
introduced rewriting system of the theory of monoids as the 3-polygraph with two 2-generators

Q@ and Y

representing the generating operations of the theory of monoids, and three 3-generators

L:Q%EM R:Qsﬂ A:@sg

representing the rewrite rules of the rewriting system. This motivated the interpretation of
polygraphs of higher dimensions as higher-dimensional rewriting systems, for which the classical
results from rewriting theory, and even Squier theorems, can be adapted.

In particular, when searching for a coherent definition of a weakened algebraic theory ex-
pressed in strict categories, if this theory is presented by a finite, confluent and terminating higher
rewriting system, one can choose the coherence tiles to be the confluence diagrams of the critical
branchings of this rewriting system. For instance, Guiraud and Malbos showed that the coher-
ence tiles of monoidal categories can be derived from the critical branchings of an associated
rewriting system, as already suggested by the resemblance between (2) and (3). Even though
several additional conditions need to be proved in each situation, like the termination and the
confluence of the associated rewriting system, this still provides a generic method for finding
coherent weakened definitions of algebraic structures expressed in strict categories.

Adaptations of this method would be useful in order to find coherent definitions in other
higher categories, in particular weak categories. Since bicategories (i.e., weak 2-categories) are
equivalent to strict 2-categories, which are already handled by the framework of Guiraud and
Malbos, tricategories are the first interesting case. But tricategories are complicated objects, for
which the development of rewriting techniques might prove difficult. However, since tricategories
are equivalent to the simpler Gray categories, it is enough to adapt the tools of Guiraud and Malbos
for the latter. These tools could be used to recover existing coherent definitions of weak structures
for Gray categories, like pseudomonoids or pseudoadjunctions [Lac00; Dos18] and find new ones.

In order to adapt these tools, the development of a rewriting framework for Gray categories
is required. Since the latter have exchange coherence cells (c.f. Figure 1) that might interact
with the operations of the studied weakened definitions, it is useful to consider a more primitive
structure as the underlying rewriting setting. A good candidate are precategories, which we
already mentioned earlier. Indeed, they admit a simple computational representation and their
word problem is trivial. Moreover, they do not require the exchange identity of strict categories,
which was shown problematic in the context of higher rewriting since it allows a finite rewriting
system to have an infinite number of critical branchings [Laf03; Mim14], which prevents their
exhaustive enumeration by a computer.

Outline of the thesis. The object of this thesis is the introduction of several computational
tools for strict categories and Gray categories. It is organized around three main topics: the word
problem for strict categories, the pasting diagram formalisms, and the coherence problem for
Gray categories. The detailed structure of this manuscript follows.
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In Chapter 1, we recall the formalization, given by Batanin [Bat98a], of higher categories
as globular algebras, and derive several constructions and definitions, like the one of polygraph.
Then, we introduce the equational definitions of the two theories of higher categories that will
mainly concern us during this thesis: strict n-categories and n-precategories. In order to obtain
all the properties and constructions given by the framework of Batanin, we will have to show
that these theories are derived from monads on globular with sufficient properties. In order to
avoid the tedious task of explicitly describing the monads of each theory, we introduce criteria
on the categories of algebras to decide whether these algebras are derived from adequate monads
on globular sets.

In Chapter 2, we revisit the solution to the word problem on strict n-categories given by
Makkai in [Mak05]. For this purpose, we recall the definition of Makkai’s measure for such
polygraphs, by deriving it from another measure defined by Henry [Hen18]. Using an equivalent
description of strict categories as precategories satisfying some exchange condition, we provide
a syntactical description of the free n-categories which is amenable to computation. From this
description, we derive a solution to the word problem which is a more efficient version of the one
given by Makkai, and give an implementation for it. Finally, we answer the question raised by
Makkai and show by the mean of a counter-example the nonexistence of a measure on polygraphs
that does not double-count generators.

In Chapter 3, we study the pasting diagrams for strict categories and consider the three main
existing formalisms for them, namely parity complexes, pasting schemes and augmented directed
complexes. We show that the axiomatics of parity complexes and pasting schemes are flawed,
in the sense that they do not guarantee that the cells of strict categories can be represented
faithfully by the diagrams which these formalisms consider as pasting diagrams. This motivates
the introduction of a new formalism, called torsion-free complexes, based on parity complexes,
for which we give a detailed proof of correctness as a pasting diagram formalism. We illustrate
the interest of this formalism by implementing a pasting diagram extension based on torsion-
free complexes for the solver of the word problem whose implementation was introduced in
the previous chapter. Finally, we prove that this new formalism generalizes augmented directed
complexes and fixed versions of parity complexes and pasting schemes, in the sense that the class
of pasting diagrams it accepts is larger than the classes accepted by those other formalisms.

In Chapter 4, we study the problem of coherence of several algebraic structures expressed in
Gray categories. For this purpose, we define a higher rewriting framework based on precategories.
First, we show how Gray categories can be presented by prepolygraphs, i.e., polygraphs for precat-
egories. Then, interpreting prepolygraphs as higher rewriting systems, we translate the classical
results of rewriting theory, like Newman’s lemma and the critical pair lemma to this prepolygraph
setting. Next, adapting the results of Squier [SOK94], Guiraud and Malbos [GM09] to our context,
we show that the coherence tiles for weakened definitions expressed in Gray categories can be
chosen to be the confluence diagrams of the critical branchings of a confluent and terminating
rewriting system. We finally illustrate the use of this result on several examples and give coherent
weakened definitions of several algebraic structures expressed in Gray categories.






CHAPTER 1

Higher categories

Introduction

The notion of “higher category” encompasses informally all the structures that have higher-
dimensional cells which can be composed together with several operations. Such structures can
differ on many points. First, there are several possible shapes for the cells of higher categories.
For example, globular higher categories have 0-cells, 1-cells, 2-cells, 3-cells, etc. of the form

f

f
f m F
X, x——, x ¢ v xpl=Uy v, etc.
\g_/\ V

But one can consider higher categories with other shapes than the globular ones. Common vari-
ants include cubical [ABS00] and simplicial [Joy02] higher categories, whose 2-cells for example
are respectively of the form

x%y y
gl %) lh and yugbx.
x'T)y’ X2

Moreover, higher categories have several operations which satisfy axioms that can take different
forms, according to their position in the strict/weak spectrum (c.f. the general introduction). For
example, a strict 2-category is a globular 2-dimensional category that have, among others, an
operation ¢ to compose 1-cells in dimension 0, as in

x;)y %0 y#)z — xﬂ)z,

and operations #( and *; to compose 2-cells in dimensions 0 and 1 respectively, as in

s r Frof’
SN TN Y
x lo yry U¢ z=x (g’ z
PN N

g g*og’

1
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and

g f
Yy *1 x =X By Y.

PN N

These operations are required to satisfy several axioms consisting in equalities, like the associa-
tivity axiom: given 0-composable 1- or 2-cells u, v, w,

(u %9 0) %o W =19 (0% W)
and, given 1-composable 2-cells ¢, ¢, x,

(P *19) +1 x = ¢+ (Y *1 x)-
An example of a weak higher category is given by a bicategory, which is a globular 2-dimensional
category that has operations similar to a strict 2-category but which satisfy axioms in the form

of “weak equalities”. For example, the 0-composition of 1-cells is only required to be weakly
associative, in the sense that, given 0-composable 1-cells

f g h
w > X >y > Z,

the equality (f#(g) *o h = f *( (g*oh) does not hold necessarily, but there should exist a coherence
cell between the two sides, i.e., an invertible 2-cell afgh asin

(f*0g)*oh
w largn z

fxo(g*oh)

Finally, a subtle difference between the different kinds higher categories is the algebraicity of their
definition [Lei04; Gur13]. This notion essentially pertains to weak higher categories. Informally,
a definition of some sort of higher categories is algebraic when it can be equivalently described by
means of a monad. Concretely, algebraic definitions of weak higher categories involve coherence
cells that are distinguished (like the definition of bicategories, which requires that “there exists an
invertible 2-cell af g, between (f %o g) *o h and f *¢ (g *o h)”), whereas non-algebraic definitions
of weak higher categories involve coherence cells that are not (a non-algebraic definition of
bicategories would only require that “there exists some invertible 2-cell between (f %o g) *¢ h
and f xq (g %o h)").

In order to factor out several common constructions and properties across the different possi-
ble higher categories, it is useful to consider a restriction of this general notion to a more formal
class of theories. This was done by Batanin [Bat98a], who introduced a unified formalism for
algebraic globular higher categories. The latter are very common, since they include all the glob-
ular higher categories defined by a set of operations and equations between them. Moreover,
the instances of such higher categories form locally finitely presentable categories and, as such,
have very good properties, like being complete and cocomplete [AR94]. The setting of Batanin
then enables to derive several common constructions for such higher categories. In particular,
one can generalize to those the notion of polygraph, originally defined by Street [Str76] for strict
2-categories. However, the drawback of the Batanin’s setting is that one has to work with the
monad associated to a given higher category theory. This can be problematic since concrete
definitions of higher categories usually involve equations and existences of coherence cells (like
for strict 2-categories and bicategories), from which the description of the associated monad is
usually tedious [Pen99].
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Outline. The object of this chapter is to recall and introduce several notions of higher categories
that we will need in the following chapters. Even though we only consider strict and semi-strict
higher categories in this work, we will use Batanin’s general formalism to derive several common
constructions for them. This chapter is organized as follows. First, we recall the notion of locally
finitely presentable category (Section 1.1), of which most of the structures we will consider are
instances. Then, we recall the setting of Batanin of “higher categories as globular algebras”,
i.e., categories of algebras of a monad on globular sets (Section 1.2). In order to better relate this
setting with classical equational definitions of higher categories, we introduce criteria to recognize
whether some particular definition of higher categories fits in this setting (Theorem 1.2.3.20 and
Theorem 1.2.4.11). Next, we introduce constructions of free higher categories that can be derived
in the setting of Batanin (Section 1.3). In particular, we define the notion of polygraph for any
algebraic globular higher category. Our definition is less direct than the one of Batanin since it
uses the intermediate notion of free extension. We instantiate all these notions and constructions
when defining strict categories and precategories, that are strict higher categories that will concern
us in the next chapters (Section 1.4). Finally, we also mention enriched definitions for higher
categories (Section 1.5), and prove an enriched definition for precategories (Theorem 1.5.3.1).

1.1 Finite presentability

Locally presentable categories are a standard tool for deriving elementary properties on categories
of algebraic structures (monoids, groups, but also categories, 2-categories, efc.). They are those
categories where every object is a directed colimit of “finitely presentable” objects, which are
a generalization of the notions of finitely presentable monoids or groups. Knowing that some
categories are locally finitely presentable category is helpful since those categories are complete,
cocomplete and satisfy other nice properties. In this thesis, most of the categories we consider
are locally presentable categories, which motivates recalling some of their properties. For a more
complete presentation, we refer to the existing literature [GU06; AR94; Bor94b].

We first recall the definition of locally finitely presentable categories (Section 1.1.1) and then
introduce essentially algebraic theories, which are a standard tool to show that some categories
are locally finitely presentable (Section 1.1.2).

1.1.1 Presentability

In this section, we define the notion of locally finitely presentable category, after recalling directed
colimits and presentable objects of categories.

1.1.1.1 — Directed colimits. A partial order (D, <) is directed when D # 0 and for all x,y € D,
there exists z € D such that x < z and y < z. A small category I is called directed when it is
isomorphic to a directed partial order (D, <).

Given a category C € CAT, a diagram in C is the data of a functor d: I — C where I is a
small category. We say that it is a directed diagram when I is moreover directed. A directed colimit
of C is a colimit cocone (p;: d(i) — X);er on a directed diagram d: I — C.

Example 1.1.1.2. A set is a directed colimit of its finite subsets. A monoid is a directed colimit of
its finitely generated submonoids.

In Set, we have the following characterization of directed colimits:

Proposition 1.1.1.3. Let d: I — Set be a directed diagram in Set and (p;: d(i) — C)ie1 be a
cocone on d. Then, (p;: d(i) — C);e; is a directed colimit on d if and only if
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(i) forallx € C, thereisi € I and x’ € d(i) such that p;(x’) = x,

(ii) foralliy, iy € I, xy € d(iy) and x; € d(iz), if pi, (x1) = pi,(x2), then there existsi € I such that

ii—iel, ip—>iel and d(iy — i)(x1) =d(iz = i)(x2).
Proof. See for example [Bor94a, Proposition 2.13.3]. O

1.1.1.4 — Finitely presentable objects. Let C € CAT. An object P € C is finitely presentable
when its hom-functor
C(P,—): C — Set

commutes with directed colimits. By Proposition 1.1.1.3, it means that, given a directed colimit
(pi+ d(i) = X)jer
on a directed diagram d: I — C, we have

(i) for every X € C and f: P — X, there is a factorization of f through d, i.e., there exists i € I
and g: P — d(i) such that f = p; o g;

(ii) this factorization is essentially unique, i.e., if there exist others i’ € I and ¢’: P — d(i) such
that f = py o ¢/, then there exist j € I, h: i —» j € Iand h’: i’ — j € I such that

d(h)og=d(K)og'.

Example 1.1.1.5. Given a set S, S is finitely presentable if and only if it is finite. See [AR94,
Example 1.2(1)] for details.

Example 1.1.1.6. A monoid is finitely presentable when it admits a presentation consisting of a finite
number of generators and equations. A similar description of finitely presentable objects holds
for the other categories of algebraic structures (groups, rings, etc.). See [AR94, Theorem 3.12] for
details.

1.1.1.7 — Locally finitely presentable categories. A locally small category C € CAT is locally
finitely presentable when

(i) it has all small colimits,
(ii) every object of C is a directed colimit of locally finitely presentable objects,

(iii) the full subcategory of C whose objects are the finitely presentable objects is essentially
small.

Example 1.1.1.8. The category Set is locally finitely presentable. Indeed, it is cocomplete and
every set is a directed colimit of its finite subsets, which are finitely presentable objects of Set.

Example 1.1.1.9. The category Mon of monoids is locally finitely presentable. More generally, the
categories of algebraic structures (groups, rings, efc.) are locally finitely presentable. This is the
consequence of the fact that such categories can be described by means of essentially algebraic
theories, as we will see in the next section.

Identifying a category as locally finitely presentable enables to derive several elementary proper-
ties, like completeness:

Proposition 1.1.1.10. A locally presentable category is complete.
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Proof. See [AR94, Corollary 1.28, Remark 1.56(1), Theorem 1.58] for details. ]

Moreover, showing that a functor between two locally finitely presentable categories is a left or
right adjoint is easier than in the general case, since we do not need the existence of solution set
like in Freyd’s adjoint theorem ([Bor94a, Theorem 3.3.3]):

Proposition 1.1.1.11. Given a functor F: C — D between two locally presentable categories C
and D, the following hold:

(i) F is left adjoint if and only if it preserves colimits,
(ii) if F preserves limits and directed colimits, then it is right adjoint.

Finally, there is a simple criterion for a category of algebras on a monad to be locally finitely
presentable. We recall that a functor F is finitary when F preserves directed colimits, and a
monad (T, 5, i) on a category C is finitary when T is finitary. We then have:

Proposition 1.1.1.12. Given a locally finitely presentable category C and a finitary monad (T, n, 11)
on C, the category of algebras CT is locally finitely presentable. Moreover, the canonical forgetful
functor CT — C preserves directed colimits.

Proof. The category C is finitely locally presentable by [AR94, Theorem 2.78 and the following
remark]. Moreover, since T is finitary, the directed colimits of CT are computed in C, so that the
mentioned forgetful functor preserves directed colimits. O

Example 1.1.1.13. The category Mon is equivalent to the category of algebras Set” where (T, 7, )
is the free monoid functor on Set. It can be shown that T is finitary, so that we obtain another
proof that Mon is locally finitely presentable using Proposition 1.1.1.12.

1.1.2 Essentially algebraic theories

Verifying that some category is locally finitely presentable with the above definition can be tedious.
A simpler way consists in describing it as the category of models of some essentially algebraic
theory. The latter is similar to an algebraic theory (theory of monoids, theory of groups, etc.),
except that operations with partial domains are allowed, as long as those domains are specified by
equations. Another interesting property is that morphisms between such theories induce functors
between the associated categories of model, and those functors are moreover right adjoints and
preserve directed colimits. The main reference here is [AR94, Section 3.D].

1.1.2.1 — Definition. Given a set S, an S-sorted signature is the data of a set X of symbols such
that each o € X has an arity under the form of a finite sequence (s;);cn;, of elements of S for
some n € N, and a target in the form of an element s € S and we write

O:S1 X -+ XS, =S

such a symbol ¢ of ¥ with such arity and target.

Let (x;)ien be a chosen sequence of distinct variable names. Given a set S, an S-sorted context
is the data of a finite sequence I' = (s;);en:, of elements of S for some n € N. Under the context I,
the variable x; should be thought “of type s;” for i € N, so that we often write

X1:81,-..,Xnt Sn

for such a context I'.
Given a set S and S-sorted signature ¥ and context I', we define X-terms on I' together with
judgements T' - t: s where t is a 2-term and s € S, inductively as follows:
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- if T' = (si)icn;, for some n € Nand sy,...,s, € S, then, for every i € N;,, ' + x;: s,

- given g: §; X -+ Xs, — s € ¥ and 3-terms ty,...,t, such that I" + t;:s; for i € N,
thenT F o(ty,...,tn): s.

Note that s is uniquely determined by ¢ in a judgement I'" - ¢: s.

An essentially algebraic theory is a tuple
T = (S,3, E, 3, Def)
where
— Sis a set,
- X is an S-sorted signature,

- Eisaset of triples (T, t1, t2) where T is an S-sorted context, and t;, t, are 3-terms on I such
that there exists s € S so that T + ¢;: s for i € {1, 2},

— X, is a subset of 2,

— Def is a function which maps o: s;X---Xs, — s € X\ 3, to a set of pairs (ty, £;) of X;-terms
such that there exists s € S so that (x;: s1,...,%,: sp) F t;: sfori € {1,2}.

The set S represents the different sorts of the theory, the set X the different operations that appear
in the theory, the set E the global equations satisfied by the theory, the set ¥, the operations
whose domains are total, and the function Def the equations that define the domains of the
partial operations. Given such an essentially algebraic theory T, a model of T, or T-model, is the
data of

— foralls € S, a set M,
— forallo:s; X---Xs, — s € ¥;, afunction

Mg: Mg, X -+ - X M, — M,

- forallo: sy X - Xs, = s €3\ %, apartial function
Mg: Mg, X -+ - X Ms, — Ms,
such that

—forallo: sy X Xs, 5 se€X\ X, Myisdefinedat § = (y1,...,yn) € My, X -+ X M, if
and only if, for all (¢1,t,) € Def(c), we have [[t;] 5 =[] 3,

- for every triple (I, t;,t;) € E where I' = (s;);en, for some n € N and sorts sq,...,s, € S,
given a tuple § = (y1,...,yn) € My, X --- X M;,, if both [[#;] 5 and [#;] 5 are defined,
then [[tl]]g = [[tz]]g,

where, given an S-sorted context I' = (si)ieN;, asorts € S,aX-termtsuchthatT +¢:s,and a
tuple 7 = (y1,...,Yn) € My, X --- X My, the evaluation of t at 7, denoted [[¢] 4, is either undefined
or an element of M, and is defined by induction on ¢ by
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- if t = x; for some i € Ny, then [[¢]); is defined and
[t]5 = yi,

- ift =o(ty,..., t) for some k € N* and ;-terms ty,.. ., t, then [ ¢] 5 is defined if and only
if [t1] 3. ... [t ] g are defined and M, is defined at [#1] 4. ..., [t ] 5 and, in this case,

[t]s = Mo([t:]l5 - - [t 0)-

Given two models M and M’ of T, a morphim of T-model between M and M’ is a family of
functions f = (fs: Ms — M/)ses such that

— forallo: sy X Xs, > s€X, fyoMs=M,o(fs, X - Xfs,),

- forallo:s; X - xXs, ose€X\Z,and§ = (y1,...,yn) € My, X --- X M, such that M, is
defined on @, fs o Ms(g) = M{(fs,(y1), ..., fs,,(Yn))-

We then write Mod(T) for the category of T-models and their morphisms. We say that a (big)
category C € CAT is essentially algebraic when it is equivalent to the category of models of some
essentially algebraic theory.

Identifying a category as essentially algebraic enables to deduce that it is locally finitely
presentable, since the two notions are the same:

Theorem 1.1.2.2. Given a category C € CAT, C is essentially algebraic if and only if it is locally
finitely presentable.

Proof. See the proof of [AR94, Theorem 3.36]. O

Example 1.1.2.3. The category Set is essentially algebraic since it is the category of models of the
essentially algebraic theory ({s},0,0,0, L).

Example 1.1.2.4. The category Mon is essentially algebraic since it is the category of models of
the essentially algebraic theory

T7" = ({s},{e: 1 > s,m: sXs > s},E,{e,m}, 1)
where E consists of three equations
- m(e, x1) = x; in the context (x;: s),
— m(xy, e) = x; in the context (x;: s),
- m(m(x1, x2), x3) = m(x1, m(x2,x3)) in the context (x;: s,x2: 8,%3: S).

In particular, it gives a simple proof that Mon is locally finitely presentable.

Example 1.1.2.5. The category Cat of small categories is essentially algebraic since it is the category
of models of the essentially algebraic theory T = (S, 3, E, 3;, Def) defined as follows. The set S
consists of two sorts ¢y and ¢; corresponding to 0-cells and 1-cells, and

S={dy:¢c1 > co Iy:c1— co id':cg > e, *:cpxcop— o)
Moreover, E consists of the equations

- a(;(id1 (x1)) = x1 and a;)’(id1 (x1)) = x1 in the context (x1: cg),



8 CHAPTER 1. HIGHER CATEGORIES

= 9, (*(x1,x2)) = d; (x1) and 9] (*(x1,x2)) = 9 (x2) in the context (x;: c1,x2: ¢1),
- *(idl((?g(xl)),xl) = x; and *(xl,idl(ag(xl))) = x; in the context (x1: ¢1),
— x(x(xq,x2), x3) = *(x1, *(x2, x3)) in the context (x1: ¢1,X2: €1, X3: ¢1).

Finally, %; = {9;, 9], id'}, and Def (%) is the singleton set containing the equation 9y (x1) = 95 (x2).
This shows that Cat is a locally finitely presentable category.

1.1.2.6 — Morphisms of theories. Given two essentially algebraic theories
T=(S52E3%;,Def) and T = (5,3, E, 3, Def’)
a morphism of essential algebraic theories between T and T’ is the data of
- afunction f: S — §’,
- afunctiong: ¥ — ¥/,
such that

- giveno: sy X---Xs, = s € X, we have g(0): f(s1) X -+ X f(sp) = f(s) € ¥,

given o € 3, 0 € 3, if and only if g(0) € X7,

given (T, t, ;) € E, we have (f(T'),g(t1),g(t2)) € E’,

given ¢ € X \ ¥; and two X;-terms t; and f,, we have that (#1,1;) € Def(o) if and only
if (g(t1), g(t2)) € Def’(g(0)),

where, given I' = (s;);cn;,, we write f(T') for (f(s;))ien, and, given a X-term ¢, we write g(t) for
the ¥’-term defined by induction on t by

— for all variable x;,
9(xi) = xi,

— forallog:s; X - Xs, > s €Xand X-terms ty,..., 1,

9(o(ts,. ... tn)) = g(0)(g(tr), . ... g(tn)).

Such a morphism (f,g): T — T’ induces a functor
Mod((f,9)): Mod(T") — Mod(T)
which maps a model M’ € Mod(T’) to a model M € Mod(T) defined by
- foralls e S, M = M}(s),
— foralloce X, M, = Mé(a),

and which maps morphisms of models as expected. The functors induced this way by morphisms
between theories have good properties:

Theorem 1.1.2.7. Given a morphism (f,g): T — T’ between two essentially algebraic theories T
and T, the functor Mod((f, g)) is a right adjoint which preserves directed colimits.
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Proof. The fact that it is a right adjoint is given by [PV07, Theorem 5.4]. Moreover, one easily
verifies that the directed colimits are computed pointwise in both Mod(T) and Mod(T’), so that
they are preserved by Mod((f, g)). O

Remark 1.1.2.8. A more general definition of morphisms between essentially algebraic theories
for which Theorem 1.1.2.7 holds can be defined. However, it would require the introduction of
formal deduction systems, which would be quite long and technical. This would be in vain since
our definition of morphisms is enough for our purposes.

Example 1.1.2.9. One can define the essentially algebraic theory T of groups from the one of
monoids given in Example 1.1.2.4 by adding a symbol i: s — s representing a total function, and
by adding the equations m(i(x), x1) = e and m(xy, i(x1)) = e in the context (x;: s). The canonical
embedding T™" — T#&?P induces a functor Grp — Mon between the categories of groups and
monoids which is the expected forgetful functor. This functor is a right adjoint and preserves
directed colimits by Theorem 1.1.2.7.

Example 1.1.2.10. The essentially algebraic theory
Tgph = ({CO’ Cl}’ {da C¢1 — Cop, d(J; L — CO}> 07 {d0_> do+}, J—)

exhibits the category Gph of graphs as an essentially algebraic category. Recalling from Ex-
ample 1.1.2.5 the definition of T, the mappings d; — d; and dj +— 9} define a morphism
of essentially algebraic theories T8P" — T which induces a functor Cat — Gph that is the
expected forgetful functor. This functor is a right adjoint and preserves directed colimits by
Theorem 1.1.2.7.

1.2 Higher categories as globular algebras

In this section, we recall and extend the setting for globular algebraic higher categories introduced
by Batanin in [Bat98a]. In this setting, a particular theory of k-categories is a monad on the
category of k-globular sets. Most globular higher categories that one usually encounters fit in
this setting: strict k-categories, bicategories, precategories (defined later in this chapter), Gray
categories, efc. From this unifying viewpoint, several notions and constructions can be defined
once for all theories, like the notion of k-polygraph and the associated free k-category construction
as we will see in the next section. Moreover, a notion of k-category defined in this setting
canonically induces notions of 0-, ..., (k—1)-categories with associated truncation and inclusion
functors between the different dimensions. Among the broad class of theories of higher categories
that are captured by this setting, one can distinguish the theories that are associated with a
truncable monad. Such theories are better behaved in some aspects and more closely match
the idea that one can have of higher categories. Indeed, the general setting of Batanin allows
defining notions of higher categories with unusual operations. This can be problematic since
these operations can induce too much interaction between cells of different dimensions, so that
for example the construction of free instances can not be done dimensionwise. This motivates
the consideration of truncable monads, that do not allow this kind of operations.

The setting of Batanin offers a nice abstraction of the different higher category theories. How-
ever, the textbook definitions of the different higher categories are generally not given by a monad.
Instead, notions of k-categories are usually defined by sets of operations (identities, compositions)
that satisfy several equations. Moreover, the definitions of several natural operations, like the
truncation and inclusion functors, are usually additional boilerplate that is not explicitly derived
from general constructions. It is quite simple to show that an equational definition of higher
categories induces a monad, but to give an explicit description of this monad in order to apply the
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general results and constructions of Batanin’s setting can be quite tedious. Thus, there is a gap
between Batanin’s abstract viewpoint on higher categories and actual definitions, and it deserves
to be filled.

The plan for this section is as follows. First, we recall the definitions of an algebra over a
monad and the associated Eilenberg-Moore category, using some abstract reformulations for these
objects coming from the formal theory of monads of Street [Str72] (Section 1.2.1). Then, we recall
the definition of globular sets and some operations on these objects (Section 1.2.2). Next, we recall
Batanin’s setting of higher categories as globular algebras, i.e., the Eilenberg-Moore categories
derived from a monad on globular sets (Section 1.2.3). We show how a monad on k-globular set
induces globular algebras from dimension 0 to k and define truncation and inclusion functors
between the different dimensions. We moreover introduce a criterion that enables to relate actual
definitions of higher categories to the ones obtained with this setting without having to explicitly
describe the underlying monads (Theorem 1.2.3.20). Finally, we recall from [Bat98a] the notion
of truncable monad and give several additional properties that they have over general monads on
globular sets (Section 1.2.4). We moreover introduce a criterion to recognize that the underlying
monads of globular algebras are truncable, without having to explicitly describe those monads
(Theorem 1.2.4.11).

1.2.1 Algebras over a monad

In this section, we recall the definition of an algebra over a monad, together with the associated
notion of Eilenberg-Moore category, taking the formal perspective introduced by Street [Str72].
We moreover recall the related notions of monadicity and of monad morphism.

1.2.1.1— Algebras. Given a monad (T, #, ) on a category C, a T-algebra is the data of an
object X € C together with a morphism h: TX — X such that

honx =idy and hopux =hoT(h).

A morphism between two algebras (X, h) and (X', h’) is the data of a morphism f: X — X’ of C
satisfying
foh=H oT(f).

We write CT for the category of T-algebras, also called Eilenberg-Moore category of T. There is a
canonical forgetful functor

Uu':c’-c
which maps the T-algebra (X, h) to X. This functor has a canonical left adjoint

F':c—-ch

which maps X € C to the T-algebra (TX, ux), such that the unit of FT 4 UT is p, and the
associated counit, denoted €7, is such that €{X)h) = h for a given T-algebra (X, h). The monad
induced by F7 + U7 is then exactly (T, 7, y).

In order to study functors of the form D — CT, it is useful to introduce an abstract char-
acterization for such functors, which is a specialization in CAT of the general description of
Eilenberg-Moore objects given by Street in his formal theory of monads [Str72]. To give some
intuition, note that T-algebra can be equivalently described as a functor F: 1 — C together with

a natural transformation a: TF = F such that
ao(nF)=idy and ao (uF)=ao (Ta)

This correspondence extends to more general functors to C7 in the form of the following property,
that can be derived from [Str72, Theorem 1]:
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Theorem 1.2.1.2. Given a category D, the operation which maps a functor G: D — CT to the
pairs (UTG, UT €’ G) induces a natural bijective correspondence between the functors D — CT and
the pairs (F, @) where F: D — C is a functor and o: TF = F is a natural transformation such that

ao(nF)=idy and ao (pF)=ao (Ta).

In fact, the correspondence of [Str72, Theorem 1] relies on a 2-adjunction, so that it extends to
natural transformations as well:

Theorem 1.2.1.3. Given a category D and functors G,G’: D — CT, the operation which maps a
natural transformation B: G = G’ to U B induces a bijective correspondence between the natural
transformation G = G’ and the natural transformations f: UTG = UTG’ such that

Bo(UTe'G) = (U"e'G') o (TP)

1.2.1.4 — Monadicity. Let (T, 7, ) be a monad on a category C. Given a category D and an
adjunction ¥ 4 U: D — C such that the monad induced by this adjunction is exactly (T, 1, u),
recall that there is a canonical functor H: D — CT, called comparison functor, derived from this
adjunction (c.f. [Mac13, Theorem VI.3.1]). This functor can also be defined in the setting of Street
using Theorem 1.2.1.2:

Theorem 1.2.1.5 ([Str72, Theorem 3]). There is a unique functor H: D — CT such that
U H=U and Ue"H="Ue
where € is the counit of F + U. The functor H moreover satisfies that F* = HF and e’ H = He.

A functor U: D — C is said monadic when it has a right adjoint F: C — D such that the
comparison functor H: © — CT is an equivalence of categories, where (T, 7, fi) is the monad
induced by the adjunction ¥ 4 U. Monadic functors can be characterized by Beck’s monadicity
theorem that we introduce later (c.f. Theorem 1.4.1.6).

1.2.1.6 — Morphisms of monads. Finally, we shall describe some functoriality property be-
tween monads and their associated Eilenberg-Moore categories. Given two monads (S,y,v)
and (T, n, u) on a category C, a morphism of monads between (S, y, v) and (T, 5, i) is the data of
a natural transformation ¢: S = T such that

goy=n and $ov=yo(4).

Such a morphism induces a functor
c?: ¢t —¢°

defined by the following lemma:

Lemma 1.2.1.7. Given a morphism of monad ¢: (S,y,v) — (T,n, ) on a category C, there is a
functor

c?:cT - ¢

characterized by

USC? =UT and USESC? = (UTET) o (pUT).



12 CHAPTER 1. HIGHER CATEGORIES

Proof. 1t is sufficient to show that the conditions of Theorem 1.2.1.2 are satisfied. Let
a=(UTe) o (pUT)
By the equations satisfied by adjunctions, we have
ao (yUT) = (UTe") o (pUT) o (yUT) = (UTeT) o (pUT) = idyyr
Moreover

ao (vU") = (UTe") o (pUT) o (vUT)
= (U)o (uU) o (ppUT)
= (U o (UTETFTUT) o (ppUT)

= (UTeD) o (UTFTUTET) o (ppUT) (by naturality)
= (U"e") o (pUT) o (UF U ™) o (U FEpUT) (by naturality)
=ao (Sa)

Thus, using Theorem 1.2.1.2, there is a unique functor C?: CT — C5 as wanted. O

1.2.2 Globular sets

Here, we recall the classical notion of globular set. It is the underlying structure of a globular
higher category which describes globes of different dimensions together with their sources and
targets. We moreover define the truncation and inclusion functors between globular sets of
different dimensions.

1.2.2.1 — Definition. Given n € N U {w}, an n-globular set (X, 3™, ") (often simply denoted X)
is the data of sets X} for k € N, together with functions 9, 9} : Xj1; — X fori € N,_; asin

9 97 a, 94 a9, a9,

Z 1 2 2z Lk 2K+t
Xo 2 X; 3 Xy 3 s 3 Xk I Xir1 2
0< ot 1S ot 2 s ot Yo+ N oo +1 NoF
( 1 2 k-1 k k+1

such that

9y 09;,,=0; 095, and 9f 09, =09 09, forieN, ;.

When there is no ambiguity on i, we often write 9~ and 9" for 9; and 9. An element u of X;
is called an i-globe of X and, for i > 0, the globes d;_, (1) and 9] , (u) are respectively called the
source and target and u. Given n-globular sets X and Y, a morphism of n-globular set between X
and Y is a family of functions F = (Fy: Xk — Yi)ken,,, such that

d: oFy1=F;0 8,_ forie N,_1.

1

We write Glob,, for the category of n-globular sets.

Remark 1.2.2.2. The above definition directly translates to an essentially algebraic theory, so
that Glob,, is essentially algebraic. In particular, Glob, is locally finitely presentable, complete
and cocomplete by Theorem 1.1.2.2 and Proposition 1.1.1.10,.

Fore € {—,+} and j > 0, we write

€ _ o€ € €
0;,j=0; 09,1000 4
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for the iterated source (when ¢ = —) and target (when ¢ = +) operations. We generally omit
the index j when there is no ambiguity and simply write 9; (u) for J; j(u). Given i, k,l € N,
with i < min(k, [), we write Xj. X; X; for the pullback

: M| _
: i
<~

Xk T> Xi
Given p > 2 and ky,...,k, € Ny, a sequence of globes u; € Xj,,...,u, € ka is said i-com-
posable for some i < min(ky,...,kp), when 9} (u;) = 9; (ujy;) for j € N;_l. Given k € N,

and u, v € X, u and v are said parallel when k = 0 or 9;_, (u) = 9;_, (v) for € € {—, +}. To remove
the side condition k = 0, we use the convention that X_; is the set {*} and that 9_,, 8f1 are the
unique function X, — X_;.

For u € Xj;1, we sometimes write u: v — w to indicate that d; (u) = v and 9 (u) = w. In
low dimension, we use n-arrows such as =, =, S, etc. to indicate the sources and the targets of
n-globes in several dimensions. For example, given a 2-globular set X and ¢ € X, we sometimes
write ¢: f = g: x — y to indicate that

peXo, (P =f dq(P=g $)=x and &($) =y.

We also use these arrows in graphical representations to picture the elements of a globular set X.
For example, given an n-globular set X with n > 2, the drawing

f
T
X —9—y — 2 (1.1)
N
h
figures two 2-cells ¢, i € X,, four 1-cells f, g, h, k € X; and three 0-cells x, y, z € X, such that

i =f Hq@=qW) =g  FY =h
Kh(N=q@=aqMm=x ()=94@=gHh =0k =y. gk =z

1.2.2.3 — Truncation and inclusion functors. Given m € N, and X € Glob,,, we denote
by X<, the m-truncation of X, i.e., the m-globular set obtained from X by removing the i-globes
for i € N, with i > m. This operation extends to a functor

(-)S" . Glob,, — Glob,,

<mmn-

often denoted (—)glflb when there is no ambiguity. This functor admits a left adjoint

(=)tnom: Glob,, — Globy,
often denoted (—)G;Ob when there is no ambiguity, and which maps an m-globular set X to the
n-globular set X1, called n-inclusion of X, and which is defined by (Xt,)<m = X and (X1,); = 0
for i € N, with i > m. The unit of the adjunction (—)TG;Ob 4 (—)glrgb is the identity and the counit

is the natural transformation denoted i"™", or simply i when there is no ambiguity, which is
given by the family of canonical morphisms

i (Xem)tn — X
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for X € Glob,,. The functor (=) also admits a right adjoint

<m,n

(—)SP . Glob,,, — Glob,

tmn*

denoted (—)G;fb when there is no ambiguity, and which maps an m-globular set to the n-globular
set Xq,, defined by (Xp,)<m = X, and, for i € N, with i > m,

(Xpn)i = {(u,0) € X, | u and v are parallel}
such that, for (u,v) € (Xq);,
9, (w,0))=u and },((u,0)) =0

and
9; ((u,0)) = 9; ((,0)) = (u,0) for j € Nj_.

Note that, since they are left adjoints, the functors (—)%0’2 and (—)S}T‘;}’n preserves colimits.

1.2.3 Globular algebras

We now introduce categories of globular algebras, i.e., the Eilenberg-Moore categories induced
by monads on globular sets, as were first introduced by Batanin in [Bat98a]. We moreover give
several additional constructions and properties on these objects.

1.2.3.1 — Definition. Letn € NU{w} and (T, 5, 1) be a finitary monad on Glob,,. We write Alg,
for the category of T-algebras Glob! and

U,: Alg, — Glob, Fn: Glob, — Alg,

for the induced left and right adjoints, that were denoted U’ and F7 in Section 1.2.1. Explicitly,
given (X,h) € Alg,, the image of (X, h) by U, is X and, given Y € Glob,, 7Y is the free
T-algebra

(TY, py: TTY — TY).
Given k € N,,, there is a monad (T*, ¥, 4*) on Globy, defined from (T, 7, 1) by

Tk — (_)S}cObT(_)‘%Ob

and such that n*: dgiop, — Tk is the composite

()5 ()5l
- ¢ \Glob/_\Glob = ny ok
ldGlobk = (_)sko (_)Tno T

ie., ;7;‘{ = (1x,,,)<k for X € Globy, and such that T*T* — Tk is the composite

OETET () (R
> (DGPTT(-)g

TkTk s Tk,

The axioms of monads are easily verified for (T*, ¥, ;/*) using the fact that (T, 7, 1) is a monad.
So, for k € N,,, there is a category of algebra Gloka, that we denote Alg,, and canonical functors
U : Alg;. — Globy Fk: Globy — Alg,

defined like U, and ¥, above. The objects of Alg, are called k-categories. Moreover, given a
k-category C = (X, h), the elements of X; are called the i-cells of C for i € Ny. We can already
derive several properties of the categories Alg,:
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Proposition 1.2.3.2. Fork € NU{n}, the category Alg, is locally finitely presentable. In particular,
it is complete and cocomplete. Moreover, the functor Uy preserves and creates directed colimits, and
creates limits.

Proof. The category Alg, is locally finitely presentable as a consequence of Proposition 1.1.1.12
since Globy is locally finitely presentable by Remark 1.2.2.2. The functor Uy preserves directed
colimits by Proposition 1.1.1.12. Moreover, since U reflects isomorphisms and Alg,. is cocom-
plete, Uy, creates directed colimits. Finally, it is well-known that the forgetful functor associated
to an Eilenberg-Moore category creates limits (see [Bor94b, Proposition 4.3.1] for example). O

We can usually derive monads from equational definitions of higher categories as illustrated by
the following examples.

Example 1.2.3.3. Since 1-globular sets are graphs, the finitary forgetful functor Cat — Gph defined
in Example 1.1.2.10 induces a finitary monad (T, 1, ) on Glob;. This monad maps a 1-globular
set G seen as a graph to the underlying 1-globular set of the category of paths on G. Using Beck’s
monadicity theorem (Theorem 1.4.1.6), one can verify that the functor Cat — Gph is monadic, so
that Alg, ~ Cat. Moreover, the monad (T°, 1° ) is essentially the identity monad on Glob,, and
thus Alg, ~ Set. More generally, we will see in Section 1.4.1 that the monads of strict k-categories
for k € N are derived from the monad of strict w-categories.

Example 1.2.3.4. We define a notion of weird 2-category as follows: a weird 2-category is a 2-glo-
bular set C equipped with an operation

* CZXC2 —)C().

Note that we do not require the composability of the arguments of %, and we do not enforce
any axiom on *. A morphism between two weird 2-categories is then a morphism between the
underlying 2-globular sets that is compatible with *. The category Weird of weird 2-categories
and their morphisms is essentially algebraic, and the functor which maps a weird 2-category
to its underlying 2-globular set is induced by an essentially algebraic theory morphism, so that
it is a right adjoint and finitary by Theorem 1.1.2.7. From the adjunction, we derive a finitary
monad (T, 5, i) on Glob,, and, given X € Glob,, we have that

(TX)o = Xo U (Xz X X3) (TX) = Xy (TX)2 = X,

so that, for Alg, derived from the monad T, Alg, =~ Weird. Moreover, the monads (T° 1° 1)
and (T, n!, u') are essentially the identity monads on Glob, and Glob; respectively, so that the
associated notions of weird 0- and 1-categories are simply 0- and 1-globular sets.

The last example moreover illustrates the unusual operations that notions of higher categories
defined in the setting of Batanin can have. It is also an example of a monad on globular sets which
is not truncable (c.f. Example 1.2.4.3).

Remark 1.2.3.5. In the above definition, we require that the monad (T, #, p2) is finitary in order
to prove later the existence of several free constructions on the k-categories. This is not too
restrictive, since it includes all the monads of algebraic globular higher categories that have
operations with finite arities, i.e., most theories of algebraic globular higher categories.

1.2.3.6 — Truncation and inclusion functors. We now introduce truncation and inclusion
functors between the categories Alg, together with some of their properties. Let n € NU {w}
and (T, 7, 1) be a finitary monad on Glob,,. Given k, I € N,, U {n} with k < [ and a T!-algebra

(X, h: T'X > X),
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there is a canonical T* -algebra (X<, h’), where h’ is defined as the composite

(T

TH (X o) —— 0y (TX) o ——— 2 X

and the operation (X, h) — (X<, h’) extends to a functor

1
( )i‘kgl Algl - Algk

often simply denoted (- )A}c The image of (X, h) in Alg; by (- )A}( is called the k-truncation
of (X, h) and we denote it (X, h)<x. Note that the image of a morphism f: (X, h) — (X', k')
by (- ) <k is f<x (the globular k-truncation of f). The finitary assumption on T enables the
existence of a left adjoint to truncation functors:

Proposition 1.2.3.7. Givenk,l € N, U {n} with k <, the functor (—)ﬁ}cgl admits a left adjoint.

Proof. The functor (- )
and the functor

<kl is finitary since, by Proposition 1.2.3.2, Uy creates directed colimits

fuk<—>§}§l = (0%,

preserves directed colimits. Moreover, (— ) <k , preserves limits since U creates limits and the

functor Uy (- )i‘}cgl = (- )GI"bﬂl preserves limits (both (- )Gl"b and U are right adjoints). Then, by

Proposition 1.1.1.11, the functor (- ) < admits a left adjomt O

Given k,l € N,, U {n} with k < [, we write
1
() e Alg, — Alg

for the left adjoint to (— ) < k !
in Alg, by (_)Tl is called the [-inclusion of (X, h) and we denote it (X, h)q;.

or even (—)?Ilg when there is no ambiguity on k. The image of (X, h)

We verify that the different truncation functors are compatible between themselves:
Proposition 1.2.3.8. Given j, k,I € N, U {n} with j < k < I, we have

Alg Alg Alg
(Hjx e O = Gy

Proof. Let (X, h) € Alg; and ', h”’, h be the globular morphisms such that
(XSk’ h,) = (Xs h)Slw (Xﬁjs h/,) = (XSk’ h,)Sjs and (Xﬁj’ ljl) = (Xs h)S]
We compute that

W' =h o ((- )SﬁO,'ng )5
= (hak o (DEIT ) <) 0 () SRTFP)x,

= hgjo (R)SPT )y o () TPTF o)k,

= hej o ((-)SPT(-)SP I o (—)58P i (—)S)x))
= hejo ((1)EPT()SP (i)

-

so that the property holds. O
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1.2.3.9— Alg,, as a limit. Let (7,7, ) be a finitary monad on Glob,,. The purpose of this
paragraph is to characterize Alg,, as a limit on the categories Alg; for k € N using the truncation
functors (—)ﬁ}(g. Before showing this property, we need to recall the notion of cofinal functor.
First, given a_category C, we define a relation ~C on the objects on C as the smallest equivalence
relation such that, for every f: x — y € C, we have x ~C y. The category C is then said connected
when x ~C y for all x,y € C,. A functor F: I — J between two categories I and J is cofinal when,
for each i € I, the arrow category i | F is connected. The interesting fact about cofinal functors
is that they witness that two diagrams have the same colimit:

Proposition 1.2.3.10. Let F: I — J be a cofinal functor between two categoriesI and J,d: ] — C
be a functor into a category C and p: d = Al be a cocone on d of vertex 1 € Cy (where Al is the
constant functor ] — C of valuel). Then, p is a colimit cocone on d if and only if pF is a colimit
coconeond o F.

Proof. See [Mac13, Section IX.3] or [KS06, Section 2.5]. O
The cofinal functors between two directed categories are easily characterized:

Proposition 1.2.3.11. Let F: I — ] be a functor between two directed categories I and J. Then, F
is cofinal if and only if, for each j € ], there exists i € I and a morphism j — F(i) € ].

Proof. The implication is clear. Conversely, suppose that for each j € J, there exists i € I and a
morphism j — F(i) € J. Then, given j € ], the category j | F is not empty. Moreover, given two
morphisms fi: : j — F(iy) and f;: j — F(iz) in J for some iy, i € I, since I is directed, there
exist morphisms g;: iy — i and g, : i — i for some i € I, that induce morphisms

g1: (i1, i) = (,gio fi) and gy: (is, o) = (i,92 0 f2)

in j | F. Since J is directed, we have g; o fi = g5 o f;. Thus, j | F is connected. Hence, F is
cofinal. ]

We can now characterize Alg, as a limit:

Proposition 1.2.3.12. ((—):ig: Alg, — Alg;)ien is a limit cone in CAT on the diagram

2 ()2 N (%, )2E ()28
Alg, <20 Alg, < Alg, < 5 ALy, < Al 2

Proof. Let Ak = (X*,g*: TkX* — X) € Alg, for k € N be such that A’?I;l = AF. Then, in
particular, we have X’;l = X*, so that there exists X € Glob,, such that X* = X<k for k € N.

Let R* be the functor
= ()1 ()" Glob,, — Glob,,

and T* be the functor
T = R'TR*: Glob,, — Glob,,
and j* be the natural transformation

_( )Glob kk+1( )S)}co_'l—)l Rk Rk+1

for k,I € N. Note that, for all Y € Glob,,, (i];,’w: R¥Y — Y)ran is a colimit cocone in Glob,, on
the diagram

0 i1 k-1 ik+1

Ry g gy vy I gy Wy ey
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Since T is finitary, ((T i*)x: T(X<k)1 — TX)ken is a colimit cocone on the diagram

TROX — Ty iy Ty Oy iy Ty ppreny D7

By commutation of colimits, ((i*® T i*?)x: T"X — TX)ken is a colimit cocone of the grid
diagram

(jl+1 TRk)X (jl+1 TRk+1)X

(Rl+lTjk71)X (Rl+lTjk)X

e —— = Tl+1,kX — X Tl+1,k+1X

T T

(Rl+lTjk+l)X

(j' TRF)x (' TRF)x

(R'Ti*x Lk (RTF)x Thk1 (R'Tj*)x
7 7
G TRx (7' TRE X

Note that the diagonal functor A: (N, <) —» (N X N, < X <) is cofinal by Proposition 1.2.3.11, so
that, by Proposition 1.2.3.10, the cocone ((i%® Ti%®)x: T X — TX)ey is a colimit cocone on
the diagram

sk+1 T ~k+1)

T00y (jOTjO)X> A Tjk'1)§ Thky G Ti*)x Tty G T X (1.2)
where TRk X is exactly (T*X k)Tw for k € N and, by the definition of ( —)Alg we have

<k’
9" = g5 o (0 T iF)x

so that
i ogk,, = (g R ()08 )x © (9510 © (RET F)x
= (P 1 ) yn 0 (g5 )10 o (RTj)x
= ghtt o ()P i) e i o (RET j)x (by naturality of (=)F i+
= giit o (F TR®)x o (RAT )x
=g o F Ti)x.

Thus, we obtain a diagram

(-0 T ~0) (-k—l T k-1 (~k T <k) (<k+1 T ik+1
(T (Xeo)po 2% B (TR (X L2 (T (K)o b

0 k k+1
\LgTw \Lng \LgT:)
;0 k-1 k k+1

J

] ] ]
(X<o)to = - = Xahjo ————— Xchst)jo ————> -+~

where each square commutes, and it induces a morphism g: TX — X € Glob,,. By a similar
argument as above, we have a colimit cocone

(5 T Ti)x: (T*T*X*)1, - TTX)ken
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on a diagram analogous to (1.2). We compute that, for k € N,

gopx o (*OTi*Ti)x

=go ux o (iF° TTi**)x o (RFT i** TRy (by naturality)
= g o (i* T i)y o (RFuRF)x o (RFT i** TRF)y (by naturality)
OgTw o((- )GIOb pk( )Gl‘)b) (by definition of g and ;Jk)

OgTwO(( )Glob k pon

:IX o(g O.UXSk)Tw

= iI;(’“’ o(gk o TK (gk))Tw (since (X*, g¥) is an algebra)
=go (iF* Ti)x o (TF(¢"))1e (by definition of g)
=go (i* T)x o R*T (i} ogf,)

=go (i T)x o R*T(g o (i*¢ Ti**)x) (by definition of g)
=go (i T)x o R*T(g) o (RFT ik T i)y

=goT(g) o (i*° T)x o (RFTiF® T i)y (by naturality)

=goT(g) o (" Ti* Ti*)x

so that g o ux = g o T(g). Moreover, for k € N, we have

gonxo ié‘(’“’ =gonxo ik"" o(RF ik@)y (since (RF K@)y = idpey)
=gonx o (I i%)x
= g o (i TiF*)x o (Rk RNy (by naturality)
ogTw o (( )Globnk( )Glob)
= 1 ogf o ()97
=5 o(g% 0 0k, )10
= jke (since (XX, g¥) is an algebra)

thus, since (i*®: R¥X — X)y is a colimit cocone, we have g o nx = id Hence, (X, g) € Alg,.
For k € N, let (X*, §*: T*(X<;) — X<i) be the image of (X, g) by (- ) . We have

i’;("" Og’IT‘w = if(’“' oRF(g) o (RFT i)y (by definition of (— )Alg)
-k, w)

=go 1TX o(RFT i (by naturality of i¥®)

=go (" Ti)x
@ og];w (by definition of g)

k,w

thus, since i is faithful, we have g‘k = gk . Moreover, given an

is a monomorphism and (—)?{})"b

algebra (X, §) € Alg,, such that (X, §)<x = (X¥, g*) for every k € N, we have

iéc(,w oRK(§) o (RFT i)y (by naturality of ik’w)
1’;( ® o ngcw (by definition of (- )Alg)

go (" Ti%)x
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so that g = g by the colimit definition of TX.

Now, let (Y, h) € Glob,,, (Y*, h¥) be the image of (Y, h) by the functor (—)i‘}{g for k € N, and
a morphism f: X — Y € Glob,, such that f<; induces a morphism between ()Z ! g" and (Y!, h')
in Alg; for [ € N. We compute that, for k € N,

hoT(f) o (i°°Ti*)x = ho (i* Ti**)y o R'TR(f) (by naturality)
= iy ohk o R'TRE(f) (by definition of h)
=i o (H* o T*(fat)ra
= il;z’w o(fek © 9w (since f<i € Alg;.)
=87 oR*(f) 0 ¢F,,
=fo i;c(’w Oglfw (by naturality)
=fogo (*Ti*)x (by definition of g)

so that, by the colimit definition of TX, we have h o T(f) = f o g. Thus, the w-globular mor-
phism f induces a morphism f: (X,g) — (Y,h) of Alg,. Finally, a morphism f” of Alg, is
completely characterized by its images by the functors (—)iig for k € N, which concludes the

proof that ((—)Alg'

%’ Alg, — Alg; )ken is a limit cone of CAT. O

1.2.3.13 — A criterion for globular algebras. Usually, a specific notion of higher category and
the associated truncation and inclusion functors are not directly derived from a monad. Instead,
we often manipulate higher categories that are defined, in each dimension k € N, as structures
with operations satisfying some equations, and the truncation and inclusion functors are defined
by hand. Such equational definitions surely induce monads on k-globular sets, but it is not clear
that the monad in dimension [; is obtained by truncating the monad in dimension I, for [; < Iy, as
in Paragraph 1.2.3.1. Moreover, it is not immediate that the boilerplate definitions of truncation
and inclusion functors correspond to the ones from Paragraph 1.2.3.6. Verifying the equivalences
of these definitions is required in order to use general constructions for globular algebras, like
the ones of the next section. But, without a generic argument, the verification can be tedious
since it involves, among others, an explicit description of the different monads. In this paragraph,
we give a criterion, in the form of Theorem 1.2.3.20, to recognize that some functor between two
categories is the truncation functor as defined in Paragraph 1.2.3.6 derived from some monad
on globular sets. It will allow us to show in Section 1.4 that the equational definitions of strict
k-categories and k-precategories and their truncation and inclusion functors are equivalent to
the ones derived as in Paragraphs 1.2.3.1 and 1.2.3.6 from a monad on Glob,,.

The proofs of this criterion will involve showing several equalities on natural transformations
between left and right adjoints. In order to allow for simpler manipulations of these equalities,
we use string diagrams. We quickly remind the reader the rules of this graphical calculus for
adjunctions. Recall that an adjunction in CAT can be described as the data of two functors

L:C—D and R:D—C
between categories C and D, together with natural transformations
y:ido = RL and e€:LR=idj
that satisfy the “zigzag equations”

(eL)o (Ly) =id; and (Re) o (yR) =idg. (1.3)
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One can represent the above situation using string diagrams as follows: the natural transforma-
tions y and € can be pictured as

L R
and
R L

and the zigzag equations can be pictured by

L L R R

N L me (O i

L L R R

Note that the above equations generate a congruence: they apply as well when both sides appear as
subdiagrams of a bigger string diagram. Using this language, we graphically show the elementary
property that an isomorphism between two left adjoints induces an isomorphism between the
two right adjoints (and vice versa):

Proposition 1.2.3.14. Let
L4R:C—>D and L' 4R:C—>D
be two adjunctions with respective unit-counit pairs (y,€) and (y’,€’), and
0:L=1L and 0:R =R

be two natural transformations such that 0 = (eL’) o (LOL’) o (Ly’), i.e., graphically:

L/
Then, 6 is an isomorphism if and only if 0 is an isomorphism.

Proof. Suppose first that 6 is an isomorphism. Note that, by the zigzag equations satisfied by (y, €)
and (y’,¢’), we have

RI
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By the same zigzag equations, one then easily verifies that the morphism depicted by the following
string diagram is an inverse to 0:

Conversely, suppose that 0 is an isomorphism. Then, by the zigzag equations, one easily verifies
that the diagram

defines an inverse of 8, which concludes the proof. O

Moreover, we recall how to derive an adjunction from the composition of two adjunctions, using
the graphical language:

Proposition 1.2.3.15. Given two adjunctions L1 4 R;: C; — C; and L, 4 Ry: C; — Cs with
unit-counit pairs (y1, €1) and (y2, €2) respectively, there is a canonical adjunction L1L; 4 RyR; whose
unit and counit are respectively

(Rzyle) oY and €10 (L1€2R1)

that can be represented by

@ L L, R, Ry
and @

Proof. Using the zigzag equations satisfied by (y1, €1) and (y», €;), we easily verify that
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Ly L, Ry

@

so that (Ryy1L;) o y» and €; o (L1e2Ry) equip the functors LiL; and RyR; with a structure of an
adjunction L1L, 4 RyR;: C; — Cs. m]

and

Note that Proposition 1.2.3.15 generalizes to compositions of sequences of adjunctions
Li4R: C; > Cy, ..., LkﬁRk:Ck—>Ck+1

for every k € N*. We now show several technical lemmas that we will use in the proof of
Theorem 1.2.3.20 below.

Lemma 1.2.3.16. Let the (not necessarily commutative) diagram of functors in CAT

C

\

X

Fl|U B

4

v
C/

where L A R, L’ 4 R" and F 4 U are adjunctions such that R'U = R, and write (S,y,v) and (S’,y’,v")
for the monads associated to L 4 R and L’ 4 R’ respectively. Then, the unit of the adjunction F 4 U
induces a morphism of monads ¢: S’ = S such that the following diagram commutes

c 2y ps

L

C' — B
where H and H' are the comparison functors associated to the adjunctionsL 4 R and L’ 4 R’.

Proof. Let (, ), (B, €), (B, €’) be the unit-counit pairs of the adjunctions F 4 U,L 4 R,and L’ 4 R’
respectively. Note that f = y and f’ = y’. Since R’U = R, the natural transformation 6: FL' = L
defined as the composite

0 = (8L) o (FE'UL) o (FL’y)
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which can be represented as

F L’ F L’

L L

is an isomorphism by Propositions 1.2.3.14 and 1.2.3.15. Moreover, one easily checks with the
zigzags equations satisfied by («, §), (y, €) and (y’, €”) that we have

m (@T -
0 l} [l = [{} - F L@/ U. (1.5)
\@/ L@A

Now let ¢: S’ = S be the natural transformation defined as the composite

=l

and

¢: S’ =RL 2L RUFL =RFL’ =29 RL =S

which can be pictured by

RI L/ R/ LI

(=) (o)

I
R L R L

By (1.4), we have poy’ = y. Moreover, since v = ReL and v/ = R'e’L’, we have pov’ = vo(d¢) (see
Figure 1.1). Thus, ¢ is a morphism of monads between (S, y, v) and (S’,y’,v’). By Lemma 1.2.1.7,
the functor B : BS — B is characterized by

USB? =U5 and U €5 B? = USES o (pUO).
Remember from Theorem 1.2.1.5 that the comparison functors

H:C—B and H:C — B



1.2. HIGHER CATEGORIES AS GLOBULAR ALGEBRAS 25

() ()
u (by zigzag equations)
(&)

= =
= S

h

S

h

o ] (=] (e ] ®yay

Figure 1.1 — Proof that ¢ o v/ = v o (¢¢)
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'
I
N
>
N

= (by zigzag equations)

=~ — |l

Figure 1.2 — Proof that (Re) o (¢R) = R'e’U

are the unique functors such that
USH =R USH =R
USe®H = Re USeSH =R'€.

Thus,
USB’H=UH=R=RU=UHU.

Moreover, we have (Re) o (¢R) = R’e’U (see Figure 1.2), so that

UY e BPH = (USe’H) o (¢U°H) = (Re) o (¢R) = R'e’U = U S H'U.
We conclude by Theorem 1.2.1.2 that BYH = H'U. O
Lemma 1.2.3.17. Let F; 4 U; and I’ 4 7 be adjunctions as in

U T\
C1 < 4 D1 < 4 Dz
F I
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and write
(T, m, 1) and  (S,y',V')

for the monads associated to the adjunctions F; 4 Uy and F1I' 4 T'U;. The comparison functor
1. 1T S’
T7": D' — Dj

induced by the adjunction F ' 1’ 4 T'UN DlT1 — Dy makes the following diagram commutes

T
C — Dlrl Y p,
N L
Dy — D,
rLlS

where H; and H' are the comparison functors induced by the adjunctions F; 4 Uy and F;1" 4+ T 'U;
respectively.

Proof. By the definition of 7" (given in Theorem 1.2.1.5), the right square commutes. In order to
show that the left triangle commutes, we use the characterization of functors C — Dg, given by
Theorem 1.2.1.2. First, we compute that

UYH =T'Uy =T U"H, = U T"H.
Moreover, writting €; and €’ for the counit of F; 4 U; and 7’ 4 7’ respectively, we have

US S H = (T'Uier) o (T'Ti€'Uy) (by definition of H” and Proposition 1.2.3.15)

=7 'UN el H, (by definition of H;)
=US S T"H,; (by definition of 7).
Thus 7"H; = H' by Theorem 1.2.1.2. ]

Lemma 1.2.3.18. Let a commutative square

C1L>D1

Tl lq*

Cy T>Dz
2

where Uy, Uy, T, T are right adjoints with associated left adjoints Fy, F», I, I’, such that Uy, U, are
monadic and I is fully faithful. Write

(Th, 11, p1) (Tos 12, t2) (S.v.v) %y v)
for the monads associated with the adjunctions
Fi4U; F 40U, IF, 41U, T FI' 47Uy
respectively, and write

Hi:C; — DIT1 and T DlT1 — Dgl
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for the comparison functors associated to the adjunctions Fy 4 Uy and FI" 4 T'UT respectively.
Then, there exists an equivalence of categories Hy: C; — Dgl such that the diagram

¢, —2 phi

L

S/
Cy —)HZ D;
commutes and U5 H, = U,.

Proof. By Lemma 1.2.3.17, we have a commutative diagram

¢, —2 phi

Nl

D;
where H’ and 7" are the comparison functors induced by the adjunctions
FI’47'U; and FhI'+47'U"

respectively. Let a be the unit of the adjunction 7 4 7, and €y, €’ be the counits of the ad-
junctions F; 4 Uy and 7’ 4 7 respectively. Since 7'U; = U,7 by hypothesis, the natural
transformation 0: F1 7’ = IF, defined as the composite

0 = (11 F,) o (Fie'UiI Fp) o (F\I'UyBF2) o (F11'n,)
which can be represented as

Fi I’ Fi I’

@
(o) - S

I Fz I FZ

is an isomorphism by Proposition 1.2.3.14. One can then verify with the zigzag equations that the
natural transformation ¢: S’ = S defined by ¢ = U,7 0 is an isomorphism of monads. Moreover,
writing H for the comparison functor induced by the adjunction 7 F; 4 U,7, we have the diagram
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where the left triangle commutes by the definitions of H, H’, Dg’ and the characterization of
functors C; — Dj (c.f. Theorem 1.2.1.2), and the right triangle commutes by Lemma 1.2.1.7.
Writing ¢/: T, = S for the morphism of monads induced by the unit of 7 4 7, by Lemmas 1.2.1.7
and 1.2.3.16, we have a commutative diagram

c, —ty ps 4
Tl l /Tz
C, — DJ

H,

where H, is the comparison functor induced by the adjunction F, 4 U,. Since 7 is supposed fully
faithful, the unit of 7 4 7 is an isomorphism, so that D;ﬁ is an isomorphism. Write H, for

H, = DY (DY) "'H,.

From the above commutative diagrams, we deduce that

c; — phi

L

S/
C; —— Dj

commutes. Moreover, since U; and U, were supposed monadic, H; and H; are equivalence of
categories (and so is H,). By the definition of H; and H,, we have UTH, = U; and U"H, = U,.
From the later equality and the above commutative diagrams, we deduce that S H, = U,. O

Lemma 1.2.3.19. Letk,n € NU {w} withk < n and (T, n, 1) be a finitary monad on Glob,,. The
comparison functor associated to the adjunction

Fo(— )Glob (- )Globﬂn: Alg, — Globy
13( )Alg Algn — Algk

Proof. By definition of (— ) we have

<k’

Up(-)2E = (-) 00,

Moreover, given (X, h: T"X — X) € Alg,,, recall that the image of (X, h) by (—)2}5 is (X<k, '),
where
KW= h<k o (( )GlobT 1kn)

Writting €™ for the counit of 7, 4 U, and & for the counit of 7, (- )Gl"b 4 (= )Gl"b'u we have
= (S U (xy © (D) S UFn i Un) 3y = () S URS) x1)-
Thus, writting €k for the counit of F 4 Uy, we have
(’Uk«?k(—)i,lcg)(x,h) W = ((9)SUS) x.1)

so that (— ) k is the comparison functor associated to 7, (- )GlOb 4 (- )Gl"b"l/l,, as a consequence
of Theorem 1.2.1.5. o
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We have now enough material to show the following criterion for recognizing that some functor
between two categories is equivalent to the truncation functor between two categories of globular
algebras as defined in Paragraph 1.2.3.6:

Theorem 1.2.3.20. Letk,n € NU {w} with k < n, and a diagram in CAT

Ui
C Z—= Glob,

F
AT T
C' === Glob _
(T Obk
such that (—)g}c"bUl = U,T and such that we have adjunctions

F 41U F, 14U, I 49

where I is fully faithful and Uy, U; are monadic. Write (T, n, i) for the monad induced by F; 4 Uy,
and Alg, and Alg,. for the globular algebras defined from T, and H: C — Alg,, for the comparison
functor induced by Fy 4 Uy. Then, there exists an equivalence of categories

H': C" — Alg,
making the following diagram commute

c— s Alg,

| o

C’ T Algk
and such that UpyH' = U,.

Remark 1.2.3.21. By its definition as comparison functor, H satisfies that U, H = U;. Since U is
monadic, H is moreover an equivalence of categories.

Proof. By Theorem 1.2.1.5, we have U, H = U;. The last part of the statement is a consequence
of Lemmas 1.2.3.18 and 1.2.3.19. ]

In the above theorem, C and C’ should be thought as categories of n-categories and k-categories,
and 7 as a truncation functor, all defined “by hand” outside Batanin’s setting. The theorem
then gives a criterion to know whether these objects are equivalent to the ones defined in Para-
graphs 1.2.3.1 and 1.2.3.6. In particular, we will use this theorem to show that the equational
definitions of strict categories and precategories, and their truncation functors, are equivalent to
the ones given by Batanin’s setting (c.f. Theorems 1.4.2.8 and 1.4.1.10). For now, we illustrate the
use of Theorem 1.2.3.20 on a dummy example:

Example 1.2.3.22. Consider the monad (T, 7, ) on Glob; defined in Example 1.2.3.3. Write U for
the monadic functor Cat — Glob; defined in Example 1.1.2.10 (where we identify the category
of graphs Gph with the category of 1-globular sets Glob, ), and write U, for the identity functor
between Set and Glob,, which is monadic too. Consider the canonical functor 7 : Cat — Set
which maps a small category C to its underlying set of 0-cells Cy. This functor makes the following
diagram commute:

Cat i} Glob,

T\L \L( _) g(l]ob .

Set —,> GlOb()
Uy
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Moreover, 7 has a left adjoint 7 which maps a set S to the small category whose set of 0-cells
is S and whose only 1-cells are the identity cells id} for s € S. The functor I is then fully
faithful since 77 = idg,, and the unit of the adjunction 7 4 7 is the identity on idg,. Thus,
Theorem 1.2.3.20 applies and, writing H;: Cat — Alg, for the comparison functor associated
with the functor U, there exists an equivalence of categories Hy: Set — Alg, such that the
diagram

Cat —3 Alg,

o e

Set T> Algo
o

commutes and we moreover have UyHy = Uy and U1H; = U;. Note that H; is an equivalence of
categories too since U; is monadic.

1.2.4 Truncable globular monads

The general setting of higher category theories as monads over globular sets allows defining
theories with unusual operations, like compositions of I-cells that produce unrelated I’-cells for
some I’ < [ (cf Example 1.2.3.4). Anticipating the next section, such theories are badly be-
haved when it comes to freely adding new (k+1)-generators to k-categories, since the underlying
k-categories will not be preserved in the process. In order not to allow such monads, we recall
from [Bat98a] the notion of truncable monad which forbids those problematic operations and
still includes most usual theories for higher categories: those are the monads which “commute
with truncation” in a suitable sense. As we will see in the nextsection, the k-categories of these
theories are preserved when freely adding (k+1)-generators.

1.2.4.1 — Truncability. Let n € NU {w} and (T, 5, ) be a finitary monad on Glob,,. For k € N,
the counit of the truncation and inclusion functors between n- and k-globular sets

Glob Glob
" (O (D) = idgre,

induces a natural transformation t* where

t _( )GIObT -k.n . Tk( )Globz( )GlobT GlObn—>G10bk

The monad T is said weakly truncable when t* is an isomorphism for each k € N; it is truncable
when Ty (- )Gh’b = (- )GIObT and t* is the identity natural transformation for each k € N.

Example 1.2.4.2. The monad (T, n, i) of categories on Glob; defined in Example 1.2.3.3 is weakly
truncable. By choosing adequately the left adjoint Glob; — Cat that defines T, we can even
suppose that T is truncable. More generally, we will see in Section 1.4.1 that the monad of strict
w-categories is weakly truncable, and even truncable up to an isomorphism of monads.

Example 1.2.4.3. The monad (T, n, i) of weird 2-categories on Glob, defined in Example 1.2.3.4 is
not truncable since, for X € Glob,, we have

(TX)o =~ Xo U (Xz xX,) and (T°(X<o))o = Xo.
The following property justifies that we only handle the case of truncable monads:

Proposition 1.2.4.4. If (T, n, p) is weakly truncable, then it is isomorphic to a monad which is
truncable.
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Proof. We define a truncable monad (T, 7, i) on Glob,, and an isomorphism of monad ¢: T — T
from their trunctations

(T and o (DT — (DT

and we define those using an induction on k for k € N,,. In dimension 0, we put
(LT =T and o= (t")7"

Then, given k € N,, and a (k+1)-globular set X, we define (TX)<x4; as the (k+1)-globular set Y
where
Yer = (TX)<k  and  Yiyy = (Tkﬂ (X<k+1) k41

and the operation a;: Yi+1 — Y is defined as the composite

% (tk+1) (P -
Yesr = (TR (Xpun) Drr — (TF (X)) e —— (TX ) ——= (TX )i

for € € {—, +}. Our definition extends canonically to a functor

(—)S° T Glob,, — Globy,;.

<k+1

We also extend ¢ < on dimension k + 1 by putting, for X € Glob,,
(D3 k+1 = ((t§(+1 Desrt (TXkrr = (TX)kea
So we defined T: Glob,, — Glob,, together with an isomorphism ¢: T — T. Finally, we put
f=¢on and f=g¢opuo(s'¢™)
so that (T, 7, fi) is a monad. By the definition of T, we easily verify that (T, 7, fi) is truncable. O

When T is truncable, the T¥, »* and /¥ can be related through the equations given by the following
lemma:

Lemma 1.2.4.5. IfT is truncable, then, fork,l € N, U {n} withk < I, we have

k Glob Glob~l Glob 1 k Glob Glob I k Glob
T (- Sko,l = (_)gng and (_)gk(?l” =n (- 5]31 and (_)Sko,lll =H (- Sk(?l

Proof. We compute that

Tk(_ Glob _ Tk(_)Glob(_)Glob

<k,l <k,n Tn,l
= (ST
= ()T
and

(g = O O (RT (by definition of ')
= () © (DGR ()5)
= (O)ZNT 5P © (EOIRE OGO (by naturality)
= () (R (S (by truncability)
= 77"(—)2’}2}’ (by definition of ryk)
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and
(LK = (G OGO e (T OIGETIMT(HRT) by definition of u)
= (D) o (GT QLTI T
= ((‘)2}22# (—)%f}b) (by truncability)
= ((—)S}fﬁu(—)%‘}b) o ((—)g}ng ik T(—)TG;f’lb (by truncability)
= (GOS0 (IGRTEN TRT)
o (DTN OVGRT " () T) (by truncability)
= (G o (GRTT " ()
o (DGRT " T(H) I (D)) (by naturality)
= (LTI (57 o (M5 (VG (D
o (M) T(-)I (r (D5 (by naturality)
= ()RR (G o (DGRTIMT(HFR (S (by truncability)
= 1 ( —)g}f}’ (by definition of 1)
which concludes the proof. O

We now prove several properties of truncable monads regarding truncation of algebras. First, the
truncation of algebras has now a simpler definition:

Proposition 1.2.4.6. If T is truncable, then given k,l € N, U {n} such that k < I, and an l-alge-
bra (X, h) € Alg;, we have (X, h)<x = (X<, h<k).

Proof. Indeed, since T is truncable, we have
(DET )x = (TG Dx = id ey
so that (X, h)sk = (ng, hsk). O
Moreover, the operation of truncation of algebras is now a left adjoint:
Proposition 1.2.4.7. If T is truncable, then, given k,l € N,, U {n} with k < [, the functor
Al
(_)Skg’l: Algl - Algk

is a left adjoint. In particular, it preserves colimits.

Proof. Given (Y, h: TFY — Y) an element of Alg,, we define a T'-algebra
(Y0 :TY - Y')
that will represent the functor
Alg ((-)2E, (Y. h)): Alg)® — Set
We put Y’ = Yy; and we define h’: T'Y’ — Y’, by the universal property of the adjunction

(_)g}:b q (_)T(T}llob
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as the unique morphism such that h”, = h. We verify that (Y’, h") € Alg;. By Lemma 1.2.4.5, we
have -

(T'(W)zk =TH (), (P =n" (9GP and (9 u' = g ("

so that
(W ony)<k = honf
=1idy
= (idy,)<k
and

(R o i) <k = ho i
=hoTk(h)
= (W o T' (W) <.
By the universal property of Y" = Yy, this implies
Wonl, =idy, and W oT!(W)=h o,
so that (Y’, h’) is a T!-algebra. Now, since T is truncable, given a T'-algebra (X, g) and a T!-algebra

morphism f: (X, g) — (Y’,h’), the globular k-truncation of f induces a T*-algebra morphism

fSk: (X3g)Sk - (Y’ h)

Conversely, given a TX-algebra morphism f: (X, g)<x — (Y, h), by the universal property of Y’,
there is a unique morphism f’: X — Y’ of Glob; such that f = f. Moreover, we have

(W o T!(f)<k = ho T*(f)
=fog« (by Proposition 1.2.4.6)

= (f"og)<k

so that h’ o T!(f”) = f’ o g by the same argument as above. Thus, f’ is a T'-algebra morphism.
Hence, there is a bijection

D(xg): Alge (X, g)<k, (Y, h)) — Alg,((X,g), (Y',h))
which is natural in (X, g). We conclude that (_)ch is a left adjoint. O

1.2.4.8 — Characterization of truncable monads. Earlier, we introduced Theorem 1.2.3.20
that allows to recognize that some categories and functors between them are equivalent to the
categories of globular algebras and the associated truncation functors derived from a monad T
on globular sets, without having to explicitly describe this monad. But, by the current definition
of truncability, in order to show that the monad T is truncable, a direct proof would require to
show that the natural transformations ( —)S}ObT it" are isomorphisms, so that a description of T
is still needed. Below, we introduce a characterization of the truncability of T that does not rely
on such tedious description.

We start by proving the following lemma, relating the functors ¥:

Lemma 1.2.4.9. Letn € NU {w} and (T, n, ) be a finitary monad on Glob,,. Given k € N such
that k < n, we have

() 2EFa(-)hd = i
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Proof. We first compute that

U ()25 ()9P = (=) 8P, 7 (—) 5P
_( )GlOan( )ﬁi’ol;b
=Tk
= UFr.

Moreover, writting €* and € for the counit of the adjunctions
Fr 4 Uy and Fn 41U,
respectively, we have

() IE T = (S (Un€™ o (T Up) Fo()55% (b definition of (—)5E)
= (S Une"Fr) o (T" 7 T) (-)50%
= (P o (T " F)) (D)py
= uF (by definition of ;i)
= ekﬁ
so that
(LEFu ()b = Fi
by Theorem 1.2.1.2. O

Now, we prove that truncable monads can be characterized through the associated globular
algebras:

Proposition 1.2.4.10. Letn € N U {w} and (T, n, 1) be a finitary monad on Glob,,. Then, the
monad (T, n, 1) is weakly truncable (resp. truncable) if and only if, for k € N,_,, the natural
transformation

( )Algﬂ kon ﬁ( )Glob:( )Alg

is an isomorphism (resp. an identity).

Proof. Note that the domain of (—)ﬁ}fﬁ i is the claimed one by Lemma 1.2.4.9. For k € N,,_,
we have that

U, ( )Alg — ( )Glob(L[ Fr i -k
— ( )Glole
The proposition follows from the fact that U, reflects isomorphisms (resp. identities). O
Given k € N, we write
-k,n Glob Glob
J Glob = (= )ﬂnk (_)<kn

or simply j¥, for the unit of the adjunction (=)S® 4 (- )G1°b Globy — Glob,. We have the

<k,n
following criterion for showing the truncability of monads through their globular algebras:
Theorem 1.2.4.11. Letn € NU{w} and (T, n, i) be a finitary monad onGlob,,. The monad (T, n, )

is weakly truncable if and only if, for k € Nn 1, the functor (— ) , has a right adjoint, that we
write (— )ﬂ i which satisfies that j*U, (- )ﬂ & Isan isomorphism.
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Proof. By Proposition 1.2.4.7, if T is weakly truncable (- ) <kn has a rlght adjomt S0 we can
suppose that it is the case and denote it by (— )ﬂ ix Then, the morphism (— ) i¥, pictured by

Al Glob
(028 T R ()P
is a natural transformation between two composites of left adjoints. Then, by Proposition 1.2.3.15

and (the dual of) Proposition 1.2.3.14, the latter natural transformation is an isomorphism if and
only if the morphism depicted by the string diagram

A

A
©)

O (I ap, R N F O O w, ()

is an isomorphism, where (a, a’), (1", €"), (y, i¥) are the pairs of units and counits associated with

the adjunctions (— )Alg 4 (- )Alg Fn 4 U, and (- )Gk’b 4 (- )GIOb respectively. Using the equations
satisfied by ad]unctlons to reduce the above dlagram we obtaln

2

( )Glob ( )Glob ﬂn ( )Alg

which is the diagram asso<:1ated to the morphism j* Uy (-) kg Thus, (- ) 9’7” i* is an isomorphism
if and only if j* Uy (- )ﬂk is an isomorphism. We conclude with Lemma 1 2.4.10. O

We will use the above criterion to show that the monads associated to the theories of strict
categories and precategories are weakly truncable (c.f. Theorems 1.4.2.9 and 1.4.1.11). For now,
we illustrate its use by showing that the simple monad from Example 1.2.3.3 is weakly truncable:

Example 1.2.4.12. Consider the monad (T, 1, u) on Glob; from Example 1.2.3.3. Recall from Ex-
ample 1.2.3.22 the definitions of the functors

7 : Cat — Set U, : Set — Glob, U, : Cat — Glob;.
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One easily verifies that the functor 7 : Cat — Set has a right adjoint G: Set — Cat which is the
canonical functor mapping a set S to the category whose set of 0-cells is S and which has exactly
one 1-cell between every pair of 0-cells. For this definition and the one of j°, we have that j*U, G
is an isomorphism. Since, from Example 1.2.3.22, we have a commutative diagram

Cat —3 Alg,

o e

Set 7 Alg,

where Hy and H; are equivalences of categories such that UyH, = Uy and U, H, = U,, the
functor (—)2(1)%1 has a right adjoint (—)T?ll’g0 such that joﬂl(—)ﬁl’go is an isomorphism. Thus, the
monad T is truncable by Theorem 1.2.4.11.

1.3 Free higher categories on generators

Given some theory of higher categories, an important construction is the one that builds a k-cate-
gory which is freely generated on a set of generators. Indeed, like for other algebraic theories,
a k-category can be described by means of a presentation, i.e., by quotienting a free k-category
by a set of relations. Such presentations are all the more interesting from a computational per-
spective since they allow encoding higher categories with possibly infinite number of cells as
finite data. For example, a formal adjunction can be described as the strict 2-category generated
by two 0-cells x and y, two 1-cells I: y — x and r: x — y, and two 2-cells y: id, = [ % r
and €: r g [ = 1id, satisfying the zigzag equations (1.3). Given a theory of higher categories
expressed in Batanin’s setting, i.e., as a monad (T, 7, u) on Glob,, for some n € NU {w}, there are
several free constructions that one can consider. First, the functors #;: Glob; — Alg, already
enable to construct the free k-category on a k-globular set. Moreover, there is a construction
which produces a (k+1)-category from a k-cellular extension, i.e., a pair consisting of a k-category
and a set of (k+1)-generators. Such construction was introduced for strict categories in [Bur93].
Finally, one can consider the free k-category on a k-polygraph: the latter is a system of i-gene-
rators for i € N, which is organized inductively as cellular extensions. It differs from a mere
k-globular set in the sense that a k-polygraph allows generators to have complex sources and
targets that are composites of other generators, whereas the sources and targets of generators or-
ganized in a k-globular set can only be globes. Polygraphs were first introduced by Street [Str76]
and Burroni [Bur93] for strict categories, and then generalized to any finitary monad on globular
sets by Batanin [Bat98a].

The aim of this section is to introduce the definitions of cellular extensions and polygraphs
together with the associated free constructions. Since most of the definitions rely on pullbacks
in CAT, we first recall some properties of these pullbacks (Section 1.3.1). Then, we introduce cel-
lular extensions together with the associated free construction for any finitary monad on globular
sets, and, in the case of a truncable monad, we show that this construction is stable, i.e., that freely
adding (k+1)-generators does not change the underlying k-category (Section 1.3.2). Finally, we
introduce polygraphs together with the associated free construction for any finitary monad on
globular sets (Section 1.3.3). Our definition differs from the one of Batanin since ours is based on
cellular extensions, whereas the one of Batanin is more direct. We moreover prove a local finite
presentability result for the categories of polygraphs.
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1.3.1 Pullbacks in CAT

In the following sections, we define the categories of cellular extensions and polygraphs using
pullbacks in CAT. We will be interested in showing that these categories are cocomplete and that
several of the projection functors are left or right adjoints. Such properties are consequence of
general properties of pullbacks that we recall below. In particular, a pullback of an isofibration,
i.e., a functor which lifts isomorphisms, has good properties with regard to cocompleteness and
preservation of colimits. This is convenient since, as we will see below, all the truncation functors
introduced until now are isofibrations.

In the following, given C € CAT, we write id for the identity natural transformation on the
identity functor id,.: C — C. We begin with a property of compatibility of pullbacks in CAT with
left and right adjoints:

Proposition 1.3.1.1. Given a pullback in CAT

c-Lse

o Lo

D’T)D

and a functor H: D — C such that GH = id,, then there exists a canonical H': D" — C’ such
that G’'H’ = id,. Moreover, if there is an adjunction H 4 G (resp. G 4 H) whose unit (resp. counit)
is id%,, then there is an adjunction H' 4 G’ (resp. H 4 G) whose unit (resp. counit) is idzD,.

Proof. We define H’ using the universal property of pullbacks by

which satisfies G’'H’ = id},, by definition. Moreover, suppose that there is an adjunction H 4 G
whose unit is id%. Then, since C’ is defined by a pullback, a morphism f: H’X — Y € C’ is the
data of morphisms fj: X — G’Y and f,: HFX — F'Y with F(f;) = G(f;). But, since the unit
of H4 G is idlz), G induces a bijective correspondence between C(HFX, F’'Y) and D(FX, GF’Y),
so that f, is uniquely defined by F(f;). Thus, G’ induces a bijective natural correspondence be-
tween C’(H’X,Y) and D’(X,G’Y) forall X € D’ and Y € C’, so that there is an adjunction H 4 G’
with unit id%,. The case where G is left adjoint is similar. O

Moreover, we prove that isofibrations are well-behaved regarding pullbacks in CAT. We re-
call that a functor G: C — D € CAT is an isofibration when it lifts isomorphisms, i.e., for
all X € Cand Y € D, given an isomorphism f : GX — Y in D, there exists Y € C and an
isomorphism f: X — Y such that GY = Y and G(f) = f We then have:

Proposition 1.3.1.2. Given a pullback in CAT

c-Lse

o Lo

D'T)D

such that G is an isofibration, the following hold:
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(i) G’ is an isofibration,

(ii) given a small category I, if C and D" have all I-colimits and F and G preserve them, then C’
has all I-colimits and F' and G’ preserve them.

Proof. Proof of (i): Let X € C’, Y, € D" and 0;,: G’X — Y be an isomorphism. Then, since G
is an isofibration, there is Yz € C and an isomorphism g: F’X — Yz such that F(8;) = G(6g).
Moreover, F(6;') = G(@;) so that (0, 0g): X — (Y, Yg) is an isomorphism of C’.

Proof of (ii): Let d: I — C’ be a functor, which is the data of d;.: I — D" and dg: I — C. Then,
there are colimit cocones (pr;: d(i) — Xr)ier and (pri: dr(i) — XRr)ies. Since both F and G
preserve colimits, both

(F(pri): F(dp(i)) = F(X1))ier and  (G(pri): F(dr(i)) — G(XR))ier

are colimit cocones for F o d;. So there exists an isomorphism 0: F(X;) — G(Xg) between the
two cocones. Since G is an isofibration, we can suppose that F(X;) = G(Xg) and 6 = idF(XL).
Thus, we have a cocone ((pr;, pri): d(i) — (X1,Xgr))i on d, and we easily verify that it is a
colimit cocone. O

Remark 1.3.1.3. Pullbacks in CAT should normally raise suspicion since strict limits are not well-
behaved in CAT in general. Indeed, a limit cone in CAT on a diagram is not stable when replacing
some functors of the diagram by isomorphic functors. Moreover, the limit cone is defined up to
isomorphism, and not up to equivalence of categories. To solve this problem, one usually considers
a weaker notion of limits, where the triangles of cones commute only up to isomorphisms, as
with weighted bilimits [MP89]. But the strict limit on a diagram is generally not equivalent
to the associated weighted bilimit. However, introducing weighted bilimits here would be an
unnecessary pain for what we want to do, since the pullbacks along isofibrations are equivalent
to the weighted bipullbacks (see [MP89, Proposition 5.1.1]).

We now verify that several functors of interest to us are isofibrations:

Proposition 1.3.1.4. Given k € N, the functor (—)S}C"ZH is an isofibration.
Proof. Given X € Globy,; and an isomorphism F: X — Y in Globy, we define Y € Globy.,

by Yo = Y and Yi+1 = Xk+1 and such that the k-source and k-target operations of Y are defined
as Foo, and Fo 6,’: respectively. Then, F is lifted by the isomorphism F: X — Y of Globy,;

defined by F<; = F and Fiey1 = 1x,,,. ]

Proposition 1.3.1.5. Letn € NU{w} and (T, n, 1) be a finitary monad on Glob,,. Givenk € N,,_1,
the functor (—)chkJr1 is an isofibration.

Proof. Given an object (X, g: T¥*'X — X) of Alg,,, and an isomorphism F: (X,9)<x — (Y, h)
of Alg,, by Proposition 1.3.1.4, there is Y € Glob; and an isomorphism F: X — Y in Globy,
such that F<; = F. We can equip Y with a structure of T**!-algebra by defining h: T**'Y — Y as

h=Fogo (T (F)) ™!
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so that F: (X,g) — (Y, h) is a morphism of Alg,,,. It remains to show that (Y, h)< = (Y, fz). By
definition of Y, we have Y<; = Y. Moreover, we compute that

h<k o (( )Gloka+1 ~k) ° Tk(ﬁv)
= he o (TF(F)) <k 0 ((- )Gl(’ka+1 iF)x (by naturality of i¥)
)Gloka+1 lk)X

=Fogeo((- (since F is a morphism of Alg; . ,)

=hoTk (F) (since F is a morphism of Alg;)

so that h<r o ((— )Gl"ka’rl i)y = h,ie., (Y,h) < = (Y, fl). Thus, F, as a morphism of Alg,, is lifted

by F. Hence, (— ) is an isofibration. O

<k k+1

1.3.2 Cellular extensions

In this section, we introduce the notion of k-cellular extension, which describes a k-category (for
some theory of higher categories) equipped with a set of (k+1)-generators. We moreover give
the construction of the free (k+1)-category on a k-cellular extension together with more specific
results when the theory we are considering is associated with a truncable monad.

1.3.2.1 — Definition. Letn € NU{w} and (T, n, 1) be a finitary monad on Glob,,. Given k € N,,_,
we define the category Alg; of k-cellular extensions as the pullback

ﬂk \L( )Glob
~

Alg, —,— Glob,

We verify that:
Proposition 1.3.2.2. The functor Ay is an isofibration and has both left and right adjoints.
Proof. This is a consequence of Proposition 1.3.1.4 and Proposition 1.3.1.2. O

There is a functor V. : Alg,,; — Alg; defined as the factorization arrow

U1

Algk+1 )

* Alg —9 Globy,

( ) ﬂkl \L( )Glob

Algk T> GlObk

There is an operation which produces a (k+1)-category from a k-cellular extension. It is the left
adjoint to V, that exists by the following property:

Theorem 1.3.2.3. V). has a left adjoint.
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Alg

[ .
<k k41 and €’ be the counit of the ad-

Proof. Let a* be the unit of the adjunction (— )Tk ik (-)
junction 77 4 U; for I € {k,k + 1}. Let

Ot Alg, (D) Algi(— (0)29)

=
L Alg Alg
Ve Alg (D), k(). -) = Globr(= Uk (=) y,,)
(I)R : Algk+1 (‘fk.;.] (_), _) = GIObk+1 (_s ﬂk-f-l (_))

¥R: Globgy (Frn (Do (s =) = Globi(=, ()" Upar (-))

be the natural bijections derived from the associated adjunctions defined in Paragraphs 1.2.2.3,
1.2.3.1 and 1.2.3.6. Note that these bijections can be defined using the units of the adjunctions.
For example, given C € Alg, and D € Alg,,,, ®" maps a morphism f: Cyxe; — D € Algy,, to
the morphism f<x o ag: C — D € Alg,. Since

1
Fenr (D and (D) T

are both left adjoint to U (- ) = (- )GIOb(LIkH, the natural morphism

<k k+1

Al
0: ﬁ"'l(_)?klilik = (= )Tkil

defined as the composite
1 . Al o o
0 = (' ()35, T0) © (Fenn ¥ Uest (D)5, T0) © (Fewn (D) pon  Ued Fi) © (Fin ()55 )

which can be represented by

7'-k+1 (_)TG;iit{k ﬁ+1 (_)Tlei]ik
Lo ] = (=]

_\Alg Fr _\Alg Fr
(Dieare Ok (eae 7F

is an isomorphism as a consequence of Propositions 1.2.3.14 and 1.2.3.15. In the following, given a
morphism f: X — Y of a category C, we write f*: C(Y,Z) — C(X, Z) for the function g — go f
for all Z € C. One can verify using the zigzag equations that the natural transformation 6 makes
the diagram

L
Y7 A

Alg . ((FrZ)tks1, A) > Globi (Z, U (A<k))
<ez)*l H (1.6)
Algk+1 (7:k+1 (ZTk+1), A) > GIObk (Za (ﬂk+1A)sk)

ZA
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commutes for all Z € Globy and A € Alg,, . Let (C,X) € Alg;, D € Alg,,, and (D, Y) be Vi.D.
Since
‘LIkC = Xsk and (leD = Ysk

and by the properties of adjunctions, we have a diagram

o \
Algy,1(Cri+1, D) s Alg, (C, D<)
(efcx)” oL \L’Z/(k
U.C.D
Alg,, ((FxUrC)rk+1, D) £ > Globy (UC, Ur(D<i))
(00| o H (1.7)
X p.D
Algy,; (Fres1 (X<i)rer), D) = > Globg (X <k, Yer)
o) i Teogr
®
Algy,, (Frn X, D) =2 s Globg,; (X, Y)

such that each square commutes and where e* and e® are the natural transformations
Al .
¢ = (€ Ax and € = Frua i G

respectively. Indeed, the middle square commutes by (1.6) and the top and bottom squares com-
mute by the zigzag equations. By definition of Alg;, the set Alg; ((C, X), Vi.D) is the pullback

Alg}((C.X), VD) L > Globgs1 (X, G VD)

ml - l(—)ﬁ}:b

Alg, (C, Ax VD) > Globy (X<k, (Grr1ViD)<k)

Since

(—)2}5 =MV and  Upsr = Gren Vi

and by the commutative diagram (1.7), the following diagram is also a pullback:

(@ )0 Grer

Alg ((C,X), ViD) y Algy, | (FierX, D)

_|
(@LC,Drloﬂkl l“i‘c,xﬂ*

Algk+1(CTk+1’ D) > Algk+1(7'7<+1((ng)Tk+1): D)

(e<Lc,x>°9X5k)*
Since Alg,,, is cocomplete by Proposition 1.2.3.2, the diagram

Alg,.,,(C[X]. D) s Alg,, (F211X, D)

_|
(p%c’”)*l l“?c,xﬂ*

Algk+1(CTk+1:D) > Algk+1(7‘~k+1((xsk)Tk+1)’D)

(€e(cx) °0xp)”

is also a pullback, where C[X], P]fc X) and p?c x) are defined as the pushout
Plex)
C[X] 4vrreoorrermemesmn s e O Frrr X
LN 4 R
Plex): Te(c,X)
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Thus, there is an isomorphism
Algy.,,(C[X], D) = Alg; ((C,X), ViD)
which is natural in D. Hence, Vi admits a left adjoint. O

The operation (C, X) — C[X] defined in the proof of Theorem 1.3.2.3 extends to a functor
~[-1: Alg; — Alg,,

that we often write —[—] when there is no ambiguity on k, and which is left adjoint to V. The
image C[X] of some (C, X) € Alg*k is called the free extension on (C, X).

Example 1.3.2.4. Consider the monad (T, 5, 1) on Glob; defined in Example 1.2.3.3. A 0-cellular
extension (C, X) is then essentially the data of a set Cy of 0-cells, a set X; of 1-generators, and
functions d;,dj: X; — Cy, i.e., a graph. Moreover, the 1-category C[X] is the image of (C, X)
seen as a graph by the left adjoint to the functor Cat — Gph defined in Example 1.1.2.10.

Remark 1.3.2.5. Theorem 1.3.2.3 is a particular case of the fact that the category of locally pre-
sentable categories and right adjoints are closed under weak limits (see [Bir84] and the end
of [MP89, §5.1]). Since we did not introduce those limits, we explicitly described the construction
of the left adjoint of V} in the case of a strict pullback.

1.3.2.6 — The truncable case. Let n € N U {w} and (T, 5, i) be a finitary monad on Glob,. In
this paragraph, we consider the case where T is a truncable monad, and show that the underlying
k-category of a k-cellular extension is preserved by —[—]¥. For this purpose, we first prove that

the functor (—)?klf L preserves the underlying k-category. A direct proof method for this would

be to explicitly describe the functor (—)ﬁklfl ,» but that would be tedious and tiresome. We prefer
an indirect method based on a monadicity argument. We start by giving another description of

the images of free k-categories by (—)?,E X

Proposition 1.3.2.7. IfT is truncable, then, given k € N,_; and X € Globy, (—)ﬁllcgkﬂ induces a
natural isomorphism

Algy, ) (Fierr Xpean), —) — Alge (Fie(X), (—)ﬁf '

Proof. Given (Y,h: TF'Y — Y) € Alg,,,, consider the function
®(Y,h) : Algk+1(7—7c+l(XTk+l)’ (Y’ h)) - Algk(ﬁ(X)’ (Y> h)Sk)

induced by (—)i}f. This function is well-defined, since, by the definitions of 7 and ¥, and by
the fact that T is truncable, we have (—)Q}Cgﬁﬂ = Fr(— g}:’b, so that (—):Lgﬁﬂ(—)g’kli? = Fr. We
first show that ©y 5 is a monomorphism. Let f: Fi41(Xpxs1) — (Y, h) be a morphism of Alg,,,.

We compute that

(T T (O FEhx o (TF ()5 )x
= (T T (R o (TF (DR (O Z 0 (OFhx (by definition of ")
= (Tkﬂnkﬂ(_)gjg'g)x o (TF ik(—)Tlegl;)X (by naturality)

= (T Oy e )5 =14 g)
( )Tk+1
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and

ho Tk+1 (f) o (Tk+1’7k+1(_)TGkITi)X — f ° ,u;{(;i_l ° (Tk+1’7k+1)XTk+1 — f
Thus, there is a diagram

Tk+1( )Glob k

k41" )X ((f<k)Tk+
T (X1ge1) e R TR ((T*X) 1) % T (Yt ket

(Tk+1 ik Tk+1( )Tli(:-l; (Tk+1 ik)y
(Tk+1 k+l( )G,iob) \l/ Tk+1 (f)
Tk+1 (XTk+1) —Mi Tk+1Tk+1 (XTk 1) N Tk+1 Y h Sy

where the first square commutes by the first calculation, the second square commutes by naturality
and the bottom row is equal to f by the second computation. Thus, f can be recovered from fg,
which proves that @y ) is injective.

We now show that @y j) is surjective. Let f: (T*X, ux) — (Y, h)<k be a morphism in Alg,..
We define a morphism f”: Tk (Xtk+1) = Y of Globy,,; as the composite

(Tk+l( )Glob k) Tk (f +1) (Tk+1 ik)
k+1 k+1 k T k+1 Y\ ke h \
T (Xpk+1) — AT 1) ——> T ((Yer) k1) > Y > Y.
We compute that
ho T*(f') = ho T (h) o TMTH (i o fiis 0 (1)1is)
=ho ,ukJrl TkiTk+1 (1’; O ftk+1 © (U;C()Tkﬂ) (since h € Alg;.,,)
=ho Tk+1(1Y o fk+1 © (’7X)Tk+1) yXTk X (by naturality of yk+1)
k
=fe “X?;H
so f’ induces a morphism in Alg,_,,. Moreover, we have
fle = hei o (T (i) <k 0 TE() © (THn)x
=heo Tk((ilf,)sk) o Tk(f) o (Tkryk)x (since T is truncable)
=he o Tk(f) o (Tkryk)x (since (— S’}:’b i = id(_)G}:b)
=fo ,ué‘( o (TFnM)x (by Proposition 1.2.4.6)

=f

so that f/, = f, which proves that Oy ) is surjective. Finally, it is clear from the definition
of ©(y,p) that it is natural in Y, which concludes the proof. O

Given k € N,,_4, let UA’k be the natural transformation

UA’k Alg ( ) ( )Tk+1

often 51mply denoted 7*, which is the unit of the adjunction (— )Tk+1 4 (- ) . We are going to
show that n* 1s an isomorphism when T is truncable. First, Proposition 1.3. 2 7 implies that the
restriction of n® to free k-algebras is an isomorphism:

Proposition 1.3.2.8. IfT is truncable, then, given k € N,,, 12Ty is a natural isomorphism.
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Proof. Given X € Globy, we prove that (72%;)x is an isomorphism. By adjunction properties,

the functor
Alg

Alg, (FiX, ()

): Alg,,, — Set

is representable by the pair ((FX)1x41, (1*F)x), and, by Proposition 1.3.2.7, it is also repre-
sentable by the pair (Fr+1(X1k+1), idﬁ +)- The sequence of bijections

Alg (FXD k1> (FeXie1) = Alge (FaX, (FaX)rrr1)<k) = Algrq (Fresr (Xpierr), (FaeX)1r+1)

sends id(ﬁ Xngert to a morphism ¢: Frr1 (X1x41) — (FxX)1x+1, and one can verify that the latter
is an isomorphism by constructing its inverse in a dual manner. Moreover, by representability
and naturality, we have (n2%)x = ¢<k © idﬁx = ¢<, so that (p*Fy)x is an isomorphism. O

Since Alg, is the category of algebras of (T*, n¥, 1/¥), every object of Alg, can be expressed as a
quotient of free k-algebras, so that the isomorphism of Proposition 1.3.2.8 extends to Alg, as a
whole:

Proposition 1.3.2.9. IfT is truncable, then n* is an isomorphism.

Proof. Given B € Alg,, we prove that 75 is an isomorphism. Let €* be the counit of the ad-
J;nction Fr 4 Uy (concretely, 6I(<X,h) = hfor (X,h) € Alg,). By the naturality of n*, we have a
iagram

(FiUse)s . ek
Fie U Fre U A g FrUiB > B
| (FFlUi)s | |
(7™ Fie Un Fe Ui ) (P FeUi)s 3
{ (I O, Tt s 1 (2 ebs 4
(FrU Fr U B)ies1) <k e ((FxUkB)ris1) <k — (B1k+1)<k

(B E e Fe )
where the two squares on the left corresponding to FUye* and e*F7.U; respectively, and the
square on the right commute. Since the functor U} is monadic by definition, the top row is a
coequalizer (see [Bor94b, Lemma 4.3.3] for example). Moreover, since both (—)i‘}{g and (—)?klg
preserves colimits (both are left adjoints by Propositions 1.2.3.7 and 1.2.4.7), the bottom row is a
coequalizer too. By Proposition 1.3.2.8, the two vertical arrows on the left are isomorphisms, so
that I]jg is an isomorphism. O

We can conclude a conservation result for the underlying k-category of (k+1)-categories produced

by —[-]*:

Proposition 1.3.2.10. If T is truncable, then, given k € N,, and (C,X) € Algz, there is an isomor-
phism C ~ C[X] <k which is natural in (C, X).

Proof. Recall that C[X] was defined in the proof of Theorem 1.3.2.3 as the pushout

) Plex)
C[X] ¢ Frr1X
=5 i
(€x) (€x)
Crrs1 £ 7‘7(+1((X5k)Tk+1)

L
€(c.x) 0%
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By Proposition 1.2.4.7, the following diagram is also a pushout

(p}(zc’)o )Sk

ClX]<k £ (Frer1X) <k

R Tk

(Crre+1) <k < (Frer1 (X< rrs1)) <k

(‘-’(LC,X)OGXSk)gk

Since T is truncable, we have (—)ﬁ}cgﬂﬂ = ﬁ(—)f}{"b. Thus,

() ek = (2) 2 Fren ¥ G
= Fi ()1 G
=id

. -k .
P (28 G (since (i%)<x = ldGlobk)

R s L . . . .
§o that (e.( c,x))ﬁk = ldﬁ (Xep) Hence, (p ( C,X))Sk is an isomorphism, since the pusbout of an
isomorphism is an isomorphism. By Proposition 1.3.2.9, we conclude that the composite

(P](_c)x) )Sk

’7A
C——— (Cppa)sk ——— C[X]<k
is an isomorphism. O

Remark 1.3.2.11. If T is truncable, given k € N,,, by Proposition 1.3.1.5, we can suppose that we
chose —[—]k so that the isomorphism of Proposition 1.3.2.10 is the identity. When such a choice
is made, we have C[X] < = C for all k-cellular extension (C, X).

1.3.3 Polygraphs

In this section we recall the definition and several properties of polygraphs, that were first intro-
duced by Street [Str76] for strict 2-categories (under the name computads), and then rediscovered
and extended by Burroni [Bur93] to strict k-categories, and finally generalized by Batanin [Bat98a]
to all algebraic globular higher categories. Polygraphs are structures that are inductively cellular
extensions, and which allow to specify a system of generators for k-categories whose sources
and targets are composites of other generators. They will play an important role in the following
chapters.

1.3.3.1 — Another definition of cellular extensions. Let n € NU{w} and (T, 5, 1) be a finitary
monad on Glob,. Before defining polygraphs, we first provide an alternative definition of Alg,
which is simpler than the one based on pullbacks given in Paragraph 1.3.2.1.

Proposition 1.3.3.2. Given k € N,,_y, the category Alg; is isomorphic to the category
— whose objects are the pairs (C,S) where C € Alg, and S is a set, equipped with two functions
d, d;: S — Ck
such that o, od; =9 | ody fore € {—+},
— and whose morphisms between two such pairs (C,S) and (C’,S’) are the pairs (F, ) where
F:C—C'eAlg, and f:S— S €Set

and such that d of = Fy o df fore € {—, +}.
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Proof. Write A_lg;r for the category described in the statement. An isomorphism between Alg]
and A_lgz can be described as follows. Given (C, X) € Alg;, we map (C, X) to the pair (C, Xj41)
and, for € € {—,+} and x € Xj41, we put d(x) = 95 (x) (where 9; is the operation of the globular
structure on X), and we extend this mapping to morphisms of Alg] as expected. Since UC = X<
for (C,X) € Algy, the resulting functor is an isomorphism of categories. O

In the following, we will prefer the definition of cellular extensions given by the above proposition
instead of the one of Paragraph 1.3.2.1. In particular, we use it to show that Alg} is cocomplete:

Proposition 1.3.3.3. Alg] has all colimits.

Proof. Given a diagram d: I — Alg], where d(i) = (A’,S’) for i € I, we define the colimit of d
as follows. Let (F': A" — A);es be a colimit cocone of the diagram i — A’ in Alg, (which exists
since Alg, is cocomplete by Proposition 1.1.1.12) and let (f*: S' — S);s be a colimit cocone of
the diagram i — S in Set. We define functions d,d} : S — Ay by the universal property of S as
the functions such that, fore € {—,+} and i € I,

d;ofi:F,iod]eC

so that they make (A4, S) an object of Alg;. From such a definition, one can easily verify that the
cocone ((F', f1): (A',S") — (A, S))ier is a colimit cocone in Algj. m]

1.3.3.4 — Categories of polygraphs. Letn € NU{w} and (T, n, 1) be a finitary monad on Glob,,.
For k € N,,, we define the category Poly. of k-polygraphs by induction on k, together with a functor

(-)*F: Pol, — Alg,

simply denoted (—)* when there is no ambiguity on k, that maps a k-polygraph P to the free
k-category on P. First, we put

Pol, = Glob, and (-)*°=%,.

Now suppose that Pol and (—)*¥ are defined for some k € N,,_;. We define Poly,; as the pullback

Poly.; o B > Alg}
( z(ljcl,kﬂ Ak
w
and (—)***! as the composite
Skt \ + _[_]k \
P01k+1 7 Algk 7 Algk+]‘

Pol

<kk+1’ and

Like for globular sets and algebras, we write P for the image of P € Poli,; by (-)

we often simply write (—)z‘;cl for the latter functor.

Using the simpler definition of Alg; from Proposition 1.3.3.2, we can give a more concrete
description of Poly for k € N,,. A 0-polygraph P is the data of a set Py of 0-generators, and a
morphism P — P’ in Poly is the data of a function Fy: Py — P{. Given k € N,,_y, a (k+1)-poly-
graph is the data of a pair

P= (Psk, Pk+1)
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where Py is a k-polygraph and Py, is a set of (k+1)-generators, together with functions
di, di: Prsr = ((P<i) ™k
such that
o"’z_l od, = 8;_1 o d;

for € € {—, +}, where 9, , 9] ,: ((P<x)")k = ((P<x)")k-1 are the source and target operations
of the k-category (P<x)*. Moreover, a morphism P — P’ in Poly, is the data of a pair (F<k, Fy+1)

where F<p: P — P’<k is a morphism of Pol and F,4;: P,y — P}, is a function such that
dy oF,1 = (F<i)" o dy
for € € {—,+}, i.e, a (k+1)-generator g is mapped by F,4; to a generator g’ whose k-source and

k-target are exactly the images of the k-source and k-target of g by (F<x)*.
Remark 1.3.3.5. Note that the diagram

Polyy M Globy;

(—)gzll l(—)ﬁtb (1.8)

POlk W GlObk

is a pullback, since Alg] is defined as a pullback and the concatenation of two pullbacks is still a
pullback.

In order to better handle side conditions, we use the convention that
Alg® =Globy, &)= idgjep,,  and --1°=%
so that (=)*° = —[-]° 0 &;. We then have:
Proposition 1.3.3.6. For k € Ny, the following hold:
(i) Poly is cocomplete,
(ii) the functors (=)** and &y preserve colimits,

(iii) when k > 0, the functor (—)Ezl_l’k lifts isomorphisms and has both a left and a right adjoint.

Proof. We show this property by induction on k. The category Poly = Glob, is certainly cocom-
plete and, since %, is a left adjoint, the functor (-)*° = %, preserves colimits and so does the
functor &y = idg,,,. So suppose that k > 0. By induction hypothesis and Proposition 1.3.3.3,
both Poly_; and Alg; are cocomplete. Moreover, by Proposition 1.3.2.2, the functor A_; pre-
serves colimits, lifts isomorphisms and has both a left and a right adjoint. So, by Proposition 1.3.1.2,
we deduce that Poly is cocomplete, the functor E; preserves colimits, and the functor (—)E‘]’cl_l’k
lift isomorphisms and has both a left and a right adjoint. Finally, since —[—]*~" is a left adjoint,
the functor (—)*F*1 = (=)* o & preserves colimits. O

Given i,k € N such thati < k < n+ 1, we write
(—)f: Pol; — Set

or simply (—); when there is no ambiguity on k, for the functor which maps a k-polygraph P to
its set of i-generators P;. We can refine Proposition 1.3.3.6(i) and say that colimits are computed
dimensionwise:
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Proposition 1.3.3.7. Given i,k € N, such thati < k, the functor (—)i.C preserves colimits.

Proof. We show this property by induction on k — i. When k = i, we have that (—)g< = F o &
where F is the functor
F: Alg] — Set

which maps (C, X) € Alg] to the set of (k+1)-generators X. By Proposition 1.3.3.6 and the proof
of Proposition 1.3.3.3, both & and F preserve colimits, so that (—)iC preserves colimits. Otherwise,

if k > i, then note that (—)i.< = (—)i.‘_1 o (- E‘,’cl_l where, by Proposition 1.3.3.6 and induction

hypothesis, both (—)2‘;{1_1 and (—)i.‘_1 preserve colimits, so that (—)Z.‘ preserves colimits, which
concludes the induction. O

In the case where T is truncable, given k, € N with k < [, the underlying k-category of the free
I-category on an [-polygraph is only determined by the underlying k-polygraph, as stated by the
following proposition:

Proposition 1.3.3.8. If T is truncable, then, given k € N such that k < n and a (k+1)-polygraph,
there exists an isomorphism (P*) < =~ (P<x)".

Proof. By definition of (—)**, we have

so that the wanted isomorphism comes from Proposition 1.3.2.10. O

Remark 1.3.3.9. When T is truncable, under the assumption of Remark 1.3.2.11, the isomorphism
given by Proposition 1.3.3.8 is the identity. This enables to simplify some notations: givenk, ! € N,
with k < I and an [-polygraph P, we write directly P”_ for both (P*)< and (P<)", and P} for
both (P*)r and ((P <k)" k- )

Remark 1.3.3.10. When T is truncable, given k € N,, a k-polygraph P can be alternatively de-
scribed as a diagram in Set of the form

Po - Py - P;
dO dl

lo =4 |« =5 |
ay a7

P0 S Ex Pl S Ex

where, for i € Ni_y, e; is the embedding of the i-generators in the i-cells induced by the unit of
the adjunction —[-]" 4 V;_; at ((P<;_1)*, P;), such that

9y odi,y =9; odiy and Jf odiyy =9f odi,

for i € Nj_;. The above description of polygraphs can already be found in the original paper of
Burroni [Bur93] for polygraphs of strict categories.

1.3.3.11 — w-polygraphs. Let (T, 1, ;) be a finitary monad on Glob,,. We define the category
of w-polygraphs Pol,, as the limit in CAT

((= 221,&): Pol,, — Polj)ren

on the diagram

QL) S O o5 O,

Poly <——— Pol, < e d Pol, «+—=5— Polj,; ¢—=1 ...
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Concretely, an w-polygraph P is the data of a sequence (PX)cy, where P¥ is a k-polygraph, such

that (P**1).; = P for k € N. We verify that the truncation functors (—)2‘]’3@ have left and right

Pol

adjoint, just like the functors (-)_7,, :

P;oposition 1.3.3.12. Fork € N, the functor (—)1;‘;(1’60: Pol,, — Poly has both a left and a right
adjoint.

Proof. Let k € N. Define (—)?{?}1 .1 Polx — Pol,, to be the unique functor such that

(=)Flifk <1,

Lk
(D% o = Yidpy, k=1
(-)Felifk > 1.

We have that (—)?gl’k is a left adjoint for (—)Z‘I’C{w. Indeed, a morphism Pq,r — Q is the data

of a sequence of morphisms F': (Prok)<t = Qg for I € N with [ > k such that (F*Y, = FL.
But, for I € N with [ > k, we have (P, 1)< = P11k and, by the universal property of Py, Flis
completely determined by F ls W =F k. So there is a natural correspondence between Pol,, (P1u.x Q)
and Polg (P, Q<x). Thus, (—)?:)l’k is a left adjoint for (_)z(l)cl,w'

Dually, let (—)TIFZ)1 i | Polx — Pol,, be the functor such that

(O ik <l

(_)};(l),lw(_)ﬁ)gl,k = iClPolk ifk =1,
()Pl ik > 1.

Pol
flw,k

Moreover, in the truncable case, we can easily define the free w-category on an w-polygraph, just
like for finite-dimensional polygraphs:

Pol

<kw’ o

By a similar proof as above, we have that (—);°, is a right adjoint for (-)

Proposition 1.3.3.13. IfT is truncable, there is a functor (=)*“: Pol,, — Alg, which is uniquely
defined by

(158, 0 (=) = (=) o (-l
fork e N.

Proof. By Remark 1.3.2.11 and Remark 1.3.3.9, we have a commutative diagram

L (R (ke (% (kn
Pol, < = Pol; ¢ = R Poly <—— Poljyy ¢<—— ---
| | I I
(=)= (=) (=)k (=)wket
1 1 1 0
Alg, < O Alg, < O e g S Alg, ((_)—Alg Alg, ., (—(_ rrai
<0 <1 <k-1 <k <k+1

which, by the definition of Pol,, and Proposition 1.2.3.12, induces a functor (—)™* which satisfies
the wanted properties. O

Remark 1.3.3.14. We can still define a functor (-)*“: Pol,, — Alg, in the case where T is not
truncable. However, this functor is not expected to be compatible with the functors (—)ﬁ}(g as

in Proposition 1.3.3.13. Indeed, in this case, the functor —[—]* does not preserve the underlying
k-category C of a k-cellular extension (C, S) € Alg;.
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We moreover derive the cocompleteness of Pol,, from the cocompleteness of the categories Pol:

Proposition 1.3.3.15. The category Pol,, is cocomplete.

Pol

0 d admits a colimit
<K,

Proof. Given a diagram d: I — Pol,,, for k € N, the diagrams (—)
(F*: d(i) < — P)er

By Proposition 1.3.3.6(iii), we have that P ~ (P*!)_; for k > 0. Moreover, since (—)E?{l lifts
isomorphisms, we can suppose that

PK = (PF1)_. and Fki = (PRI,
for k > 0 and i € I. Then, by the definition of Pol,,, this induces a cone
(F': d(i) = Pier
in Pol,, and we can easily verify that it is a limit cone in Pol,,,. O

1.3.3.16 — Presentability. Let n € N U {w} and (T, n, 1) be a finitary monad on Glob,,. We
conclude this section by showing that associated categories of polygraphs of various dimensions
are locally finitely presentable. Given k € NU{n}, a k-polygraph P is finite when the set L;ew, P; is
finite. Note that the full subcategory of Pol; whose objects are the finite k-polygraph is essentially
small, i.e, there is a set S C (Polg)y such that every finite k-polygraph P is isomorphic to an
element of S. We prove that Poly is locally finitely presentable by showing that every k-poly-
graph is a directed colimit of finite k-polygraphs, and that those finite k-polygraphs are precisely
the finitely presentable objects of Poly. We start with the case k € N,,.

Proposition 1.3.3.17. Given k € Ny, every k-polygraph is a directed colimit of finite k-polygraphs.

Proof. We prove this property by induction on k. If k = 0 the property holds, since every set is
the directed colimit of its finite subsets. So suppose that k > 0. Let (P, S) be a k-polygraph and, by
induction hypothesis, let P(-): I — Poli_; be a diagram on Pol,_; together with colimit cocone

(F': P' — Picr.

We write J for the small category whose objects are the tuples (i,U,g~,g") wherei € [, U is a
finite subset of S, and g™, g* are functions of type U — (P")Z_1 such that

Ue——S

gsl ldi—l
P e P

(Fhe, &

commutes for € € {—,+}, and whose morphisms (i1, Ui, 9;,97) — (i2, Uz 9g;,,9;) are the mor-
phisms h: i; — iy € I such that U; C U, and

U —— U,

ﬁl lgfi

(PII)Z—I W (Plz)z_l

commutes for € € {—, +}.
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We now prove that J is directed. There is a canonical functor V: I — J which maps i € I
to (i,0, L, L) € J. Thus, J is not empty since I is directed. Now, given
t1 = (i, U, g1,97) and  t, = (i, Uz, 95, 93)

in J, we show that there are morphisms hy: t; — t and h;: t, — t in J for some t € J. Since I
is directed, there exist i € I and morphisms hy: iy — i and hy: i, — i in I, so we can suppose
that i; = i, = i. We then have

(F1)*(g5(x0) = di_ (x) = (F)"(g5(x))

for all x € U; N U,. Note that, since T is finitary, Ui_; preserves directed colimits. Thus, by
Proposition 1.3.3.6(ii), Uy_; o (—=)**~! preserves directed colimits, so that, since U; and U; are
finite, there is i’ € I and a morphism h’: i — i’ € I such that

(P")(g5(x)) = (P")" (g5(x)).
Letg~,g": U1 UU; — (Pi,);;_1 be the functions such that

. gi(x) ifx¢U,
g (x) =9, .
g5(x) ifxel,

for € € {—,+} and x € U; U U,. We then have a tuple ¢t = (i’,U; U Uz, g7, ¢") € J, and h’ induces
morphisms of J between t; and t, and between ¢; and t. Thus, J is directed.

Now, we consider the functor
Q™ J - Pol,

which maps t = (i,U, g™, ¢") € J to the k-polygraph Q' = (P!, S?) defined by S = U and such
that d;_,,d;_,: S* — (P)* are the functions g~ and g* respectively. There is then a cocone

((F', 1)1 (PL,SY) = (P,S))i=(iu.g-g%) e (1.9)

where 1! : S* — S is the inclusion function U < S for t = (i,U, g, g") € J.
We now prove that (1.9) is a colimit cocone. Given x € S, since Uy_;(—)"*"! preserves
directed colimits, there are i_,i, € I, u_ € (P"*)Z_1 and u, € (P”);;_1 such that

(F)*(ue) = di_,(x) foree {-+}.
Since I is directed, we can suppose that i_ = i, = i for some i € I. Moreover, we have
(F)* (3 _,(u)) =3 ,ody (x) =3 ,0dl_ (x) = (F)"(30_,(us))

for § € {—, +}, so that we can suppose that we chose i big enough such that 8,‘3_2(u_) = 8,‘3_2(u+).
Hence, there is t = (i, {x},g7,¢g") € J with g7, g* defined by g°(x) = d;_,(x) for € € {—,+}, so
that x = 1(x). Moreover, if x = 1" (x) = 1®2(x) for some t;,t, € J, then, since J is directed, there
exists t’ € J and morphisms h;: t; — t’ and hy: t; — t’ in ] so that both x € $" and x € S% are
mapped to x € S*. Thus, by Proposition 1.1.1.3 and Proposition 1.3.3.7, we have

(colim Q") =~ S.
te]
Now, write W: J — I for the functor which maps (i, U, g, g*) € J toi. Inparticular, foreveryi € I,
we have i = W(i, 0, L, 1) so that W is a cofinal functor by Proposition 1.2.3.11. Then, since
Pol - _ p(-
(_)S(I)c—lQ( ) = pOw

and (—)E‘,’Cl_1 preserves colimits, we have (colim;e; Q*)<x—; =~ P. Finally, since (—)i‘;cl_1 and (—)x

are jointly conservative, we have colim;c; Q' ~ (P, S). m]
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We now characterize the presentable objects of finite-dimensional polygraphs:

Proposition 1.3.3.18. Givenk € N, and P € Poly, P is finitely presentable if and only if it is finite.

Proof. Suppose first that P is finitely presentable. By Proposition 1.3.3.17, there is a colimit cocone
(F': P' — Pier

on some directed diagram P(~): I — Pol; where P! is finite for i € I. Since P is finitely presentable,
there is a factorization of idp : P — P through some P, so that we have F' o F = id,, for some i € I
and F: P — P’ Then, for every j € Ni, we have (F'); o F; = idpj in Set. Since (P'); finite, we
deduce that P; is finite for j € N.

We show converse implication by induction on k. If k = 0, the property holds since Poly, = Set
(see Example 1.1.1.5). So suppose that k > 0. Let

(G': Q' = Q)ier

be a colimit cocone in Poli on a directed diagram

d: 1 — POlk
and F: P — Q be a morphism in Poli. By Proposition 1.3.3.6(iii.), (—)2‘;3_1’,( preserves colimits.
Thus, by induction hypothesis, there is j; € I and F: P<j_; — Qj<lk—1 € Polj_; such that
Gélk—l o F = FSk—l'

By Proposition 1.3.3.7 and since Py is finite, there exists j, € I and a function f: Py — Qlf € Set
such that

Gljc.2 Of = Fk.

Since [ is directed, we can suppose j; = j» = j for some j € I. Moreover, since T is finitary, Uy_,
preserves directed colimits. Thus, by Proposition 1.3.3.6(ii), Uy_; o (—)**~! preserves directed
colimits, so that we have a colimit cocone

((Gigk—l);—l‘ (Qigk_l)z_l — (Qek-1)p_yier

on (=) g_1Uk_1(-)*1Q 7). Note that, for € € {—, +}, the diagram

oL Q)

dl Lo

(P<k-1)i_, T QL iy

J

.
sk—l)k—l since

commutes when postcomposed with (G

(Gék—1)Z—1 ody_jof =di_, oGi of
= dp_; oFk
= (F<k-1)p_, 0 dy;

_ j * ok €
- (ng—l)k—l °© Fk—l °© dk—1 :
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Thus, by the properties of directed colimits and since Py is finite, up to choosing a bigger j € I,
we can suppose that the above diagram commutes for € € {—, +}. So, (F, f) is a morphism of Pol;
of type P — Q/ satisfying

F=G’o(Ff)

and this factorization can be shown essentially unique using the fact that the factorizations

Feey=GL,_ oF and Fe=Glof
are essentially unique. Hence, P is finitely presentable. O

Theorem 1.3.3.19. For every k € N,,, Poly is locally finitely presentable.

Proof. The category Pol; has all colimits by Proposition 1.3.3.6(i) and, by Proposition 1.3.3.17,
every k-polygraph is a directed colimit of finite k-polygraphs (that are finitely presentable by
Proposition 1.3.3.18), and the subcategory of finite k-polygraphs is essentially small. Thus, Pol;
is finitely presentable. O

Until the end of the paragraph, we suppose that n = w. We now verify that Pol,, is locally finitely
presentable by showing properties similar to the ones of finite-dimensional polygraphs.

Proposition 1.3.3.20. Every w-polygraph is a directed colimit of finite w-polygraphs.

Proof. Let P be an w-polygraph. Using the proof of Proposition 1.3.3.17, we can define, by induc-
tion on k € N, small directed categories I* and diagrams P®(): [¥ — Pol; where P*! is finite
for i € I*, with colimit cocones

(F5: P — Pt e

In the following, given k € N, a category C and x € Cy, we denote the constant functor I k¢
of value x by AX . For k € N, the proof of Proposition 1.3.3.17 moreover gives functors

vE. [k S "' and wk. M S [F

such that Wkvk = idy;. (in particular, WF is cofinal by Proposition 1.2.3.11) and such that

PR o vk = ()Rl 4 0 PR, (110)
PR o WK = ()18, 0 PO 1
Frwk = (—)fel P (1.12)

where F¥ = (FF?), _p« is seen as a natural transformation P5(7) = A’l§<k. Let
(VE: ¥ = Dien (1.13)
be a colimit on the diagram

0 1 2 3
0o _V 1 _V 2 _V 3 _V
I > I S T S ] S ...

We prove that I is directed. First, I is not empty since every I* is not empty. Now, given xy, x; € I,
since the colimit (1.13) is directed, there is k € N, x|, x; € I* such that V* (x{) = x; for i € {1,2}.
Thus, since I* is directed, there exists x” € I¥ and morphisms h;: x; — x’ for i € {1,2}. Thus, we
have morphisms Vk(h;): x; — VK(x’) for i € {1,2}. Finally, given x,y € [y and f}, f: x = y € I,
since (1.13) is a colimit cocone, there exist k; € N, objects x/, y; and morphisms f: x; — y; of I ki
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such that Vi (f/) = fi for i € {1,2}. Since (1.13) is directed, we can suppose that k; = k, x{ = x;
and y; = y,. Thus, since ¥ is directed, we have fi = f;,sothat f; = f,. Hence, I is directed.

For k € N, we define a functor WX: I — I¥ using the colimit (1.13) as the unique functor such
that
WkOVl:WkO"'OWl_l

for | € N with [ > k. In particular, we have WX o V¥ = idy, so that W* is cofinal by Proposi-
tion 1.2.3.11).

In the following, given k € Nand ! € {k + 1, 0}, we write e®! for the counit of the adjunction

Pol Pol
(ke + ey

given by Proposition 1.3.3.6(iii) and Proposition 1.3.3.12. Then, given k € N, the cocone F¥ induces
another cocone

(Fk,i: (Pk’i)Tw N P)ielk

on the diagram (—)?f)lk o P) | where

F* = (M) o ((-)F9 F¥).
By (1.10), we have

(Wil o PR 0 VE = ()] o PO

so that, by the colimit (1.13), there exists a unique functor P(): I — Pol,, such that, for k € N,
P o vk = (_)$;{k o Pk,

In particular, since P*! is finite for k € N and i € I¥, we have that P! is a finite w-polygraph
for i € I. Given a category C and x € C,, we write A, for the constant functor I — Pol,, of

value x. For k € N, we compute that
Fk+1Vk — (€k+1’wAI[§+1Vk) ° ((_)%(),l,k+1Fk+1Vk)
— (6k+1,wAI’§) o ((—)?:)l’k_HFk-HVk) ° ((_)¥Z{k+1ek’k+l(_)11‘);;-1}.1’]( o Pk’(_))

(by (1.10) and since 9] (F¥*1) = PF*1(-) and ek’k“(—)ﬁ,‘il,k = id(_)&ﬂ k)
+1,

= (AR (N} 7 (8, A & (L PV

(by naturality)
— (ek,wAI;)) ° ((_)Pol FkaVk)

Tw,k
(since €*1 o ((‘)ﬁﬂkﬂek’k“(‘)Eilﬂ,w) = €h)

= (M%) o ()1, F)
= F*,

Thus, by the colimit (1.13), there exists a unique cocone F: P(-) = Ap such that, for k € N,

FVk = F*.
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We verify that it is a colimit cocone. For k, [ € N with k < I, we have

( )Pol FVI_( )Pol Fl

<k,w <k
= ()%, np) o ()%, (R F)
= (- )E(I)cllFl (since (— )};?lw b = id(—)P?l )
_ phwk .t (by (1.12))
= FFWky!

so that, by the colimit (1.13), we have (—)E‘;Clw}_’ = FKWK for every k € N. Since F¥ is a colimit

cocone and W¥ is cofinal,
(_)Pol F ( )POI P( ) :APsk

<k.w

is a colimit cocone by Proposition 1.2.3.10. Since Pol,, is cocomplete by Proposition 1.3.3.15,
and (— )P"1 preserves colimits by Proposition 1.3.3.12 for every k € N, and the functors (- )P"l

are jointly conservative for | € N, the latters jointly reflects colimits. Thus, F: P(-) = Apisa
colimit cocone. Hence, P is a directed colimit of finite w-polygraphs. O

Proposition 1.3.3.21. Given P € Pol,, P is finitely presentable if and only if it is finite.

Proof. The proof of the first implication is similar to the one of Proposition 1.3.3.18. So suppose
that P is finite. Let
(F': Q" = Q)ier

be a directed colimit on a diagram Q) : I — Pol,,. Since P is finite, P = PTw for some k € N and
k-polygraph P. Then, since there is an adjunction (— )PO1 4 (—)2‘;{1@ by Proposition 1.3.3.12, we
have an isomorphism

Pol,, (P, Q) = Poli (P, Q<)

)POl is a left adjoint by Proposition 1.3.3.12,

Since (—
(Figk: Q;k — Qck)ier

is a directed colimit on (- o Q). By Proposition 1.3.3.18, since P is finite, we have an

isomorphism

Pol
)Sk,w

Pol;. (P, Q<x) ~ CQhIm Pol.(P, Ql<k)
i€ B

Pol

o VE have

and, by the properties of the adjunction (- )PO1 4 (-
colimPol (P, Q") = colimPol, (P, Q").
iel = iel

Hence, P is finitely presentable. O
We can conclude that:
Theorem 1.3.3.22. The category Pol,, is locally finitely presentable.

Proof. It has all colimits by Proposition 1.3.3.15. Moreover, every w-polygraph can be written
as a directed colimit of finite w-polygraphs by Proposition 1.3.3.20, that are finitely presentable
by Proposition 1.3.3.21. Finally, it is clear that the full subcategory of finite w-polygraphs is
essentially small. Hence, Pol,, is locally finitely presentable. O
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1.4 Strict categories and precategories

In this section, we introduce the definitions for the two principal notions of higher categories
that we will encounter in the following chapters: strict categories and precategories. Starting from
their equational definitions, we show that they fit in Batanin’s framework of “higher categories
as globular algebras” developed in the previous sections. More precisely, we prove that both
theories are associated with truncable monads on globular sets using the criterions proved in
the previous sections (Theorem 1.2.3.20 and Theorem 1.2.4.11). This allows us to derive a notion
of polygraph for both. Finally, we recall from Makkai [Mak05] the relation between the two
structures and show how strict categories can be described as precategories which satisfy some
exchange condition (Section 1.4.3).

1.4.1 Strict categories

Strict categories, as their name suggests, are a classical example of a theory for higher categories
that lies on the strict side of the strict/weak spectrum of higher categories. As such, they do not
represent faithfully the homotopical information of topological spaces (see [Sim98] or [Ber99]).
Nevertheless, they admit a relatively simpler axiomatization than weak higher categories, and
can be encountered in several situations of interest. Below, we recall their equational definition,
show that they are globular algebras associated with a truncable monad, and derive the associated
notion of polygraph for them.

1.4.1.1 — Equational definition. Given n € N U {w}, a strict n-category (C, 9, d%,1id, %) (often
simply denoted C) is an n-globular set (C, 97, %) together with, for k € N with k < n, identity
operations

idk+1: Ck — Ck+1

often writen id when there is no ambiguity on k, and, for i,k € N, with i < k, composition
operations
*jkt Ck X Ck — Ck

often denoted *; when there is no ambiguity on k, which satisfy the axioms (5-i) to (S-vi) below.
Given k,l € N, such that k < [ and u € Cy, we extend the notations for identity operations and
write id’ (u) for

id (v) =id' o - - - 0 id**'(u)

and, for the sake of conciseness, we often write idi for idl(u), or even id, when [ = k + 1. The
axioms are the following:

(S-1) for k € N,,_; and u € Cy,
ap (id*y = af (idk™) = u,

(S-ii) for i,k € N, with i < k, (u,0) € Cx X; Cr and € € {—, +},

o (w)#; 9 (v) ifi<k-1,
O (ux;0) = 9, (w) ifi=k—-1and e = —,
9;_,(0) ifi=k—1ande=+,

(S-iii) for i,k € N, such thati < k, and u € Cg,

id¥ (07 (1)) *; u = u = u *; id* (3 (),
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(S-iv) for i,k € N, such that i < k, and i-composable u, v, w € Cy,
(u#;0) %;w=usx*; (v*w),
(S-v) for i,k € N,,_{ such that i < k, and (u,v) € Cr X; Cy,

id** (u %; 0) = id5*T % id5

(S-vi) for i, j,k € N, such that i < j < k, and u,u’,0,0” € Ci such that u,v are i-composable,
and u, u” are j-composable, and v, v are j-composable,

(u*; 0) *; (u' *;0") = (u *j u’) % (v *j v’).

Note that the composition that appear in Axioms (S-iii), (S-iv), (S-v) and (S-vi) are well-defined
as a consequence of Axioms (S-i) and (S-ii) and the equations satisfied by the source and target
operations of a globular set. The Axiom (S-vi) is frequently called the exchange law of strict
categories.

Example 1.4.1.2. Given a 2-category C and x,y, z € Cy, fi, f2, 3,91, 92,95 € C1 and u, u’,0,0" € C;
in the following configuration

/\/

we have (u g v) 1 (U’ %9 0") = (u *1 u") %9 (v *; v’) by Axiom (S-vi).

Our definition of strict categories involves sets, but we could have written a similar definition
using classes to define large strict categories. For such alternative definition, we have the following
classical example:

Example 1.4.1.3. There is a large strict 2-category Cat whose 0-cells are the small categories,
whose 1-cells are the functors between the 1-categories, and whose 2-cells are the natural trans-
formations between functors, and where the operations *g; is the composition of functors, and
the operations *¢, and #;, are respectively the horizontal and vertical compositions of natural
transformations. Note that the exchange law Axiom (S-vi) in this setting corresponds to the usual
exchange law for natural transformations.

Given two strict n-categories C and D, a morphism F between C and D is the data of an n-globular

morphism F: C — D which moreover satisfies that

- F(idk) = 1d§ff('1) for every k € N,,_; and u € Cy,

- F(u*;v) = F(u) *; F(v) for every i,k € N, with i < k and i-composable u,v € Cy.

We often call such morphisms n-functors. We write Cat, for the category of strict n-categories.

There is a functor

U, : Cat, — Glob,

which maps a strict n-category to its underlying n-globular set. The above definition of strict
n-categories directly translates into an essentially algebraic theory, so that the functor U, is
induced by a morphism between the essentially algebraic theory of n-globular sets (c.f. Re-
mark 1.2.2.2) and the one of strict n-categories. Thus, we get:
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Proposition 1.4.1.4. For every n € N U {w}, the category Cat, is locally finitely presentable,
complete and cocomplete. Moreover, the functor U, is a right adjoint which preserves directed
colimits.

Proof. The category Cat, is locally finitely presentable by Theorem 1.1.2.2 and in particular
cocomplete. It is moreover complete by Proposition 1.1.1.10. The required properties on U, are a
consequence of Theorem 1.1.2.7. O

1.4.1.5 — Monadicity. We prove here that the functors U, are monadic. For this purpose,
we use Beck’s monadicity theorem, that we first recall quickly. Given a category C and mor-
phisms f,g: X — Yand h: Y — Z in C, we say that h is a split coequalizer of f and g when there
exists: Z - Yandt: Y — X asin

suchthatho f=hog,hos=id,, fot=idy,and s o h =t o g. From this data, it can be shown
that h is a coequalizer of f and g. Beck’s monadicity theorem is then:

Theorem 1.4.1.6. Given a functor R: C — D, the functor R is monadic if and only if the following
conditions are satisfied:

(i) R is a right adjoint,
(ii) R reflects isomorphisms,

(iii) for every pair of morphisms f,g: X — Y in C, if R(f), R(g) have a split coequalizer, then f, g
have a coequalizer which is preserved by R.

Proof. See [Bor94b, Theorem 4.4.4] or the original work of Beck [Bec67]. |
We can then prove the following:
Proposition 1.4.1.7. Givenn € N U {w}, the functor U, is monadic.

Proof. By Proposition 1.4.1.4, U, is a right adjoint. Moreover, given a morphism
F:C — D € Cat,,
if Fi.: C — Dy is a bijection for k € N, then there is a morphism
F': D — C € Cat,

defined by (F~'); = (Fx)~! for k € N, so that U, reflects isomorphisms. Now, let F,G: X — Y
be two morphisms of Cat, such that there exist Z € Glob,,, and morphisms

H-UY—>Z S:Z—->UY and T:U,Y — UX

of Glob,,, as in
S

T
Uu,x u,y — 7

Un (G
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that witness that ‘_L_(n (F), Uy,(G) is a split coequalizer. We prove that F, G has a coequalizer which
is preserved by U,,. For this purpose, we shall equip Z with a structure of a strict n-category.
For i,k € N, with i < k and (u,v) € Zy X; Zy, we put

U*; 0= H(S(u) *j S(U))
and, given k € N,,_; and u € Ci, we put
s 1k : 1k
id. ! = H(1d5?lll))

We verify that the axioms of strict n-categories are verified. Let k € N1, u € Zy and € € {—, +}.
We have
o (idy™) = o (H(idg(y,))
€: 1k
= H(ak(1d5{;)))
=H(S(u) =u
so that Axiom (S-i) is satisfied. Now, let i, k € N,, such that i < k, (u,0) € Zy X; Zr and € € {—, +}.
We have
Op_y (ux;0) = H(9_,(S(u) *; S(v)))
H(ap_(S(w)) =i 9;_(S(0))) ifi<k-1,
=1H(9__,(S(w))) ifi=k—1ande = -,
H(az_l(S(v))) ifi=k—1ande =+,

so that, by reducing the last expressions, we see that Axiom (S-ii) is satisfied. Now, let i, k € N,
such that i < k, and u € Z;. We have

id(8; () *i u = H(S(H(idg - ,))) *: S(u))
= H(S(H(idki_ (Stw)) *i SHS(u))
= H(GT(id{;i, sq) *i GTS(w))
= HG(T(idki_ (stwy) ¥ TS@))
= HF(T(id’;i_(S(u))) x; TS(u))
= H(FT(id’;i, Say) *i FTS(w))
= H(id’;i_ s *i SW)
=H(S(u)) =u
and, similarly, u *; idk(a;f(u)) = u, so that Axiom (S-iii) holds. Now, let i, k € N,, such that i < k,
and i-composable u, v, w € Cy. We have
(u;0) *; w=H(S(H(S(u) % S(0))) *; S(w))
= H(SH(S(u) #; $(v)) *; SHS(w))
= H(GT(S(u) *; S(v)) *; GTS(w))
= HG(T(S(u) *; S(v)) *; TS(w))
= HF(T(S(u) *; S(0)) *; TS(w))
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= H(FT(S(u) *; S(0)) *; FTS(w))
= H((S(u) #; S(v)) *; S(w))
= H(S(u) *; S(v) *; S(w))

and, similarly, u; (v*;w) = H(S(u) *; S(v) *; S(w)). So that Axiom (S-iv) is satisfied. Axioms (S-v)
and (S-vi) are proved similarly, so Z is equipped with a structure of a strict n-category.

We now verify that H is a strict n-category morphism. Given k € N,,_; and u € Y, we have

idl;[(u) = H(idgH(u)) = H(idﬁ)

and, given i, k € N, with i < k, and (u,0) € Y X; Yk, we have

H(u) #; H(v) = H(SH(u) *; SH(0))

= H(GT(u) *; GT (v))

= HG(T(u) % T(v))

= HF(T(u) *; T(0))

= H(FT(u) *; FT(0))

= H(u *; v)
so that H is a strict n-category morphism.
We now prove that H is the coequalizer of F and G in Cat,. Let K: Y — W be an n-functor such
that KF = KG. Then, since H is the coequalizer of U,,(F) and U, (G), there is a unique morphism

K': U, Z > U,W

of Glob,, such that K’H = K. We are only left to prove that K’ is an n-functor. First, note that we
have
K'=K'HS=KS and KSH = KGT =KFT =K.

Now, given k € N,,_; and u € Ci, we have

KS(id ) = KSH(id’;(;))
= K(id§{,))

_ s 1k+1
= 1dKS(u).

Moreover, given i, k € N, with i < k, and (u,v) € C X Ck, we have

KS(u x; v) = KSH(S(u) *; S(v))
= K(S(u) *; S(v))
= KS(u) *; KS(v),

so that K’ is an n-functor. Hence, H is the coequalizer in Cat, of F and G. We can conclude
with Theorem 1.4.1.6. o

1.4.1.8 — Truncation and inclusion functors. Let k,] € N U {w} such that k < [. There is a
truncation functor
(—)ng,: Cat; — Caty,

which maps a strict [-category C to its evident underlying strict k-category, denoted C<, and
called the k-truncation of C.
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Conversely, there is an inclusion functor
(- )%a,f Cat, — Cat;

which maps a strict k-category C to the strict [-category Cyy, called the [-inclusion of C, and defined
by

(Cr)<k =C and  (Cpp)m = Ck

for m € N; with k < m, and such that

for m € Ny with k < m and u € (Cyp)m+1, 9;, (1) = 95, (u) = u,

- form € N;_; with k < mand u € (Cp))p, id)/" = u,

fori,m e Ny withi < k < mand (4,0) € (Cr1)m Xi (Ct1)m, U *im 0 = U %k 0,

fori,m e Ny withk <i <mand (u,0) € (Cy))m Xi (Cri)m, U *im v =u=0.

There is an adjunction (—)%alz 4 (—)% < k ; whose unit is the identity and whose counit i*! is such

that, given a strict I- category C, the [-functor i lc (C<k)11 — C is defined by (1 )<k = 1dC< and,
for m € N; with m > k, i lc maps u € ((C<i))m = Ci to idy;.

1.4.1.9 — Globular algebras. By Proposition 1.4.1.4, each functor U, admits a left adjoint %,
for n € N U {w}. In particular, the adjunction %, 4+ U, defines a monad (T, 5, 1), which is
finitary by Proposition 1.4.1.4, and it induces categories of algebras Alg, for n € NU {w} as
explained in Section 1.2.3. By Proposition 1.4.1.7, the comparison functor H,: Cat, — Alg,
is an equivalence of categories, that moreover satisfies that U, H,, = U,,. Using the criterion
introduced in Paragraph 1.2.3.13, we prove that the other categories Cat,, are, up to equivalence,
the categories of algebras Alg,:

Theorem 1.4.1.10. For every n € N, there exists an equivalence
Hp: Cat, — Alg,

making the following diagram commute

Cat, —< Alg,

( )Cat\L \L( )Alg

Catn Tn> Algn
and such that U,H, = U,. Moreover, we have a commutative diagram

Hpy
Catpy; —— Alg,,,

(- )Catl \L(_)glg

Cat, —— Alg,
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Proof. For the first part, note that the unit of the adjunction (- )Cat 4 (-)S2 is the identity, so
that (- )C"‘t is fully faithful and Theorem 1.2.3.20 applies. For the second part, we compute that

Hn(—)git,nﬂ = Hn(—)git,nﬂ - gzil,w(_)%fnﬂ
= Ha (9%, (05
= (=)0 Ho (D)5
= (_)Szg,nﬂ( )<n+1 wHo (_)TC::n+l
= (—)i‘ilgnﬂ Hpa (- (S:;ll:—l,w(_)Tczan
= () Zppsi Hn
which concludes the proof. O

Finally, we prove the truncability of the monad of strict w-categories:
Theorem 1.4.1.11. The monad (T, n, j1) on Glob,, derived from F,, 4 U,, is weakly truncable.

Proof. By Theorem 1.2.4.11 and Theorem 1.4.1.10, it is enough to show that, for every k € N,
the functors (— )Cat have right adjoints such that j*/,, (- )Calt is an isomorphism, where j* is

the counit of (— )GlOb 4 (= )Gl"b So let k € N. Given a strict k-category C, we define a strict

<k,w
w-category C’ whose underWIylng globular set is the image the underlying k-globular set of C
by( )Glob,
fw,k

C=C and C/={(u0)e€ C]z | u,v are parallel} for I > k,
and we equip C’ with a structure of a strict w-category that extends the one on C by putting
id = (w,u) forue Gy, 1dl(::10) (u,0) forl € Nwith! > k and (u,0) € C},
and moreover, for i,] € N with max(i, k) < [ and i-composable (u,v), (u’,v") € C,

(u*ipu,v*0") ifi<k,

, *l /’ ’ -
(a4,0) %1 (', 07) {(u,v’) ifi > k.

One can show that the axioms of strict w-categories are verified by C’. Now, let D be a strict

w-category and F: D, — C be a k-functor. By the properties of the adjunction (—)S}C"E) = (—)1%02,

there is a unique w-globular morphism F’: D — C’ such that F, = F, which is defined by

F'(u) = (F(9; (w)), F(3{(w)))

for every I € N with k < [l and u € D;. We verify that F’ is an w-functor by checking the
compatibility with the id and ;] operations. Given | € N with [ > k and u € D, we have

F'(id") = (F(9 (w)), F(d} (w))) = id} -
Moreover, given i,! € N with max(i, k) < [ and i-composable u,v € D;, we have

F'(u+0) = (F(3; (w) *i F(3; (v)), (3} (w) *; F(3}(v))) ifi<k
’ (F(3; (), F(3;(0))) ifi>k

= F'(u) *; F'(v).
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Thus, F’ is an w-functor. Hence, the natural bijective correspondence

(—)S . Glob,, (D, C") — Globg(D<, C)

<kw"

restricts to a bijective correspondence

(-)S - Cat,(D,C") — Caty(D<t.C)

<k,w

Cat Cat

so that the operation C +— C’ extends to a functor (—) which is right adjoint to (-)

lw,k <kw’
Moreover, by the definition of C’ above, the natural morphism jk(LIw(—)T(T:ztk is an isomorphism.

Hence, Theorem 1.2.4.11 applies and (T, 5, i) is a weakly truncable monad. O

Remark 1.4.1.12. We highlight that the criterions given by Theorem 1.2.3.20 and Theorem 1.2.4.11
enabled us to prove that the categories Cat,, are globular algebras derived from a truncable monad
on Glob,, without giving an explicit description of this monad, which could have been a tedious
exercise [Pen99].

1.4.1.13 — Free constructions. Using Theorem 1.4.1.10 and Theorem 1.4.1.11, we can instantiate
the definitions and properties developed in Section 1.3 to define free constructions on strict n-cate-
gories. In particular, for every n € N, there is a notion of n-cellular extension, with associated
category Cat}, defined like Alg’. Moreover, there is a canonical forgetful functor Cat,,; — Cat},
which has a left adjoint

—[-]": Cat}, — Cat,4,

which can be chosen such that C[X]<, = C for (C,X) € Cat}. As was shown in [Mét08], the
(n+1)-cells of a free extension admit a syntactical description consisting of “well-typed” terms
considered up to the axioms of strict categories (c.f- Paragraph 1.4.1.1). We shall give a more
precise definition of “well-typed” in Section 2.4 when we introduce the exact formulation of the
word problem for strict categories. Up to this definition, the result of Métayer is the following:

Proposition 1.4.1.14 ([Mét08]). Given (C, X) € Cat}, the set C[ X1 is the quotient by the axioms
of (n+1)-categories of the “well-typed” subset of terms defined inductively as follows:

- given g € X, there is a term gen(g),
— givenu € C,, there is a term ﬂﬁ“ (u),
— giveni € N, and two terms ty, t5, there is a term t; *; t,.

Remark 1.4.1.15. In the above property, Egﬂ and *; are syntactical symbols which represent the
operations id”*! and *; of a strict category.

Using the functors —[—]¥, we can define, for every n € N U {w}, a notion of n-polygraph with
associated category Pol,,, and a functor

(=)*": Pol,, — Cat,

which maps an n-polygraph P to the free strict n-category P* induced by the generators contained
in P. Note that, when n > 0, as a consequence of the compatibility of —[—]""! with truncation, the
underlying strict (n—1)-category (P*)<,—1 of P* is exactly (P<,—1)*. Proposition 1.4.1.14 extends
to a syntactical description of the cells of free categories on polygraphs:

Proposition 1.4.1.16. Given an n-polygraph P andk € Ny, the set P, of k-cells of P* is the quotient
by the axioms of k-categories of the “well-typed” subset of k-terms where
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— givenk € N, and g € Py, there is a k-term gen(g),
- givenk € N,,_; and a k-term t, there is a (k+1)-term H’;“(u),
— given i,k € N, withi < k and two k-terms t,, t,, there is a k-term t; *; t;.

Remark 1.4.1.17. In particular, given an n-polygraph P, every cell of P* can be written as a finite
expression involving identity and composition operations on generators of P.

Example 1.4.1.18. Given the 1-polygraph P with Py = {x} and P; = {f: x — x}, the strict
1-category P* is the monoid of natural numbers (N, 0, +).

Example 1.4.1.19. We define a 3-polygraph P that aims at encoding the structure of a pseudomonoid
in a 2-monoidal category as follows. We put

P():{X} Plz{i:x—>x} PZ:{,u2:>i,ry(_)=>i}

where, given n € N, we write 71 for the composite 1 # - - - %o 1 of n copies of 1, and we define P;
as the set with the following three elements

L: (nxoidd) s p = id?

R: (id% IRV id%

Ar (pxoid) xp = (iddxop) xp.
It is convenient to represent the 2-cells of P* using string diagrams. In this representation, the
2-generators 77 and y are represented by @ and 7 respectively, and the 2-cells of the form id? are
represented by sequences of n wires| || |for n € N. Moreover, given u,v € P}, when u, v are
0-composable (resp. 1-composable), a representation of the 2-cell u %, v (resp. u *; v) is obtained
by concatenating horizontally (resp. vertically) representations of u and v. For example, using
this representation, the 3-generators L, R and A, can be pictured by

L: y =4 |
R: %Q > |
A: > g‘

Note that, by Axiom (S-vi), a 2-cell can admit several representations as string diagrams. For
example, the 2-cell

powo id2 g = (povg 1d2) #q (id2 o p1) = (id2 g p1) 1 (1 %0 id2)

can be represented by the three string diagrams

Vit amd Y[ [G e QY

1.4.2 Precategories

We now introduce precategories. They can be described, in a sense that will be made precise
in Section 1.4.3, as “strict categories without exchange law” and generalize in higher dimensions
the 2-dimensional theory of sesquicategories defined by Street in [Str96]. The absence of ex-
change makes precategories more amenable to computational treatment than strict categories, as
witnessed by their use as the underlying structure of the Globular proof assistant [BV17; BKV16].
Following this observation, in the coming chapters, we will use precategories as a better syntactic
representation of strict categories introduced Chapter 2, and as the underlying structure of an
extension of rewriting theory to Gray categories in Chapter 4. Below, like for strict categories,
we introduce their equational definition, show that they are the globular algebras of a truncable
monad on globular sets, and derive the associated notion of polygraph for them.
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1.4.2.1 — Equational definition. Given n € N U {w}, an n-precategory C is an n-globular set
together with, for k € N,,_;, identity operations

id**: Cp — Cra

for which we use the same notation conventions than the identity operations on strict categories,
and, for k, [ € N}, composition operations

1 Ck Xmin(k,))-1 C1 = Crax(k,0)

which satisfy the axioms below. Given i, k,I € N, with i = min(k, I), since the dimensions of the
cells determine the functions to be used, we often write o; for e ;. This way, we still display the
most important information which is the dimension i of composition. The axioms of n-precate-
gories are the following:

(P-i) for k € N,,_; and u € Cy,
o (idk*1) = u = 9F (idk+),

(P-ii) for i,k,I € N, such that i = min(k,l) — 1, (u,0) € Cr X; Cj, and € € {—, +},
ue; °(v) ifk <,
o~ (u) ifk=1land e = —,

ot (v) ifk=1land e = +,
(u)sv ifk>1,

O (ue0) =

(P-iii) for i, k,I € N,, with i = min(k,[) — 1, given (u,0) € Cr_1 X; Cy,

. v itk <1,
id, ;0 =
id ifk > 1,

Ue; U

and, given (u,0) € Cx X; C_1,

) u ifl <k,
ue;id, =
id ifl >k,

Ue; 0

(P-iv) for i,k,I,m € N, with i = min(k,[) =1 = min(,m) — 1, and u € Cx,v € C;and w € C,,
such that u, v, w are i-composable,

(uejv) oy w=1ue (vew),

(P-v) fori, j, k1,1’ € N, such that
i =min(k,max([,I")) -1, j=min(,I’)-1 and i< j,
given u € Cy and (v,0”) € C; X; Cp such that u, v are i-composable,
ue; (v °j U') = (ue0) ) (us U')
and, given (u,u’) € C; X; Cy and v € Cy such that u, v are i-composable,

(u ) u')sjv=(ue0) °j (u” o 0).
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Remark 1.4.2.2. Provided that the Axioms (P-i) to (P-iv) are satisfied, Axiom (P-v) can be shown
equivalent to the more symmetrical axiom

(P-v)’ for every i, j,k € N, satisfying i < j < k, and cells uj, uy € Ciyy, 01,02 € Cjyq and w € Ci
such that u;, w, u, are i-composable and v, w, v, are j-composable, we have

uy o (01 i Wej 2) o Uy = (U1 o 01 o Up) ) (ug o Wej up) ®j (uq o 0y o Ug).
Example 1.4.2.3. Given a 2-precategory C with two 2-cells ¢ and ¢ as in
f g
N T Y
x ¢y Ly =
N A N A
f g
there are two ways to compose ¢ and  together, given by

(pe0g)er (ffeo) and (feot)) e (Pog’)

that can be represented using string diagrams by

f g f g
and
f/ g/ f/ g/
and these two composites are not expected to be equal in C. Moreover, by our definition of
precategories, there is no such thing as a valid cell ¢ o) i/, and the string diagram

L
)
I 9

makes no sense in this setting.

Given two n-precategories C and D, a morphism of n-precategories between C and D (also called
n-prefunctor), is a morphism of n-globular sets F: C — D such that

- F(id™) = idf} for k € N,y and u € Cy,

— F(ue;v) = F(u)e; F(v) for i, k,I € N, with i = min(k, ) — 1 and (u,v) € Cx X; C;.
We write PCat, for the category of n-precategories.

There is a functor )
U, : PCat,, — Glob,

which maps an n-precategory to its underlying n-globular set. Like for strict categories, the above
definition of n-precategories directly translates into an essentially algebraic theory, so that the
functor U, is induced by a morphism between the essentially algebraic theory of n-globular sets
(c.f: Remark 1.2.2.2) and the one of n-precategories. Thus:
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Proposition 1.4.2.4. The category PCat,, is locally finitely presentable, complete and cocomplete.
Moreover, the functor U, is a right adjoint which preserves directed colimits.

Proof. This is a consequence of Theorem 1.1.2.2, Proposition 1.1.1.10 and Theorem 1.1.2.7. O
Like for strict categories, the functor U, can be shown monadic using the monadicity theorem:
Proposition 1.4.2.5. For everyn € N U {w}, the functor U, is monadic.

Proof. By a direct adaptation of Proposition 1.4.2.5. O

1.4.2.6 — Truncation and inclusion functors. Let k,] € N U {w} such that k < I. There is a
k-truncation functor

(-)53: PCat; — PCaty

which maps an [-precategory C to its evident underlying k-precategory, denoted C<, called the
k-truncation of C.

Conversely, there is an [-inclusion functor
(—)?f,:‘t: Cat; — Cat;
which maps a k-precategory C to the [-precategory Cy;, called the I-inclusion of C, and defined by
(Cr)<k =C and  (Cpp)m = Ck

for m € N; with k < m and such that

for m € Ny with k < m and u € (Cyp)m+1, 9;, (1) = 95, (u) = u,

form € Nj_; with k < mand u € (Cp), id)™' = u,

- for i,m,m’ € N; with i = min(m, m’) — 1 < k and (u,0) € (Cy)m Xi (Ct1)m,
U oy U = U *min(mk),min(m’,k) U

- fori,m,m’ € N; with k < i =min(m,m’) — 1 and (u,0) € Cp, X; Cp,,

Uep 0=1U=0.

PCat PCat
e 1 g

that, given an [-precategory C, the [-functor i]é’l : (C<k) — Cis defined by (ilé’l)gk =1id_, and,

There is an adjunction (-) whose unit is the identity and whose counit i*! is such

for m € N; with m > k, i]é’l maps u € ((C<i)1)m = Ck to id;;'.

1.4.2.7 — Globular algebras. By Proposition 1.4.1.4, each functor U, admits a left adjoint 7,
for n € N U {w}. In particular, the adjunction Fw 4 U, defines a monad (T, 1, 1), which is
finitary by Proposition 1.4.1.4, and it induces categories of algebras Alg, for n € NU {w}. By
Proposition 1.4.1.7, the comparison functor H,, : PCat,, — Alg, is an equivalence of categories,
that moreover satisfies that U, H,, = U,,. By adapting the proof of Theorem 1.4.1.10, we obtain
an equivalent statement for precategories:
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Theorem 1.4.2.8. For every n € N, there exists an equivalence
H,: PCat, — Alg,

making the following diagram commute

PCat, —<5 Alg,

HE?f‘tl Lo

PCatn Tn> Algn
and such that U,H, = U,. Moreover, we have a commutative diagram

Hp.
PCat,,; —=% Alg, .,

(—)E?ftl l<—>£l§

PCatn T Algn

Finally, by a direct adaptation of the proof of Theorem 1.4.1.11, we obtain the truncability of the
monad for precategories:

Theorem 1.4.2.9. The monad (T, 1, i) derived from Foo AU, is weakly truncable.

1.4.2.10 — Free constructions. Like for strict categories, using Theorem 1.4.2.8 and Theo-
rem 1.4.2.9, we can instantiate the constructions and properties developed in Section 1.3 to define
free constructions on n-precategories. In particular, for every n € N, there is a notion of n-cellular
extension for strict n-precategories, with associated category PCat;, defined like Alg}. Moreover,
the canonical forgetful functor PCat,,; — PCat] has a left adjoint

—[-]": PCat], — PCat,,

which can be chosen such that C[X]<, = C for (C, X) € PCat}.
Using the functors —[~]*, we can define, for every n € N U {w}, a notion of n-polygraph for
precategories, called n-prepolygraph, with associated category PPol,,, and a functor

(=)*": PPol,, — PCat,

which maps an n-prepolygraph P to the free n-precategory P* induced by the generators contained
in P. Note that, when n > 0, as a consequence of the compatibility of —[—]""! with truncation,
the underlying (n—1)-precategory (P*)<,—1 of P* is exactly (P<,-1)*.

Remark 1.4.2.11. By adapting the results of Métayer [Mét08], one can obtain analogues of Propo-
sition 1.4.1.14 and Proposition 1.4.1.16 for precategories, so that the cells of the free precategories
on cellular extensions and prepolygraphs can be described by “well-typed” terms considered up to
the axioms of precategories given in Paragraph 1.4.2.1. In the case of prepolygraphs, the definition
of these terms can be found in Paragraph 4.1.2.7.

Example 1.4.2.12. By adapting the 3-polygraph of Example 1.4.1.19, we define a 3-prepolygraph P
that aims at encoding the structure of a pseudomonoid in a 2-monoidal precategory as follows.
We put

Py = {x} Pi={1:x —> x} Po={p:2=1n:0=1}
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where, given n € N, we write 71 for the composite 1 #¢ - - - %o 1 of n copies of 1, and we define P;
as the set with the following three elements

L: (g Dep = idi

R: (1'07])'1[1 > ) ldi

Ar (peoDorp = (Teop)erp.
Like for Example 1.4.1.19, we can represent the 2-cells of P* using string diagrams. In this repre-
sentation, the 2-generators n and y are represented by @ and ' respectively. Moreover, a 2-cell
of the form 71 ¢y u ¢ 7 for some m,n € N and u € P is represented by adding m wires on the
left and n wires on the right of a representation of u. Finally, given 1-composable u,0 € P}, a

representation of u e; v is obtained by concatenating vertically representations of u and v. For
example, using this representation, the 3-generators L, R and A can be pictured by

Since precategories do not satisfy any exchange law (unlike strict categories), it can be shown
that the 2-cells of P* admit a unique representation as string diagrams (see Theorem 4.1.2.4 and
Corollary 4.1.2.5 in Chapter 4). In particular, the two string diagrams

VIS s GIY

represent the different 2-cells
(freo5) o1 (degpr) and (5o p) e (oo 4)

of P*. Note moreover that the diagram

IS

makes no sense in the precategorical setting.

1.4.3 Categories as precategories

In this section, we justify the definition of precategories as “strict categories without the exchange
law” and recall from [Mak05] how strict categories can be expressed as precategories satisfying a
condition analogous to the exchange law. This equivalent definition will be used in particular in
the next chapterto give an effective description of the free extension on an n-cellular extension,
ultimately leading to an efficient algorithm which solves the word problem on polygraphs of strict
categories.

1.4.3.1 — Categories as precategories. For n € NU {w} and C € PCat,, we write (E) for the
following property on C:

(E) fori,k,1 € N, with1 <i=min(k,]) —1,u € Cy and v € Cy, if u,v are (i—1)-com-
posable, then

(u o1 97 (0)) o (97 (u) oi—10) = (95 (u) *i—1 v) o (u *i_1 I} (v)).
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Let PCat,SE) be the full subcategory of PCat,, of those n-precategories C that satisfy (E). The
condition (E) can be thought as an equivalent for precategories of the exchange law (S-vi) of
strict categories. We now introduce a functor from strict n-categories to n-precategories which
satisfy (E) with the following proposition:

Proposition 1.4.3.2. Givenn € N U {w}, there is a canonical functor ©": Cat, — PCat,SE).

Proof. Given C € Cat,, we define a structure of n-precategory on the underlying n-globular
set of C. We keep the identities given by the strict n-category structure and define the com-
position operations ¢_) on C based on the composition operations *_). Given i,k,I € N,
with i = min(k, ) — 1, u € Cy and v € C; such that u, v are i-composable, we put

ue v =id] *; id}’

where m = max(k,l). Axioms (P-ii), (P-i), (P-iii), (P-iv) are then direct consequences of the
axioms of strict n-categories. We only prove the first part of (P-v) since the other is symmet-
rical. Let i, j,k,[,I’ € N, with i = min(k,max([,!")) — 1, j = min(l,l') —1and i < j, u € Cg,
and v € C,, 0’ € Cp such that u,v are i-composable and v,v” are j-composable. Writing m
for max(l,1”), we have

ue (vejv') =1id;) *; id™ (id}) *; id})) (by definition of e(_))
=1d;} #; (idy *; id7))
= (id}} = id})') =; (idy’ =; id7)) (by Axiom (S-iii))
= (id}} *; idy’) *; (idy, *; id};) (by Axiom (S-vi))
= id™ (i #; 0) 5 1d™ (Gd) T % o) (by Axiom (S-v))
= (ue;v)ej(ue;v’) (by definition of e(_))

which concludes the proof of (P-v). Thus, C is an n-precategory. We now show that it satisfies the
condition (E) above. So let i, k,l € N,, with 1 < i = min(k,l) — 1, u € Cr and v € C; such that u,v
are (i—1)-composable. Writing m for max(k, [), we have

(w1 37 (0)) o (37 (u) o1 0) = id™ (u #;_4 id’;i_ (o) ¥i idm(idla; (w *i-10)  (by definition of «(_))
= (i} =i id3L ) %0 (17 ) #im1 D) (by Axiom (S-v))
= G s id3h ) o (A3 ) 4 0d5) (by Axiom (S-vi))
=id]) #;_q 1d))! (by Axiom (S-iii))
= (idgz,(u) s 1d]) g (1d)" idg(v)) (by Axiom (S-iii))
= (7 () -1 1) 2 (] o 175 ) (by Axiom (S-vi))
= id’”(idgi_(u) wi_1 0) #; id™(u #i_q id’;; ) (by Axiom (S-v))
= (9; (u) oi—10) & (uei_1 9 (v)) (by definition of s(_))

which concludes the proof of (E).

Thus, for n € N U {w}, we have defined a mapping ®" between the objects of Cat, and
the objects of PCatflE). We show that ©" extends to a functor ©": Cat,, — PCat,gE). Given an
n-functor F: C — C’ between two strict n-categories C and C’, it is sufficient to show that F is
compatible with the composition operations e(_). But this is a direct consequence of the definition
of ue;v asid] =;id} for i, k,I,m € N, with i = min(k,[) — 1 and m = max(k,!), and u € Ct,v € C
with u, v i-composable, since F is compatible with id” and ;. O
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1.4.3.3 — Precategories as categories. In this section, we prove the converse property, i.e., that
precategories satisfying (E) are canonically strict categories. For this purpose, we introduce a
functor from PCat,gE) to Cat, with the following property:

Proposition 1.4.3.4. Givenn € N U {w}, there is a canonical functor ©": PCat,(lE) — Cat,,.

Proof. Given C € PCat,(,E), we define a structure of strict n-category on the underlying n-globu-
lar set of C. We keep the identities given by the structure of n-precategory of C and define the
multiple composition operations *(_y based on the precategorical composition operations (_).
For i,k € N, with i < k, we define u *; v for i-composable u,v € Ci by induction on k — i. In the
cases where i > 0, we moreover prove that

(i %=1 97 (9)) *; (37 (@) %-1 8) = (9 (&) -1 0) *; (& %i-1 9} () (1.14)
for (i—1)-composable #,0 € Cy. If i = k — 1, we put u *; v = u »; v, and the equation (1.14) is an
instance of (E). Otherwise, if i < k — 1, we define u *; v inductively by

u* o= (us 9;1(0)) *i+1 (a;r+1(“) % 0).
By induction hypothesis, using (1.14), the above definition is equivalent to
u ;0= (95, (u) % 0) %1 (U 37, (0)).
Moreover, if i > 0, then given (i—1)-composable @, 0 € Ck, we have
(@ oi-1 9; (0)) i (37 (&) #i-1 D)
= [(@t oi-1 0; (D)) % 9141 (9] (1) oi—1 0)] *i1 [0y (@ 01 97 (D)) o (9] (k) -1 D)]
(by definition of *;)
= [(@ oi—1 95 () o (97 (@) oi=1 91 (D)] #i1 [(9f31 (@) oi=1 97 () o (I} (@) #i-1 9]
(by compatibility of 95, with e;_;)
= [(0; (@) ¢i-1 931 (8)) o (@ oi=1 97 ()] #i1 [(07 () 0i-1 ) o (9 () 0i-1 97 (9))]
(by the condition (E))
= [0541 (95 (1) oi=10) o (@ o1 07 (9))] *i41 [(] (&) 0i-1 D) o I}y (# oi-1 I} (9))]
(by compatibility of 95 | with e;_;)
= (0} (@) o1 0) *; (@ o-1 J; (9))
(by the equivalent definition of ;).
We now prove that the axioms of strict categories are satisfied (c.f. Paragraph 1.4.1.1). Axiom (S-i)
is a consequence of the precategory Axiom (P-i). Given i,k € N,_; with i < k, ¢ € {—,+} and
i-composable u,v € Cy, if i = k — 1, then we have
9 _,(u) ife=-,

Or_(u*;0)=0;_ (uev)=
e (u%10) = Gy (uei ) {a;_l(u) ife =+,

and otherwise, if i < k — 1, we have

Iy (w1 0) = 9 ((us; 91 (0)) #i1 (31 () # 0))

so that,if i + 1 = k — 1, when € = — we have

a,i_l(u #;0) = 0 _,(ue 0;,1(0)) = 9 _ (u) & I_,(v) = _,(u) *; 9;_,(v)
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and similarly 8, (u *; v) = 9;_ (u) *; 3;_, (v) when € = +, and finally, if i + 1 < k — 1, then

Fp_q (Ui 0) = 9_ (U 9331 (0)) *i1 9_, (74, (u) # 0))
= (9_; () * 941 (0)) *iv1 (31, (W) & F_, (0)))
=0p_,(u) *; 9;_,(0).

Thus, Axiom (S-ii) holds.

We now prove Axiom (S-iii), i.e., that for i, k € N, with i < k and u € Cy, we have idg._(u) U= U,
by induction on k — i (the dual property can be shown similarly). If i = k — 1, then the equality is
a consequence of the unitality of s;, by the precategory Axiom (P-iii). Otherwise, if i < k — 1, we
have

id’;i_(u) %u= (id’;i_(u) o 0, (1)) *is1 (id;j__l(u) o 1) (by definition of ;)
= id* (id‘;{_l(u) 0 97,1 (w) *i1 u (by Axiom (P-iii))
= id’;i,ﬂ () *iv1 U (by Axiom (P-iii))
=u (by induction hypothesis)

so that Axiom (S-iii) holds.

In order to show Axiom (S-iv), we first prove a distributivity property of ¢(_) over *(_), i.e., that
fori,j,k € N, with i < j < k, given j-composable u,v € Ci, and w € Cj;q such that u, w are
i-composable, then

(usjo)e; w= (ue;w)*;(vew). (1.15)
We prove this property by induction on k — j. If j = k — 1, then
(usjo)osw=(uejv)ew

= (ueiw)e; (ve;w) (by Axiom (P-v))

= (uew) *j (Ve w).
Otherwise, if j < k — 1, then

(u *j ) o W= [(u ®j (9;+1 (v)) *j41 (a;ﬂ (u) °j 0)] W
(by definition of *;)
= [(“ 9 (0)) * W] *j+1 [(a}rﬂ(u) °j V) W]
(by the induction hypothesis)
= [(usw)e; (9741 (v) o w) | #j41 [(8};1(14) i w) e (ve;w)]
(by distributivity of ¢; over e;)
= (uew)*j (0o w)
(by (1.15)).

We can now show that (u *;v) *; w = u*; (v*; w) for i-composable u, v, w € Cy, for some i,k € N,
with i < k, by induction on k —i. If i = k — 1, then (u *; 0) *; w = u *; (v *; w) by Axiom (P-iv).
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Otherwise, if i < k — 1, we have

(i 0) % w = [ 0 (0)) *i1 (3 () 51 0)] %1 w

(by definition of ;)
= {[(u * 01 (0)) *i41 (8;:_1 (u) o U)] .« 9, (W)}
bivt [(3f,1(u) o Oy (0)) o W]
(by definition of ;)

= [(u e 051 (0) % Gy (W) i1 (341 (1) o 0 % 9y (w))]
*ir1 (95 () o 941 (0) & W)
(by (1.15))
= (u e 9;,1(0) o 91 (W)
wiv1 [(011(u) o 00 Oy (W) #ig1 (9 (1) & 974 (0) & W) |
(by associativity of #;. from induction hypothesis)
= [uei (351(0) o 0y (w))]
#i11 {071 (u) o [(0 0 9y (W) #i1 (91 (v) & W) [}

(by (1.15))
= U [(U o 011 (W) *i41 (9141 (0) o W)]
(by definition of x;)
=u*; (0% w)
(by definition of *;)

which concludes the proof of Axiom (S-iv).

We now prove (S-v), i.e, that for i,k € N,_; with i < k, and i-composable u,v € Ci, we
have id**! «; id**! = id%*! by induction on k — i. If i = k — 1, then

idﬁﬂ *j idIZH = (idﬁﬂ o 0) *iy1 (Us idﬁﬂ) (by definition of ;)
= idfr oy idST) (by (P-iii))
= 1d§ti, (by (P-iii)).

Otherwise, if i < k — 1, then

id5 g idE = (1dR e 07, (0)) i (91 () o id5TY) (by definition of ;)
= id"*! (o 07, (0)) #3141 1d" (3, (1) o 0) (by (P-iii))
= id** ((u o 07,4 (0)) #1101 (31 (1) ; 0)) (by induction hypothesis)
= id&H (by definition of ;)

so that Axiom (S-v) holds.

Finally, we show Axiom (S-vi), i.e., that for i, j,k € N, with i < j < k, j-composable u,u” € Cy
and j-composable v, 9" € Ci such that u, v are i-composable, we have

(wxju’)*; (v%;0) = (u*0) % (u' % 0")
by induction on j —i. If i = j — 1, then we have

(wxju’) i (0% 0") = [(u ki1 1) o 95y (0)] #in [0Fy () & (0 %141 0")]
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(by definition of *;)
= (o 941 (0)) #ip1 (U o 931 (0)) *ix1 (341 (U) 0 0) #i41 (9, () & 07)
(by (1.15))
= (0 931 (0)) #is1 (91 (U)o 0) *i1 (4 0 3] 11 (V) *ix1 (37 (') & 0)
(by (1.14))
= (ux;0) % (u %)
(by definition of ;).

Otherwise, if i < j — 1, then we have

(usju’)* (v*;0") = [(u w;u’) o dpyyq (U)] *iy1 [3111(1/) o (0] U')]
(by definition of ;)
= [(uo; 9541 (0)) #; (u o 9y (0))] #in [(FFy (') 5 0) % (311 (u) i 0")]
(by (1.15)
= [(wei 971 (0)) #i1 (071 (W) 0 0) | 25 [(u' o1 074 (0) i (5 (u) o 07)]
(by the induction hypothesis)
= [(wei 971 (0)) *ia1 (074 () @1 0)| 55 [(0 01 0754 (07) i (1 (u) wi 07)]
(by j-composability of u, u” and v, v’ and the globular structure)
= (u=;0) % (u *0")

(by definition of ;)

which concludes the proof of Axiom (S-vi). Hence, C is equipped with a structure of strict n-cate-
gory.

Thus, for n € N U {w}, we have defined a mapping ®" between the objects of PCatflE) and
the objects of Cat,. We show that ®" extends to a functor ©": PCatﬁ,E) — Cat,,. Given an n-pre-
functor F: C — C’ between two n-precategories C and C’ which satisty (E), it is sufficient to
show that F is compatible with the *(_) operations. Given i,k € N, with i < k, and u, v € Ci such
that u, v are i-composable, we prove that F(u *; 0) = F(u) *; F(v) by inductionon k —i. If i = k-1,
we have

F(u*jv) = F(ue;v) = F(u) o F(v) = F(u) *; F(v).

Otherwise, if i < k — 1, we have

F(u*;0) = F((u % 931 (0)) *is1 (951, (u)  0))
= (F(u) o F(0;,1(0))) *ix1 (F(0},,(u))F(s0)) (by induction hypothesis)
= F(u) #; F(v)

which concludes the proof that F induces an n-functor. O

1.4.3.5 — Equivalence of the definitions. In this section, we conclude that, for n € NU {w},
n-categories can be equivalently described as n-precategories satisfying (E). More precisely, we
show ©" and ©" witness that Cat,, and PCatflE) isomorphic to each other. We first show that:

Proposition 1.4.3.6. Givenn € N U {w} and C € Cat,, we have ®"0"C = C.
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Proof. Let x_) be the composition operations of C, ¢(_) be the composition operations of ©"C,
and *2_) be the composition operations of ”0"C. Given i,k € N withi < k < n, and u,0 € Cx
such that u, v are i-composable, we prove that u *; v =ux*;0byinductiononk —i. Ifi =k -1,
we have

’
U*;0=U®V=1U%;0.

Otherwise, if i < k — 1, we have

u *: v = (use 9;,,(0) *;+1 (a;rﬂ(”) * 0))

= (u o 9;1(0)) *i11 (9], (u) # 0) (by induction hypothesis)
= (u#; 1d°(95, (0))) *i1 (1d(3, (W) *; 0)

= (w1 15 (30 (W) %1 (id (9 (0)) 141 0) (by Axiom (S-v)
= U *; 0.

’

Hence, *(_) = *(_).

We now prove the converse property:
Proposition 1.4.3.7. Givenn e NU{w} andC € PCat,SE), we have ©"0"C = C.

Proof. Let »(_) be the composition operations of C, *(_ be the composition operations of ©"C,

and ¢/_, be the composition operations of ©"0"C. We show that ¢(_) = -z_). Given i, k,l € N,
with i = min(k,[) — 1 and max(k,l) < n, and u € Cy,v € C; such that u, v are i-composable, we

show that ue; v = u ¢ v. We can suppose that k < [ (the case k > [ is symmetric). If k = [, then
U U=U%0V=U%D
Otherwise, if k < I, then

uslo=id, *; 0

= (id}, % 931 (0)) *is1 (9}, ()  0)
(id (u o 9541 (0))) *i1 (s 0) (by Axiom (P-iii))
Uev (by Axiom (S-iii)).

Hence, ¢(_) = -E_). O
By the two above properties, we can conclude that:

Theorem 1.4.3.8. Forn € NU {w}, ®": Cat, — PCat,(lE) is an isomorphism of categories, with
inverse given by ©".

Thus, for n € N U {w}, a strict n-category C is canonically an n-precategory satisfying (E) (and
vice versa). In the following, we will often use the precategorical compositions ¢_) of C without
invoking Theorem 1.4.3.8.
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1.5 Higher categories as enriched categories

The setting of “higher categories as globular algebras” shall be enough for most of the concerns
of the next chapters. Still, an interesting perspective on notions of higher categories that we will
encounter is given by enriched definitions. In dimension 1, the motivation for enriched definitions
is to represent the additional structure that the morphisms of some particular categories might
have. For example, in the category Vectg of vector spaces and linear functions on some field K,
the set of morphisms Vectg (A, B) between two vector spaces A and B has itself a structure of
vector space, i.e., Vectg (A, B) € Vectk. In this situation, we say that Vecty is enriched in Vectg.
Enrichment can be used seamlessly in the context of higher categories, allowing to define a theory
of (n+1)-categories as categories enriched in a particular notion of n-categories equipped with an
adequate tensor product. Below, we recall the definition of enrichment and how strict categories
fit in this setting. Moreover, after introducing the funny tensor product of precategories, we give
an enriched definition of the latter. For a more complete view of enriched categories, we refer the
reader to Kelly’s monograph [Kel82].

1.5.1 Enrichment

The notion of category enriched in some category V is derived from a monoidal category structure
on V, the latter we shall recall first.

1.5.1.1 — Monoidal categories. A monoidal category (V,I,®, A, p, a) is the data of a category V,
an object I € V, a bifunctor ®: V XV — V (often called tensor product) and natural isomor-
phisms

A=Ax:I®X = X)xey
p=(px: X®I = X)xev
a=(axyz: (X®Y)®Z > X®(Y®2Z))xyzev

such that, given objects W, X, Y, Z € V, the diagrams

ax,Ly

Xe)eY > X®(I®Y)

p)m %y (1.16)

X®Y

and

AWeX,Y,Z (W®X) ® (Y®Z) AW, X, Y®Z
(WeX)®eY)®Z We(Xe(Y®Z)

(1.17)
D(W,X,Y(@Z\‘ //l\/®lxx’y',z

W (X®Y)®Z ————>WR(X®Y)®2)

aw XQY,Z

are commutative.

Example 1.5.1.2. The tensor product ® on abelian groups equips the category Ab of abelian groups
and group morphisms with a structure of monoidal category.
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Given a category V, if V has all products, then it admits a canonical structure of monoidal
category (V, 1, X, A, p, @) called the cartesian monoidal structure, where 1 is the terminal object
of V, X is the product operation and A, p and « are the canonical isomorphisms

A=Ax: 1 XX - X)xey

p=(px: XX1—> X)xey

o= (ax’y’zi (X X Y) X/Z — XX (Y X Z))X,Y,ZE‘V

and a similar statement holds if V has all coproducts.
Example 1.5.1.3. The category Set admits the cartesian monoidal structure (Set, 1, X, @, A, p) de-

fined as above.

1.5.1.4 — Enriched categories. Given a monoidal category (V, I, ®, A, p, @), a category enriched
in V is the data of a set Cy and, for all x,y € C,, an object C(x,y) € V, together with, for
all x € Cy, a morphism

iy: I - C(x,x) eV

and, for all x, y, z € Cy, a morphism
Cxyz: C(x,y) ®C(y,z) > C(x,2) €V
such that, for all w, x, y, z € C, the diagrams

ix®C(x,y)

1®C(x,y) > C(x,x) ® C(x,y)
\ (1.18)
Acixy) Cxxy
C(x,y)
and
Clen)oi
Cxy)®I BDEY s C(x, ) ® Cly,y)
\ / (1.19)
PC(xy) x.yy
C(x,y)
and

C(w,y) ® C(y,2)

Cryx,y®C(1y,2)
y / Cw,y,z
(C(w, %) & C(x,4)) @ C(y, 2) I C(w, 2)

(1.20)
aC(w,x),C(x,y),C( y,z)\‘ /w,x,z

C(w,x) ® (C(x,y) ® C(y,z)) ————— C(w,x) @ C(x,2)

C(w,x)®cCx,y.z

are commutative. Given two categories C and D enriched in V, a morphism between C and D is
the data of a function
Fg: CO - DO

and, for every x, y € Cp, a morphism

Fry: C(x,y) = D(Fo(x), Fo(y)) € V
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such that the diagrams

F(x,y)®F(y,z
Clxy) ® C(y,2) ~22PWZ by ) @ D(y,2)

1
ix IRy (x) | !
and Cx,y,z CFy(x),Fy(y).Fy(2)
v ¥

C(x,x) W D(Fy(x), Fy(x)) C(x,z2) > D(x,2)

F(x,z)

commute for all x, y, z € Cy. We write V-Cat for the category of categories enriched in V. An
elementary example of an enriched definition is given by the category Cat of small categories,
which is equivalent to Set-Cat where Set is equipped with its cartesian monoidal structure. More
generally, it is well-known that the category Cat,; of strict (n+1)-categories admits an enriched
definition based on the cartesian monoidal structure on Cat,;:

Theorem 1.5.1.5. Given n € N, considering the cartesian monoidal structure on Cat,, there is
an equivalence of categories between Cat,.; and (Cat,)-Cat. Moreover, considering the cartesian
monoidal structure on Cat,,, there is an equivalence of categories between Cat,, and (Cat,,)-Cat.

Proof. We refer the reader to the existing literature, like [Lei04, Section 1.4]. O

An analogous result can be shown for precategories by considering a monoidal structure different
from the cartesian one. This is the object of the remainder of this section.

1.5.2 The funny tensor product

Here, we introduce the funny tensor product that we will use as part of a monoidal structure to
give an enriched definition of precategories. We give a rather direct and concise definition, and we
refer the reader to the work of Weber [Web09] for a more theoretical definition. Let n € NU {w}.
Given two n-precategories C and D, the funny tensor product of C and D is the pushout in PCat,

C(o)XiD

Co) XDy — C<o> XD

ic XD(O)J/ Ic,D
<

CxD(O) ....... 1CD ...... > CcCaD

where (—)(p) denotes the functor

(_)ﬁf’gt(—)gg’f; PCat,, — PCat,

and i = i®" is the counit of (- )PCat 4 (- )E%*;lt Since i is a natural transformation, the funny tensor
product can be extended to a blfunctor

(-) o (-): PCat,, x PCat,, — PCat, .

We show that it equips PCat,, with a structure of monoidal category. First, we prove the two
properties of commutation with colimits below. In the following, we write (PCat,, 1", X, 4, p, @)
for the cartesian monoidal structure on PCat,, (in particular, 1" is the terminal object of PCat,).

Lemma 1.5.2.1. Given n-precategories C and (D");¢;, the canonical morphism
]_[(c x DY) — C x (]_[ DY)
iel iel

of PCat,, is an isomorphism.
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Proof. Write F for this morphism. Note that a morphism between n-precategories is an isomor-
phism if and only if the underlying morphism of globular sets is an isomorphism. Thus, it is
sufficient to show that F induces bijections between the k-cells, i.e.,, that the images of F under
the functors (—)x: PCat,, — Set are bijections for k € N,,. Products and coproducts are com-
puted dimensionwise in PCat,, so that the functors (—)i preserve products and coproducts. Since
coproducts distribute over products in Set, Fy is an isomorphism for k € N,;, and so is F. O

Lemma 1.5.2.2. Given an n-precategory D, the functor (=) X D(g): PCat, — PCat, preserves
colimits and, dually, the functor D) x (-): PCat,, — PCat, preserves colimits.

Proof. Note that, by the definition of (—)ifgt, we have (10)Tn ~ 1". Since, by Proposition 1.2.3.7,

the functor (—)?f?gt preserves colimits, we have
Do) = U 1"
x€Dy

Thus, given a diagram C(™) : I — PCat,, by Lemma 1.5.2.1, we have

C(l;gmc X D(g) = U ccl;ng o~ cclylellm( U C' ~ cclylellm(C X D(g)) -

x€eDyg x€eDy

The dual statement is shown similarly. O

We can now define the rest of the monoidal structure for PCat,. Given an n-precategory C, there
are canonical morphisms

Mi1"oc—-c  and  pl:ico1"—cC

where Afc is defined by

n l?o)XiC .
1y X Cop ——— 1 xC

ijn ><C(())\L \Lrl",C

1”XC(Q)T1"DC" ‘

and pfc is defined similarly. Both are natural in C. Moreover, we have:
Lemma 1.5.2.3. Given C € PCat,, AfC and pr are isomorphisms.

Proof. By symmetry, it is sufficient to prove that /lfc is an isomorphism. Note that iy : 1?0) — 1"
is an isomorphism, so that, by the pushout definition of 1" O C, r;» ¢ is an isomorphism. Moreover,

since 1?0) ~ 1" we have that m,: 1’(’0) X C — C is an isomorphism. Thus, Afc =TIne 071'2_1 is an

isomorphism. O
Furthermore, we introduce the associativity isomorphism with the following lemma:
Lemma 1.5.2.4. Given n-precategories C, D, E, there is an isomorphism

tepg: (COD)OE— Co(DOE)

natural in C, D, E.
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Proof. The n-precategory (C O D) O E is defined by the pushout

(C(o) XD(()))XiE

(Co) X Do) X Eo) > (Co) X Do) X E
icap XE(O)\L EI’CDD,E

~

lcop,e
Since, by Lemma 1.5.2.2, (=) X E(q) preserves colimits, the following diagram is also a pushout

(C(o) XiD)XE(o)

(C(o) X D(o)) X E) > (Cio) X D) X Eqq)
(ic XD(O))XE(O)\L ;rc,D XE(O) .

<~
(C X D(O)) X E(O) ................................ > (C O D) X E(O)

IC,D XE(O)

So, by expanding the first pushout with the second, (C 0O D) O E can be expressed as the colimit

(ic xD(5)) XE o) (C X D(o)) X E(q) lcan.z o(le.p XE(q))

Cio)Xip)XE lcap.E © E
(Cio) X Do) X E(o) M) (C(oy X D) X E(g) M) (CoD)oE (1.21)

(Cm (C0) X D(0)) X E %

and C O (D O E) admits a similar diagram. Thus, the isomorphisms
axyz: (XXY)XZ — X x(YXZ) e PCat,

for X,Y,Z € PCat, induce a morphism afCDE: (CoD)oE — Co (D OE), which is, by the
symmetry of the construction, an isomorphism. It is easily checked to be natural in C,D,E. O

We deduce a monoidal structure for PCat,, based on the funny tensor product:
Proposition 1.5.2.5. (C, 0, 17, )Lf, pf, af) is a monoidal category.

Proof. Given A, B,C, D € PCat,, the commutation of the diagram

£
Xcinp

(C®1")®D > C® (1"® D)

f f
p% AD

C®D

can be shown using the colimit definition of (C 0 1") O D given by (1.21). Moreover, note that
the object ((A T B) 0 C) O D admits a definition as colimit on a diagram analogous to (1.21) with
four branches. Using this colimit, one can show that the diagram

(AoB)o(CoD)

£ £
X AoB,C,D @a,B,CoD

((AoB)oC)oD Ao (Bo(CaoD))

£ £
aipe D[\/‘ /ADaB’C’D

(Ao(Bo(C)oD —— > Ao((BoC)oD)

XA, BoC,D

commutes. Thus, (C, 0O, 17, )Lf, pf, af) is a monoidal category. ]
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1.5.3 Enriched definition of precategories

We now give an enriched definition of precategories using the funny tensor product in the form
of the following theorem:

Theorem 1.5.3.1. Considering the monoidal structure on PCat, given by the funny tensor pro-
duct, there is an equivalence of categories between PCat,; and (PCat,)-Cat. Moreover, considering
the analogous monoidal structure on PCat,,, there is an equivalence of categories between PCat,,
and (PCat,,)-Cat.

Proof. Given C € PCat,,;, we define an associated object D € (PCat,)-Cat as follows. We put
Dy=Cy and D(x,y) = Ci(xy)
where C1(y,y) is the n-precategory such that
(Ctxy))i = {u € Ciyy | 95 (u) = x and 9 (u) = y}

for i € N, and whose composition operation e ; is the operation ey on C for k,I € N;.
Given x € Dy, we define the identity morphism

ix: 1" = D(x,x)

as the morphism which maps the unique 0-cell * of 1" to id. € C;. Given x,y, z € Cy, we define
the composition morphism

Cx,yz: D(x,y) O D(y,z) — D(x,z) € PCat,

as the unique morphism such that I, . = ¢x,.z © Ip(x,4),D(y.2) is the composite

[(—)%09]geD(y.2)
Dxy) xDw2)o = || Dxy) ——— D(x.2)
geD(y,z)o

and ry,yz = Cx,y.z © ID(x,y),D(y.2) 1S the composite

[fo(=)1feD(xy)
D(x,y)0) X D(y, z) = U D(y,z) - D(x,z).

feD(x.y)
We verify that the composition morphism is left unital, i.e., given x,y € Dy, the diagram

ixOD(x,y)

1" O D(x, y) _— D(x’ x) 0 D(x, y)

f \ /
Ab(xy) ey

D(x.y)
commutes. We compute that

Cxxy © (ix AD(x,Y)) 0 linp(xy) = Cxixy © ID(xx).D(x.y) ©(ix X D(X, ) (0))
(by definition of O0)
= lx,x,y o (ix X D(x, y)(O))
= ip(x,y) O7T2 (by unitality of id, )

f
AD(x, y) © lln’D (xy)
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and
Cxx,y © (ix OD(X,Y)) © T17 D(x,y) = Cxx,y © ID(x.x),D(x,y) ©((ix)(0) X D(x, 1))
(by definition of O0)

= Txx,y © ((ix)(O) x D(x, y))
= 11y (by unitality of id,)

f
AD(x,y) ©I'im.D(x,y)
Thus, by the colimit definition of 1”0 D(x, y), the above triangle commutes. Similarly, the triangle

D(x,y)0iy

D(x,y) 01" ——— > D(x,y) 0 D(y,y)

£ /
PD(x,y) R

D(x,y)

commutes, so that the composition morphism is right unital. We now verify that it is associative,
ie., given w, x,y, z € Dy, that the diagram

D(w,y) 0 D(y,z) .

Crx,y0D(y,2)
XY / w,y,z
(D(w,x) 0 D(x,y)) 0 D(y, 2) I D(w, 2)

(1.22)
f
"‘D(w,x>,D<x,y>,D<y,z>\4 /. s

D(w,x) 0 (D(x,y) O0D(y,z)) ——— D(w,x) O D(x,2)

D(w,x)0cx,y.z

commutes. By a colimit definition analogous to (1.21), it is enough to show the commutation of
the diagram when precomposing with the morphisms 11, 15, 13 where

L= 1D(w,x)l:!D(x,y),D(y,z) O(ID(w,x),D(x,y) XD(y: Z)(O)),
I = 1D(w,x)\:!D(x,y),D(y,z) o(rD(w,x),D(x,y) XD(y, Z)(O)),
I3 = ID(wx)oD(x,y),D(y,z) -
Writing D!, D?, D? for D(w, x), D(x, y), D(y, z), we compute that
1 f
Cw,x,z © (D O Cx,y,z) © aDl,Dz,D3

1 f 3
=Cwxz0 (D O Cx,y,z) ©Qpip2ps © Ipiapz,ps o(Ip1 pe XD(O))

ol

1
=Cwx,z © (D a Cx,y,z) © 1Dl,D2|:|D3 OaDl,DfO),D?O)

= cumz © It pes) oD X (<) % () 0 @prpe po

= ()% (=) o (D' X (() % (=)o Aptp? D}
= (=) %0 (=) o (((-) % (=)) X D{y)) (by associativity of «)
= Cw,y.z © Ip(w,y),03 2 (((—) % (-)) X D?O))

= Cw,yz © Ip(wy),08 ©(Cwxy X D?O)) o (Ip1 p2 XD?O))

= Cwyz © (Cwxy O D%) 0 Ipigpe,ps o(Ipt p2 XDy )

=Cw,y,z © (cw,x,y a D3) oh
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so that the diagram (1.22) commutes when precomposed with ¢; and, similarly, it commutes when
precomposed with 1, and i3. Thus, (1.22) commutes. Hence, D is a category enriched in n-pre-
categories. The operation C +— D can easily be extended to morphisms of (n+1)-precategories,
giving a functor

F: PCat,,; — (PCat,)-Cat.

Conversely, given C € (PCat,)-Cat, we define an associated object D € PCat,.;. We put

Dy=Cy and Djyy = ]_I C(x,y);
x,y€Cy

fori € N,,. Given k € Ny, 15, (1) € Diyq and € € {—, +}, we put

x ifk=0ande = —,
a]i(lx,y(u)) =1y ifk=0and e =+,
ey(9p_ (w) ifk >0,

so that the operations 97, 9* equips D with a structure of (n+1)-globular set. Given x € Dy, we
put

ld}c = lx,x(ix(*))

and, given k € N,,_; and 1, , (1) € Di4q, we put

id{j:j(u) = 1y, (1d5H).

Given i,ky, ky; € N, with i = min(ky, ko) — 1, and u = 1, () € Dy, v = 1y (0) € D, that are
i-composable, we put

lx’y(ljl o 5) ifi>0
wei 0 =141y (Lyy (4idd ™)) ifi=0andk, =1
bey (Feyy (id2718))  ifi=0andk; =1

where [, . is the composite

C(x.y).C(y.2)

l cx, ,Z
C(x,y) X C(y, 2)(0) C(x,y) 0 C(y,2) — C(x,2)

and ry, ., is the composite

I'C(xy).C(y,2)

Cx,y,z
C(x,y)0) X C(y, 2) ——— C(x,y) O C(y,2) —— C(x, 2).

We now have to show that the axioms of (n+1)-precategories are satisfied. Note that, by the
definition of D, it is enough to prove the axioms for the id' and e operations. Given x € Dy
and € € {—, +}, we have

95 (idy) = 9 (1xx (ix(+))) = x

so that Axiom (P-i) holds. For k € N*

v givenu = 1y () € D and 0 = 1,,(9) € D; such that u,v
are 0-composable, if k = 1, then

ao_(u ©0) = a()_(lx,z(lx,y,z(i:l, 0))) =x,
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and, similarly, d (u ¢ v) = z. Otherwise, if k > 1, then, for € € {—, +},

% _ (oo v) = 3 (12l yz (1L, id5)))
= 12 (9, (L y 2 (@,id571)))
= ez (le,y2 (35, (#0),id572))
= L,y (9, (©)) 0 1y2(0)

=0;_,(u) 0.

Analogous equalities are satisfied for 0-composable u € D, and v € Dy, so that Axiom (P-ii) holds.
Given k € N} | and u = 1, (1) € Dy, we have

oo id} = by (b (155 )

= 1y y(Cryy © (C(X, ) O iy) 0 loge y)an (6, 1d571))

= lx,y(pf;(x,y) ole(x,y),1n (U, idk1y) (by the axioms of enriched categories)
= L,y (m1 (4, idf™)) (by definition of pf)
=u.

Moreover, given k € N}, and 0-composable u = 1, 4 (@) € D; and v = 1,,,(d) € Dy, we have

wo id5 = 1, (1 g2 (idE, 1d%))
= 1 (id" (ry, - (id5 71, 6)))

= idk+1 ([x,z(rx,y,z(idg_l’ 5)))

— idk+1

U 0*

Analogous equalities hold when composing with identities on the left, so that Axiom (P-iii) holds.
Given k € N}, and 0-composable u; = t,,x(ti1) € Di, uz = 1y y(iz) € Dy and uz = 1, (ii3) € Dy,
we have

(ug oo up) oo uz = lw,z(lw,y,z(lw,x,y(al; idgz_l): ldggl))
Writing C', C2?,C3 for C(w, x), C(x, y), C(y, z), we compute that

lw,y,z o (lw,x,y X C?O))
=Cw,yz© 1C(w,y),C3 O(cw,x,y X C?O)) © (1C1,C2 Xc?o))
= Cw,yz© (Cw,x,y o CS) © 1C1|:|C2,C3 0(1C1,C2 XC?()))
(by definition of O)
= Cwx,z © (Cl O Cx,y,z) ° afcl)cz’cﬁ oleigez,es o(ler 2 XC?()))

(by the axioms of enriched categories)

=Cwx,z © (Cl a Cx,y,z) O 1Cl,CZIZIC3 OaCHC?O),C?O)

(by definition of af)

1
= Cwx,z © 1Cl,C(x,z) o(C" % (Cx,y,z)(o)) o aCI,CfO),C?O)

= lw,x,z © (Cl X (lx,y,z)(o)) © acl’c(zo)’czo)'
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Thus,

(1 % Uz) % U3 = Ly 2 (Lyx,z (U1, (lx,y,z)(o) (idﬁz‘l, idﬁgl)))
= bz (horz (014G ) )
=Ure lx,z((lx,y,z)(o) (tip, 1i3))
=Up% lx,z(lx,y,z(flz, u3))
= uy % (uz % u3)
and similar equalities can be shown for (uy, us, u3) € (D1 X D X D1) LI (D1 Xo D1 Xo Dg), so that

Axiom (P-iv) holds. Finally, for i, ki, ko, k € N}, such that i = min(ky, k2) — 1, k = max(ky, k),
given u = 1, ,(i#) € D; and i-composable v; = 1, ,(91) € Dy, v2 = 1y,(d;) € Dg,, we have

ue (v1902) =ue ly,z(51 *i_102)

k=1 ~ -
lx,z(rx,y,z(ldu 1s U1 %1 02))

. ki— . 1ko—1 ~ -
= lx,z(rx,y,z(ldul ! ®i-1 lduz 1: U1 %1 Z}2))

k=1 ~ . qko—1 ~
lx,z(rx,y,z(ldul 1; 01) ®i-1 rx,y,z(lduZ 1, 02))

k=1 ~ . qko—1 ~
lx,z(rx,y,z(ldul 1, 01)) * lx,z(rx,y,z(ldu2 1, 02))

(w9 v1) # (ue0z)

and an analogous equality can be shown for ((u1, up),v) € ((Dx, X;Dg,) XoD1), so that Axiom (P-v)
holds. Hence, D is an (n+1)-precategory. The construction C — D extends naturally to enriched
functors, giving a functor G: (PCat,)-Cat — PCat,;.

Given C € PCat,,; and C’ = G o F(C), there is a morphism a¢: C — C’ which is the identity
between Cy and C; and, for k € N, maps u € Cryq to 1y, (u) where x = 9; (u) and y = J; (u), and
one can verify that it is an isomorphism which is natural in C.

Conversely, given C € (PCat,)-Cat and C’ = F o G(C), there is a morphism : C — C’ which
is the identity between Cy and C;, and, for x,y € Cy, maps u € C(x,y) to i, ,(u) € C'(x,y), and
one can verify that it is an isomorphism which is natural in C. Hence, F is an equivalence of
categories.

A similar proof gives an equivalence of categories between PCat,, and (PCat,)-Cat. O



CHAPTER 2

The word problem on strict categories

Introduction

Given a polygraph of strict categories P, any cell of P* can be represented by an expression
involving generators of P, and identity id and composition *; operations (c.f. Proposition 1.4.1.16).
Typically, several such expressions represent the same cells. For example, given a 1-polygraph
with four composable 1-generators a, b, ¢, d as in

va>w b)x c)y d)z
one can verify that the two words
(a*g (bxidl)) % (c*od) and axy (b*o (c*ob)) (2.1)

denote the same 1-cell in the free strict category associated to this polygraph, as a consequence of
the unitality and the associativity of the composition operation. More generally, the word problem
on a polygraph P consists in, given two words on P, deciding whether they evaluate to the same
cell of P*. In order to provide a better understanding and computational treatment of strict higher
categories, having an efficient procedure to solve this problem is important.

As suggested by (2.1), the word problem on strict 1-categories has a quite simple solution.
Starting from a word, one obtains a normal form by eliminating the identities and reparenthesizing
the word on the right, and this normal form is essentially a list of composable 1-generators of the
polygraph. One can then decide whether two words represent the same cell by computing and
comparing their normal forms. The word problem in higher dimensions is less simple, since there
is no known orientation of the axioms of strict categories that would allow to rewrite a word by
a finite sequence of moves to a unique normal form.

Still, in [Mako05], Makkai gave a solution to the above word problem. For this purpose, he used
the equivalent description (recalled in Section 1.4.3) of strict categories as precategories satisfying
an exchange condition to show that words on strict categories admit a canonical form. More
precisely, given an n-polygraph P of strict categories, every n-cell u € P* can be represented by a
word of the form

Uy ®n—1 " n—1 Uk (2.2)

87
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for some k € N*, where
u; = li,n *n—1 (li,n—l n-2-°"° (li,l *0 gi % ri,l) ®1 """ %2 ’”i,n—l) *n-17in

fori e N]";, with [; j,r;; € P; and g; € P,. Then, Makkai showed that a cell u as above admits
a finite number of canonical forms (2.2) and he introduced a terminating procedure to compute
them. This is enough to solve the word problem, since one can then decide whether two words
have equivalent canonical forms. However, since a cell can admit a lot of canonical forms (2.2),
the resulting algorithm is quite inefficient, which prevents using it to solve too sophisticated
instances of the word problem.

In his work on the word problem, Makkai introduced several important notions and properties
on polygraphs. Notably, for each polypgraph P, he defined a function, that we call Makkai’s
measure, which maps each cell u € P* to some element of the free abelian group ZP and which
intuitively counts how many times each generator of P is involved in u. Using this measure, he was
able to prove that his procedure for the word problem terminates. Although Makkai’s measure has
several good properties, Makkai remarked that it has the defect of sometimes “double-counting”
the generators in the cells. He then raised the question of the existence of another measure on
polygraphs of strict categories which would not display this bad behavior. The existence of such
a measure would be interesting since it could help better characterize the words that represent
a given cell. It could also help with the study of a special class of polygraphs introduced by
Makkai, that he called computopes, and later studied by Henry [Hen17] under the names plexes
and polyplexes, following a terminology introduced by Burroni [Burl2]. Intuitively, they are
polygraphs whose generators are “as separated as possible”. Such polygraphs seem to play an
important role in the study of polygraphs. In particular, they can be used to show whether some
subcategories of polygraphs are presheaf categories, as witnessed by the works of Makkai and
Henry.

Outline. This chapter is mainly concerned with giving an efficient and implementable solution
to the word problem on polygraphs of strict categories. It is organized as follows. First, we
recall the definition of Makkai’s measure and use it to prove several basic properties of free
strict categories on polygraphs (Section 2.1). Next, we introduce a description of the cells of free
categories which is better suited for solving the word problem than the canonical forms of Makkai
(Section 2.2), and, after introducing some computability formalism on higher categories, we show
that this description is amenable to computations (Section 2.3). We then deduce a procedure to
solve the word problem on finite polygraphs and show how it can be used to solve the word
problem on general polygraphs (Section 2.4), and we moreover provide an implementation of it
in OCaML (Section 2.4.4). Our procedure strongly resembles the one given by Makkai but with
a stronger emphasis put on efficiency, so that the resulting algorithm can be used to solve non-
trivial instances of the word problem. Finally, we answer the question raised by Makkai and show
that there is no such thing as a measure on polygraphs of strict categories which does not double
counts generators (Section 2.5).

2.1 Measures on polygraphs

Given n € N, considering the number of axioms of strict n-categories, it is actually not trivial
to decide simple properties of the free n-category generated on some polygraph P. For example,
given two different n-generators a and f of P, it is not immediate that they induce different cells
in the n-category P*. Indeed, it could be the case that a sequence of instances of the axioms of
w-categories leads to an identification of @ and . Another example is that it is not immediate
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that generators of P induce undecomposable cells in P*. Even though it is “well-known” that
these two properties hold in free n-categories, the precise argument can be hard to write down.
In order to solve quickly this kind of questions, Makkai [Mak05] introduced a function P* — ZP
that assesses the complexity of the cells of P*; more precisely, this function gives some account
on how many times the generators of P are used to define a specific cell of P*, so that we call this
function a “measure”. It admits a simple inductive definition (c.f. Proposition 2.1.2.9) but the proof
of its correctness given by Makkai is quite involved. Later, Henry [Hen18] introduced another
measure on polygraphs which has a more natural definition, and from which Makkai’s measure
can be derived. The latter still display better properties, notably positivity, which make it more
convenient to work with in general than Henry’s measure.

In this section, we recall the definition of Makkai’s measure, by deriving it from Henry’s
measure, and use it to show several elementary properties of free categories. For this purpose,
we follow [Hen18] and introduce the notions of n-globular groups and of n-groups, together with
the equivalence between the two (Section 2.1.1). Henry’s measure is then defined as the universal
morphism of the free n-globular group on a polygraph, and one derives Makkai’s measure by
a change of base (Section 2.1.2). Finally, following [Mak05], we use Makkai’s measure to prove
several elementary properties of free n-categories (Section 2.1.3) that will need in the following
sections.

2.1.1 n-globular groups and n-groups

Here, we define n-globular groups and n-groups and prove an equivalence between the two.
Moreover, we show that there is a free n-globular group on an n-category. These notions will
be used to define Henry’s measure as the universal morphism of the free n-group on the strict
n-category generated by a polygraph. All the content here can be found in [Hen18].

2.1.1.1 — Definitions. Let n € NU {w}. An n-globular group is the data of an abelian group G
together with group morphisms
9;,0;:G—>G

1>

for i € N,,_; satisfying, for k,/ € N,,_; and §, € € {—, +},

5 .
o5 |9 k<L
o itk >

and, when n = w, the following condition is moreover satisfied:

for every u € G, there exists i € N such that 9; (u) = u. (2.3)

Given n-globular groups G and G’, an n-globular groups morphism between G and G’ is a group
morphism f: G — G’ such that df o f = f 0 d¢ for i € N,,_; and € € {—, +}. We write gGrp,, for
the category of n-globular groups.

An n-group is an n-category object in the category of abelian groups Ab, i.e, it is the data of
a sequence of abelian groups (Ci)ken, together with

- group morphisms 9}, 9] : Ciy; — C; fori € N,_y,
- group morphisms id 1. Cik = Cpyq for k € N,_y,

- group morphisms #;: Cx X; Cx — Ci for i,k € N, with i <k,
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satisfying the axioms of strict n-categories (c.f. Paragraph 1.4.1.1). Given two n-groups (C)ken,,
and (D )ken,, an n-group morphism from (Cg )i to (Di)x is an n-functor F: (Ci)r — (Dg )i such
that Fj is a group morphism for k € N,. We write Grp,, for the category of n-groups. The
n-groups have the property that composition operations can be derived from the rest:

Proposition 2.1.1.2. Given an n-group (Ci)ken,,, i, j € N, withi < j and i-composable u,v € Cj,
we have u *; v = u+v —id’ (97 (u)).

Proof. Indeed, in the abelian group C; X; C;, we have

(1,0) = (u,id’ (3] () + (id (8] (v)), 0) — (id (8] (0)),id (8] (u)))
= (u,id’ (3] (w)) + (id’ (9 (v)),0) = (id’ (] (0)), id’ (9 (w)))

sothat u ;0 =u+0 —id),. m|

2.1.1.3 — Equivalence. Let n € N U {w}. Given an n-group (C)ken,, we define an n-globular
group G such that G = Cp, and df =id} o Jf for i € N,,_; and € € {—, +} by taking the convention
that, when n = w, the abelian group C,, is defined as a colimit cocone (id;c‘): Cr — Cy)ken on the
diagram

i} id} idi_, idk+! idis

CO >C1 > /Ck >Ck+1 > e

and that the function o} : C,, — C; for i € N and € € {—,+} are defined as the unique functions
such that 9 oid} = o} for j € N withi < j. Indeed, given k,! € Nj,_; and 6, € € {—,+}, if k <,
then

5205f:id208,‘301d706f
idy o 8,‘3 0d;
idy o 3,‘:

_ 30
_ak

and, if otherwise k > [, then

5;30516 idZo&,foid?o&le
idz o id;< o 816
=idj o o]
=&

so that G is an n-globular group. The construction (Cg)x — G extends to a functor
‘H: Grp,, — gGrp,,.

Conversely, given an n-globular group G, we define an n-group (Ci)ken, as follows. For k € Ny,
we define the abelian groups Cy as the subgroups of G such that

%
C G G 2.4
N (2.4)
is an equalizer, taking the convention that 9, = 1. When k < n — 2, for u € C, we have

T () = 3, 0 05 () = 0 () = w
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so that, by the universal property of the equalizer, there is a morphism idfrl : Cr = Ciy1, and
we write id),_;: C,—; — C, for the embedding of C,,—; in G = C,,. Moreover, for all € € {—,+}
and k € N,,_;, we define 8]";: Crk+1 — Ck as the unique factorization map in the diagram

+1

k
Cis1 —> G :; G
aff l la .
\/
Ck —— G :; G
Finally, for i, k € N, with i < k, we define a composition operation *; : Ci X; Cx — C by putting
Ui 0=U+0— d§+(u)

for (u,v) € Cx X; Ck, which makes *; a group morphism. We verify that:

Proposition 2.1.1.4. The operations idﬁ“, 9;, 9 fori € N,_q, and *; fori,k € N, withi <k,
equip (Cy)ken, With a structure of an n-group.

Proof. Fori € N, ; and € € {—,+}, we have 9f 0 9, = 9f o o' . from the fact that

i+1
95 0 0, = 95 = 9 o J],

i+1

so the operations 9;, d} for i € N,,_; equip (C;);en, With a structure of globular set in Ab. We
now show that the axioms of n-category are satisfied with the other operations.

Proof of Axiom (S-i): Let k € N,,_q, € € {—,+} and u € Cr. We have
a,i(idﬁ“) = i (u) (by definition of idfrl and af)
=u (by the equalizer definition of Cy).
Thus, Axiom (S-i) holds.
Proof of Axiom (S-ii): Let i,k € N, with i < k, (u,0) € C¢ X; Cx and € € {—, +}. Then,
O (uxiv) =0 _ (u+v— 8+(u))
=, () +0_,(v) - ali—l(id];;'(u))
so that, if i < k — 1, then
o (ux0) =3 (w)+3_ (o) - d{; 9 (by Axiom (S-i))
=0, (u) *; (9_,(0))
and otherwise if i = k — 1, then

O_ (W) +9_,(v)—9_ (W) =9 _,(u) ife=-,

O (u*;0v) = {8]:_1(14) +3(0) - k—l(u) =9 (v) ife=+

Thus, Axiom (S-ii) holds.
Proof of Axiom (S-iii): Let i,k € N,, with i < k and u € C¢. We have

1da () ¥i U= 1da w TU— id~ (by Axiom (S-i))

9; (u)

=u
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and, similarly, u #; id, ,, = u. Thus, Axiom (S-iii) holds.

Proof of Axiom (S-iv): Let i, k € N,, with i < k and i-composable u;, u, u3 € Cy. Then,

(ug *; ug) *; us = (uq *; Up) + Uz — idf(a;f(m *j Up))
= (uy *; Up) +us — id¥ (87 (uy)) (by Axiom (S-ii))
=y + Uy + us — id¥ (97 (1)) — id¥ (67 (uy)) (by Axiom (S-ii))

and, similarly,
uy #; (U *; uz) = Uy + uy + us — id¥(9F (wy)) — id¥ (97 (u2))

so that (u; *; uz) *; u3 = uy *; (uz *; uz). Thus, Axiom (S-iv) holds.

Proof of Axiom (S-v): Let i, j,k € N, with i < j < k and (uy,up) € C;j X; C;. Then,

1k gk _ i3k : 1k ik
id,,, = id,, =id,, +id,, — lda.*(id’?(ul))
i J

= iy +idf, - idf, | (by Axiom (S-i))
=u; +us — id%(ul) (since id? is the embedding C; C Cy)
=Up *i Uz

= idﬁl*iu2 (since id? is the embedding C; C Cy).

Thus, Axiom (S-v) holds.
Proof of Axiom (S-vi): Let i, j,k € N, with i < j < k, and uy, 01, up, 02 € Ci such that u;, v; are
j-composable for [ € {1, 2} and uy, u; are i-composable. We have
(u1 % v1) *; (U *j 02) = (ug % 01) + (ug *j V) — idi.‘(a;-*(ul)) (by Axiom (S-ii))
= uy + 01 —id5 (0] (w1)) + uz + 0, — id5 (9} (u2)) — id} (9} (w1))
= uy +uy — idF (87 (w)) + 01 + 02 — id5 (3] (01))
— id5 (a7 (1)) — id¥ (3% (2)) +id5 (3F (1))
= Up ¥ Up 01 % 0 — id?(a;(ul)) *j id];(a;(uz))
= (u1 *; up) + (01 *; 02) — idf(aj(ul *; Up)) (by Axiom (S-v))
= (uy *; u) *j (v1 *; v2).

Thus, Axiom (S-vi) is satisfied. Hence, (Ck )xen is equipped with a structure of an n-category. 0O

The construction G — (Cy)ken,, extends to a functor
K: gGrp, — Grp,
The two constructions witness that n-globular groups are equivalent to n-groups:

Proposition 2.1.1.5. The functors H and K exhibit an equivalence of categories between n-groups
and n-globular groups.
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Proof. Let C = (C)ken, be an n-group and G = HC. Given k € N, since G = C,, Ci can be
recovered up to isomorphism as the equalizer

i %
Ck — G :; G
k -
and, when k < n, since
G 0 i} = 0,y 0 3 oid! = 5 oid) = id
the morphism idﬁ“: Cr — Ciy1 is the unique morphism such that id;,, o idi+1 = id}. Now,
giveni € N,_jand € € {—,+}, 97 : Ciy1 — C; is the unique morphism which makes the left square

of

n
1d1+1
l+1

a_e:

o

—
.
Ci—g

ik

commute. Finally, by Proposition 2.1.1.2, the composition operations #;  for i,k € N, with i < k
can be recovered from 95 and idf. Thus, we have an isomorphism C ~ K'HC which is natural
in C.

Conversely, given an n-globular group G and C = ‘KG, we have G = C,, (when n = w, we have
that G ~ C, by the condition (2.3)). Moreover, for i € N,_; and € € {—,+}, we have Jf =id} o 9}
Thus, we have an isomorphism G ~ HKG which is natural in G. O

2.1.1.6 — Free n-groups. Given a set S, we write Z() for the free abelian group on S. Let C be
an n-category C. We write |C| for the set

cl=||c.

ieN,

We define the linearization of C as the abelian group ZC which is the quotient of Z(ICD by the
subgroup generated by

(i) u—idf*! (u) for k € N,y and u € Gy,
(i) ux;o—u—ov+ idk(af(u)) for i,k € N,, with i < k and i-composable u,v € Cy.

Moreover, we write
[-1: 21V - zc

for the canonical projection.

Proposition 2.1.1.7. There exist group morphisms d5: ZC — ZC fori € N,,_; and € € {—,+} that
are unique such that, for allk € N,, and u € Cy,

[l ifi <k,

P ([ul) = {M o

and these morphisms equip ZC with a structure of n-globular group.
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Proof. Fori € N,_; and € € {—, +}, by the universal property of the free abelian group, there is a
unique group morphism ¢ between Z|C| and ZC which satisfies that, for all k € N, and u € Cy,

— leEw] i<k,
% (”)_{[[u]] ifi> k.

We show that 51.6 can be factored through ZC by verifying the quotient equations. Given k € N,,_4
and u € Ci, we have

O (u — idM*1) = 9 (u) — 9 (id**1)
_ T - Tos Gag™ ] = [o5 @] - [os ] ifi <k,
| [w] - [id5] if i > k,
=0
and, given j, k € N, with j < k and j-composable u,v € C, we have

O (w0 —u—o+id5 (9t () = 9 (u*; v) — 95 (w) — 95 (v) + I (i (9} (u))).

Ifi < j, then
9 (uxjo—u—o+idf (97 W) = [ W] - [ @] - [of @] +[5 W] =0
else, if i = j and € = —, then, since 9} (u) = 9; (v),

9 (uxjo—u—v+id5 (37 () = [0y W] - [o; )] - [ )] + [} (W] =0
and similarly when € = +. Else, if j < i < k, then
9 (w0 —u—o+id5 (9] (w)) = [0 (w) #; o (W] = [ (w)] = [ (0)] + [id}(3] ()] = 0
and otherwise, if k < i, then
I (uxjo—u—ov+ids(at(w)) = [ux; o] - [u] - [o] +[id} (2} ()] =0

SO 5f factors through ZC, which gives a‘f : ZC — ZC. Moreover, for 6, € {—,+} and i,j € Ny,
given k € N, and u € C, if i < j, then

oy < {FAD i<k
R aj([[u]])—{[[u]]zglgs([[u]]) ifi >k,

and else, if i > j, then

=5 = o5 if j <k,
Fodup =100
! [ull = 95([ul) ifk <,
so that, since [[u] generates ZC for u € |C|,
55 i .
é?oé?: ?l. ifi <j,
7o ifix

Moreover, when n = w, we easily see from the definition of ZC and the functions J;, J; that
the condition (2.3) is satisfied. Thus, the morphisms (9; );en,,_, and (9} );en,_, equip ZC with a
structure of n-globular group. O

n-1
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Using the equivalence of Proposition 2.1.1.5, we write ((ZC))ken,, for the n-group associated to
the n-globular group ZC. Given k € N,,, let Z(Cy) be the quotient of the free abelian group Z(“x)
by the subgroup generated by the terms u ;v —u — v + idf(alf'(u)) for i € Ny_; and i-compo-
sable u,v € Cy. and let

[=1x: 29 — Z(C)

be the associated projection morphism. The restriction of [~]: Z{I) — ZC to Z(“¥) induces a
morphism
¢k: Z(Ck) — ZC

which satisfies 5]; o ¢ = ¢x since, for all u € Cy,
9 © e([ulle) = 9 ([ul) = [u] = ¢x([ul)-
Thus, by the equalizer definition of (ZC)x (c.f- (2.4)), this induces a morphism ;. : Z(Cx) — (ZC)x.
Proposition 2.1.1.8. Forall k € N, Y is an isomorphism.
Proof. We build a retraction ¢y : ZC — Z(Cy) to ¢y as follows. We first define
g 1V > Z(Cy)
as the unique morphism such that, for I € N, and u € Cy,

[ids ) ifl <k,
Gre(u) = { [u]lw if 1=k,
o (W] ifl> k.

We compute that, for [ € N,,_; and u € Cj,

idt — id* ifl <k,
ie(u—id™) = Ju—u if 1 =k,
O (u) — o, (u) ifl>k,

=0

and, for i, € N, with i < [ and i-composable u,v € Cy, if | < k, then

(/gk(u ¥ 0—-—U—0+ ldf(af(u))) = ﬂldﬁ *; idﬁ]]k — [idﬁ]]k — [idﬁ]]k + IIidk )]]k =0

a1 (id
elseif i < k <[, then
ic(u i 0 —u -0 +id)(3f () = [ 9 (w) #;: 9 (0)] = [0 W] = [0 (0)] + [id} (3} ()] = 0
and otherwise, if k < i, then
Bre(uxi 0 —u — o +idj(3F ())) = [ @] - [0 W] - [ (©)] + [ (0)] = 0.
Thus, ¢ induces a morphism ¢ : ZC — Z(Cy) and, for u € Cy, we have

$r o P ([ull) = dic([u]) = [ullk
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so that ¢y o ¢y = 1z(c,)- Moreover, for [ € N,,_; and u € |C|, we compute that

o )] = 9 ([u]) ifk <1,
Lidk )] = [u] = o ([ul) ifk =1

so that ¢y o ¢y o d; = d;. We then define i as the composite

¢ o g 0 3 ([u]) = {

¢

(ZOw —— ZC — Z(Cy)
where i : (ZC)x — ZC is the embedding of the equalizer (2.4). We have

Yk © Ve = di © 1 0 Yk

= dr o Pk
= 1z(cp)-
Conversely, we have
1k © Yk o Y = dr o i o 1
=drodrod o (by the definition of i)
=J oy (since ¢ o ¢y 0 I = J})

= [k
so that, since 1 is a monomorphism, we have i o . = 1(zoy, - Thus, Y : Z(Cx) — (ZC)y is an

isomorphism. O

The above property allows us to implicitly identify (ZC)x and Z(Cy), and denote both by ZCy.
We now write
(5C)k: Ck — ch

for the function which maps u € Cy to [u]x € ZCx. We have:

Proposition 2.1.1.9. The functions (8¢ )k for k € N,, define a functor 5c: C — ZC of n-categories,
which exhibit ZC as the free n-group on C.

Proof. We verify that d¢ is a functor. Given k € N,,_;, € € {—,+} and u € Cy,;, we have
6c(9 (W) = 9 W] = 9 ([u]) = 9 (6c(u))
s0 d¢ is a morphism of n-globular set. Moreover, given k € N,,_; and u € C, we have
Se(idg (w) = [idg™ ()] = [u] = idg™ ([u]) = idg™ (Se(w))
and, given i, k € N, with i < k and i-composable u,v € Cy,
Sc(u*;0) = [u =i 0] = [u] +[o] - [id; (3 )] = [] i [o] = 6c(w) *i (o).
Hence, éc defines an n-functor 6c: C — ZC.

Now let F: C — D be an n-functor where D is an n-category equipped with a structure of n-group.
For all k € N,_; and u € Ci, we have

F(idg™) = idgf),

and, for i, k € N, with i < k and i-composable u,v € Ci, we have
F(u #;v) = F(u) *; F(v) = F(u) + F(v) — id* (3} (F(u))).

Thus F factor through §¢, which gives a morphism of n-group F’: ZC — D satistying F’ o ¢ = F
and such an F’ is uniquely defined by F’ o 6c(g) = F(g) for g € C. Thus, ZC is the free n-group
onC. O
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2.1.2 Measures on polygraphs

In this section, we introduce Henry’s and Makkai’s measures on polygraphs. Henry’s measure is
defined as the specialization of the linearization function seen in Paragraph 2.1.1.6 on polygraphs,
and Makkai’s measure will be derived from Henry’s with a change of basis.

2.1.2.1— Henry’s measure. Let n € NU {w}. Given an n-polygraph P, we write |P| for

Pl=| | Pe.

keN,

We have the following other characterization of the free n-group in the case of a free n-category
on an n-polygraph:

Proposition 2.1.2.2. Let P be an n-polygraph. There exist functions
5¢: zIPD — Zz(PD

fore € {—,+} andi € N,,_; that equip ZI"V) with a structure of n-globular group (or, equivalently,
n-group) such that the embedding |P| < ZP) induces an n-functor

Sp: P* — ZUPD
which exhibits Z\IP) as the free n-group on P*.

Proof. We show this property by induction on n. When n = 0, the property holds since ZP* = Z(IPD
for all 0-polygraph P. So suppose that the property holds for some n € N. We show that it holds
for n+1. Let P = (Q, Py41) be an (n+1)-polygraph. By induction hypothesis, there are morphisms

o 7l _, Zz(ah

for e € {—,+} and i € N,, that equip Z/2) with a structure of n-globular group, and such that the
inclusion Q < Z12D induces an n-functor 8q: Q* — Z{2D (where Z(ID is equipped with the
structure of n-group coming from Proposition 2.1.1.5). For € € {—,+}, let 3: Z(12) — Z(1QD pbe
the identity 15(a). Fori € N, and € € {—, +}, we extend the group morphisms 51?: zah — zaan
to morphisms ¢ : ZUPD — Z(PD by putting

9; (9) = 8a(9; (9))
for g € P,4+1. We check that, given i, j € N, and 8, € € {—,+} and g € P44, if i < j, then
3 0 35(g) = & (5a(35(9)))
= 6a(87 (5(9)))
= 8a(9)(9))
=3(9)
and otherwise, if i > j, then
3 0 35(9) = & (5a(35(9)))
=6q(9;(9)) (since 50 (95(9)) € (Z'I"V)))
= d5(9).
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Thus, the functions 91.6: 7UPD — 7(PD for i € N, and € € {—, +} equip 7UPD with a structure of
(n+1)-globular group, from which we derive a structure of (n+1)-group using Proposition 2.1.1.5.
Since, for g € P41 and € € {—, +}, we have

9,(8a(9)) = 9,(8a(9)) = 6a(3,(9))

the n-functor 8q: Q* — ZU?D can be extended to an (n+1)-functor 8p: P* — ZUPD such
that §p(g) = g for every g € P.

We now prove that Z(IPD is the free (n+1)-group on P*. Let F: P* — C be an (n+1)-functor
where C is an n-category equipped with a structure of (n+1)-group. By induction hypothesis,
there exists a unique n-functor G’: ZIQ) — C_, such that F.,, = G’ o §q. Seeing G’ as a
morphism of gGrp,,, we extend G’ to a group morphism G: Z{I") — C by putting G(g) = F(g)
for g € Py41. For € € {—,+} and g € P41, we compute

G(dp(9) = G'(5a(9,(9)))
= F(3,(9))
= 9,(F(9))
=09,(G(9))

so that G 0 95 = 9, o G. Thus, G is an (n+1)-globular group morphism, or equivalently, an
(n+1)-group morphism. Moreover, since

G o dp(g) = G(g) = F(9)

for all g € P, we have G o 8p = F and G is uniquely determined by this condition. Hence, Z{I’!) is
the free (n+1)-group on P*.

Finally, if n = w, then, since ZUPD ~ Uken ZP<kl) e derive a structure of w-globular
group on Z{IPD from the structures of k-globular groups of Z(IP<tD for k € N, for which we have
canonical isomorphisms

(Z(lpl))gk ~ 7(P<k))

as k-groups. By Proposition 1.2.3.12, the k-functors Jp_, induce an w-functor
Sp: P — zZUPD,

Moreover, we can verify that, for k € N, the adjunctions (—)%tk 4 (—)Sitw: Cat,, — Caty restrict
to adjunctions Grp,, — Grpy, so that, given C € Grp,,,

Cat, (P*,C) ~ }{ig\é Cat (P, C<x)
~ ii&Grpk(Z(lpgkl)’csk)
~ llcigNl’ Grpk((z(lpl))sk, C<k)

~ Grp,,(Z'V, C)
which exhibits ZIPD) as the free w-group on P*, with 8p as universal morphism. O

Thus, given an n-polygraph P, by Proposition 2.1.2.2, ZP* is the free abelian group on |P|, or
equivalently, the free Z-module on |P|, so that we prefer to write ZP for ZP*. We equip ZP with the
basis (6p(g))gep and, in fact, we simply write g for 6p(g). Moreover, given a morphism F: P — Q
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in Pol,,, we write ZF : ZP — ZQ for the n-functor such that ZF(g) = F(g) for g € P. Givenu € ZP,
we write (ug)geip| € ZIP! for the family such that

Moreover, given u,v € ZP, we write u < v when u,; < v, for every g € P, and we say that u is
positive when 0 < u.

We call the function 8p: |P*| — ZP the Henry’s measure on the polygraph P. By the definition
of dp in Proposition 2.1.2.2 and Proposition 2.1.1.2, §p admits the following inductive definition:

- dp(g) =gforge P,

— 8p(id**!) = 8p(u) for k € N,,_; and u € P,

- Sp(u=*;v) = dp(u) + Ip(v) — dp (9] (u)) for i,k € N, with i < k and i-composable u,v € P}.
Moreover, Henry’s measure is natural in P:
Proposition 2.1.2.3. Given a morphism F: P — Q_in Pol,, we have

ZF o 8p = 8q o |F*|.
Proof. By functoriality, it is enough to check this equality for g € P:
ZF o 5p(g9) =ZF(g) = F(g9) = 6a(F(9)). =

However, Henry’s measure is not positive in general, i.e., we do not have dp(u) > 0 for all u € P*.

Example 2.1.2.4. Consider the 2-polygraph P with

Po={xy,z}, Pi={fu.foiix—>vy g:y—z}, and Py={a;: i= fo, 2: o= f3}

asin
f
m g
x fa > Y >z
NI,
f

Given the 2-cell u = (a; *1 az) *¢ id;, we compute p(u):

Op(u) = dp(ay *1 az) + 5P(id3) = 6p(9; (a1 %1 @2))
= dp(a1) + Fp(a2) — Sp (97 (1)) + Sp(g) — Sp(y)
=g+ —fotg—y.
2.1.2.5 — Makkai’s measure. As pointed out in [Hen18], one obtains the function defined by

Makkai in [Mak05] from Henry’s measure with a simple change of basis. Let n € NU {w} and P
be an n-polygraph. Given k € N, and g € Py, we define my € ZP as

g ifk=0,
m, =
7 \g-8e(a_,(9) - Sp(a}_,(9)) ifk>o0.

We then write 0p: ZP — ZP for the group morphism which maps g € P to m,,.
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Proposition 2.1.2.6. 0p is an isomorphism which is natural in P.

Proof. The decomposition of the elements (mg)sep in the basis (g)sep of the Z-module ZP is
triangular with respect to the filtration

Z(|Pso|) C Z(|Ps1|) c..-C Z(|P5n|)

with 1’s on the diagonal, so that (my),ep is a basis of ZP. Thus, 0p is an isomorphism. Moreover,
given a morphism F: P — Q in Pol,, for k € N,_; and g € Py, we have

ZF(0p(9)) = ZF(g — 8p(9; (9)) — 6p(3;(9)))
=ZF(g) - ZF(3p(9;(9))) — ZF(3p (9 (9)))
= F(g) - 6q(F* (9 (9))) — 5Q(F*(8Z(g))) (by Proposition 2.1.2.3)
= F(g) = 3q(3; (F(9))) — 6a (9 (F(9)))
= 0q(F(9)) = 6a(ZF(9))

so that ZF o Op = 0q o ZF. ]
We define the Makkai’s measure on the polygraph P as the function 51F\,/[: |P*| — ZP such that
S =651 o 8.

Remark 2.1.2.7. By transporting the n-globular group structure of ZP through 0p, we can equip
the group ZP with another n-globular group structure that makes in fact 524 an n-category functor

S P* — ZP.
Like Henry’s measure, Makkai’s measure is natural:
Proposition 2.1.2.8. Given a morphism F: P — Q in Pol,, we have
ZF o 55' = 5 o F*.
Proof. This is a consequence of Proposition 2.1.2.3 and Proposition 2.1.2.6. O
Moreover, like 8p, the function 51;,/[ admits an inductive definition:
Proposition 2.1.2.9. The following hold:
(i) 5?4(36) = x for all x € Py,

(ii) 85 (g9) = g+ 85 (3, (9)) + 55'(9;(9)) fork € Ny and g € Ppay,

(iii) 8y (i) = 63 (u) fork € Ny andu € P,

(iv) 5g4(u *;0) = 5134(u) +5§§4(0) - 524(8;’(u))f0r i,k € N, withi < k and i-composable u,v € P}.
Proof. For x € Py, we have 5?,4(x) = Jp(x) = x. For k € N,,_; and g € Py, we have

551 (g) = 05" 0 Sp(g)
=65'(9)
=0;"'((9 - 9 (9) — 3L (9)) + I (9) + 9} (9))
=g+0;" (9. (9) + 605" (3 (9))
=g+0;" 0 5p(3;(9) + 05" 0 5p(3(9))
=g+ 5 (9 (9)) + 8¢ (9))
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Givenk € N,_;and u € P]*C, we have

SY(dE) = 051 0 Sp(id,, @)
= 05" o 8p (1)
= SpM ().

Finally, given i, k € N,, with i < k and i-composable uy, u; € PZ, we have

(SII;\,A(UI *j uZ) = 6;1 o 5P(U1 *j uz)
=05 (ug +up — 97 (u1))
=05 (ur) + 05" (u2) — 05 (3] (w1))
=0p" 0 8p(u1) + 05" 0 Sp(u2) — 05" 0 8p (3] (u1))
= 8 (u1) + 6p () — 651 (9} (w1)).

Thus, the properties of the statement hold. O

However, contrary to dp, the function 52/[ is positive and, in this regard, admits several convenient
properties:

Proposition 2.1.2.10. Forallk e N,, andu € Pz, we have
(i) 5;;4(1,1) is positive,
(ii) foralli € Ny_; and € € {—, +}, 5&4(81.5(11)) < 524(14),

(iii) if u = uy *; uy for some i € Ny_; and i-composable uy,u; € Py, then 524(u1) < 5%4(u)
and Sy(uz) < 5134(1,1),

(iv) ichy(u)g > 0 for some g € P, then 52/[(9) < 5134(14).

Proof. We show the proposition by induction on k € N,. The proposition holds for k = 0.
So suppose that it holds up to dimension k for some k € N,_;. We show that it holds for

) . .
dimension k + 1. Letu € Pk+1'

Proof of (i): We show this property by induction on an expression defining u from the generators
of P (c.f. Remark 1.4.1.17). If u = g for some g € Py, then 5%4(1,1) =g+ 51};4(8;(9)) + (51*;4(3;;(9)),
which is positive by induction hypothesis. If u = id;; for some @ € Py, then 5?,4(11) = 52/[(&), which
is positive by induction hypothesis. Otherwise, if 4 = u; *; u; for some i € N and i-compo-
sable uj, u; € P, then 51F\,A(u) = 51F\,A(u1) + 5;;4(112) - 5?,/[((9;’(u1)), so that, by induction hypothesis
using (i) and (ii), we have 5134(u) > 0. So (i) holds.

Proof of (ii): It is sufficient to show that 524(82 (u)) is positive for € € {—, +}, and we show this using
again an induction on an expression defining u. By symmetry, we only handle the case ¢ = —.
If u = g for some g € Pgyq, then 524(812(14)) < 5£A(u) by definition of 51;,4 and (i). If u = id,
for some @ € P}, then 5134(6];(11)) = Sy(u). Otherwise, if u = uy *; uy for some i € Ni and
i-composable uy, u; € P;_, then

k+1°
851 (9 (w) = 83" (w1))
< 52/[(111) (by induction on u;)
< 52/[(111) + 524(112) - 524(8,2(142)) (by induction on us)

= 524(14).
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Thus, (5{3’1(8;(11)) < (5%4(1,1) foralle € {—,+}andu € Pl*c+1'

Proof of (iii): If u = uy *; up for some i € Ny and i-composable u;,u; € Py ., then, by definition
ofélF\,A, we have 51F\,4(u) = 5?,4(u1) + 5?,4(112) - 5%(8;(111)). By (ii), we have 5?,4(112) - 52/[(6;“(111)) >0,
so that 5£A(u1) < 524(11). Similarly, Sy(uz) < SQA(u).

Proof of (iv): We show this by an induction on an expression defining u. If u = g’ for some g’ € Py,
then, we have 5?,/[(9) = 524(9’), so that g = g’ and 5%4(11) = 524(9). Ifu = id; for some 4 € P,
then 5%4(11) = 5134(11), so that, by induction hypothesis, 52/[(9) < 5%4(11) = 5134(11). Otherwise,
if u = uy *; u, for some i € N and i-composable uy,u, € Pz, then, by the definition of 51F\,/[,
there is j € {1,2}, such that 51;,4(uj)g > 0. By symmetry, we can suppose j = 1. So, we
have 51[;/[(9) < 5g/[(u1), and thus 5%4(9) < (SIF\,/[(u) by (iii). O

Example 2.1.2.11. Recalling the polygraph P of Example 2.1.2.4, we do an example of calculation
of 52’1 and compute 52’1 for u = (a1 *1 a2) * id;:

Sph(u) = 65 (g #1 az) + 51|:\>A(id;) — N (a1 #1 a2))
8p' (1) + 85" () = 85 (3] (1)) + 83 (9) — 65 (y)
a+fith+2x+2y+a+ o+ fi+2x+2y—fL—x—-y+g+y+z—y

=g +m+ i+t fitg+3x+3y+z

2.1.3 Elementary properties of free categories

We can now show elementary properties of free n-categories on polygraphs using the above
defined Makkai’s measure, as was done in [Mak05]. Let n € NU {w} and P be an n-polygraph.
First, we prove that the generators of P are injectively embedded in the associated free n-cate-
gory P*:

Proposition 2.1.3.1. Fork € Ny, 1,92 € Pk, if g1 # g2 in Py, then g; # g2 in P,.
Proof. Let k € N, and g;,92 € Pk be such that g, = g, in P;. So 52/[(91) = 524(92). But,

for i € {1,2}, g; is the only g € P; such that Sy(gi)g > 0 by definition of 5{;4. Thus, g1 = g»
in Py, which proves the statement. O

Moreover, we can characterize the identities using 3"
Proposition 2.1.3.2. Letk € N,,_; andu € P, . The following are equivalent:
(i) there exists il € P such thatu = idg“,
(ii) there exists € € {—, +} such that (Sgl(u) = (5%4(8;(@),
(iii) forall g € Py,q, 524(11)9 =0.

Proof. The facts that (i) implies (ii) and that (ii) implies (iii) are trivial. So suppose that (iii) holds.
We show that (i) by induction on an expression defining u:

- ifu = g for some g € Pg,1, then 52/[(11)9 > 0, contradicting the hypothesis,

- ifu= id§+1 for some u € PZ, then the conclusion of the statement holds,
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. _ . . . M M
- if u = u; *; up for some i < k and i-composable u;, u; € P, then, since &5’ (u;) < &5 (u)

for j € {1, 2} by Proposition 2.1.2.10(iii), we can use the induction hypothesis on u; and u;.
So there exists i1, iy € Pl’; such that u; = id’;;l for j € {1,2}. Thus, if i = k, then u = idgfl

+1
1kiU”

and if otherwise i < k, then u = idﬁ m]

The embeddings of the generators in the free categories can also be characterized using §™:
Proposition 2.1.3.3. Letk € N}, and u € P. The following are equivalent:

(i) there exists g € Py such thatu = g,

(ii) there exists g € Py such that 5%4(11) = 5%4(9),

(iii) there exists nou € P, _, such thatu = idg, and if u = uy *; uy for somei < k and i-compo-
sable uj, uy € P;’;, then there exists j € {1,2} and ii; € P} such thatu; = idgl.
J

Proof. Proof that (i) implies (ii): This is clear.

Proof that (ii) implies (iii): Let g € Py be such that 5%4(11) = (5%4 (g). First, by Proposition 2.1.3.2, u
is not an identity. Moreover, if u = u; *; u, for some i < k and i-composable uy, u; € PZ, then

S8 (u) = 8N () + ¥ () — SY(05 (uz)).

Since 5?,4(11)9 > 0, we have that there exists j € {1,2} such that 524(u j)g > 0. By symmetry,
suppose that j = 1. Then, by Proposition 2.1.2.10(iv), we have 55'(g) < &}'(u1). Moreover, by
Proposition 2.1.2.10(ii), we have 5?,4(1,42) — 5?,/[(81._(142)) > 0, so that 51;4(111) < 5?,/[(9). Hence,

524(141) = 52/[(9) and 524(142) - 51F\,A(8{(u2)) =0.
Thus, by Proposition 2.1.3.2, u, = id’;__(uz), so (iii) holds.

Proof that (iii) implies (i): We show that (i) holds by induction on an expression defining u:

— if u = g for some g € Py, then (i) holds;

*

«_;» then this contradicts the hypothesis given by (iii);

- ifu:idgforsomeﬂeP

— if u = uy *; u, for some i € Ni_; and i-composable u;, u; € PZ, then, by hypothesis, there

.. _:ak
is j € {1,2} such that u; = 1da;(uj)'

conclude by induction hypothesis. O

By symmetry, suppose that j = 1. Then, u = u, and we

Finally, we prove that identities and generators can be lifted through functors between free
categories:

Proposition 2.1.3.4. Let F: P — Q be a morphism of n-polygraphs, k € N, andu € P,. The
following hold:

(i) when k > 0, there exists a cell u’ € P;_, such thatu = idﬁ, if and only if there exists a
cellii’ € Q}_, such that F(u) = id,,

(ii) there exists a generator g € Py such that u = g if and only if there exists a generator g € Qy
such that F(u) = g.
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Proof. The left-to-right implications are clear, so we only prove the right-to-left ones.

Proof of (i): Suppose that there exists &’ € Q;_, such that F(u) = idz,. By Proposition 2.1.3.2, we
have that 5?14(F(u))g = 0 for all g € Q. By Proposition 2.1.2.8, we have Sg(F(u)) = ZF((%A(u)),
thus 5?,/[(14)9 = 0 for all g € Pi. Hence, by Proposition 2.1.3.2, there exists u’ € P;_, such
that u = id",.

Proof of (ii): Suppose that there exists § € Qy such that F(u) = §. We prove that there exists g € Py
such that u = g. When k = 0, this is clear. So suppose moreover that k > 0. It is sufficient to
prove that the characterization (iii) of Proposition 2.1.3.3 is verified. By Proposition 2.1.3.3(iii),
the cell F(u) is not an identity, so that by (i), u is not an identity as well. Now if u = u; *; u,
for some i € Ny_; and i-composable uy, u, € P}, then F(u) = F(u;) *; F(uz), so that, by Propo-

sition 2.1.3.3(iii), there is j € {1,2} such that F(u;) = id*

F (a7 (u))" Using (i) k — i times, we have

that u; = id];__( W) Thus, by Proposition 2.1.3.3, there exists g € Py such that u = g. O

2.2 Free categories through categorical actions

Let n € N. In this section, we give a more precise description of the functor —[—]: Cat}, — Caty,
introduced by Theorem 1.3.2.3, that maps an n-cellular extension to the associated free extension.
Concretely, we express the functor —[—] as the composite of functors

—[—]A: Cat] — Catfl‘ and -[-]7: Cat‘,? — Cat,4q

where Cat’ is the category of n-categorical actions. The latter encode the structure of the
“whiskered generators” of the free extensions C[X] for (C, X) € Cat}, i.e., the (n+1)-cells which
can be written as

Inon—i (ln—ion—z o1 (lieggoeori) o1 - ep_2Tn_1) on—1n (2.5)

for some suitably composable g € X and I;,r; € C; for i € N;. By considering adequately
quotiented sequences of (n+1)-cells of such form, one recovers the whole set C[X],+1.

By the exchange condition (E) satisfied by the canonical precategorical structure on C[X],
a “whiskered generator” usually admits several decompositions as (2.5), and enumerating all of
them can be expensive. Another description of all the possible decompositions can be obtained
using context classes: the latter are structures which represent decompositions like (2.5) where g is
replaced by a hole. In such structures, the different possible decompositions are then represented
efficiently by quotienting with the equalities (E) dimensionwise.

We first introduce the definition of categorical actions (Section 2.2.1), and then of contexts and
context classes, together with some of their properties (Section 2.2.2). We then give descriptions
of the functor —[—]* using context classes (Section 2.2.3), and then of —[—]~ by considering an
adequate quotient on sequences of cells of categorical actions (Section 2.2.4). We then conclude the
description of —[—] as the composite of the two above functors and use it to give some properties
of the cells of free extensions (Section 2.2.5). In the next section, this description will be used to
show that the functor —[—] is computable.

2.2.1 Categorical actions

Let n € N. An n-categorical action is the data of an n-cellular extension (C, C,+1) together with,
for k € N}, composition operations

ki1t Ck Xgk—1 Cp1 = Cpyr - and eppg et Cugg X1 Gk — G
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satisfying the axioms given below. We extend the convention used for precategories, meaning
that, for i, k, [ € N, with

i=min(k,]) —1 and max(k,[)=n+1,

given (u,0) € Cx X; Cj, we write u »; v for u e ; v. The axioms satisfied by n-categorical actions
are then the following:

(A-1) for i, k,I € N, satisfying
i=min(k,])-1<n-1 and max(kl)=n+1,
and (u,v) € Cx X; Cjand € € {—, +},
ue;oy(v) ifk <l
O (ue;0) = {af,éu)n-(iz i
(A-ii) for i, k, I, m € N, satistying
i=min(k,])—1=min(l,m)-1<n-1 and max(k,l,m)=n+1,
and (u,0,w) € Cr X; C; X; Cpy,
(ueiv) s w=ue (vew),
(A-iii) fori, j € Np_y withi < j,uy,up € Ciyq,01,02 € Cjyg and w € Cpyq such that uy, w, up
are i-composable and v;, w, v, are j-composable,
uy o (01 *j Wej v2) o Uz = (U1 % 01 * Uz) °j (uy o w e up) ) (uy o vz % U3),
(A-iv) for i k,l € N}, satisfying
i=min(k,l)-1<n-1 and max(k,])=n+1,
and (u,v) € C X;—1 Cy,

(u o1 97 (0)) o (9] (u) i—10) = (] () oi—1 0) o (U si_1 J; (0)).

Axioms (A-i), (A-ii) and (A-iii) above closely match Axioms (P-ii), (P-iv) and (P-v) of precate-
gories (c.f: Remark 1.4.2.2). Axiom (A-iv) is analoguous to the condition (E) satisfied by precat-
egories derived from strict categories (c.f- Paragraph 1.4.3.1). An n-categorical action morphism
between (C, Cp11) and (D, Dp41) is a morphism of n-cellular extension

(F,f): (C,Cns1) = (D, Dp4y) € Caty
which is moreover compatible with the o .1 and e, x operations for k € N}, i.e.,
— fori e N1, u € Cyy1, v € Ciyq such that u, v are i-composable,
fusiv) = f(u) e F(o),
— fori € N1, u € Ciy1, 0 € Cpyq such that u, v are i-composable,
f(uei0) = F(u)« f(0).
We write Cat’ for the category of n-categorical actions. There is a forgetful functor
U: Caty — Cat],

which forgets the data of the e ;11 and e,,,1 x operations, for k € N;. Since this functor is obviously
derived from a morphism of essentially algebraic theories, by Theorem 1.1.2.7, it admits a left
adjoint that we describe below, after introducing contexts and context classes.
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2.2.2 Contexts and contexts classes

Here, we introduce contexts and context classes, that represent formal cells of strict categories with
“holes” in them. Our definitions are similar to the one of context given by Métayer in [Mét08], but
with a syntactical perspective that allows a computational implementation (c.f: Section 2.3.2). We
moreover give some structure to these objects, like sources, targets, identities and compositions,
and prove that these operations are compatible with n-functors.

2.2.2.1 — Definition. Let n € NU {w} and G € Glob, be an n-globular set. Given m € N, an
m-typeis apair (u, u’) of parallel (m—1)-globes of G (we extend the convention of Paragraph 1.2.2.1
so that the unique (—1)-globe * is parallel with itself). Given k € N,, with k > m and v € Gy, the
m-type of v is the m-type (9,,_,(v), 3} _,(v)) so that every k-cell can be implicitly considered as
an m-type, and we say that the m-types of this form are instantiable.

Let C € Cat,,. For every m € N, and m-type (u, u’), we define, by induction on m,
— the notion of m-context of type (u,u’) of C,
- the notion of m-context class of type (u,u’) of C,

- for k € N, with k > m, the evaluation of an m-context E (resp. m-context class F) of
type (u,u’) at a cell w € Cy. of type (u, u”) which is a k-cell denoted E[w] (resp. F[w]).

For m € N,,, an m-context class of type (u, u") of C will be an equivalence class of m-contexts of
type (u, u’) under a relation denoted ~,,, so that we write [ E] for the associated m-context class
of an m-context E. This relation witnesses that two contexts are equivalent up to the equalities (E)
considered in dimension m. Together with the above inductive definition, we prove the following:

Proposition 2.2.2.2. Givenm, i,k € N, withm < i < k, ak-cellv, an m-context E (resp. m-context
class F) of typev and € € {—, +}, we have

9; (E[o]) = E[; (v)] (resp. 9; (F[o]) = F[; (v)]).

We now start the definition. There is a unique 0-context, denoted [—], and the relation = is the
identity relation, so that a 0-context class is exactly a 0-context. Given k € N, and k-cell v € Cg,
the evaluation of the unique 0-context (class) [—] at v is v, and Proposition 2.2.2.2 holds directly
form = 0.

Given m € N,,_; and an (m+1)-type (u,u’), an (m+1)-context of type (u,u’) is a triple E = (I, F, r)
where

- F is an m-context class of type (d,_,(u), a7, _,(u")),
- land r are (m+1)-cells of C such that d},(I) = F[u] and 9;,(r) = F[u'].

Moreover, given k € N, with k > m+ 1 and w € Cy, of type (u, u’), the evaluation E[w] of E at w
is the k-cell
E[w] =1e, F[w] e, 1.

We define the relation ~,,,1 on (m+1)-contexts of type (u,u’). When m = 0, for all 1-contexts E;
and E, of type (u,u’), we put E; ~; E, if and only if E; = E;. When m > 0, we define ~,,; to be
the reflexive symmetric transitive closure of z}n +1» Where zin 41 1s the relation such that, for all
(m+1)-contexts

Ey=(li,Fi,r1) and E; = (I, Fy,12)
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1

m+1 E2 if there exist m-contexts

of type (u,u’), we have E; ~
E{ = (l{,F,r)) and E,=(L,F,r;)

of type (2,,_,(u),d},_,(u")) with F; = [E!] for i € {1,2}, and I, r, w € Cp41 such that at least one
of the two sets of conditions (x-L) and (~-R) is satisfied, where the set of conditions (x-L) is

Li=ley(Wepmy Fj[u] em7]) r=r

(~-L) I, =1 ry = (Wem_q Fz’ [u/] *m—-1 ré) *m T
= 0 (w) n=r
Iy = 9 (w) F{=F,

and the set of conditions (~-R) is

Li=1ep, (lll°m—1 F{[u] *m—1 W) rn=r

I, =1 ro = (1) o1 Fo[u'] op—1 W) o 1
x) 1=t 2= (o Flu'] s )

1= b ry = (w)

ry = dp(w) F/ =F,.

An (m+1)-context class of type (u,u’) is an equivalence class of (m+1)-contexts of type (u, u’)
under ~,,,;. Note that if E; ~,+1 E; and w is a k-cell of type (u, u’), then E;[w] = Ez[w], so that
we can define the evaluation F[w] of an (m+1)-context class F by a k-cell w, both of type (u, u’),
as E[w], where E is an (m+1)-context of type (u,u’) such that F = [E].

Finally, we check that Proposition 2.2.2.2 is satisfied: given i,k € N, withm+1 <i <k, an
(m+1)-context E = (I, F,r) and a k-cell v, both of (m+1)-type (u,u’), and € € {—, +}, we have

5 (E[0]) = 0 (Lo Fl0] o )

= Loy O (F[0]) om r (by Axiom (P-ii))
=lep, F[O (0)] o 1 (by the induction hypothesis)
= E[9; (v)]

and the property also holds for (m+1)-context classes too, since we have

9; ([E][@]) = 9 (Elo]) = E[; (v)] = [E] [ (2)]

and this ends the definition of contexts and context classes of C.

Example 2.2.2.3. Let P be the 2-polygraph such that

Po = {w,x,y,z}
Pi={a:w—oz bb:wox ccix—>ydd:iy—>oz e w—z}

Po={a:a=bxgcxd, f:b=b",8:d=d, e:b %c’ %gd = e}.
There are several 1-contexts of type (x, y), like the following ones:
- (il [-].id}),
- (b.[-].id}),

- (i}, [-].d),
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Figure 2.1 — The contexts E;, E;, E5 and E4

~ Epn=(f[-],9) for f € {b,b’} and h € {d, d"}.

By the definition of =4, a 1-context class is exactly a 1-context. Note that, for f € {b, b’}
and h € {c,c’}, the evaluation of E¢j, at g € {c,c’} is f % g *o h. There are several 2-contexts of
type (c, c¢’), as the following ones:

= Ey = (a1 (B %0 id} %0 8), Epyar, €),
- Ey = (a# (idi*oc %0 6), Ep.ar, (Jf *o id?’*od') *1 €),
- E3 = (a* (B*o idi*od),Eb',d, (idfy*oc/ %9 &) *1 €),
- E4 = (0{, Eb,d, (ﬂ *0 ldi *0 5) *q 6)
which can be represented as on Figure 2.1. Then, putting
I=ax (idz*oc x¥0), w=pf and r=e
and using (~-L), we have E; ~; E,. Similarly, putting
[ =ax (ﬁ*oidz*od), w=9d and r=e
and using (~-R), we have E; ~), E;. Finally, putting
I=a, w=38 and r=(Bx idz,*od,) %1 €
and using (~-R), we have E, ~! E,. Thus, we have
[E:] = [E2] = [E5] = [ E4]

In fact, we can prove that the set of 2-contexts equivalent to E; under =, is {Ey, Es, E3, E4 }.
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Remark 2. 2 2.4. Given m € N,,, the relation ~! on the m-contexts, which is defined by E; ~ Ez
when E; ~ ~m E; for all m-contexts E;, E5 of the same m-type, admits a definition by axioms (~ Ly
and (~-R)’ which are symmetrical to (~-L) and (~-R). Moreover, ~,, can be equivalently described
as the reﬂexwe transitive closure of ¥} U1, so that, in the proofs, by symmetry of the definitions
of ~}, and ~,!, we can often reduce a case analys1s of Ey ~p, E; to E; =}, Es.

Remark 2.2.2.5. Given m,k € N,;; withm < nand m < k < n + 1, the notion of m-context,
m-context class and their respective evaluations at a k-cell can be defined similarly for an n-cate-
gorical action C. Note that the notion of (n+1)-context here makes little sense since there is no
composition operation e,.

2.2.2.6 — Source and target of contexts. Let n € NU {w} and C € Cat,. Given m € Nj, an

m-type (u,u’) and an m-context E = (I, F, r) of type (u,u”) of C, the source and the target of E are
respectively the (m—1)-cells

0p—1(E) = 0p,_1(I) and 8;_1(E) = a:rn—l(’”)-
When m > 1, we moreover have

9, ,00, ((E)=0 ,00d, (E)

for € € {—, +}. Indeed, given an (m—1)-context E’ = (I’, F/,r’) such that F = [ E’]], we have

(D) =1 ey s F'lu]lepmor’ and 0 (r) =1 ep o F'[t/] opsr’

so that
Op—z © Oy (E) = 5001 (1)
=30 3hs ()
= ,_n—z(l’)

= O © 01 ()
= 0y © Iy (7)
=a, ,0d"_(E)

and similarly, 9}, _, 0 9, (E) = d;,_, o d}_,(E). The operations 9-, " on m-contexts extend to
m-context classes since they are compatible with the =~,, relation. Given i € N,,_; and € € {—, +}
and an m-context E (resp. an m-context class F), we write o5 (E) for 9 09, _, (E) (resp. 9; 095, _, (F)).
Thus, for i € N,_;, we can extend the notion of i-composable sequences of globes of globular sets
to sequences X3, ..., X; for some [ € N* where X; is either an m-context, an m-context class, or a
cell of C for s € NJ, and say that X, ..., X is i-composable when 97 (X;) = 9; (Xs41) for s € N} |

Itis immediate that the source and target operations are compatible with the evaluation of contexts
(resp. context classes):

Proposition 2.2.2.7. Giveni,m,k € N, withi < m < k, € € {—,+}, u € Cx and an m-context E of
type u, we have

o (E[ul) = o (E) and 3 ([E][ul) = & ([E]).
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2.2.2.8 — Identity contexts. Letn € NU{w} and C € Cat,. Given m € N,, and an m-type (u, u’)
of C, we define an m-context I**) and an m-context class I®**) called respectively identity
context and identity context class on (u, u’), by induction on m. When m = 0, we put

I(*,*) — I‘(*,*) — [_]
and, when m > 0, we put
109 = (i@, [0 @7 W) jgmy  apd [ = [10=)])
B 3 Uu .
If C is part of an n-cellular extension (C, X), given g € X, we write I9 and Y for

1O @509 and [P @75, @)

respectively. The identity contexts and identity context classes have trivial evaluation:

Proposition 2.2.2.9. Form,k € N,, withm < k, an m-type (u,u’) andv € Cy of type (u,u’), we
have
I“yl=0v and T[] =0

Proof. This is shown by a simple induction on m. O

2.2.2.10 — Composition operations. Letn € NU{w} and C € Cat,. Giveni,m € N, withi < m,
an m-context E = (I, F,r) of some m-type (u,u’) of C, and v € Cyy1, if (v, E) is i-composable, we
define an m-context v o; E by induction on m — i with

UoiE:

(ve; LLF,r) ifi+l=m,
(vejLve; Fueir) ifi+1<m,

and, since it can be verified that the e; operation is compatible with ~,,, we extend the operation
on m-context classes and put v o; [ E]| = [0 ; E]. Similarly, if (E, v) is i-composable, we define an
m-context E o; v using an induction on m — i by

E (LLF,re0) ifi+1=m,
o=
l (lejuo,Feju,reiv) ifi+1<m,

and we put [[E] o; v = [[E o; v]]. These composition operations satisfy properties similar to the
axioms of (n+1)-precategories:

Proposition 2.2.2.11. Given m € N, an m-type (u,u’) and an m-context E of type (u,u’) of C,
we have

(i) foralli € Np,_y and uy = 9; (E), up = 9} (E),

. i+l o L i+l
idif' e E=E=E«id}",

(ii) foralli € Ny,_y and uy,uy € Ciyq, if uy, uy, E are i-composable or uy, E, uy are i-composable
or E, uy, uy are i-composable, then we respectively have
(uy o uz) o E = uy o (uy »; E)
or
(ug o E) o ug = uy o; (E o up)
or

(Eoju1) o uz = Eo; (ug o uz),
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(iii) for alli,j € Np,_q such thati < j, and uj,uy € Ciyq and vy,v5 € Cjyq such that uy, E, uy are
i-composable and vy, E, v, are j-composable, we have

Uy o (01 Eejuy)ejuy = (uy o 01 9 Uz) o (g o E e 1) o (g o 03 8 Uy),
and similar properties hold when replacing E by || E] in the equations.

Proof. (i), (ii) are proved by a simple induction on E and F, so we move directly to the proof of (iii).
Let (I,F,r) = E, i,j € Ny_y with i < j, and uj,uy € Ciyy and v1,0; € Cjyq such that uy, E, up
are i-composable and vy, E, v; are j-composable. We show that (iii) holds by induction on m — j.
When m = j + 1, we have
up o (v1ej Eejvz) o up = (ug o (v1 05 1) o uz, Fyug o (rej 02) o up)
= ((u1 % v1 % up) o (ur o Lo uz), F, (ug o 1o uz) (ug o vz 4 u2))
= (uy o vy % U) ) (uy o E o uy) °j (uq o 0y o Uy)
and moreover,
uy o (v1 95 [E] o v2) o uz = [[u1 o (v1 ¢j E0j 03) o 2]
= [[(u1 o v1 o uz) o (U1 o E o; up) o (U1 ¢ 029 )|
= (uy o vy % Uz) o (ug o [E]| o uz) oj (uy o v 0 1)
so that the wanted equations hold. When m > j +1, by doing a similar computation and using the

induction hypothesis on F, we conclude that the wanted equations hold too. Thus, (iii) holds. O

Moreover, by the axioms defining the relations ~,,, the compositions of cells of C with context
classes satisfy an equality similar to the condition (E) that characterizes n-categories among
n-precategories:

Proposition 2.2.2.12. Given iym € N, with0 < i < m, an m-type (u,u’), an m-context E of
type (u,u’), and uy, u, € Ciy1 such that uy, E are (i—1)-composable and E, u, are (i—1)-composable,
we have

(w1 #i-1 9; ([EDD) o (3 (u1) =1 [E]) = (9; (u1) oi=1 [ E]) o (w1 %=1 9; ([E]))
and
([ET oi-1 07 (u2)) o (3] ([E]) oi-1 u2) = (97 ([E]) oi-1 u2) o ([E] oi-1 07 (u2)).
Moreover, ifi + 1 < m, we have
(u1 -1 9; (E)) # (9] (u1) #i-1 E) = (3; (1) o1 E) o (1 %i-1 ; (E))
and
(E oi-1 9; (uz)) #i (97 (E) si-1 uz) = (9; (E) oi-1 Us) o (E oi-1 3} (42)).
Proof. Let (I, F,r) = E. We show this property by induction on m —i. If m = i + 1, then
(uy -1 9; (E)) o (9} (1) #i-1 E)
= (uy %-1 9; (1) & (9} (1) %1 E)
= ([t 0i-1 97 (D] o [9] (u1) o1 1], 9] (u1) o1 F, 9] (ur) o1 1)

= ([97 (u1) oi—1 1] & [u1 %1 07 (1)1, 9} (u1) i1 F, 0; (u1) ei—1 1) (by (E))
~m ([07 (u1) o1 1], 97 (u1) oi—1 F, [u1 %1 97 (r)] & [0f (u1) ¢i—1 1])
= ([9; (w1) oi=1 1], 0; (u1) oi—1 F, [0; (u1) ej—1 7] o [u1 %1 37 (r)]) (by (E))

= (9; (w1) oi—1 E) o; (u1 % 9;(r))
= (9; (w1) oi—1 E) o (u1 % 9; (E))
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so that
(ug oi-1 97 ([E]D)) o (0F (u1) %1 [E])
= [(uy 0i-1 9; (E)) o (] (u1) i1 E) ]
= [[(0; (u1) oi—1 E) o (u1 % 0f (E))]
= (97 (w1) si-1 [E]D) o (u1 % 97 ([E]))
and similarly,
(LET #i-1 9; (u2)) o (37 ([ETD) -1 uz) = (97 ([E]) i1 uz) o ([E] -1 3] (u2)).
Otherwise, if m > i + 1, then
(u1 %1 0; (E)) o (9} (u1) -1 1)
= (uy oi-1 9; (1)) & (3] (uy) oi—1 1)
= (97 (u1) oi—1 1) & (u1 %1 0; (1))
= (97 (u1) oi—1 1) & (u1 -1 9; (E))
and similarly,
(u1 %1 9; (E)) o (9] (u1) oi—1 1) = (9; (u1) ei—1 1) & (u1 %1 8 (E))
and, by induction hypothesis,
(u1 %i-1 9; (E)) o (9] (u1) ;-1 F)
= (uq %i-1 9; (F)) o (8} (u1) i1 F)
= (97 (u1) oi—1 F) o (uq oi—1 9} (F))
= (97 (u1) si—1 F) o (uq oi—1 9} (E))
so that
(u1 %i—1 9; (E)) o (9] (u1) =1 E) = (9] (u1) #i—1 E) ; (u1 oi—1 9; (E))
which implies
(uy o1 9 ([E])) o (97 (1) i1 [E]) = (07 (u1) o1 [ E])) o (w1 o1 97 ([E])).
Similarly, we have
(97 (E) oi—1 uz) o (E i1 9] (u3)) = (E si_1 9; (u2)) % (3] (E) »i—1 uz)
and
(LET oi=1 05 (u2)) & (37 ([ E]) oi-1 u2) = (37 ([ET) oi=1 uz) & ([E] oi=1 95 (u2)).
Hence, the proposition holds. O

Finally, we prove that the composition operations on contexts and context classes are compatible
with evaluation:

Proposition 2.2.2.13. Giveni,m,k € N, withi <m < k, u € Ciy1, v € Cx and an m-context E of
typev of C, if u, E are i-composable, then

(ue E)[0] = ue (E[0])
and otherwise, if E, u are i-composable, then

(E e u)[o] = (E[0]) % u

and similar equalities hold for context classes.
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Proof. By symmetry, we only prove the first equality, and we do so using an induction on m — i.
Let (LF,r) = E. When i + 1 = m, we have

(ue; E)[0] =ue;le; E[v] o; 7 = ue; E[0]
and
(wei [ED[o] = [us E][v] = (ue; E)[0] = us; (E[0]) =ue; ([E][0]).

Otherwise, when i + 1 < m, we have

(ue; E)[v] = (o) op_y (uo; F)[0] oppy (t10;7)

= (uejl)e,_1 (us; (F[v])) om—1 (1) (by induction hypothesis)
= us; (E[0])
and, like above, we have (ue; [E])[0] = u«; ([E] [2]). m|

2.2.2.14 — Contexts and functoriality. Letn € NU {w}, C,D € Cat, and H: C — D be an
n-functor. We extend H to m-contexts and m-context classes, by induction on m. More precisely,
given m € N,,, an m-type (u, u’) of C and an m-context E of type (u, u’) of C, we define an m-con-
text H(E) and an m-context class H([| E]]) of type (H(u), H(u")) of D by induction on m as follows.
If m =0, we put

and otherwise, if m > 0, given (L, F,r) = E, we put

H(E) = (H(I),H(F),H(r)) and H([E]) = [H(E)]

where H([[E])) is well-defined since, given two m-contexts Ey, E; such that E; =, E,, we can
check that H(E;) ~,, H(E,). We verify that H is compatible with the different operations on
contexts and context classes defined above:

Proposition 2.2.2.15. Givenm,k € N,, withm < k, u € Cx and an m-context E of type u of C, we
have

H(E[u]) = H(E)[H(w)] and H([E][u]) = H([E])[H (u)]

Proof. We prove this property by induction on m. When m = 0, the property holds, so assume
that m > 0. Let (L, F,r) = E. We have

H(E[u]) = H(I) sm—1 H(F[u]) -1 H(r)
=H(l) op,—1 H(F)[H(u)] om—1 H(r) (by induction hypothesis)
= H(E)[H(u)]

and we moreover deduce that
H([E][u]) = H(E[u]) = H(E)[H(w)] = [H(E) | [H(w)] = H([E]) [H(w)]
which concludes the induction. m]

Proposition 2.2.2.16. Given m € N,, and an m-type (u,u’) of C, we have

HIWW)y = [H@HW)  gng [y = [HHW))
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Proof. By a simple induction on m. O

Proposition 2.2.2.17. Given i,m € N, withi < m, u € Ci1 and an m-context E of C, if u, E
(resp. E,u) are i-composable, then

H(ue; E) = H(u) » H(E) (resp. H(Eo;u) = H(E) o; H(u))
and

H(u«; [E]) = H(u) « H([E]) (resp. H([E] & w) = H([E]) « ).

Proof. Let (I, F,r) = E. We prove this property by induction on m — i. If m = i + 1, we compute
that

H(ue E) =H((ue LF,1))
= (H(us< 1),H(F),H(r))
= (H(w) « H(I), H(F), H(r))
= H(u) « (H(I), H(F), H(r))
= H(u) » H(E)
and

H(ue [E]) = H([u~ E])
=[H(ue E)]
=[H(u)« H(E)]
=H(u)« [H(E)]
= H(u) » H([ E]).

When m > i+ 1, an analogous computation using the induction hypothesis shows the same
equalities. The case of composition on the right is similar. O

2.2.3 Free action on a cellular extension

In this section, we use the formalism of contexts and contexts classes to define a left adjoint to
the functor U : Cat? — Cat’. In the process, we give sufficient conditions for a monomorphism
to be preserved by the free action functor —[—]*: Cat}, — Cat’ introduced above. Indeed, the
image of a monomorphism (H, f) by —[~]* does not have to be a monomorphism since H is
not necessarily injective on contexts and contexts classes, because of the quotients with the
relations =,,. As shown below, it is sufficient to require moreover that H is a Conduché functor:
those are the morphisms of Cat,, that uniquely “lift compositions of cells”. Consequently, they are
better behaved regarding the relations =, on contexts. We refer the reader to [Gue20] for a more
extensive presentation of Conduché functors for strict n-categories. The resulting monomorphism
preservation result of —[—~]# will be useful when showing that the word problem on general
polygraphs reduces to the one on finite polygraphs (c.f. Section 2.4.3).

2.2.3.1— (n+1)-categorical action structure. Let n € N. Given an n-cellular extension (C, X),
we define an n-categorical action C[X]* = (C,X*) as follows: X* is the set of pairs (g, F)
with g € X and F an n-context class of type g. The n-source and n-target of such a pair (g, F) are
defined respectively as the n-cells

9,((9,F)) =F[d,(9)] and 9;((g.F)) = Fld;(9)].
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so that (C,X?) has a structure of n-cellular extension by Proposition 2.2.2.7. We extend the
operations e; defined for n-context classes to such pairs by putting

u'i(g’F)z(g’u°iF) and (g’F)'iU:(gaF'iv)
for i € Nj,_; and u,v € Cy41 such that u, (g, F) and (g, F), v are i-composable. We then have:

Proposition 2.2.3.2. The operations s; defined above equip C[X]* with the structure of an n-cate-
gorical action.

Proof. This is a consequence of Proposition 2.2.2.11 and Proposition 2.2.2.12. O

Remember that, by Remark 2.2.2.5, there are analogous notions of contexts, context classes and
evaluations for categorical actions. We observe that:

Lemma 2.2.3.3. Givenm € N, g € X and an m-context class F of type g of C, we have
F(9,%)] = (9. F1n)
where, for k € N, with k > m, Fyy is the k-context class of type g defined inductively by
F ifk =m,
e {[[(idlfﬂ @ Frenidi, e @I ik > m.
Tk-119%_1{9 Tk-11%_1(9
In particular, if m = n, we have F[(g,19)] = (g, F).
Proof. By a simple induction on m. O
With the above lemma, we can deduce the freeness of C[X]*:
Proposition 2.2.3.4. C[X]? is the free categorical action relatively to the forgetful functor U.
Proof. Given an n-categorical action (D, D’) and a morphism
(H,h): (C,X) - U(D,D’) € Cat;

we define a function h’: X* — D’ by putting h’((g, F)) = H(F)[h(g)]. By Propositions 2.2.2.2,
2.2.2.13 and 2.2.2.17, we obtain a morphism

(H,h'): (C,X*) — (D,D’) € Cat?.
Note that h can be recovered from h’ since, for g € X, we have
h(g) = Plgl = h'((9, %))
Thus, the above construction defines a function
¥p.p: Cath((C,X), U(D,D’)) — Caty((C,X*),(D,D"))

which is injective. It is moreover surjective since, by Proposition 2.2.2.16 and Lemma 2.2.3.3, any
morphism
(H,h): (C,X*) — (D,D’) € Cat?

is uniquely determined by H and the images of (¢,19) by h. Finally, we observe that the func-
tion ¥(p py is natural in (D, D’), so that C[X 1% is indeed the free n-categorical action on (C, X)
relatively to the forgetful functor U. O
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The construction (C, X) + C[X]* of the above proof uniquely extends to a functor
~[-]%: Cat} — Cat’

which is left adjoint to U. Given (H,h): (C,X) — (D,Y) in Cat}, the n-categorical action
morphism
H[Rh]*: C[X]* — D[Y]* € Cat?

is defined by
H[h#=H; and  H[h]X,((9.F) = (h(g), H(F))

for i € N, and (g, F) € X2

2.2.3.5 — Conduché functors. We now introduce Conduché functors, following the definition
given in [Gue20]. Let n € NU {w}, C,D € Cat, and F: C — D be an n-functor. We say that F is
n-Conduché when it satisfies that, for all i,k € N,, with i < k, u € Cg, i-composable v;,0; € Dy
such that F(u) = v; *; vy, there exist unique i-composable uy, u; € Cy such that

F(u;) =v; and F(up) =vy and 1wy % uy = u.
The Conduché property implies a unique lifting of identities:

Proposition 2.2.3.6. If F: C — D is n-Conduché, then given i,k € N, withi < k, u € Cg,
andv € D; such that F(u) = idX, there exists a unique u’ € C; such that

Fw)=0v and u=id,

Proof. We have F(u) = id* = id* #; id* and u can be factorized as id’% (w) *i wand u % idl;;(u).

Moreover,
- 1k _ gk _ gk _ 1k
FGidg- ) = 1dF o, ) = 1o (pay) = 1ds

and similarly,
F(idglf(u)) = id’zj

so that, since F is n-Conduché, u = id’;__ (u)- Finally, if u = id%, for some u’ € C;, then v’ = 9; (u),
which shows unicity. O

We can moreover characterize F as an n-Conduché using the precategorical structure of C and D:

Proposition 2.2.3.7. The n-functor F is n-Conduché if and only if for all i, ky, ko, k € N,, with
i =min(ky, ko) —1 and k = max(ky, ks),

and cellsu € Cy, vy € Dy, vz € D, such that vy, v, are i-composable and F(u) = vy »; vy, there exist
unique u; € Cy, and uy € Cy, such that uy, u; are i-composable and

F(u;) =v;, F(uy) =0y and wujeu; =u.
Proof. Suppose that F is n-Conduché and let i, kq, ko, k € N, satisfying

i=min(ky, k;) =1 and k = max(ky, k2),
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and cells u € Ci, vy € Dg,, v2 € Dy, such that vy,v, are i-composable and F(u) = v; ; v,.
Then, vy o; v3 = id]f,1 *; idlzjz, so, since F is n-Conduché and by Proposition 2.2.3.6, there exist
unique u; € Cg, and uy € Cy, such that u;, u, are i-composable and

F(u;) =0y, F(upy) =0, and u-= id’,j1 *; idﬁ2

where the latter equality is equivalent to u = uy o; uy.

Conversely, suppose that F satisfies the unique lifting property of the statement. Let i, k € N,
with i < k, u € Cy and vy, v; € Dg such that vy, v, are i-composable and F(u) = vy *; v,. We show
by induction on k — i that there are unique i-composable uy, u, € Ci such that

F(u;) =vy, F(uy) =0y and uq*uy =u.

If i = k—1, then vy *;v; = v1e; 02, so there exist unique uy, u; € C such that uy, u, are i-composable
and F(u;) = vy, F(uy) = v, and u = u; «; uy, and the last equality is equivalent to u = uy *; uy.
Otherwise, if i < k — 1, then

01 %; 02 = (01 & 9531 (02)) *ix1 (95,1 (01) # 02)
so there exist unique i-composable wy, w; € Ci such that
F(w1) = (019 041 (02)),  F(wz) = (951 (v1) % v2) and  wy kg w2 = u.

By the hypothesis on F, there exist unique i-composable cells u; € Cy and u; € C;;; such that

F(ui) =v1, F(uy) = 0;,,(v2) and uq e u; =w
and similarly, there exist unique i-composable u; € C;;; and u, € Cy such that

F(uy) = 95,(v1), F(uz) =vy and uje uz = ws.
Moreover, we have

F(a;rﬂ(ul)) = ai++1(Ul) = F(ui)
F(uy) = 0;,,(02) = F(9;,(u2))

and
vy (u1) o uy = 97,1 (w1) = 9y (W) = uj o 95 (un)
so that, by the hypothesis on F, 9}, (u;) = u] and u; = 9;,, (u2). Thus,
u = (u1 % 91 () *is1 (941 (ur) & uz) = Uy *;
For unicity, if there exist i-composable i, ti, € Ci such that
F(&l) = 01, F(l:lz) =02 and u= LNll *j Lle

then
F(iy o 0,1 (thp)) = 01 % 9741 (v2) = F(wy)
and
F(9F1 (1) o di2) = 971 (01) % 02 = F(wy)
so that, by the hypothesis on F,
w1 =% 9y (4z) and wy = a;r+1 (t1) o Uy

and, using the hypothesis on F again, we deduce that #; = u; and iy = uy, which concludes the
induction. Hence, F is n-Conduché. O
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2.2.3.8 — Conduché categorical action morphisms. Let n € N. Anticipating the associated
monomorphism preservation result for the left adjoint Catﬁ — Cat,1, we need to introduce
a notion of Conduché morphism between n-categorical actions, so that the Conduché prop-
erty will also be preserved by —[—]*. Following Proposition 2.2.3.7, given two n-categorical
actions (C,Cpy1), (D, Dpyq) € Catﬁ and a morphism (F, f): (C,Cy41) — (D,Dp41) € Cat‘,?, we
say that the morphism (F, f) is n-Conduché when F is n-Conduché and

(i) for all u € Cpyq, if f(u) =0’ o; 0 for some i € N,,_1, & € Dyyq and 0 € Dj,q, then there exist
unique i-composable u’ € C,41 and v € Cjyq such that

f(u’):a,, F(U)=5 and u:u'oi 0,

(i) for allv € Cpyy, if f(v) = tie; 0’ for some i € N,,_y, 4 € Djyq and 0’ € Dy,q, then there exist
unique i-composable u € Ciy1 and v € Cy41 such that

Fuy=4, f()=0¢" and v=ueo.

2.2.3.9 — Conduché functors and contexts. Let n € N U {w}. We now show that Conduché
functors have several good properties regarding contexts and context classes. First, they lift the
relations =,,, that define the m-context classes:

Proposition 2.2.3.10. Let H: C — D be a morphism in Cat, such that H is an n-Conduché
functor. Then, given m € N, and an m-context E; of C of type (u,u’) and an m-context E, of D of
type (H(u), H(u')) such that H(E;) ~p, E,, there exists an m-context E of C of type (u,u’) such
that

H(E;) = E, and E; ~p Es.

Proof. We prove this property using an induction on m. The property holds for m < 1, so suppose
that m > 2. Let )
(h, Firi) =E1 and (L, F2,72) = Es.

By Remark 2.2.2.4, it is sufficient to prove the case where H(E;) ~. E,. By the symmetry in the
definition of ~},, we can suppose that (~-L) is verified, so that there exist I/, 7/ € Dy,_; fori € {1, 2}
and an (m—2)-context class F’ and [, w, 7 € D,, such that

HF) =[(,F,7)] and F=[(,F.7)]

satisfying
H(L) = Loy (Weomg F'[HW)] oz 7)) H(ry) =7
=1 Fo = (W omey F'[HW)] oz 73) om—1 F
I} = a5, (w) F=7
I =a; (w).

By induction hypothesis, there is an (m—1)-context (I}, F{, r{) of C such that
H({) =1, H(F)=F, H(r)=# and F =[] F,r].
Considering H(l;), since H is n-Conduché, there are unique [, w € Cp,, and t,t’ € Cp,—1 such that

H()=1, H(w)=w, H{®)=F[H®w)], H)=F and L =lep 1 (Wepytemot’).
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By Proposition 2.2.2.15, we moreover have H(t) = H(F{[u]). We compute that

g (W) omg tom o t' =37 () = 1] e F{[u] ep—z 1]

and 5
H(9 (W) = 354 (W) =13

so that, since F is n-Conduché,
o _(wy=1, t=Fu] and ¢ =r].
By putting
r=ry, bL=1 L=0,(w), rp=r and rp=(wepn_1 F'[u']ep_17))emr

we have i i
H(r)=f, H(lz)=12, H(lé)=lé, H(r§)=f§ and H(rg):F2.

Hence, by defining F, = (I}, F’,r;) and E; = (ly, F5,13), considering (~-L), we have H(E;) = E,
and E; ~,, E,. m]

Moreover, the unique lifting property of Conduché functors can be extended to context and
context class evaluations, as in:

Proposition 2.2.3.11. Let H: C — D be a morphism in Cat,, such that H is an n-Conduché functor.
Given m,k € N, withm < k, u € Cy, 0 € Dy and an m-context E of type 0 of D,

(i) ifH(u) = E[d], then there exist unique v € Cy and m-context E of type v of C such that

H(v)=9, H(E)=E and u=E[v],

(ii) if H(u) = [E][4], then there exist unique v € Cy and m-context class F of type v of C such
that i
H(v)=0, H(F)=[E] and u=F[v].

Proof. We show this property by induction on m. If m = 0, the property holds. So suppose
that m > 0. Let ([, F/,7) = E. Assume first that H(u) = E[d]. Thus, H(u) =l ey, F'[0] ¢pu—1 F, sO
that, since H is n-Conduché, there exist unique I, r € Cp,, and w € C such that

H() =1, Hw)=F[3], H(r)=7F and u=Ilep 1 wepmqr.
By induction hypothesis, there are unique v € Cy and m-context class F’ such that
H(v) =9, H(F)=F and w=F[0]

thus, by putting E = (I, F/,r), we have H(E) = E and u = E[0], and the unicity of E and v follows
from the unicity properties above, showing (i).

Now suppose that H(u) = [[E]] [0]. In particular, we have H(u) = E[3], and, by the first part,
there exist v € Cy and an m-context E such that

H(w)=0, H(E)=E and u=E[0]

and we moreover have H([E])) = [E] and u = [E] [v], which concludes existence. For unicity,
suppose that there is v” € Ci and an m-context class F of type v” such that

H(')=9, H(F)=[E] and u=F[o].
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Let E’ be an m-context such that F = [E’]. So E ~,, H(E'), and, by Proposition 2.2.3.10, there
exist an m-context E such that

~m E and H(E)=H(E")
so we moreover have u = E[v]. Since u = E’[0’], by the unicity property of the first part, we
have v = v’ and E = E’, which implies [ E]] = F. Hence, (ii) holds. ]
In order for monomorphisms to be preserved by the functor —[—]#, one needs the injectiveness on

cells of such morphisms to extend to contexts and context classes. This is the case for Conduché
monomorphisms:

Proposition 2.2.3.12. Let H: C — D be a monomorphism in Cat,, which is moreover n-Conduché.
Givenm € Ny, and an m-type (u,u’), H induces an injective function between m-contexts (resp. m-con-
text classes) of type (u,u’) of C and m-contexts (resp. m-context classes) of type (H(u), H(u")) of D.

Proof. We prove this property by induction on m. When m = 0, the property holds. So suppose
that m > 0. Let E; = (I,F[,r;) and E; = (I, F},r;) be two m-contexts of type (u,u’) such
that H(El) = H(Ez), ie.,

H(h) =H(l), H(F)=H(F}) and H(r)=H(r).

Thus, since H is a monomorphism, [; = I, and r; = ry, and, by induction hypothesis, F| = F;.

Now let F; and F, be two m-context classes of type (u,u’) of C such that H(F;) = H(F,).
Let E, E; be m-contexts of type (u,u’) such that F; = [[E;]] and F, = [E;]. Thus, we have
that H(E;) ~,, H(E;) and, by Proposition 2.2.3.10, there exists an m-context E; such that

H(E\) =H(E;) and E; =~y E
By the first part, E; = E,, so that E; ~,, E,, which implies F; = F,. m]

Finally, since we aim at showing that monomorphic Conduché functors are preserved by —[—]4,
we prove that Conduché morphisms have a property of lifting of factorization of contexts and
context classes analogous to the one on cells:

Proposition 2.2.3.13. Let H: C — D be a morphism in Cat,, which is n-Conduché, m € N, (u,u’)
be an m-type of C, and E be an m-context of type (u,u’). Suppose that either H is a monomorphism
or (u,u’) is an instantiable type. We then have:

(i) if H(E) = G o; E’ for somei € Ny,_1, 9 € Dy and m-context E' of type (H(u), H(u')), then
there exist unique v € C;1 and m-context E’ of type (u,u’) such that

H(U) =0, H(E/) = ENI and E=0v o E,,

(ii) ifH([E]) = 3 % F for somei € Ny,_1, 3 € Diyy and m-context class F of type (H(u), H(u')),
then there exist unique v € Ciyq and m-context F of type (u,u’) such that

H(w) =09, H(F)=F and [E]=veF.

and similarly for compositions on the right of contexts and context classes by cells.
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Proof. We show the property by induction on m. The property holds for m < 1 so assume
that m > 1. Let E = (I,F,r) be an m-context of type (u,u’) such that H(E) = 0« E for
some i € Ny, 1,0 € D;y; and m-context E’ = (I', F/,7"). If i + 1 = m, we then have

H()=dep_t ', H(F)=F and H(r)=7#
thus, since H is n-Conduché, there are unique v € C;;; and I’ € Cy, such that
H(w)=3, H()=I" and l=vel

so that E = v e; E’ with E’ = (I, F, r), and one easily check that the unicity property is verified.
Otherwise, if i + 1 < m, we then have

H()=de1l', H(F)=d%F, and H(r)=de7.

By induction hypothesis and since H is n-Conduché, there are unique vy,v3,03 € Ci1q, ', 1’ € Cpy
and (m—1)-context class F’ such that

0 = H(v) 0 = H(vp) 0 = H(v3)
U=H() F' = H(F) = H(r')
l=0ve 1 F=uye F r=uvser.
Moreover,
o1 By (1) = 3y (1) = Flul = v o F'[u]
and

H(3y (1) = 3y (1) = F'[H(u)] = H(F'[u])
so that, since H is n-Conduché,
vy =0, and a9} _,(I')=F'[u]
Similarly,
vp=v3 and F'[u'] =9, ,(r)

so that E = vy »; E’ where E’ = (I/, F/,r’), and the unicity of such a factorization is easily deduced
from the unicity of vy, I’, ¥’ and F’. Thus (i) holds.

Now, suppose that H([[E]|) = 0 F for some i € N,,_1, 9 € Dj;; and (m—1)-context class F.
Let E’ be an m-context such that F = [E’]]. Then, H(E) =, vs; E’, so that, by Proposition 2.2.3.10,
there exists an m-context E of type (u,u’) such that

H(E) =0 E and E=x,E.
Then, by the first part, there exist v € C;;; and an m-context E’ of type (u, u’) such that
H(v) =0, H(E')=E and E=veE.
Thus, by putting F = [E’], we have [E]] = v +; F. Suppose now that
H(0) =9, H(F)=F and [E]=0«F

for some & € Cj;; and m-context class F of type (u,u’). If H is a monomorphism, then, by
Proposition 2.2.3.12, we have ¢ = 0 and F = F. Otherwise, if (u,u’) = (9, _,(w), 3} _,(w)) for
some w € Cp,, then, by Proposition 2.2.2.13 and Proposition 2.2.2.15, we have

g F[w] = E[w] =ve; Flw] and H(F[w]) = F[H(w)] = H(F[w])
so that, since H is n-Conduché, we have o = v and F[w] = F[w]. Moreover, since
H(F) = F = H(F)
we have F = F by Proposition 2.2.3.11. Hence, (ii) holds. O



122 CHAPIER 2. THE WORD PROBLEM ON STRICT CATEGORIES

2.2.3.14 — Monomorphism preservation. Let n € N. From the above properties on contexts
and context classes, we finally deduce a preservation property of monomorphisms of cellular
extension by the free action functor:

Proposition 2.2.3.15. Let (H,h): (C,X) — (D,Y) be a monomorphism in Cat}, such that H is
n-Conduché. The n-categorical action morphism H[h]? is a monomorphism and an n-Conduché
morphism of Cat,

Proof. Since (H, h) is a monomorphism, both
H:C—>DeCat, and h: X — Y € Set

are monomorphisms. Since H[h]r‘:\H((g, F)) = (h(g), H(F)) for (g, F) € X®, we have that H[h]#
is a monomorphism by Proposition 2.2.3.12. And it is n-Conduché as a consequence of Proposi-
tion 2.2.3.13. m|

2.2.4 Free (n+1)-categories on n-categorical actions

There is a forgetful functor
U': Catyy — Cat‘;:‘

which maps an (n+1)-category C to an n-categorical action (C<p, Cp4+1) by forgetting the o, opera-
tion (where we consider the (n+1)-precategory structure of C). Since U’ is obviously derived from
an essentially algebraic theory morphism, this functor has a left adjoint —[—]~: Cat? — Cat,;
by Theorem 1.1.2.7. In this section, given (C, A) € Cat’, we show that the (n+1)-cells of C[A]*
can be described as sequences of composable elements of A that are adequately quotiented. More-
over, we prove preservation properties of monomorphisms and Conduché functors for —[—]~

that are analogous to the ones proved in the previous section for —[—]%.

2.2.4.1—Sequences. Let n € N and (C,A) € Cat. We define the set A* of n-composable
sequences (or simply, n-sequences) of (C, A) as the set of terms of the form

(ug, ... ug)®
for some k € N and uy,...,ur € A such that uy,...,u; are n-composable. When k = 0, by
convention, there is an empty sequence (); for each u € C,. Given v = (vy,...,0;)° € A*, we

say that k is the length of v and we write |v| for k. Moreover, we define a source 9, (v) and a
target d; (v) for v by putting

9,(v) =9,(v1) and J;(v) =, (vg)

where, by convention, if v = ()3 for some u € C,, then 3, (v) = J;:(v) = u. Thus, we obtain an
n-cellular extension whose set of (n+1)-globes is A* and whose underlying n-category is C. We
now define composition operations for the n-sequences. Given i € N,,_;, a cell u € Cj4; and an
n-sequence v = (v, ...,0;)° € A* such that u, v are i-composable, we put

U'il):(u‘il)l,...,u'il)l)s

where, by convention, if v = (); for some 6 € Cp, then us; 0 = ()7, .. Given n-composable
n-sequences u = (uy, - - ,ux)’ and v = (vy,- -+, v7)° in A*, we put

S
uepv=(Uy,...,ug,01,...,07)°
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f g
N, AR
I=x Ju y—> 2z r=x——y o z
N A N
f/ g/
g f
i Yy Y g
' x—y o z r'=x Ju y—>
g f

Figure 2.2 — A configuration of 2-cells [, I, r,r’, u, v such that X (I, r,r’, u, )

In order to obtain a strict (n+1)-category from C and A*, we need to quotient A* so that the
exchange condition (E) on precategories holds (c.f. Theorem 1.4.3.8). For this purpose, we define
a relation

X CA®

such that, given LI, r,v",u,uv € A, X(Ll',r,r’, u,v) holds when u, v are (n—1)-composable and the
following equalities hold in A

l=ue,3,(v) r=20,(u)ep10

I'=3(u)ep_1 0 r'=ue,q 35 (0).

In Figure 2.2, we illustrate this condition in the case of a 1-categorical action. Given ,I’,r,r" € A,
we write X(,I’,r,r’) when there exist u,o € A such that we have X(LI’,r,r’,u,v). We de-
fine an equivalence relation ~ on A* as the reflexive symmetric transitive closure of ~!, where,
forl=(lL,....,Ix)*and r = (rq,...,rr)* in A*, I ! r when thereisi € N _, such that

X(l,-,l,-+1,r,-, I"i+1) and lj =7rj fOI'j ENZ \ {l,l+1}
We write A~ for the quotient set A*/~ of n-sequence classes and write
[-]: A* — A®

for the associated projection. We remark that, if u,0 € A* are such that u ~ v, then |u| = |v|. Thus,
the length given for the members of A* induces a length for the members of A™.

Remark 2.2.4.2. The relation ~~! on A*, which is defined by u ~™! v when v ~! u for all u,0 € A*,
admits a definition which is symmetrical to the one of ~!. Moreover, ~ can be equivalently
described as the reflexive transitive closure of ~! U ~71, so that, in the proofs, by symmetry of
the definitions of ~! and ~~!, we can often reduce a case analysis of u ~ v to u ~! o,

Note that the operations 95 for € € {—, +} on A* are compatible with the relation =, so that they
are well-defined on A™ as well. Thus, we obtain an n-cellular extension C[A]~ by extending the
strict n-category C with A~. The operations s; for i € N,,_; and s, defined for A* are compatible
with the relation =, so that they are well-defined on C[A]?,, = A™ as well. We add an identity

n+1

operation by putting id”*! = [()$] for u € C,. We then have:

Proposition 2.2.4.3. The operations id™" and «; fori € N, defined above equip C[A]* with a
structure of an (n+1)-precategory.
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Proof. The axioms of (n+1)-precategories are then easily verified from the definition of A* and
since C[A]Z,, = C is an n-precategory. O

More importantly, we have
Proposition 2.2.4.4. C[A]” has a structure of (n+1)-category.

Proof. We prove the criterion (E) that characterizes (n+1)-categories among (n+1)-precategories
by Theorem 1.4.3.8. This criterion is already satisfied by C, so that it is enough to verify it on

(n+1)-cells. Given u € C[A]Z,, (resp. v € C[A]7Z,,), we write PX(u) (resp. PR(v)) when we have

n+1 ( n+1

(uwi1 35 (0)) o (3} (1) w11 ) = (3} () o1 ©) o (wer1 T} (0) (2.6)

foralli € Ny, and v € C[A], (resp. u € C[A]7;,) such that u, v are i-composable. Note that (E) is
satisfied if and only if P%(u) and PR (u) for allu € C[A]Z,,. By symmetry, we only prove that PX(u)
for all u € C[A]7,,. We first show that, given u € Cp,

n+l1°

n+1°

P (id™*') holds. (2.7)
Indeed, for all i € N7, and v € Cj4; such that u,v are (i—1)-composable, we have

(i oy 97 ()« (97 (idj ) oi-1 0)
= id™" (1 -1 9} (0)) o (] () oi-1 0)
=1id"™" ((u i1 97 (0)) % (3 (u) oi-1 v))
=1d™ (0] () -1 ) % (uei_1 3} (v))) (by (E) in C)
= (97 (u) oi-1 0) & id™" (u+;_1 3] (v))
= (97 (u) o1 0) o (id"™" (1) o1 9} (v))

and, for all v € Cy,4; such that u, v are (n—1)-composable, we have

(i oy 3, (0)) on (9 (L) op_y 0)
= idyyy (1 ono1 3, (0) o (3 (i) 0oy )
=ue,_g (0)
= (9, (id}") en—1 (0)) o 1" (u 04—y 35 (0))
= (9, (id*") on-1 (0)) o (id};™" oy 3 (0))

thus (2.7) holds. Now, we show that, given n-composable u;, u; € C[A]~

n+1°
PY(u;) and P"(u,) implies P*(u; o, uy). (2.8)

Indeed, if P"(u;) and P*(u,) hold, then, for i € N*_, and v € Cyy; such that uy, v is (i—1)-compo-
sable, we have

[(t1 o ) #i—1 9} (0)] o (9] (41 o iz) *i-1 0)
= [ (1 01 9; (0)) on (uz %1 9; (0))] & (] (g o Us) &1 V)
= [(u1 -1 9; (0)) o (9] (1 o tiz) *i-1 0)] o [(uz %=1 3; (0)) o (3] (1 o U2) -1 )]
= [(u1 %i-1 9 (0)) & (] (1) o1 0)] on [(uz oi-1 9} (0)) & (9] (u2) ¢i—1 0)]
= [(ai_(ul on Uz) %1 0) & (U1 %1 a:r(v))] *n [(31'_(141 on Uz) %1 0) o (U2 %1 aj(“))]
(by PL(Ul) and PL(uz))
= (07 (uy op uz) i1 0) & [(uy %i—1 9} (0)) o (uz %i—1 9} (0))]
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= (9; (ug o uz) o1 0) & [(u1 o u2) %1 9} (v)]
and, for v € C[A]7,, such that u; and v are (n—1)-composable, we have

[(u1 on ) on—1 3}, (0)] o (9 (U1 on tz) @p—1 ©)
= [(u1 on-1 9, (0)) o (2 *n-1 9, (0))] o (3}, (w1 *n U2) *p-1 )
= [(u1 on-1 9, (0)) on (U2 *n—1 3}, (0))] o (3}, (112) -1 0)
= (u1 *n-1 9, (0)) on [ (g on—1 9, (0)) o (95 (t2) *p—1 0)]

= (1 on—1 9, (0)) on [ (3 (112) o1 ©) on (g on1 375(0))] (by P"(u2))
= [(ug on-1 9;,(0)) o (3} (u1) on—10)] o (U2 *p—1 9 (0))
= [(3; (1) on—10) o (tty on_1 35(0))] o (g on_1 3(0)) (by P"(u1))

= (ar:(ul °n uz) *n—1 0) *n [(ul *n—1 a:;(v)) *n (UZ *n—1 a:;(v))]

= (ar_l(ul *n uZ) *n—1 0) *n [(ul *n uZ) *n—1 a:(l))]
thus, (2.8) holds.

Hence, it is enough to show P*(u) for u = [ (u’)*] withu’ € A. Giveni € N_, and v € Ci such
that u, v are (i—1)-composable, the equality (2.6) holds since we have

(u” o121 5 (v)) % (3] (') oi-10) = (] () %=1 0) & (' %; 3}, (0))

by Axiom (A-iv). We show that (2.6) holds for v = [[(vy,...,0x)°]] € C[A]7,, such that u, v are

n+l
(n—1)-composable, using an induction on k € N. The case k = 0 corresponds to v = idg+1 for

some cell 0 € Cp,, and, by a similar argument than the one used to show (2.7), we have that (2.6)
holds. When k > 0, given 0’ = [ (v, . . ., vx)%]], we have

(o1 3, (0)) o (95 (1) o451 0)

= ([@)°] on-1 9, (v1)) o (3 () op—1 [(02)°]]) on (35 () en—10")  (since v = [(01)°] en @)
= [« on-1 9, (v1), 3, (') on1 01)°]| o (9} () on-10")

= [[(9, (') on-1 01,t" op—1 3, (01))° ]| n (9, (1) o1 0") (by the definition of ~)
= (9, () on—1 [(©1)°]]) o (w on—1 9, (01)) o (3}, (u) op—1 0")

= (9, () on—1 [(©1)°]) on (w 0n_1 3, (v")) #n (O} (1) 0n—1 ©")

= (3 () s [00)°]) on (95 (&) on1 0) on (wonr 31()) (by induction hypothesis)
= (3, () on_1 0) op (Uep_1 3} (V) (since v = [[(01)*] e ©”)

thus (2.6) holds, which concludes the proof of P“(u). Hence, C[A]* is an (n+1)-precategory
satisfying (E), so it is an (n+1)-category by Theorem 1.4.3.8. O

Finally, we show that this construction is universal:

Proposition 2.2.4.5. C[A]~ isthe free (n+1)-category on the action (C, A) relatively to the forgetful
functor U’.

Proof. Let D be an (n+1)-category and (F, f): (C,A) — (D<p, Dp+1) be a morphism of n-catego-
rical action. We define an (n+1)-functor G: C[A]® — D such that G<,, = F. We first define G
on A* by putting

G((O)3) = idztt) G((01,- .. 0)") = F(01) o+~ on F(01)
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for u € C,, and n-composable vy, . . ., vy for some k € N*. Now, given u, u’ € A that are (n—1)-com-
posable, we have

[f (@) on1 F(3,(u"))] on [F(35(w)) on-1 f(u)]
= [F(3, () on-1 f()] on [f (1) on1 F(35 ('))]
by (E) on D. Thus, given u = (uy,...,ux)® and v = (vy,...,07)° in A* such that u ~ v, we

have G(u) = G(v), so that G is well-defined on C[A],, = A*/~, and it is easily shown to be an
(n+1)-functor. The operation (F, ) — G defined above induces a function

2

Op: Cat? ((C, A), (D<p, Dns1)) — Catpnyr (C[A]%, D)

which is natural in D. Note that 0p is injective, since f(u) = G([[(u)®]) for every u € A. It
is moreover surjective since a (n+1)-functor H: C[A]® — D is uniquely determined by H<,
and (H([[ (w)*]]))uea. So C[A]” is the free (n+1)-category on the n-categorical action (C,A). O

In the following, for all n-categorical action (C, A), we write C[A]~ for C[A]~ as above. The
construction (C, A) +— C[A]~ uniquely extends to a functor

—[-]7: Cat,; — Catyyy
which is left adjoint to U’. Given (H, h): (C,A) — (D, B) in Cat}, the (n+1)-functor
H[h]*: C[A]” — D[B]~ € Caty;
is defined by
H[hl7 =H; and  H[h ([(u .. oue)®]) = [(R(w1), ..., h(w))*]]
fori € N, and (uy,...,u)® € A*.

2.2.4.6 — Monomorphism preservation. In this section, we complete the monomorphism
preservation result for —[—]* given in Proposition 2.2.3.15 with a similar one for —[—]~. Like
for —[—]4, the functor —[—]~ does not have to preserve monomorphisms in general because of
the quotient with ~ of the (n+1)-cells. However, as we will prove, it preserves monomorphisms
that are moreover Conduché. Indeed, the latters are well-behaved regarding the relation ~ since
they can “lift” it.

Letn € Nand (F, f): (C,A) — (D, B) be a morphism in Cat’. We write
f* A% 5 B

for the function which maps (uy, ..., ux)* € A* to (f(u1),..., f(ux))® € B*. Moreover, we write
7 A > B~

for F[f]7,,. We first prove a lifting property for ~:

Proposition 2.2.4.7. If (F, f) is a monomorphism and n-Conduché, we then have

(i) forall,l' € A and 7,7 € B such that that X(f(1), f(I'),7,7"), there exist uniquer,r’ € A
such that f(r) =7, f(r') = and X (LU, r, 1),

(i) forallt € A* andt’ € B* such that f*(t) ~ t’, there is a uniquet’ € A* such that f*(t') =t/
andt ~ t'.
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Proof. Let I’ € Aand 7,7 € B such that X(f(l), f(I'),7,7"). So there exist @, € B satisfying

f(l) =tepy0,(0) F=0,(u)ep-10
f') =3 (@t) op1 0 P =t ey_q 9y (D).
Since (F, f) is n-Conduché and a monomorphism, there exist u,v € A such that
i = f(w) L= ton s 3 (0)
o= f(v) "= 35 (u) ep-1 0.

By putting r = 9, (u)ep_10 and r’ = ue, 1 9;_,(v), wehave f(r) =7and f(r') =7 and X (L, I',r, 1’).
The unicity of r, 7’ comes from the fact that f is a monomorphism. Thus (i) holds.

Now let t € A* and t’ € B* such that f*(¢) ~ t’. By Remark 2.2.4.2, it is enough handle the
case where f*(t) ~! t’. So suppose that f*(t) ~! t’. By (i), there is t’ € A* such that f*(¢') = ¢’
and t ~ t’. The unicity of ' comes from the fact that f* is a monomorphism. Thus (ii) holds. O

We then deduce a monomorphism preservation result for —[—]~:

Proposition 2.2.4.8. If (F, f) is a monomorphism and n-Conduché, then the (n+1)-functor F[ ]~
is a monomorphism.

Proof. Let u,u’ € A® such that f~(u) = f~(v’), and t,¢’ € A* such that [¢] = v and [¢']] = v
Note that f*(¢) = f*(t’). By Proposition 2.2.4.7(ii), there exists f € A* such that

(&) =f*t') and t=~*
Since f is injective, f* is too. Thus, we have t = t’, so that u = u’. m]
Moreover, Conduché functors are also preserved:

Proposition 2.2.4.9. If (F, f) is a monomorphism and n-Conduché, then the (n+1)-functor F[ ]~
is (n+1)-Conduché.

Proof. We use the characterization of (n+1)-Conduché functor given by Proposition 2.2.3.7. First,
let u € A® such that f~(u) = 0 «; @’ for some i € N,,_;, 0 € D;y; and @’ € B®. Given t € A*
and t’ € B* such that [[¢]] = u and [']] = @’, we have
Fr) ~ae T
so that, by Proposition 2.2.4.7(ii), there exists f € A* such that
fr*(f)=det and t~%.
Since (F, f) is monomorphic and n-Conduché, there exist v € Ciy; and t’ € B* such that
F(v) =93, f*(t')=t" and t=uvet.
Hence, putting u’ = [[¢']], we have f*(u’) = @’ and u = v e; u’. The unicity of v and u’ is a
consequence of Proposition 2.2.4.8.
Now, let u € A~ such that f~(u) = 4 e, i for some iy, 4, € B¥. Givent € A* and t;, 1, € B*
such that [[t]] = u, [#1]] = @ and [[£;] = @2, we have
fF) =~ tienty
so that, by Proposition 2.2.4.7(ii), there exists f € A* such that f* () = t; s, t,. Since e, is defined
as concatenation of lists on A*, there are t;, t, € A* such that

f*(tl) = El, f*(tg) = Ez and [ = Iy ety

By putting u; = [#1]] and uy = [t,], we have f~(u;) = @y, f~(u2) = 42 and u = uy », up. The
unicity of uy, uy is a consequence of Proposition 2.2.4.8. We conclude using Proposition 2.2.3.7. O
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2.2.5 Another description of free categories on cellular extensions

Let n € N. We can sum up the content of the previous sections to give another description of the
functor
—[-]: Cat] — Catpy;.

Indeed, since its right adjoint V,,: Cat,4+; — Cat] is the composite of the right adjoints
U’: Catpy; — Cath and U: Cat’ — Cat,

we have, by Propositions 2.2.3.4, 2.2.4.5, 1.2.3.14 and 1.2.3.15, that there exists a canonical natural
isomorphism
®: —[-] = (=[-]7) o (~[-1%) (2.9)
and, writing n and n’ for the units associated to the respective adjunctions
~[-14V, and (=[-]D) o (-[-]) 1 UW
we moreover have n’ = ® o p.

2.2.5.1 — Some properties of free extensions. This description allows us to prove several
properties of the functor —[—]. First, we show that (n+1)-generators of an n-cellular extension
are injectively embedded in the associated free (n+1)-category:

Proposition 2.2.5.2. Given an n-cellular extension (C,X), n(cx) is @ monomorphism.

Proof. Since n’ = ® o p, it is enough to prove that n’ is a monomorphism. By definition of the
functors —[—]# and —[-]~, UECX): (C,X) — C[X"]* is the identity on the i-cells for i € N,,.
Moreover, given g € X, UE c.x) maps g to

Niex) (9 = [((g. )]

By the definition of =, the restriction of ~ to sequences of length 1 is the identity relation. So,
given generators ¢,g’ € X such that UECX) (9) = n{cx)(9"), we have ((g, 19))° = ((¢’,19))*, and
in particular g = ¢’. Thus, ryE cx) is a monomorphism and so is 17(c x). O

Given an n-cellular extension (C, X), the above proposition justifies that, given g € X, we di-
rectly write g for n(c x). Our description of —[~] also induces a decomposition property for the
(n+1)-cells of free extensions:

Proposition 2.2.5.3. Given an n-cellular extension (C, X) and u € C[X],+1, u can be written

Fl[gl] *n oot ¥p Fk[gk]
where k € N, g; € X and F; is an n-context class of type g; for i € Ni.. Moreover, k is unique for u.

Proof. By the isomorphism (2.9), it is sufficient to prove this property in (X*)~. First note that,
given g € X and an n-context class F of type g, by Lemma 2.2.3.3, we have the following equalities
in (X4)*:

[((g. F))*] = FI[((9. P))*]] = Fln{c.x)(9)]-

By definition of (X*)*, u € (X®)* is of the form

u=[(ug,...,ur)’]
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for some u; € XA fori € Nz. Moreover, each u; is of the form

u; = (g, Fy)

for some g; € X and n-context class F; of type g;. Thus, we have

u= [[(ul)s]] *n ot *p [[(uk)s]]
=F [UEC,X) (g1)] #n -+ *n Fi [’72(;,)() (g1)]
which is the wanted form. Moreover, since the length of an n-sequence is preserved by =, k is
unique for u. O
Finally, we can combine the monomorphism preservation results given for the functors —[—]%
and —[—]~ to deduce a monomorphism preservation property for —[—]:

Proposition 2.2.5.4. Given a morphism (F, f): (C,X) — (D,Y) € Cat} such that (F,f) is
a monomorphism and F is n-Conduché, we have that F| ] is a monomorphism and (n+1)-Conduché.

Proof. This is a consequence of Propositions 2.2.4.8, 2.2.4.9 and 2.2.3.15. O

2.2.5.5 — Monomorphisms of polygraphs. We conclude this section with a criterion for mono-
morphisms of polygraphs which will be useful to prove that the word problem instance on a
polygraph reduces to a word problem instance on a finite subpolygraph. First, we adapt Proposi-
tion 2.2.5.4 to polygraphs:

Proposition 2.2.5.6. Givenn € NU{w} and a morphism F: P — Q € Pol, such that F;: P; = Q;
is injective fori € N, then F*: P* — Q" is a monomorphism and n-Conduché.

Proof. By a simple induction on n € N, using Proposition 2.2.5.4. The property moreover holds
for n = w since, given an w-functor G: C — D, G is a monomorphism (resp. w-Conduché) if and
only if G<j is a monomorphism (resp. k-Conduché) for k € N. O

We can now deduce the following criterion for monomorphisms of polygraphs, which already
appears in the work of Makkai:

Proposition 2.2.5.7 ([Mak05, Lemma 5.(9)(ii)]). Givenn € NU {w} and a morphism F: P — Q
in Pol,,, the following are equivalent:

(i) F is a monomorphism in Pol,,

(ii) fori € Ny, F;: P; — Q; is a monomorphism in Set,
(iii) F* is a monomorphism in Cat,,
(iv) fori € Ny, F: P} — Q] is a monomorphism of Set.

Proof. We prove this property using an induction on n € N. We can observe that the property
holds for n = 0. So suppose that the property holds for some n € N. We show that it holds
forn+ 1. Solet (F, f): (P,X) — (Q,Y) be a morphism of Pol,,; with F: P — Q € Pol,
and f: X — Y € Set.

Proof'that (i) implies (ii): Since (—)2‘;} is a right adjoint, F is a monomorphism, so that, by induction
hypothesis, F;, is injective. Let g1, g» € X such that f(g;) = f(g2). Then, for € € {—, +},

F*(d5,(91)) = F*(d;,(g2)).-
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Since F} is injective, we have d,(g91) = d},(g2). Let Y = {«} and (P,Y) be the (n+1)-polygraph
such that
d,(x) =d,;(g1) and d;(x) = d;(g1).

Denoting f: Y — X for the functions such that fi(x) = g; for i € {1,2}, f! and f? induces
morphisms of polygraphs (idp, 1), (idp, f%): (P, Y) — (P, X) and we have

(F.f)o (idp’fl) =(Ff)o (idP’fz)~
Since (F, f) is a monomorphism, it implies f! = £, i.e,, g; = g». Thus, f is an injective function.
Proof that (ii) implies (i): This is trivial.

Proof that (iii) implies (iv): For i € N,,4, the functor (-);: Cat,.; — Set is derived from a
morphism of essentially algebraic theories. Thus, by Theorem 1.1.2.7, it is a right adjoint, and
as such, it preserves monomorphisms. Hence, if F*[f] is a monomorphism, then F*[f]; is a
monomorphism for i € N,,4.

Proof that (iv) implies (iii): A morphism G: C — D € Catp is completely determined by
the G;: C; — D, for i € Nyyy. Thus, if F*[f]; is a monomorphism for i € N,,;, then F*[f]
is a monomorphism.

Proof that (ii) implies (iv): This is a consequence of Proposition 2.2.5.6.

Proof that (iv) implies (ii): By the induction hypothesis, F;: P; — Q; is a monomorphism of set
for i € N,,. Moreover, we have the commutative diagram

X / >Y

n(p*.x) nw@*y)

p* [X]n+1 *—> Q* [Y]n+1
F*[flnn

where 7(p+ x) is injective by Proposition 2.2.5.2, and F|[ f],1 is injective. Thus, f is injective.

For the extension to n = w, note that the functors (_)E(I)clw: Pol,, — Pol; for k € N preserves

monomorphisms (since they are right adjoints by Proposition 1.3.3.12) and jointly reflect them
(since Pol,, is a limit cone on the categories Pol). Thus, F is a monomorphism in Pol,, if and
only if Fj is a monomorphism in Poli for k € N. We then conclude using the same remark as
the one in the proof of Proposition 2.2.5.6. O

2.3 Computable free extensions

In order to consider decidability problems on strict categories, like the word problem, we must first
clarify the notion of computability on these structures and, in particular, how to represent them
computationally. In classical computable model theory [Har98; AK00], computable models are
structures whose sets are subsets of N and whose operations are recursive functions between those
subsets. However, this approach would be inadequate for our purposes since the constructions
we introduced for strict categories, like the functor —[—]: Cat}, — Cat,1, do not produce strict
(n+1)-categories whose sets of cells are subsets of N. Instead, we use encodings to witness that
these sets can be represented as subsets of N and the structural operations (sources, targets,
identities, compositions) as recursive functions between these subsets.

After recalling the definition of recursive functions, we introduce the setting of computability
with encodings that will then allow to define computational descriptions of strict n-categories
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(Section 2.3.1). Using this formalism, we give sufficient conditions for the free extension on a
cellular extension to be computable (Section 2.3.2). The constructive content of the proofs will
ultimately lead to a concrete computational implementation, as we will see in Section 2.4. We
then consider the special case of polygraphs and give a more efficient procedure to compute the
free strict category on a polygraph (Section 2.3.3).

2.3.1 Computability with encodings

In this section, we introduce the formalism of computability with encodings, after recalling
some elementary definitions and facts about recursive functions. The latter are essentially the
functions N — N whose values can be computed by a program or an algorithm. We then introduce
computational descriptions for the higher categorical objects that we will manipulate (n-globular
sets, n-categories, n-precategories and n-cellular extensions, etc.). These descriptions will consist
in encodings and recursive functions that represent the structural operations of these objects by
the mean of the encodings. Using such descriptions, higher categorical objects can then be inputs
and outputs of programs.

2.3.1.1 — Recursive functions. We recall the definition and several elementary properties of
recursive functions. We refer the reader to existing monographs (like [Rog87]) for a more complete
presentation.

Given two sets X, Y, we write Part(X,Y) for the set of partial functions between X and Y.
A function f € Part(X, Y) is total when it is defined on all X. There are several operations which
can be defined between the partial functions in the sets Part(N, N).

For k € Nand (li)ew; € N¥ there is a composition operation

Ok, (L) * Part(Nk; N) x l—[ Part(le,N) N Part(Nll+---+lk,N)

. sk
zeNk

so that, given partial functions g € Part(N¥ N) and f; € Part(N% N) for i € N*, the partial
function h = oy (;,),(g, (fi)i) is such that, for x; € N, X € Nk, h(x1,...,Xx) is defined if and
only if f;(%;) is defined for i € N} and g(fi(%1), ..., fk (%)) is defined, and in this case,

h(xy, . %) = g(A(x), - - fi (%)

For k € N, there is a recursion operation
Pk Part(NF, N) x Part(N**2 N) — Part(NF*!, N)

so that, given f € Part(N¥,N) and g € Part(N**2,N), the partial function h = pi(f,g) is such
that, for all xq,...,xr € N,

- h(x1,...,xx,0) is defined if and only if f(x, ..., xx) is defined, and, in this case,
h(x1, ..., %%, 0) = f(x1,...,xk),
- forn e N, h(xy,...,xr,n+ 1) is defined if and only if both
h(x1,...,xx,n) and  g(xy, ..., xk 0 h(x1, ..., x,))
are defined and, in this case,

h(xy, ..., xpn+1) =g(xy, ..., %Xk n h(x1,...,%p)).
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For k € N, there is a minimization operation
pig : Part(NF*1 N) — Part(NF, N)
such that, given f € Part(Nk“, N), the partial function g = p (f) is so that, for all xy,...,x; € N,

— if there exists a smallest number n € N such that f(xy, ..., x, n) is non-zero or undefined,
then
glxy, .., xx) = f(x1, ..., Xk, 1)

(if f(x1,...,xx, n) is undefined, then g(xy, . . ., x¢) is undefined),
- otherwise, g(xy, ..., xx) is undefined.

We define subsets Recy C Part(NK,N) for k € N as the smallest family of subsets of Part(IN*, N)
such that

for all k € N and ¢ € N, the total function (xy, ..., xx) — cis in Recg,

forallk e N*andi € N}‘;, the total function (xi,...,xx) + x; is in Recy,

the total function x — x + 1 is in Recy,

given k € N and (li),»eN*k € Nk, g € Reck, fi € Recy, for i € N7, the partial func-
tion ok,(li)i (g’ (ﬁ)l) iS ln ReCll+...+lk,

- given k € N, f € Recg, g € Recg,z, the partial function pi (f, g) is in Recyy,
- given k € N and f € Recyyy, the partial function p (f) is in Rec.

Given k € N, a partial function f: N¥ — N is said to be recursive when f € Reci. It is well-
known [Tur37] that f is recursive when one of the following equivalent conditions hold:

— there exists a Turing maching M such that f is defined on (xy,...,x;) € N if and only
if M halts on input (xi,...,xx) and, in this case, f(x, ..., xx) is the output of M on this
input;

— there exists alambda-term ¢ such that f(xy, ..., x¢) is defined if and only if there exists x € N
such thatt [x;] ... [xx] is beta-equivalent to [x] and, in this case, f(x3, ..., xx) = x (where,
for i € N, [i] denotes Church-encoding of i).

So, intuitively, recursive functions are the partial functions that can be computed by a program.
In particular, functions like addition, multiplication, division are recursive. For every k € N, there

exists a recursive function
Uk : N 5 N

which is universal for recursive functions with k arguments, i.e., for every function f € Recy,
there exists ¢ € N, such that, for all x € N¥, vk (c, %) is defined if and only if f(x) is defined, and,
in this case, vk (c, X) = f(x). We say that such c is a code for f. Moreover, the recursive function vy
can be chosen such that there are recursive functions

Ok, (I;); * N1 5 N and Dkt N? > N and fr: N — N

for k € N and (I;); € N* satisfying
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~ for f € Recy, f* € N, g; € Rec, and g} € N for i € N}, if f* is a code for f and g] is a code
for g;, then 8¢ (), (f*, (97):) is a code for o 1,),(f, (9:)i),

- for f € Recy, f* € N, g € Reckyz, g° € Nif f* is a code for f and ¢* is a code for g,
then pr(f*, g") is a code for pi(f, g),

- for f € Recgy; and f* € N, if f* is a code for f, then ji(f*) is a code for u(f).

In the following, we suppose fixed a sequence of such universal function v for k € N. Finally, we
recall that a subset S C N¥ is said recursive or decidable when the characteristic function

15: N¥ > {0,1} c N
is recursive.

2.3.1.2 — Bijections on integers. In order to represent tuples of elements of N as one element
of N so that these tuples can be manipulated by recursive functions, one needs bijections N — N
for k € N that have good properties regarding computability. We define such bijections below.

Let 0,: N x N — N be the function such that, for (¢, c;) € N?,

(cr+c)(er+ca+1)
5 .

02(c1,c0) =c1 +
We have that:
Proposition 2.3.1.3. 0, is bijective and both 8, and 92_1 are recursive.

Proof. We define a function 6,: N — N? as follows: for every ¢ € N, we put 0,(c) = (cy,cp)
where c1, ¢, € N are unique such that

(i) there is a unique k € N which is the smallest integer such that ¢ < @
(i) ¢ = c— YK
(iii) ¢, = KD ¢,

The function 6, is injective since, for c, ¢y, ¢z, k as above, we have

(k- Dk

k=ci+c+1 and c=c; + 5

Moreover, for (c1,cz) € N? and k = ¢; + ¢5 + 1, we have

(k- 1)k (k-Dk _ k(k+1)
SR -

592(61,02)<01+62+1+ 5 5

so that 0,(6;(c1, ¢2)) = (c1, ¢2). Thus, 65 is a section of 8, so 05 is bijective and 9_2_ 1 = @,. Moreover,
by their respective definitions, both 6, and 6, are recursive. O

The following property will be useful for showing that an algorithm that takes tuples as inputs
and involving recursion (i.e., the algorithm calls itself) is terminating:

Proposition 2.3.1.4. Forall ¢y, ¢y € N, max(cq, ¢z) < 05(cy, ¢2).

Proof. For all ¢1,c; € N, it is clear that ¢; < 62(cy, c2) by definition of 6;. Moreover, if ¢c; € N*,
then we have ¢; + ¢; + 1 > 2 so that 2¢; + ¢ < 6;5(cy, ¢2), and the conclusion follows. m]
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We define functions 6,,: N* — N for n > 2. The function 0; was defined above and we put
Ons1 = 02 © (1 X On)
for n > 2. We easily verify by induction that

Proposition 2.3.1.5. For everyn € N withn > 2, 0, is bijective and both 0,, and 0, are recursive.
Moreover, for all (cy,...,c,) € N, we have max(cy, ...,c,) < Op(cy,...,cn).

2.3.1.6 — Encodings. Given a set X, an encoding for X is the data of a relation &x € N x X such
that

(i) for all x € X, there exists x* € N such that x* Ex x,
(ii) for all x,x” € X and ¢ € N such that ¢ Ex x and ¢ & x’, we have x = x’.
The x* € N such that x* Ex x for some x € X are called codes of x and the set
{c € N | there exists x € X such that ¢ Ex x}
is called the support of Ex. The encoding X is said
— injective when, for all x € X, there is a unique ¢ € N such that ¢ & x,

— decidable when the set
{ceN|dxeX, c&x}

is decidable,
— equality-decidable when the set
{(c,c’) eNXxN|3IxeX, c&Ex and ¢ Ex} (2.10)
is decidable.
We note that:
Proposition 2.3.1.7. Given a set X and an encoding Ex of X, we have:
(i) if Ex is equality-decidable, then it is decidable,
(ii) if Ex is injective and decidable, then it is equality-decidable.

Proof. For (i), given ¢ € N, deciding whether “there exists x € X such that ¢ Ex x” is equivalent
to deciding whether “(x, x) belongs to the set (2.10)”. For (ii), given c;, ¢; € N, deciding whether
“(¢1, ¢2) belongs to the set (2.10)” is equivalent to, since Ex in injective, deciding whether “c; = ¢,
and there exists x € X such that ¢; Ex x”. ]

Example 2.3.1.8. The set N admits a trivial encoding Ey which is the identity relation. This
encoding is injective, decidable and equality-decidable.

Given two sets X and Y equipped with respective encodings Ex and Ey, and a partial function
fX—->Y

we say that f is computable when there exists a recursive function f: N — N such that, for
all x € X and x* € N with x* Ex x, we have that if f(x) is defined, then f(x*) is defined, and, in
this case,

f(x") &y f(x).
Such a function f is called a recursive model of f. Moreover, a code for f is a code of such a
function f. We easily verify that the sets equipped with encodings and the computable functions
between them form a category.
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2.3.1.9 — Datatypes. As we will see in Section 2.3.2, the formalism of encodings allows stating
in a precise sense how different constructions on higher categories are computable. However,
it is a rather low-level perspective which would likely differ from the one taken by an actual
implementation of these constructions. Indeed, in common programming languages, a set is
usually not encoded as a subset of N but as a subset of the inhabitants of some datatype. The
two approaches are essentially equivalent since a datatype t induces an encoding for the set
of inhabitants of t (in a way we will not explain, since it is technical and depends on how the
considered programming language is compiled). We shall mention this more concrete perspective
on computability in parallel to the one with encodings by provinding hints on how to encode the
different encountered sets with datatypes of OCaML. In the following, given a set S, we say that S
is encoded by a datatype t when S is equipped with an inclusion from S to the inhabitants of t .
In this case, the restriction of the encoding on t induces an encoding on S.

Remark 2.3.1.10. In the current implementation of OCaML, the int datatype can only encode
natural numbers up to 2° — 1. For simplicity, we shall assume in the following that int can
represent all the natural numbers, so that N is encoded by int . This approximation should have
no practical consequences since the code for the word problem introduced in the next section is
not expected to be used on examples that require integers beyond 2% — 1.

Example 2.3.1.11. Under the assumption of Remark 2.3.1.10, the set of finite increasing sequences

on N is naturally encoded by the datatype int list.

2.3.1.12 — Standard derivations of encodings. In order not to spend too much time defining
encodings, we define several derivations of encodings for several “data structures” that we consider
as standard. These derived encodings will equip implicitly the sets associated with the “data
structures”: subset of a set, product of sets, coproduct of sets, set of finite sequences over a set,
set of finite subsets of a set, dependent sum and functions with finite domains.

Let X be a set and X’ be a subset of X and Ex be an encoding of X. We derive an encoding Ex-
of X’ by putting ¢ Ex» s when ¢ Ex s for ¢ € N and s € X’. We easily verify that:

Proposition 2.3.1.13. The following holds:
(i) if Ex is injective, then Ex- is injective,
(ii) if Ex- is decidable and Ex is equality-decidable, then Ex- is equality-decidable.

Remark 2.3.1.14. If X is encoded by the datatype t, then X’ is naturally encoded by t as well.
Let X; and X; be two sets together with encodings Ex, and Ex,. We derive an encoding Ex, xx,

of X1 X X, from Ex, and Ex,: for all c € N and (x,y) € X; X X3, we put

c Exxx, (x,y)

when, for ¢, ¢c; € N such that (¢, ¢;) = 92_1(c), we have ¢; Ex, x and ¢; Ex, y. We easily verify
the following property:

Proposition 2.3.1.15. If the encodings Ex, and Ex, are decidable (resp. equality-decidable, injec-
tive), then Ex,xx, is decidable (resp. equality-decidable, injective).

Note that, given sets X, ..., X, for n > 3 with encodings Eyx, for i € N}, we can derive similarly
an encoding Ex, x...xx, for the product set X; X - - - X Xj,, and this encoding satisfies a property
similar to Proposition 2.3.1.15.
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Remark 2.3.1.16. If X3, .. ., X;, are encoded by datatypes t1,..., tn,then X X- - XX, is naturally
encoded by the datatype type t = Tuple of tl * ... % tn.

We also derive an encoding Ex,11x, of X1 U X, from Ex, and Ey,: for ¢ € N, given x € X;, we put

c 8X1UXZ [X1 (x)

when ¢ = 0,(1, x*) for some x* € N such that x* Ex, x; given y € X,, we put

¢ 8X1‘—|X2 le(y)
when ¢ = 0,(2,y") for some y* € N such that y* Ex, y. We easily verify that

Proposition 2.3.1.17. If the encodings Ex, and Ex, are decidable (resp. equality-decidable, injec-
tive), then Ex,.x, is decidable (resp. equality-decidable, injective).

Note that this definition adapts naturally to derive an encoding Ex,.;...ux, of a coproduct of
sets X; LI - - - Ll X},, and this encoding satisfies a property similar to Proposition 2.3.1.17.

Remark 2.3.1.18. If X3, . . ., X}, are encoded by datatypes t1,..., tn,then X;U---UX, is naturally
encoded by the datatype type t = Injl of t1 | ... | Injn of tn.

We derive an encoding Ex<« of the set X< of finite sequences of elements of X: for ¢ € N,
given k € Nand (xy,...,x;) € X%, we put

¢ Ex<o (x1,...,X1)

when ¢ = 0,(k,¢) with ¢ = O (cy, ..., cx) for some ¢, cy,...,cx € N such that ¢; Ex x; fori € NZ
(by convention, 6,(0,0) is the code of the empty sequence). We easily verify that Ex<« is indeed
an encoding and that:

Proposition 2.3.1.19. If the encoding Ex is injective (resp. decidable, equality-decidable), then the
encoding Ex<« is injective (resp. decidable, equality-decidable).

Remark 2.3.1.20. If X is encoded by the datatype t ,then X =% is naturally encoded by the datatype
t list.

We derive an encoding Ep,(x) of the set Pr(X) of finite subsets of X: for ¢ € N, given k € N
and xy,...,xx € X with x; # x; for i # j, we put

¢ Spp(x) X155 Xk}
when ¢ = 0;(k, ¢) with ¢ = 0 (cy, . .., cx) for some ¢, cq, . .., cx € N satisfying
€1 < - <k
and such that there exists a permutation ¢ of N,*( with ¢; Ex x,(;) (by convention, 6,(0,0) is the
code for the empty set). The codes of the elements are required to be sorted in order to preserve

the injectiveness. We verify:

Proposition 2.3.1.21. If the encoding Ex is injective (resp. equality-decidable), then Ep,(x) is
injective (resp. equality-decidable).
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Proof. The preservation of injectiveness is trivial. So suppose that Ex is equality-decidable.
Let ¢!, c? € N. We exhibit a procedure to decide whether there exists S € P¢(X) such that

c! Epx) S and ¢ Epix) S
First, we verify that, for i € {1, 2}, ¢! Ep(x) S' for some S' € P¢(X). We compute
(K, e') = 65 ()

If k! = 0, then ¢’ is a code if and only if ¢! = 0 and, in this case, it is the code for the empty subset.
Otherwise, if k! > 0, we compute

(ct,. ..,c;;) = 9};1(51)

If the ci, .. '>C;< are not sorted, then ¢’ is not the code of a finite subset. So suppose that ci, ces €
are sorted. Then, ¢’ is the code of an element of P¢(X) if and only if each c;. is the code of an
element of X for j € N and, for j;, j2 € Ny with j; # j, cj.l and cj.z encodes different elements of X.
These two conditions can be verified computationally since Ex is supposed equality-decidable.
So suppose that, for i € {1,2}, ¢’ Ep,(x) S for some S' € Pp(X). Then, S' = 5% if and only
if k; = ky and there exists a bijection o N* — N* such that c]1 and cz .+ encode the same
element of X for j € N; . Once again, since Ex is equahty decidable, thls condition can be

verified computationally. Thus Ep;(x) is equality-decidable. O

Remark 2.3.1.22. Our choice for the encoding of finite subsets does not preserve decidability in
general. Indeed, to decide if ¢ € N is the code of a finite subset of X, where ¢ = 0,(k, ¢) with k € N*
and ¢ = Ok (cy, ..., cr), we need to verify that the c; encode different elements of X, and we can
not do so computationally if we only know that Ex is decidable. In fact, it can be easily shown
that if Ep, (x) is decidable, then Ex is equality-decidable. However, other choices for Ep, (x) were
possible and, among them, ones that preserve decidability. But the one we proposed preserves
injectivity and that is our main concern for what is following.

Remark 2.3.1.23. If X is encoded by the datatype t such that the set of inhabitants of t is
equipped with a total order, then ¢ (X) is naturally encoded by the datatype t list . In practice,
we can suppose all the datatypes we will consider to be equipped with total orders since OCaML
can automatically derive particular ones for us.

Given moreover a finite set S and an encoding &g, we derive an encoding E(s x) of the set 7 (S, X)
of functions S — X: forc e Nand f: S — X, we put

cExisx) f

when ¢ Ep,(sxx) {(s, f(s)) | s € S}, i.e, c is the code of the graph of f, encoded as a finite subset
of S X X. From Proposition 2.3.1.15 and Proposition 2.3.1.21, we deduce that:

Proposition 2.3.1.24. If both Es and Ex are injective (resp. equality-decidable), then Eg s x) is
injective (resp. equality-decidable).

Remark 2.3.1.25. If S and X are encoded by datatypes s and t respectively, then 7 (S, X) is
naturally encoded by the datatype (s * t) list.

Finally, given a function S: X — Set (i.e, for x € X, S(x) is a set), and, for each x in X, an
encoding Es(x) of S(x), we derive an encoding Ey _ s(x) of the dependent sum

> S(x)

xeX
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as follows: for allc € N, x € X and y € S(x), we put

¢ 8y, s (%)
when ¢ = 0,(x", y*) for some x*, y* € N such that x* Ex x and y* Eg(x) y. We easily verify that:
Proposition 2.3.1.26. If Ex is injective and Es(x) is injective for x € X, then Ey _s(x) is injective.

Remark 2.3.1.27. If X is encoded by the datatype t, and, for x € X, S(x) is encoded by the
datatype u, then }}, .y S(x) is naturally encoded by the datatype t * u.

2.3.1.28 — Encodings for quotient sets. Under specific conditions, we can also derive encod-
ings for quotients sets, and they will play an important role in the algorithm that solves the
word problem. Given a set S and a relation R on S, R is right-finite when, for all s € S, the
set {s” € S| s R s’} is finite; given an encoding Eg of S, R is effectively right-finite when there
is a computable function R: S — P¢(S) such that, for all s,s” € S, s R s’ if and only if s” € R(s).
Dually, there are notions of lefi-finite and effectively left-finite relations. The relation R is decidable
when the characteristic function

1g: xS — {0,1} c N

is computable (where S X S is equipped with the encoding for product set given above and N
equipped with the trivial encoding on N).

Let X be a set and ~ be an equivalence relation on X. Given x € X, we write [x] € X for the
equivalence class of x with regards to ~. Let X/~ be the set {[[x] | x € X}, i.e, the quotient of X
by ~. We say that ~ has finite classes when [[x] is finite for all x € X. Equivalently, ~ has finite
classes if and only if ~ is right-finite (resp. left-finite). Given an encoding Ex of X, if ~ has finite
classes, we can derive an encoding Ex/,. of X/~ by putting, for all c € N and x € X,

¢ Ex/~ [x] when ¢ &p,x) [x].
We then have:
Proposition 2.3.1.29. Suppose that ~ has finite classes. Then, the following hold:

(i) the function which maps an element s € X/~ to the finite set of x € X such that [x] = s is
computable,

(ii) if Ex is injective, then Ex - is injective,

(iii) if Ex is equality-decidable and the relation ~ is effectively right-finite, then Ex . equality-
decidable (and so, decidable) and the function [-]: X — X/~ is computable.

Proof. Proof of (i): Since the code of s € X/~ is a code for the equivalence class of X defined by s,
the identity function N — N is a recursive model of the function which maps s € X/~ to the
equivalence class defined by s.

Proof of (ii): This is a consequence of the fact that Ep,(x) is injective when Ex is by Proposi-
tion 2.3.1.21.

Proof of (iii): Suppose that Ex is equality-decidable and ~ is effectively right-finite. Then, by
Proposition 2.3.1.21, Ep,(x) is equality-decidable. Since ~ is effectively right-finite, the func-
tion R: X — P¢(X) which maps x € X to its equivalence class is computable, relatively to the
encodings Ex and Ep,(x). So, let ¢!, c* € N. We give a procedure to decide if there is x € X
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such that ¢! Ex/. [x] and ¢* Ex/. [x]. Let (k,c') = 6,(c!). If k = 0, then ¢' is not a code
for an element of X/~. So suppose that k > 0. We compute (c},. ..,c}c) = 0];1(5). Since Ex
is equality-decidable, we verify that c; is the code for an element x € X. If it is not the case,
then c! is not a code for an element of X /~. Otherwise, since R is computable, we compute the
equivalence class X’ = R(x) of x. Then, by our definition of Ex/-, ¢! and ¢* encode the same
element of X/~ if and only if ¢! Epi(x) X" and ¢t Ep, (x) X', which can be decided since Ep,(x) is
equality-decidable by Proposition 2.3.1.21. Moreover, the function [-]: X — X/~ is computable
since, for x € X, a code of [x] is given by a code of R(x), which can be computed since R is
computable. O

Remark 2.3.1.30. If X is encoded by a datatype t and ~ has finite classes, then, by Remark 2.3.1.23,
the set X/~ is naturally encoded by the datatype t list.

We often do not have a direct description of the equivalence relation ~, and instead have a
relation ~! such that ~ is the reflexive transitive closure of ~!. In such a situation, we will use
the following property:

Proposition 2.3.1.31. Given a set S with an encoding Es, a relation ~' on S and an equivalence
relation ~ on S, such that Es is equality-decidable, ~' is effectively right-finite and ~ has finite
classes on S and is the reflexive transitive closure of ~', we have that ~ is effectively right-finite, Eg
is equality-decidable and the function [-]: S — S/~ is computable.

Proof. Let R: S — P¢(S) be the computable function such that, for all s,s” € S, s ~! s’ if and only
if s” € R(s). Using R, we can compute the equivalence class of s € S by the following procedure,
which is essentially a breadth-first search algorithm:

function CompUTECLASS(S)
N « {s}
D« 10
while N # 0 do
chooses’ e N
N < N\{s'}
if s’ ¢ D then
D« DU{s'}
N «— N UR(s)
end if
end while
return D
end function

Note that this procedure terminates on any s € S since D contains elements s’ such that s ~ s’
and ~ has finite classes, and, at each loop turn, either one element is removed from N or one
element is added to D, so that it gives a function ComPUTECLASS: S — P¢(S). Moreover, this
function is computable since Eg is equality-decidable. So ~ is effectively right-finite and Proposi-
tion 2.3.1.29(iii) applies. O

2.3.1.32 — Encodings for recursive functions. For k € N, by our choice of the universal func-
tions vy, there are encodings Erec, of Recy defined as follows: for all f € Recy and f feEN,fFEf
if and only if

ue(f*. ) = f(-).
By standard undecidability theorems on recursive functions, like Rice’s theorem, these encodings
are neither injective, nor equality-decidable. Decidability depends on the choice for vx. However,



140 CHAPIER 2. THE WORD PROBLEM ON STRICT CATEGORIES

the restrictions of the functions oy (;,),, px and py for k € N and ([;); € NF to recursive functions
are computable: recursive models are given by the function &y (;,),, px and fix. This enables to
write algorithms that take as inputs computable functions and outputs computable functions.

Remark 2.3.1.33. In particular, and this will be important in the following, any constructive proof
of a property that concludes that some function f is computable under some hypothesis leads to
an algorithm which computes a code for f from a code for this hypothesis.

2.3.1.34 — Computational categorical descriptions. In this paragraph, we introduce computa-
tional descriptions, or codes, for several higher categorical structures: n-globular set, n-categories,
n-precategories and n-cellular extensions. Such descriptions are the data of codes of recursive
functions that are recursive models for the different structural operations that appear in the defi-
nition of each structure. These descriptions will enable such higher categorical structures to be
inputs and outputs of computable functions.

Let n € N. Given an n-globular set G, an encoding &g of G is the data of encodings &; of
the sets G; for i € N,; it is injective (resp. decidable, equality-decidable) when &; is injective
(resp. decidable, equality-decidable) for i € N,,. Given such an encoding &g, the n-globular set G
is computable when the functions 9;, 9} : Gi4; — G; are computable for i € N,_;. A recursive
model of G is the data of recursive models d;, 07 : N — N of 9; and 9 respectively for i € N,_;.
A code for G is the data of 81._’#, 8;”# € Nfori € N,_; such that a;’# and 8;”# are codes for 9; and 8;’
respectively.

Given a strict n-category C and an encoding &Ec of C (seen as an n-globular set), C is computable
when the underlying n-globular set of C is computable and

— for k € N,,_;, the function id**': C; — Cy,; is encodable,

- for i,k € N,, with i < k, the functions *;: Cx X; Cx — Ck (seen as a partial function of
type Cx X Cx — Cy) is computable.

A recursive model of C is the data of a recursive model of the underlying n-globular set of C
together with

. k41 .
- for k € N,,_;, a recursive model id" " : N — N of id**!,
- for i,k € Nwith i < k, arecursive model #;;: N — N of ;.

A code of C is the data of a code of the underlying n-globular set of C, together with codes id****
of id**! for k € N,,_1, and codes *?k of #; for i,k € N, with i < k. Using 6, for the correct value
of m € N, a code of C can be represented as one element of N.

Remark 2.3.1.35. If Cy LU - - - L1 C,, is encoded by a datatype cell, then a recursive model of C can
be represented by OCamr functions

- csrc, ctgt : int -> cell -> cell,
— identity : int -> cell -> cell,
— comp : int -> int -> cell -> cell -> cell.

Given an n-precategory C and an encoding &c of C (seen as an n-globular set), C is computable
when the underlying n-globular set of C is computable and

— for k € N,,_1, the function idk*1 Cr — Cy41 is computable,
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- fori,k,I € N, with i = min(k, ) -1, the function et ; : Cx X; C; = Crnax (k) (Seen as a partial
function of type Cx X C; — Crax(k,1)) is computable.

We define the notions of recursive model and code of C as expected.

Remark 2.3.1.36. If Co LU - - - L C,, is encoded by a datatype cell , then a recursive model of C can
be represented by means of OCaML functions in a way analogous to Remark 2.3.1.35.

We verify that the definition of “computable” is coherent between n-categories and n-precate-
gories:

Proposition 2.3.1.37. Given an n-category C and an encoding Ec of C, the n-category C is com-
putable if and only if the n-precategory C is computable.

Proof. By Remark 2.3.1.33, the constructive content of the proof of Proposition 1.4.3.2 induces
an algorithm which computes a code of the n-precategory C from a code of the n-category C.
Conversely, the proof of Proposition 1.4.3.4 induces an algorithm which computes a code of the
n-category C from a code of the n-precategory C. Thus, the proposition holds. O

Given an n-cellular extension (C,X) € Cat}, an encoding E(c x) of (C,X) is the data of an
encoding Ec= (&;)ien,, of C (seen as an n-globular set) together with an encoding Ex of X. It
is injective (resp. decidable, equality-decidable) when both Ec and Ex are. Given such an encod-
ing &(c x), the n-cellular extension (C, X) is computable when the n-category C is computable
and the functions d,,,d}: X — C, are computable. A recursive model of (C,X) is the data of a
recursive model of the n-category C together with recursive models d, (_i; of the functions d,,
and d; respectively. A code of (C, X) is the data of a code of the n-category C together with
codes d**, d"* of d, and d}, respectively.

Finally, given an n-categorical action (C,A) and an encoding &c4) of (C,A) (seen as an
n-cellular extension), (C, A) is computable when the underlying n-cellular extension of (C, A) is

computable and, for i € N,,_;, the functions

oistni1: Cii XiA—> A and  epyi41: AX; Gy > A

are computable (as partial functions on domains C;1 X A and A X C;11 respectively). The notions
of recursive model and of code of (C, A) are defined as expected.

2.3.2 Computable free cellular extensions

In this section, we give conditions for which we can compute codes for free (n+1)-categories from
codes of n-cellular extensions. Using the decomposition of the functor —[—]: Cat} — Caty,
given in Section 2.2, this amounts to give conditions for which we can compute codes for the
images of the functors

—[—]A: Cat] — Catf,‘ and -[-]7: Cat‘,? — Cat,4q

The main obstacle for computability of the images of these functors are respectively the quotients
of m-contexts by the equivalence relations =,,, and the quotient of sequences using the equiv-
alence relations ~. Indeed, in each case, we must ensure that we can compute the equivalence
classes associated with each equivalence relations. Our plan is to use Proposition 2.3.1.31 on ~/,
and ~!, so that we need to find conditions for which ~! and ~! have finite classes and are ef-
fectively right-finite. The conditions we propose are some finite factorization properties on cells
of n-cellular extension and n-categorical actions, so that there are a finite number of possible
instances of the axioms defining ~., and ~! for each equivalence classes.
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2.3.2.1 — Finitely factorizable precategories. Let n € N. Given an n-precategory C, C is
finitely factorizable when we have that

- foralli € N,_; and u € Cj;5, there is a finite number of pairs
(u1,uz) € Cig X; Cip1 U Cigp X; Cigz (2.11)
such that u = u; »; uy,
- foralli € N,y and u € Cj4q, there is a finite number of pairs
(u1,u2) € Cis1 X; Ciny (2.12)
such that u = u; «; u,.

When C is equipped with an encoding &c, we say that C is effectively factorizable when it is
finitely factorizable and moreover

- for i € N,,_,, there is a computable function
Citz = Pr(Ciyz X Ciyg U Ciyy X Ciya)

which takes as input u € Cyy, and outputs the finite set of pairs (uy, up) as in (2.11) such
that u = uy e uy,

- for i € N,,_y, there is a computable function
Cis1 = Pr(Ciy1 X Ciyq)

which takes as input u € C;y; and outputs the finite set of pairs (uy, uy) as in (2.12) such
that u = uy *; us.

Remark 2.3.2.2. If Co U --- U C, is encoded by a datatype cell, then the above computable
functions can be represented by OCamr functions

- cfact_het_1l : int -> cell -> (cell * cell) list,
— cfact_het_r : int -> cell -> (cell * cell) list,
— cfact_hom : int -> cell -> (cell * cell) list,
where, for i € N,_,, we identify finite subsets of Ciiz X Ciy1 U Citq X Cip with pairs of finite

subsets of Ciyo X Ciyq and Ciy1 X Cigo.

Since strict categories are canonically precategories by Theorem 1.4.3.8, the notions of finite
factorizability and effective factorizability for precategories directly translate to strict categories.
We then verify that the finite factorizability property on cells induces a finite factorizability
property with regard to contexts and context classes:

Proposition 2.3.2.3. Given a finitely factorizable C € Cat, andm € N}, for allu,v € Cp,, thereisa
finite number of m-contexts E (resp. m-context class F) of type (9, _,(u), 9%, _,(u)) such that E[u] = v
(resp. Flu] = o).
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Proof. We prove this property by an induction on m. If m = 0, then the property is trivial. So sup-
pose that m > 1. Let u,0 € C,, and consider the set S of m-contexts E of type (9,,_,(u), ) _,(u))
such that E[u] = 0. By definition, the elements of S are the triples (I, F/,r) where ,r € Cp,, and F’
is an (m—1)-context class of type (9, _,(u), 3}, _,(u)) such that

() =F[0,_;(w)], Flof,_;w]=r and ley_1Flu]en_1r=n0.

By the finite factorization property, the number of triples (I, F’[u], r) obtained by iterating on the
elements (I, F’,r) of S is finite. In particular, by Proposition 2.2.2.2, the number of (m—1)-cells

F'[0p1 (W] = 0y (F'[u])

for (I, F’,r) € S is finite. Thus, by induction hypothesis, there is a finite number of possible
(m—1)-context classes F’ in the triples (I, F/,r) of S. Hence, S is finite. Since m-context classes are
quotient of m-contexts, we deduce moreover that there is a finite number of m-context classes F
such that Fu] = v. O

2.3.2.4 — Finitely factorizable actions. Let n € N. An n-categorical action (C, A) is finitely
factorizable when the underlying strict n-category C is finitely factorizable and, in the case
where n > 0, for every u € A, there is a finite number of pairs

(ul, UZ) €A Xn-1 Cn LI Cn Xn-1 A (213)

such that u = u; ¢,_; up. When (C, A) is equipped with an encoding & ¢ 4), we say that (C, A) is
effectively factorizable when it is finitely factorizable, and moreover C is effectively factorizable,
and there exists a computable function

A— pf(A Xn-1 Cp U Cp Xp—1 A)

which, on input u € A, outputs the finite set of pairs (u, uy) as in (2.13) such that u = u; e, uy.

Remark 2.3.2.5. If Cy U - - - U C,, and A are encoded by datatypes cell and cell_top respec-
tively, then the computable functions which witness that (C, A) is effectively factorizable can be
represented by means of OCamL functions in a way analogous to Remark 2.3.2.2.

2.3.2.6 — Contexts and computability. Let n € N and C be an n-category equipped with
an encoding &¢ which is injective and decidable and such that C is computable and effectively
factorizable. We prove below several computational properties on the contexts of C. First, the
contexts and contexts classes of C on instantiable types admit encodings derived from &c for
which several elementary operations on contexts and contexts classes are derivable:

Proposition 2.3.2.7. Form € Ny, u € Cy, and u’ = (3,,_,(u), 3%,_,(u)), the following holds:
(i) there are canonical injective encodings of the m-contexts and m-context classes of type u’,

(ii) the equivalence classes of m-contexts of type u’ under ~, are finite, and the function mapping
an m-context class F of type u’ to the finite set of m-context E of type u’ such that [E] = F is
computable,

(iii) fori € Ny,_1 and € € {—,+}, the function which takes as input an m-context E (resp. an
m-context class F) of type u’ and outputs o; (E) (resp. 95 (F)) is computable,

(iv) fork € {m,...,n}, the function which takes as input an m-context E (resp. m-context class F)
of type u’ and a cellv € Cy of m-type u’ and outputs the cell E[v] (resp. F[v]) of Ck is
computable.
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Proof. We show this property by induction on m. There is a unique 0-context (resp. 0-context
class) of type u’ which can be encoded by 0 € N. Thus, the case m = 0 holds. So suppose m > 1.

Proof of (i): We define an encoding for m-contexts (I, F, r) of type u” using the standard derivation
of encodings for triples based on the encodings of C,, and of (m—1)-context classes obtained by
induction hypothesis, so that we get an encoding which is injective. By Proposition 2.3.2.3, the
restriction of the equivalence relation ~,, to m-contexts of type u’ has finite classes, so that we
obtain an encoding of m-context classes of type u’ using the standard derivation of encodings for
quotient sets based on the encoding of (m—1)-contexts of type u’, and this encoding is injective
by Proposition 2.3.1.29(ii).

Proof of (ii): Note that, given two m-contexts Eq, E; of type u’ such that E; =, E,, we have
that E; [u] = E;[u]. Thus, by Proposition 2.3.2.3, the equivalence classes of m-contexts of type u’
under =, are finite. By our choice of encodings in (i), the identity function is a recursive model
of the function which maps an (m—1)-context class F of type u’ to the finite list of codes of
(m—1)-contexts E of type u’ such that [ E] = F, so that the latter function is computable.

Proof of (iii): Let i € Np,_;. For all m-context E = (I, F’,r), 9; (E) is defined as 9; (I). Since the
operations d; on m-cells of C is computable by hypothesis on C and &, the function which maps
an m-context E of type u’ to 9; (E) is computable. For all m-context class F, 9; (F) is defined
as d; (E) where E is an m-context such that [E] = F. Since, by (ii), we have a computable
function which maps an m-context class F of type u’ to the (non-empty) set of m-context E such
that F = [[E]), the function which maps an m-context F of type u’ to d; (F) is computable. And
similarly for the target operations.

Proof of (iv): Let k € {m, ..., n}. Recall that, for an m-context E = (I, F,r) of type u’ and v € Cy4
of m-type u’, E[v] is defined by

E[v] =lem Flo] omr 7

so that, by the induction hypothesis, and since C is supposed computable, the function which
takes as inputs E and v as above, and outputs the cell E[v], is computable. For context classes,
recall that, for an m-context class F of type u’ and v € Cy4; of m-type u’, F[v] is defined by

where E is some m-context such that [ E]] = F. Hence, by (ii), the function which takes as inputs F
and v as above, and outputs the cell F[v], is computable. m]

Remark 2.3.2.8. Note that the proof of Proposition 2.3.2.7 only used the fact that C was finitely
factorizable and not effectively factorizable.

Remark 2.3.2.9. If Cy U - - - U C,, is encoded by a datatype cell, then, by the proof of Proposi-
tion 2.3.2.7(i), m-contexts and m-contexts classes on some type u’ € C, are naturally encoded by
the datatypes

type ctxt =

| CtxtZ (¥ constructor for the O-context *)

| CtxtS of cell * ctxtcl * cell (* constructor for the (m+1)-contexzts *)
and ctxtcl = ctxt list

as a consequence of Remarks 2.3.1.16 and 2.3.1.30.
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We now aim at showing that the function which maps an m-context E of instantiable type to
its m-context class [ E] is computable. By Proposition 2.3.1.31, it is sufficient to show that the
restriction of the relations ~!, and ~},! to m-contexts of instantiable types is effectively right-finite,
and, by Remark 2.2.2.4, it is enough to it for ~;,. So we prove:

Proposition 2.3.2.10. For everym € Ny, u € Cp, andu’ = (0,,_,(u), 9} _,(u)), the function which
maps an m-context E of typeu’ and outputs the finite set of m-contexts E’ of typeu’ such thatE ~. E’
is computable.

Proof. We show this property by induction on m. If m = 0 or m = 1, the property holds. Now
suppose that m > 2. Remember that, for all m-contexts E; = (Iy, F;,r1) and E; = (I, F5,r3) of
type u’, we have E; ~}, E, if there exists (m—1)-contexts E| = (I/, F/,r]) of type u’ with [ E/]| = F;
fori € {1,2} and [, r, w € C,, such that one of the sets of conditions (~-L) and (~-R) are satisfied.
By symmetry, it is enough to show that we can compute the m-contexts E, such that E; ~. E,

by (~-L). We recall the set of conditions (~-L) below:

Li=ley, (W *m—1 Fll[u] *m—1 Y‘{) r=r

=1 re=(wWem1 Fy[u'] ey 1) om v
I} = o5 (w) ri=r,

Iy = 3 (w) F{ = F,.

By Proposition 2.3.2.7(ii), there is a finite number of (m—1)-contexts E such that [E]] = F,
and we can compute them. So let E{ = (I, F|,r) be such that [[E{]] = Fj. Since C is effectively
factorizable, there is a finite number of pairs (I, w) € C%, such that

h=1lem1 (Wemz F{[9,_1(u)] om—217)

with 9} (w) =[], and we can compute them. So let (I, w) be such a pair. We define an m-con-
text E; = (I, F,, ) by putting F, = [ E; || with E;, = (I;, F,, r;) and

Ly = Oy (W) Fy=F rp=r
=1 ro = (Wem—z F3[ 00, ()] em-273) om-1 1.
The m-context E; satisfies the set of conditions (~-L) and we can compute it since C is computable.

So, by iterating on all E/, ], w as above, we compute all the m-contexts E; such that E; ~}, E; by
the set of conditions (=-L). |

We can then deduce:

Proposition 2.3.2.11. For everym € Ny, u € Cp, and u’ = (9,,_,(u), %, _,(u)), the restriction
of ~p, to m-contexts of instantiable types is effectively right-finite, and the function which maps an
m-context E of type u’ to [ E] is computable.

Proof. Note that &c is equality-decidable by Proposition 2.3.1.7(ii). The property is then a conse-
quence of Propositions 2.3.2.10 and 2.3.1.31 and Remark 2.2.2.4 since =, is the reflexive transitive
closure of ~}, U =~ 1. O

Remark 2.3.2.12. Using the datatypes from Remark 2.3.2.9, the proof of Proposition 2.3.2.11 trans-
lates into an OCAML function ctxt_to_ctxtcl : ctxt -> ctxtcl.

From the above property, we deduce that the encodings of contexts and context classes of C are

decidable:
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Proposition 2.3.2.13. Givenm € Ny, u € Cy, andu’ = (9, _,(u),d},_,(u)), the encoding of the
m-contexts (resp. m-contexts classes) of type u’ given by Proposition 2.3.2.7(i) is decidable.

Proof. We prove this property by induction on m. If m = 0, then the property holds. So suppose
that m > 1. Recall that the m-contexts of type u’ are the triples E = ([, F,r) where [,r € C,,, and F
is an (m—1)-context of type (9, _,(u),d? _,(u)) such that

+—1(l) = F[9,_,(u)] and F[a:rn—l(u)] = 0y (r).

Since &c is injective and decidable, and C is computable, the subset of codes of such triples
is decidable by induction hypothesis and Proposition 2.3.2.7(iv). By Proposition 2.3.1.7(ii), the
encoding of m-contexts of type u’ is moreover equality-decidable, since injective and decidable.
Hence, the encoding of m-context classes of type u’ is decidable since equality-decidable by
Propositions 2.3.2.11 and 2.3.1.29. O

Remark 2.3.2.14. Using the datatypes from Remark 2.3.2.9, the proof of Proposition 2.3.2.13 trans-
lates into OCAML functions

check_ctxt : ctxt -> bool
check_ctxtcl : ctxtcl -> bool

which witness that the encodings for contexts and context classes are decidable.

We now prove that the composition operations for contexts and context classes are computable:

Proposition 2.3.2.15. Givenm € Ny, i € N,,_y,u € Cp, andu’ = (9,,_,(u), 3}, _, (u)), the function
which takes as inputs an (i+1)-cellv € Ci41 and an m-context E (resp. m-context class F) of type u’
such that v, E (resp. v, F) are i-composable, and outputs v «; E (resp. v o; F), is computable, and
similarly for the right composition of m-contexts (resp. m-context classes).

Proof. We prove this by induction on m. The property holds when m = 1. So suppose that m > 2.
Given v € Cjy; and an m-context E = (I, F,r) of type u’ such that v, E are i-composable, recall
that v e; E is defined by
{(vo,-l,F,r) ifi=m-1,
ve, E =
(vejLLue; Flueir) ifi<m-—1.
Thus, by the induction hypothesis and since C is computable, we can compute v o; E. Now, given
an m-context F of type u’ and v € Cjyy such that o, F are i-composable, recall that v «; F is
defined by [v +; E]| where E is an m-context such that [ E]| = F. Given the code of an m-context
class F of type u’, using Proposition 2.3.2.7(ii) we can compute the code of some E of type u’

such that [ E]] = F. Then, using the first part, we can compute the code of v e; E. Finally, using
Proposition 2.3.2.11, we can compute [oe; E]| = v s; F. mi

Finally, we show that contexts and context classes have some effective factorization property:
Proposition 2.3.2.16. Givenu € C, andu’ = (9,_,(u),d;_,(u)),

(i) the function which takes as input an n-context E of type u’, and outputs the finite set of
pairs (v, E) wherev € C, and E is an n-context of type u’ such that v, E are (n—1)-composable
andE =ve,_; E, is computable,
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(ii) the function which takes as input an n-context class F of type u’, and outputs the finite set of
pairs (v, F) wherev € C, and F is an n-context class of type u’ such that v, F are (n—1)-com-
posable and F = v o4 F, is computable,

and similarly for right composition of n-contexts and n-context classes.

Proof Given an n-context E = (I,F’,r) and a pair (o, E) such that E = v e,_; E, we have
that E = (l F’,r) for some | € C, such that v e,_; [ = [. Since C is effectlvely factorizable,
we can compute the possible cells . Thus, (i) holds.

Now let F be an n-context class and (o, F) be a pair such that F = v e,_; F. There exists an
n-context E such that [E]] = F. So, [0 en_1 E]] = F. We deduce the following procedure for (ii). By
Proposition 2.3.2.7(ii), we can compute the finite set of n-contexts E such that [ E]] = F. Moreover,
by (i), we can compute the pairs (v’, E) such that E = v’ e,_; E. By Proposition 2.3.2.11, we
can compute the value of [E] for such a pair, and the computed pairs (v’, [E])) are then all the
pairs (v, F) such that F = v e,_; F. Thus, (ii) holds. |

2.3.2.17 — Computability of free actions. By the preceding properties and the description of
the functor —[—]# given in Section 2.2.3, we can conclude a computability preservation property
of free categorical actions on a cellular extension. Let n € N and (C, X) be an n-cellular exten-
sion equipped with an encoding & ¢ x) which is injective and decidable and such that (C, X) is
computable and C effectively factorizable. First, we have:

Proposition 2.3.2.18. There exists an injective and decidable encoding Exa such that the n-cate-
gorical action C[X]? is computable.

Proof. Recall that X* is the set of pairs (g, F) where g € X and F is an n-context class of
type (9,_,(9). d;_,(g)), the latter being instantiable since o;_,(g9) = 9;_,(d, (g)) for e € {—,+}.
By Proposition 2.3.2.7(i) and Proposition 2.3.1.26, since Ex is injectlve the set X* admits an in-
jective encoding Exa obtained using the standard derivation of encodings for dependent sums,
and this encoding is moreover decidable since Ex is decidable and since the procedure given by
Proposition 2.3.2.13 can be effectively parametrized by (3,_,(9), 9;_,(g)) for g € X. By Proposi-
tion 2.3.2.7(iii) and Proposition 2.3.2.15, the operations 9, 7., ; ;1 and e, ; for i € N* on X* are
computable too. Thus, the encodings Ec and Exa induce an encoding Ecx)a of the n-categorical
action C[X]* which is injective and decidable, and such that C[X]* is computable. |

Remark 2.3.2.19. If Cy U --- LU C,, and X are encoded by datatypes cell and gen, then, by
Remark 2.3.1.27 and using the datatype for context classes from Remark 2.3.2.9, the set X* is
naturally encoded by the datatype

type act_cell = gen * ctxtcl

We verify that the embedding of generators is computable for the above encoding:

Proposition 2.3.2.20. Under the encoding Exa of Proposition 2.3.2.18, the embedding X — X* is
computable.

Proof. Given g € X, since C is computable, 1d ( ) and 1d ( , can be computed for i € Ny, so
that we can compute the code of the n-context class I9 using Proposition 2.3.2.11 and the code of
the pair (g,I9) € X*. Hence, the embedding X — X* is computable. O

Finally, we check the effective factorizability of the free action:
Proposition 2.3.2.21. C[X]? is effectively factorizable.

Proof. Since C is effectively factorizable, this is a consequence of Proposition 2.3.2.16(ii). O
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2.3.2.22 — Source-finite actions. In order to obtain a computability result analogous to Propo-
sition 2.3.2.18 for free categories on a computable categorical actions, effective factorizability is
not enough. Indeed, the problem is that the relation ~ has not necessarily finite classes, even
for a categorical action which is finitely factorizable. A sufficient additional condition, called
source-finitess, is introduced below.

Let n € N. Given a set X, there is an n-categorical action {}’; (X) uniquely defined by
(MA@ =X and  (M3(X)); = {*} fori € N,.

Note that the operations are trivial on the elements of (I3 (X))n+1, i.€.,

*oigol-*:g

fori e N,_;and g € X.

Remark 2.3.2.23. The operation X + f)i (X) extends to a functor Set — Cat’ which is right
adjoint to the functor Cat? — Set which maps an n-categorical action (C, A) to A/~ where ~ is
the smallest equivalence relation on A such thatu ~ le;ue;rforalli e N,_,L,r € Ciy;andu € A
such that [, u, r are i-composable.

Given an n-categorical action (C, A) and a set X, a labelling of (C, A) over X is an n-categorical
action morphism (% h): (C,A) — /4 (X). Suppose that (C, A) is equipped with such a labelling.
We then say that (C, A) is source-finite over X when, for every v € C,, and g € X, there is a finite
number of u € A such that 9, (u) = v and h(u) = g.

Remark 2.3.2.24. In the following, the n-categorical actions (C, A) we will consider do not generally
satisfy that {u € A | 9, (u) = v} is finite for every v € C,. Instead, the weaker source-finitess
property relatively to a labelling will be sufficient for our purposes. Notably, as we will see in
Paragraph 2.3.2.33, the free n-categorical action C[X]* on an n-cellular extension (C, X) where C
is finitely factorizable is canonically source-finite.

Writing NX for the free commutative monoid on X, there is a function
m{&Y7 A* - NX
often simply denoted my such that

mx ((t1, ..., 1)) = h(tr) + - - + h(tx)

fort = (t1,...,t;)° € A*. The function my is compatible with the relation =, so that it induces
a function A — NX, still denoted myx. This latter satisfies that mx (u e, v) = mx(u) + mx(v)
for n-composable u,0 € A®. Note that we can identify NX canonically to the subset of func-
tions f: X — N such that {g € X | f(g) # 0} is finite, so that we consider my (u) as a function of
type X — N and write mx (u), for the value of mx (u) at g. The source-finitess property implies
several finiteness properties on the free category on a categorical action:

Proposition 2.3.2.25. Let X be a set and (C, A) be an n-categorical action which is labeled over X
through (%, h): (C,A) — a(X) and source-finite over X. The following hold:

(i) forallk € N, gy1,...,g9x € X andu € C,, there is a finite number of t = (t1,...,1t;)° € A*
such that 9, (t) = u and h(t;) = g; fori € Ny,

(ii) the relation ~ on A has finite classes,
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(iii) if (C, A) is finitely factorizable, then C[A]~ is finitely factorizable.

Proof. Proof of (i): We do an induction on the length k. There is only one ¢ of length 0 such
that 9, (t) = u. Now, suppose that the property holds for some k € N. We prove that it holds
fork + 1. Let g1,...,gk+1 € X, u € Cpand t = (t1,...,t4+1)° € A* be such that 9, (¢) = u
and h(t;) = g; for i € Ny _ . Since d;,(t;) = u and h(t;) = g1 and (C, A) is source-finite, there is a fi-
nite number of possible t;. For each of these, by putting t’ = (ta, . .., tx+1)%, we have 9;, (t') = 95 (t1),
thus, by induction hypothesis, there is a finite number of possible t’, which concludes (i).

Proof of (ii): Letu € A%, and k € Nand t = (#1,...,t)® € A* be such that [[¢]] = u. We have
that my () = h(t;) + - - - + h(f), so there is a finite number of possible tuples (h(ty), ..., h(t))
relatively to u. Hence, by (i), there is a finite number of possible t.

Proof of (iii): Let u € A¥. Consider v € C, and w € A¥ suchthat u = ve,_; w. Letk € N
and ty,...,fx € Asuchthatw =[(ty,...,%)%]. Then,

u= [[(U *n—-111,. ..,V tk)s]]'

By (ii), there is a finite number of possible values for (ve,_1t1,...,ve,_1tx)* € A*, and, since (C, A)
is finitely factorizable, there is a finite number of possible pairs (v, (1, ..., tx)). Hence, there is
a finite number of pairs (v, w) € C, X A¥ such that u = v ¢,_; w, and, similarly, there are a
finite number of pairs (v, w) € A™ X C,, such that u = v,_; w. Now consider v, w € A¥ such
that u = ve, w. Let k,] € N and sy,...,s¢ and fy,...,4 in A be such that o = [(s1,...,s¢)°]
and w = [[(t1,...,1)%]. Then,
u= [[(51,. Sk b, - .,tl)s]].

Using (ii), we conclude similarly that there is a finite number of pairs (v, w) € A¥ X A™ such
that u = v+, w. Hence, C[A]” is finitely factorizable. |

2.3.2.26 — Computability of free categories on actions. With source-finiteness, we can de-
duce computability properties for free categories on categorical actions. Let n € N, X be a set
and (C, A) be an n-categorical action labeled over X through (%, h): (C,A) — }’s(X) and source-
finite over X, and & 4) be an injective and decidable encoding of (C, A) such that (C, A) is
computable and effectively factorizable. We introduce first an encoding for A* with the following

property:
Proposition 2.3.2.27. The following hold:
(i) there is an injective and decidable encoding E = of A*,
(ii) the function which mapsu € A to (u)® € A* is computable,
(iii) the function which mapsu € Cy, to () € A* is computable,
(iv) fori € N,_q, the function which maps
(u,0) € A% X; Ciyg U Cipq X; A
to u e; v is computable,

(v) the function which maps
(u,0) € A* x,, A*

tou e, v is computable.
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Proof. The set A* is canonically isomorphic to C,, LI A” where Cj, is in bijection with the identities
of A*, and A’ is the subset of A< consisting of non-empty sequences of n-composable elements
of A. Thus, we derive an encoding E4» of A* using the standard derivations of encodings for
finite sequences, subsets and disjoint union, and & 4= is injective since Ec, and E4 are. Moreover,
since (C, A) is computable and & c 4 is injective and decidable, A’ is a decidable subset of A<,
so that &4+ is moreover decidable. Thus, (i) holds. By the definition of &4+, (ii) holds. Moreover,
by the definitions of id’(’f)1 and the compositions ; and », on A* given in Section 2.2.4, (iii), (iv)
and (v) hold. O

Remark 2.3.2.28. If CoLI- - -LUIC,, and A are encoded by datatypes cell and top_cell respectively,
then, by the proof of Proposition 2.3.2.27(i) the set A* is naturally encoded by the datatype

type seq =
| SeqZ of cell (* constructor for zero-length sequences *)
| SeqP of top_cell list (* constructor for positive-length sequences *)

and the computable function which witnesses that the encoding A* is decidable can be represented
by an OCamL function check_seq : seq -> bool.

We now show that A~ admits an injective and decidable encoding, using the method given by
Proposition 2.3.1.31. For this purpose, we first prove:

Proposition 2.3.2.29. The relation ~' on A* is effectively right-finite.

Proof. By the definition of ', it is enough to show that the function which takes an input an
n-composable pair (I,1’) € A% and outputs the finite set of pairs (r,7’) € A% such that X(I,I’,r,1’),
is computable. The latter set is indeed finite by Proposition 2.3.2.25(ii) since (L,1")S = (r,r’)5.
So let (I,I’) € A be a pair of n-composable elements. Since (C,A) € Cat’ is computable and
effectively factorizable, and &(c 4) is injective, we can compute all the pairs (u,0) € A? such
that u, v are (n—1)-composable and satisfy

l=ue,19,(v) and ' =3 (u)ey_10
and, for each such pair, we can compute the pair (r,r’) where
r=9,(u)ep-10 and r’ =ue,_;9;_ (v).
Hence, we can compute all the pairs (r,r’) such that X(L,I’,r, ") which concludes the proof. O
We can now deduce the computability of C[A]*:
Proposition 2.3.2.30. The following hold:
(i) there is an injective and decidable encoding E~ of A¥,
(ii) the function [[-]: A* — A~ is computable,
(iii) the function which mapsu € A to[[(u)*] € A™ is computable,
(iv) the function which mapsu € C, toid™*' € A~ is computable,
(v) fori € N,_4, the function which maps
(u,0) € A¥ X; Cipq U Cigq X; A™

to u e; v is computable,
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(vi) the function which maps
(u,0) € A¥ x,, A®

tou e, v is computable.

Proof. Since the relation =~ has finite classes by Proposition 2.3.2.25(ii), we can define the en-
coding E4~ of A¥ = A*/~ using the standard derivation of encodings for quotient sets. By
Proposition 2.3.2.29, ~! is effectively right-finite and, by Remark 2.2.4.2, so is 1. Thus, by Propo-
sitions 2.3.2.27 and 2.3.1.31, 4~ is injective and decidable, and the function [-]: A* — A¥ is
computable, thus (i) and (ii) holds, and (iii) holds by Proposition 2.3.2.27(ii). By (ii) and Proposi-
tion 2.3.2.30(ii), (iv) holds. Given i € N,_; and (u,v) € A* X; Ci41, by Proposition 2.3.1.29(i), we
can compute some u’ € A* such that [u']] = u. Then, by (ii) and Proposition 2.3.2.27(iv), we can
compute the cell [u” o; 0] = u¢; v, thus (v) holds and, by a similar argument, (vi) holds. O

Remark 2.3.2.31. By the proof of Proposition 2.3.2.30(i), using the datatype for n-sequences from
Remark 2.3.2.28, the set A™ is naturally encoded by the datatype type seqcl = seq list asa
consequence of Remark 2.3.1.30, and the computable function which witnesses that the encoding
of A¥ is decidable can be represented by an OCaML function check_seqcl : seqcl -> bool.
Moreover, an OCaML function seq_to_seqcl : seq -> seqcl can be derived from the proof
of Proposition 2.3.2.30(ii).

By Proposition 2.3.2.30, &c can be extended by &4~ to an injective and decidable encoding Ec 4}~
of the free (n+1)-category C[A]~ on (C, A). For this encoding, we have:

Proposition 2.3.2.32. The (n+1)-category C[A]~ is effectively factorizable.
Proof. Given u € A¥, by Proposition 2.3.1.29(i), we can compute the finite set of all
t=(t,...,tx)° € A*

such that [[¢t] = u. Using that (C, A) is effectively factorizable, we can compute the set of
pairs (v, ") € C, X A* with t' = (¢{,...,t])® such that v s, t’ = t. So, by Proposition 2.3.2.30(ii),
we can compute the finite set of the pairs (v, w) € C,, X,,—1 A¥ such that u = ve, w.

Moreover, for each t as above, we can compute the set of all n-composable pairs t1, £, € A* such
that t; », t, = t. Thus, by Proposition 2.3.2.30(ii), we can compute the finite set of n-composable
pairs (uq, us) € A® X A® such that u = u; e, uy. Hence, C[A]” is effectively factorizable. m]

2.3.2.33 — Computability of free extensions. We now combine the properties of previous

paragraphs to deduce a computability property for free extensions.

Let n € N. Given (C, X) € Cat}, there is a canonical labelling of C[X]* over X which maps (g, F)
to g for (g, F) € X*. For this labelling, we have:

Proposition 2.3.2.34. Given (C,X) € Cat} where C is finitely factorizable, the n-categorical
action C[X]? is source-finite over X.

Proof. Given v € C, and g € X, an element u € X* above g such that 9, (u) = v is the data of
an n-context class F of type (9,_,(9),d:_,(g)) such that F[d;,(g)] = v. By Proposition 2.3.2.3,
there is a finite number of those. O

We then obtain the following computability result for free extensions:
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Proposition 2.3.2.35. Letn € N, (C,X) € Cat}, and Ec x) be an injective and decidable encoding
of (C, X) such that (C, X) is computable and C effectively factorizable. Then, there is an injective and
decidable encoding Ec (x| of the (n+1)-category C[X] that extends Ec such that C[X] is computable
and effectively factorizable. Moreover, the canonical embedding X — C[X],+1 is computable.

Proof. The encoding &Ec(x],,, of C[X]nt1 is constructed using Propositions 2.3.2.18, 2.3.2.21,
2.3.2.30 and 2.3.2.34, so that, by extending &c with Ec(x),,,, we obtain an encoding of C[X]
which makes C[X] computable and moreover comptationally factorizable by Proposition 2.3.2.32.
Moreover, the embedding X — C[X]n41 is computable by Proposition 2.3.2.20 and Proposi-
tion 2.3.2.30(iii). o

Remark 2.3.2.36. By inspecting the constructive content of the proof of Proposition 2.3.2.35 and
of the propositions it uses, we have in fact proved a stronger statement: for n € N, there is a
computable function which takes as inputs

- a code for a computable n-cellular extension (C, X) that is equipped with an injective and
decidable encoding & ¢ x),

- codes of the computable functions that witness that C is effectively factorizable,
and which outputs

- a code for the (n+1)-category C[X], which is equpipped with the injective and decidable
encoding Ec[x) given by Proposition 2.3.2.35 that extends &c,

- acode for the embedding X — C[X]p41.

Thus, we can consider that Proposition 2.3.2.35 is “effectively parametrized” by (C, X) and the
computable functions that witness that C is effectively factorizable.

2.3.3 The case of polygraphs

We now consider the special case of polygraphs and show that, when provided with an adequate
computational description of those, the associated free strict categories are computable. Moreover,
we introduce in this case an alternative procedure to compute the context class associated to a
context than the one provided by Proposition 2.3.2.7(ii), enabling faster recursive models for those
free categories.

2.3.3.1 — Computable polygraphs. For n € N and an n-polygraph P equipped with injective
and decidable encodings &Ep, of P; for i € N, we define by induction on n the property that P is
a computable polygraph, together with a decidable and injective encoding Ep- of the free n-cate-
gory P*, such that P* is computable and effectively factorizable for this encoding. A 0-polygraph P
is always computable and we take Ep- = Ep,. Given n € N, an (n+1)-polygraph P’ = (P, X) is
computable when P is and when the functions d,,,d}: X — P% are computable, relatively to the
encoding Ep: of P;, coming with the encoding Ep+ given by the induction. Moreover, we take
for &py+ the encoding given by Proposition 2.3.2.35. For these encodings, we have the following

computability property for free strict categories on computable polygraphs:

Proposition 2.3.3.2. Given n € N and an n-polygraph P equipped with injective and decidable
encodings Ep, of P; fori € N, such that P is computable, the n-category P* is computable and the
embeddings P; — P} are computable fori € N,,.

Proof. By induction on n, using Proposition 2.3.2.35. O
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2.3.3.3 — More efficient computation of the equivalences classes. Let n € N with n > 2
and C be an n-category equipped with an injective and decidable encoding & ¢ x), such that C
is computable and effectively factorizable for this encoding. Recall that we defined in the proof
of Proposition 2.3.2.11 an algorithm which, given an m-context E of C for some m € N,, as input,
and output [ E]. This algorithm is derived by Proposition 2.3.1.31 using the definition of ~},, but
other algorithms are possible. For concrete applications like the word problem below, it is impor-
tant that the algorithm that executes this operation is fast, since it is part of the implementations
of the composition operations »; (c.f. Proposition 2.3.2.18). One way to obtain a faster algorithm
is to use a more suitable relation &, that generates ~,, as a reflexive transitive closure, so that
the algorithm derived by Proposition 2.3.1.31 is more efficient (when C allows it). We give such
an alternative generating relation in the case where C = P* for some computable n-polygraph P
by refining a bit the axioms used to define ~}, .

So let P be an n-polygraph and m € N,,. We define a relation %, between m-contexts of the
same type of P*. Given an m-type (4, u’) and two m-contexts of type (u,u’)

Ei=(l1,Fi,r1) and E; = (I, Fy,ry)

we write E; &, E; when there exists (m—1)-contexts (I/, F/,r/) such that [(I/,F/,r)| = F;
fori € {1,2},and [, w,r € P;, with |w| = 1 (recall the notion of length defined in Paragraph 2.2.4.1)
and such that either the set of conditions (x-L) or (~-R) (the ones defining ~! ) is satisfied. Note
that the only difference between the definitions of &}, and ~  is that we require w to be of length 1.
We verify that:

Proposition 2.3.3.4. The reflexive symmetric transitive closure of &, is ~p,.

Proof. Let %, be the reflexive symmetric transitive closure of #,,. Since we have &}, C ~! it is
enough to show that ~, C %,,. Let (u,u’) be an m-type and

Ey = (L, Fi,r1) and E; = (I, F, 1)

be two m-contexts of type (u,u’) of P* such that E; =}, E,. By definition of ~, there exist
(m—1)-contexts (I, F/,r]) such that [(I/, F/,r])]] = F; for i € {1,2}, and I, w,r € P}, such that ei-
ther (=-L) or (=-R) is satisfied. By symmetry, suppose that (~-L) is satisfied. We prove that E; = E,
by induction on the length |w| of w. If [w| = 0, then w = id;, for some w € P} _,, so that E; = Ej,
thus E; &, E,. If |[w| = 1, then E; &}n E; by definition of &:n Otherwise, suppose that |w| = k+1
for some k € N*. Then, by the definition of the functor —[—]7, we have that w = w’ ¢, w”’ for
some w’, w” € P} such that |[w’| =1 and |w”'| = k. Note that

(W, *m—1 W”) *m—2 F{[u] *m—2 T‘{ = (W, *m—2 Fl’[”] *m—2 ’”{) *m—1 (W” *m—2 F{[“] *m—2 r{)

so that, by induction hypothesis, we have E; %, E; where Es = (I, F3,r3) is an m-context of
type (u,u’) with F3 = [ (I;, F;, ;)] for some (m—1)-context (I;, F;, r;) defined by F; = F| and

7 —_ 144 7 ’
=01 (W") r3="n
’ !’ 144 ’ ’ 7
I3 =1y 4 (W *m—2 F1 [u]°m—2) rs = (W *m-2 F1 [u ] *m-2 r1) *n-17.
Thus, we also have E; £:n E,, so that E; %, E5. Hence, %, = ~,,,. O

Remark 2.3.3.5. We can do a remark similar to Remark 2.2.2.4. Given m € N,,, the relation %,

on the m-context, which is defined by E; é,_nl E, if and only if E, é,ln E; for all m-contexts E;, E,
of the same m-type, admits a definition by axioms (~-L)’ and (=-R)’ which are symmetrical
to (~-L) and (=-R). Moreover, %, can be equivalently described as the reflexive transitive closure
of #1 U &1 so that, in the proofs, by symmetry of the definitions of #. and %!, we can often
reduce a case analysis of E; &, E, to E; Q}n E,.
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Now, suppose that P is equipped with injective and decidable encodings &Ep, of P; for i € N,, and
that P is computable for these encodings, so that, by the definition of “computable” for polygraphs,
we derive an injective and decidable encoding Ep+ of P* for which P* is computable and effectively
factorizable. For this encoding, we have:

Proposition 2.3.3.6. Givenm € N,, withm > 2, the function which takes as input an m-cellu € P} ,
and outputs the finite set of (m—1)-composable pairs (v,w) € (P%)? such thatu = v ep_1 W
and |w| = 1, is computable.

Proof. Let u € P;,. Consider v,w € P}, such that u = v, ; w. Then, by putting C = P} _,
and A = (P,,)*, we have v = [[s] and w = [[¢]] for some k, ! € N and

s=(sy,...,s)° and t=(t,...,4)°

in A*. Since |w| = 1, we have | = 1. Moreover, we deduce that u = [(s,..., sk t1)°]. By
Proposition 2.3.1.29(i), we can compute the set of possible representants (s, ..., s, t1)* € A* of u.
For each possible value, by Proposition 2.3.2.30(ii), we can compute the codes of v = [ (sy, .. ., sp)%]
and w = [ (#;)®]], which concludes the proof. mi

Hence, we get another proof of Proposition 2.3.2.11:

Proposition 2.3.3.7. For everym € N,, u € Cp, and u’ = (9,,_,(u),d} _,(u)), the restriction
of ~p, to m-contexts of instantiable types is effectively right-finite, and the function which maps an
m-context E of type u’ to [ E] is computable.

Proof. By Proposition 2.3.1.31, it is sufficient to prove that the restriction of 2. U &£} to m-con-
texts of instantiable type is effectively right-finite. By Remark 2.3.3.5, it is enough to show that
the restriction of &' is effectively right-finite. Using Proposition 2.3.3.6, the proof of the latter
property is similar to the one of Proposition 2.3.2.10. O

However, the instance of the algorithm of Proposition 2.3.1.31 using the effectively right-finite £},
will be more efficient than the one using ~},. Indeed, given m € N,, and an m-context E, we have

{E’ | E’ m-context such that E &, E’} C {E’ | E’ m-context such that E ~}, E’}

by definition of ~! and &} . Thus, intuitively, we iterate on less m-context E’ per m-context E in
the algorithm of Proposition 2.3.1.31 when using &}, than when using ~.,.

2.4 Word problem on polygraphs

We now use the computability results of the previous sections to give a solution to the word
problem on polygraphs of strict categories. Our solution is strongly inspired from the one given
by Makkai in [Mak05]. However, whereas Makkai deemed his procedure “infeasible” in practice,
the one we propose admits a relatively fast implementation, that solves rapidly most instances of
the word problem.

We first give a precise statement to this problem after introducing terms on polygraphs (Sec-
tion 2.4.1). Then, we give a solution to the word problem on the special case of finite polygraphs
(Section 2.4.2). By Proposition 2.3.3.2, we can already compute recursive models with injective
encodings for the free strict categories on computable polygraphs and, in particular, finite poly-
graphs, so that the word problem is already essentially solved since one can compare two terms
by comparing the codes of their evaluations in the recursive models. But one hardly writes down
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a code for a computable polygraph, because of its intrinsically inductive definition. Thus, most of
our concerns will be to define a user-friendly way to use polygraphs as inputs of programs. Next,
we show how to extend our method to more general polygraphs (possible infinite, possibly not
computable). Finally, we illustrate the discussion of this section by providing an implementation
in OCaML (Section 2.4.4).

2.4.1 Terms and word problem

Here, we define the terms on polygraphs and give a precise statement to the word problem on
polygraphs.

2.4.1.1— Terms on polygraphs. Let n € N U {w}. Given an n-polygraph P, for k € N, we
define the sets of k-terms T]F: of P inductively as follows:

- given k € N, and g € Py, there is a k-term gen,(g) € ‘7'2,

P
k+1°

- givenk € N,,_; and a k-term t € 7, there is a (k+1)-term Hfl(t) eT
- given i,k € N, with i < k and k-terms t1,1; € 7',[:, there is a k-term t; *; t; € 7',2.

We write 7F = Uken, 7',2 for the set of all terms of P. Given a morphism F: P — Q € Pol,, there
is a function
TF. 77 - 72

defined on t € 7 by induction on ¢:
- fork € N, and g € Py, T (g8 ()) = Een (F(9)),
- for k € N,_; and a k-term t, TF(ﬁf’l(t)) = ﬁﬁ“(TF(t)),
— for i,k € N,, with i < k and k-terms t, t,, 77 (t; ¥k ta) = TE (1) * k TE(t,).

We now define subsets (WkP of 77, consisting of the k-terms that are well-typed, together with an
evaluation function
P P
[-1: W, — P

by induction on k € N,,. All 0-terms are well-typed and are of the form gen,(g) for some g € P,
and we put [ gen, (g)]]]i = g. For k € N}, a k-term is well-typed when there exist u,0 € P;_, such
that there is a derivation I—Z t: u — o, with I—]F: defined below:

- given g € Py, we have I—]F: geng(g): de_,(9) — di_,(9),

given a well-typed (k—1)-term ¢, we have I—,F: ﬁﬁ_l(t): [[t]]z_1 — [[t] ,':_1,

- given i € Ni_, and k-terms ty, £, such that »—I': ti:uy — uj and I—Z ty: up — uy for

’ ’ * : + — P = . ’ ’
some uy, uy, uz, uy € Py with 9f (u1) = 97 (uz), we have byt ¥k ta: Uy *; uz — uf *; u,

- given k-terms t;, t, such that I—I’: t: U3 — uy and I—Z ty: Uy — us3 for some uq, ug, us € P]*(_l,
we have i—}z t Fp_pk bt U — Us.

We then easily verify the following property by induction on t:
Proposition 2.4.1.2. Givent € ‘WP, the following hold:

(i) there are unique u,u’ € Pz_l such that I—Z t: u — u’ is derivable,
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(ii) the derivation r—,': t: u — u’ is unique,

(iii) of_,(u) = 9_,(u’) fore € {—,+}.

Given a well-typed k-term ¢ with associated derivation I-I': t: u — u’, we define a cell [[t]],'z € Py
such that 3, ([¢]?) = uand 3} ([t]}) = «’ by induction on the derivation of t:

- if t = gen;(g) for some g € Py, then [[t]} =g,

- ift= ﬁ’;_l(f) for some t € ‘T}Z_l, then [[t]]]': = idl[EE]],’;’

— ift =t ¥, t, for some i € Ni_; and t1, 1, € 7',':, then [[t]]]*z = [[tl]]]*z *; [[tZ]]Z'

Note that the well-typedness of ¢ ensures that [ -]} is well-defined, which concludes the inductive
definition of Wkp and [[—]]I'z. We write WP for UkeNn(W]f . The above evaluation functions of well-
typed k-terms define a function

I[—]]P: WP - p*.
Given a morphism F: P — Q in Pol,,, the function 7F restricts to a function WF: WP — wQ,
We then have the following naturality property:

Proposition 2.4.1.3. Given a morphism F: P — Q in Pol,,
[-1%c W' =Fo[-]"
Proof. Given t € WP, we prove by induction on ¢ that [ W ()2 = F*([¢]"):
- if t = geny (g) for some k € N,, and g € P,
[WF 1% =F(g) =F o[]",
- ift= ﬁ’;“(f) for some k € N,,_; and € 7, then,
[WH (1% = [idg™ (W @En]*
— i (W DI
= id’,fr1 (F*([F1) (by induction hypothesis)
= F'Gd ([71%)
= F([]%),
— ift =ty % t, for some i,k € N, withi < k and t;, ¢, € (W,f, then,
[WF O] = [ W (1) % W (£2)]?
= [WF )] = [ W (22)]@

=F*([t:]") = F*([t.]P) (by induction hypothesis)
=F([t]" % [2]")
= F*([«]"). =

2.4.1.4 — Word problem statement. For n € NU {w} an n-polygraph P, the word problem on P
consists, given k € N, and t;,t, € W/, in deciding whether [#;]" = [#,]". By “deciding”, we
mean exhibiting a procedure parametrized by P, n, k, t; and t, that terminates in a finite number
of steps and such that this procedure returns “yes” if and only if [ #;]* = [[£;]" and returns “no”
otherwise. It is desirable that most of the steps of this procedure be implementable on a computer.
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2.4.2 Solution to the word problem on finite polygraphs

In this section, we show how to derive an algorithm for the word problem on finite polygraphs
from the results of Section 2.3. This algorithm takes as inputs a polygraph P and two well-typed
terms t;,t; € WP and decides whether [[t;]|” = [[,]". Before deriving the algorithm, we must
describe the computational representation of polygraphs and terms that we use. We first define
set-encoded polygraphs that are polygraphs equipped with a choice of encodings of their sets of
generators. Then, we show that well-typed terms of set-encoded polygraphs admit a canonical
computational representation, by deriving an encoding for the set of well-typed terms. We then
show how to represent polygraphs computationally. Finally, we give the algorithm that solves
the word problem based on these computational representations.

2.4.2.1 — Set-encoded polygraphs. Given n € N, a set-encoded n-polygraph is a finite n-poly-
graph P equipped with encodings &Ep, of Py for k € N, that are injective and decidable. Given
two set-encoded n-polygraphs P and Q, a morphism of set-encoded n-polygraphs between P and Q
is a morphism F: P — Q € Pol, such that, for every k € N, and g € Pg, thereis m € N
satisfying m &p, g and m Eq, F(g). We write sePol, for the category of set-encoded n-poly-
graphs.

Given n € N and a set-encoded n-polygraph P, we define an encoding E,» of 7. We first
define a function e”: 77 — N inductively on its argument t € 7

- if t = gen (g) for some k € N,, and g € Py, then
e’ (1) = 0,(0,1 + 0,(k, g"))
where g* € N is unique such that g* Ep, g,
- ift= ﬁﬁ“(f) for some k € N,,_; and f € 7", then

e"(t) = 0,(1,1+ 05 (k, " (1)),

- ift =t *;x t, for some k,i € N, withi < kand t;,¢; € T][z, then

e’ () = 0,(2,1 4 04(k, i, e” (1), € (12))).

We then put ¢ E¢ t forc € Nand t € 7" when ¢ = " (t). We then have:

Proposition 2.4.2.2. Given n € N and a set-encoded n-polygraph P, E ¢ is an injective and
decidable encoding of 7.

Proof. Given ¢ € N and t,t; € 7 such that ¢ Eqv tpand ¢ Egr ty, we verify that t; = 1,
by induction on c. Let (cy,c;) € N? such that ¢ = ;(cy, cz). Then, by the definition of e, we
have ¢; € {0,1,2}. Suppose that ¢; = 0. Thus, by the definition of e?, we have ¢, > 0. So
let (k,g") = 6,'(c; — 1). We then have t; = t, = gen,(g) where g € Py is such that g* Ep, g.
Now suppose that ¢; = 1. Again, by the definition of e, we have ¢c; > 0 and we write (k, ¢)
for 0, (c; — 1). By the definition of e, for i € {1,2}, the term t; is of the form ﬁf“(f,-) for
some f; € 77 such that ¢ &+ 1;. By Proposition 2.3.1.5, we have ¢ < c¢ so that, by induction
hypothesis, t; = t, and thus t; = t,. The case ¢ = 2 is similar. Thus, Eq is an encoding which is
injective by definition. Moreover, by doing a case analysis similar to the one above and using the
decidability of the encodings &Ep, , we get a decidability procedure for the support of E4¢, which
terminates by Proposition 2.3.1.5. |
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Remark 2.4.2.3. Givenn € N and an n-polygraph P, if PyLI- - - LIP,, is encoded by the datatype gen ,
then the set 77 is naturally encoded by the datatype

type term =

| TermGen of int * gen

| TermId of int * term

| TermComp of (int * int * term * term)

We verify that the functions on terms derived from morphisms of set-encoded polygraphs are
compatible with the encodings on terms:

Proposition 2.4.2.4. Given n € N, two set-encoded n-polygraphs P and Q and a morphism of
set-encoded n-polygraphs F: P — Q, forallc € N andt € T, we have ¢ E,¢ t if and only

ifc Eqa TE(1).

Proof. This is proved by induction on ¢t. The only non-trivial case is when t = gen; (g) for
some k € N, and g € Pi. By the definition of set-encoded n-polygraph morphism, we have
that, for all ¢’ € N, ¢’ Ep, g if and only if ¢’ Eq, F(g). Hence, ¢ E4» geny(g) if and only
if c E4a geny (F(g)). O
Since ‘WP is a subset of 7", we derive an injective encoding Eqye for WP (but we do not know
that it is decidable at the moment). We then have:

Proposition 2.4.2.5. Givenn € N and a set-encoded n-polygraph P, if P is computable, then

(i) the function [~ is computable,

(ii) the encoding Eqy» is decidable.
Proof. Proof of (i): Remember that the encoding of P* is the one given by Proposition 2.3.3.2.
The latter properties also states that P* is computable for these encodings and so are the em-

beddings Py — Pz for k € N,,. Thus, the operations *;; and id* are computable for i,k € N,
with i < k, so that the inductive definition of [-]” witnesses the fact that [-]” is computable.

Proof of (ii): Using (i), we give a procedure that decides, given ¢ € N, whether ¢ &qyr ¢t for
some t € WP, By Proposition 2.4.2.2, we can first decide whether ¢ E,» ¢ for some t € 7. Then,
we verify by induction on ¢ that t € ‘WP using the following inductive verification procedure:

- if t = gen, (g) for some k € N,, and g € Py, then t € WP,
- ift= E’;“(f) for some k € N,_; and f € T,F:, then t € WP if and only if f € WP,

- ift = t; ¥,k t; for some i,k € N, with i < k, then t € WP if and only if 1,1, € wr
and o ([:1]7) = o7 ([]7).

Note that the last condition “d; ([ #1]]") = 97 ([2]*)” can be computationally verified since [[-]”
is computable by (i), and P* is computable by Proposition 2.3.3.2 (thus so are the functions d;, 9}),
and 8p*k is injective. |

Remark 2.4.2.6. In the same spirit as Remark 2.3.2.36, we in fact proved the stronger statement
that Proposition 2.4.2.5 is “effectively parametrized” by P, i.e., there is a computable function
which takes as inputs

- the codes of the computable functions that decide the support of Ep, for k € N,
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— the codes of the computable functions that witness that P is computable,
and which outputs

- a code for the computable function [[-]F,

— a code for the function that decides the support of W".

2.4.2.7 — Term definitions for polygraphs. In order to define algorithms parametrized by
finite polygraphs, we need to define an encodable structure that represents such polygraphs.
The difficulty here lies in the fact that the definition of (n+1)-polygraphs depends on the free
n-category construction to define the source and target of the (n+1)-generators. An encoding
for such free n-category can be defined inductively using Proposition 2.3.2.35, but this encoding
would be terrible for practical purposes, since it would require a user to manipulate by hand
the complicated internal encodings of Proposition 2.3.2.35. Instead, we define a more natural
structure that uses well-typed terms to define the source and target of (n+1)-generators.

For n € N, we define the notion of n-term definition together with the set-encoded n-polygraph
associated to an n-term definition. A 0-term definition is a finite subset Dy C N and the 0-poly-
graph associated to Dy is D with Dy = Dy and Ep, induced by Ey. For n € N, an (n+1)-term
definition is a dependent pair

D= ((D",$),(dy",dp")

n >>n

t,— dt,+

where D’ is an n-term definition, S is a finite subset of N, and d;;”, d,;" are functions S — (W,ID

such that ) 7
o ([dy (I = a5, ([d5H () 1)

for € € {—,+} and g € S. The set-encoded (n+1)-polygraph D associated to D is defined by
Dey=D'. Dun=S and di(9) = [d;(9)]"”

for e € {—,+} and g € Dy4;. Finally, &p ,, is the encoding induced by Ey. For n € N, we
write D, for the set of n-term definitions. By induction on n, we define an injective encoding
on D,,. We define the encoding &p, for Dy from the encoding &y using the standard derivation
of encodings for finite subsets. Given n € N, we define the encoding &p,,, for D, using the
standard derivation of encodings for dependent pairs where

- the encoding for the pairs (D’, S) is defined with the standard derivation of encodings for
pairs using &p, and Egp, (1),

- given a pair (D’,S), the encoding for the pairs (d5~,d"") is defined with the standard
derivations of encodings for pairs and functions with finite domains, using, for domain and
codomain of d};” and d;;*, the encodings Es (induced by Ey) and E.yp respectively.

Remark 2.4.2.8. By Remarks 2.3.1.23 and 2.3.1.27, using the datatype for terms from Remark 2.4.2.3
with gen = int, the set Li,en Dy, is naturally encoded by the datatype

type term_def =
| TermDefZ of int list
| TermDefS of term_def * int list * (int * term) list * (int * term) list

Up to isomorphism, term definitions encode all finite set-encoded polygraphs:
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Proposition 2.4.2.9. Given n € N and a finite set-encoded n-polygraph P, there exists an n-term
definition D € D,, and an isomorphism P — D in sePol,,. Moreover, D and the isomorphism does
not depend on D.

Proof. We prove this property by induction on n. If n = 0, then there is a unique D € D such that P
is isomorphic to D in sePol,,, which is such that Dy is the support of Ep,. So suppose that the prop-
erty holds for some n € N. We show that it holds for n+1. Let P be a finite set-encoded (n+1)-poly-
graph. By induction, there is D’ € D,, and an isomorphism F: P, — D’ in sePol,. We now
define the (n+1)-term D = ((D’,S), (d%~,d%*)) € Dy and f: P,y — Ssuch that (F, f): P — D
is an isomorphism in sePol,;;. By the constraints imposed on the morphisms of sePol,;; and
since &g is the canonical encoding of the subset S C N, we necessarily have that S is the support
of &p,,, and f maps g € P, to the unique g € S such that g* Ep,,, g. For such S and f, we de-
fine ;€ for € € {—, +} by choosing n-terms t_, t7 € W= such that [ ]"<* = d5,(g) for g € Ppyy

(that exist by Proposition 1.4.1.16), and we put dff (f(9) = (M/F(tge) Thus, for g € P41, we have

&5 (f(9) = [W"(t)]”
= F*(I[t;]]PS”) (by Proposition 2.4.1.3)
= F*(d},(9))

so that (F, f) is a morphism of sePol,;+; which is moreover an isomorphism. By induction hypoth-
esis, D’ and the isomorphism F does not depend on D’, and S and the bijection f: P,.; — S are
uniquely defined from P,.; and Ep,,,. Moreover, the functions d;, d; : Dy+1 — D} are uniquely
defined from P, F and f since

d;,(f(9) = F*(dy,(9)
so that neither D nor (F, f): P,y; — D depends on D. m]

Moreover, the polygraphs associated to term definitions have the required computability proper-
ties to solve the word problem:

Proposition 2.4.2.10. Givenn € N and D € D,
(i) D is computable,
(i) the function [-]P: WP — D* is computable,
(iii) the encoding E.yp is decidable.

Proof. We prove the property by induction on n. When n = 0, the property holds. So suppose
that the property holds for some n € N. We show that it holds for n + 1.

Proof of (i): Let D = (D’,S,d%",d"") be an (n+1)-term definition. By induction hypothesis,

»Un > Yn
the n-polygraph D’ is computable. Moreover, note that the functions d%~,d"* are computable:
for e € {—,+}, the value of d.° at some g € S can be computed by searching for the unique
pair (g,t) with t € WD in the graph of d-¢ (which is part of the code of D). By the 1nduct10n
hypothesis, [-]?: WP — (D’)* is computable, so that &5 = [-]? o d%€: D,y — D

computable for € € {—, +}.

Proof of (ii) and (iii): This is a consequence of (i) and Proposition 2.4.2.5. |

Remark 2.4.2.11. In the same spirit as Remark 2.4.2.6, we have in fact proved the stronger statement
that Proposition 2.4.2.10 is “effectively parametrized” by D, i.e., there is a computable function
which takes D as input and outputs:
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- codes for functions that witness that D is a computable n-polygraph,

- acode for [-]°?: WP — D*,

- a code for the computable function that decides the support of Ey5.
Finally, we prove that the codes for term definitions of polygraphs are decidable:
Proposition 2.4.2.12. For alln € N, the encoding Ep,, is decidable.

Proof. We show this property by induction on n. When n = 0, &p, = Ep, () is decidable. Sup-
pose now that the property holds for n € N. We show that it holds for n + 1. So let ¢ € N.
We give a procedure to decide whether ¢ &p,,, D for some D € Dy,. First, we can decide
whether ¢ &y (cy, cs, c—, ¢;) for some ¢y, c5, ¢, ¢+ € N. Then, by induction hypothesis, we can
decide whether there exists D € D, such that ¢; &p, D. By Proposition 2.3.1.21, we can de-
cide whether there exists S € $¢(N) such that ¢; Ep,ay) S. By Remark 2.4.2.11, using ¢4, we
can compute codes for computable functions that witness that D is a computable n-polygraph,
a code for [[—]]D and a code for a computable function that decides the support of &,,,5. More-
over, using Remark 2.3.2.36, we can compute a code for the n-category D*. Thus, we can decide
whether c_ and c, are codes for functions with finite domains dbm,db s — ’M/nD . Moreover,
since D* and [[-]|P are computable, and & p:_, is injective, we can verify computationally that

9 (145 (917 = o, ([d5* (9)]7)

for every s € S and € € {—, +}. If the above equality holds, we have that D’ = ((D, S), (d%~,d%"))

n >+ n

is a member of D41 and ¢ &p,,,, D’. Thus, the encoding &p,,,, is decidable. m|

2.4.2.13 — Solution to the word problem on finite polygraphs. Given n € N, an n-word
problem instance is a dependent pairs (D, (t1, t2)) where D € D, and t1,t, € WP We write W,
for the set of n-word problem instances, and we define an injective encoding Ew, using the
standard derivation of encodings for dependent pairs, using Ep,, and &5 for D € D,,. There is
an algorithm which decides the word problem for word problem instances:

Proposition 2.4.2.14. The function which takes as input an n-word problem instance (D, (t1, t2))
and outputs 0 if [t |P # [t2]|°, and 1 if [t1]|° = [£2]|P, is computable.

Proof. By Proposition 2.4.2.10(ii) and Remark 2.4.2.11, we can compute a code of the evalua-
tion function [-]P: WP — D* from a code of D. Since the encoding of D* is injective,
given ty,t, € WP, we can compute [#;]]° and [[t,]]® and compare the resulting codes. Thus,
the property holds. O

Moreover, we can decide the correct inputs for the computable function of Proposition 2.4.2.14:
Proposition 2.4.2.15. Forn € N, the encodings Ew,, are decidable.

Proof. Let n € N and ¢ € N. We can decide whether ¢ s (cg, ¢1, ¢2) for some cg,c1,¢, € N.
By Proposition 2.4.2.12, we can decide whether there exists D € D, such that ¢; &p, D. By
Remark 2.4.2.11, we can compute the code of a computable function that decides the support
of &, from c4. Thus, we can decide whether there exist t;,t, € WP such that cx Sqpp 1tk
for k € {1,2}. Hence, &Ew,, is decidable. ]

Thus, given n € N, the following method can be used to decide whether two well-typed terms t;, t,
of a finite n-polygraph P are such that [#;]" = [[£,]":
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(1) pick injective and decidable encodings Ep, of Py for k € N,,, making P set-encoded,

(2) using the constructive proof of Proposition 2.4.2.9, build D € D, so that there is an isomor-
phism F: P — D € sePol,,

(3) decide the n-word problem instance (D, W (t;), W (t,)) using the algorithm derived from
Proposition 2.4.2.14.

Remark 2.4.2.16. For step (3), the codes of ‘W (t;) and W (t,) that must be transmitted to the
algorithm are exactly the codes of t; and t, under the encoding E» by Proposition 2.4.2.4.

2.4.3 Solution to the word problem on general polygraphs

We now consider the word problem on general polygraphs (i.e., not necessarily finite) and give
a solution that reduces to the case of finite polygraphs: given two well-typed terms t;,t, of a
polygraph P, we decide the word problem (t;, t;) on a finite subpolygraph of P that contains t
and f,. In order to prove the correctness of the method, we need to justify that the word problem
behaves similarly on this subpolygraph. We first define the support function of a polygraph P,
that maps a cell u of the associated free category P* to the finite subset of generators of P that
are “present” in u. This function will help us find a finite subpolygraph of P whose free category
contains u. Then, we justify that the above method is correct.

2.4.3.1— The support function. Given n € N U {w} and an n-polygraph P, we define the
support function
suppP: P>x< — Pf(uieNn Pl)

or simply, supp, such that, for g € P, we have g € supp(u) if and only if 513/[(u)g > 0 (by convention,
we put supp(x) = 0 for the unique (—1)-cell * € P*,). The following property gives an inductive
definition of supp:

Proposition 2.4.3.2. Givenn € NU {w} and an n-polygraph P, the following hold:
(i) supp(g) = {g} U supp(9;,(9)) U supp(9;,(9)) forg € P,
(i) supp(id**!) = supp(u) fork € N,_; andu € P%,

(iii) supp(uy *; uz) = supp(u1) U supp(uz) for i,k € N, withi < k and i-composable uy, u, € P}.

Proof. Proof of (i): This holds since 5{)‘4(9) =g+ 524(8;_1(9)) + 52’1(8;_1(9)) for k e N, and g € Py.
Proof of (ii): This holds since 8% (id5*") = 6} (u) for k € N,,_; and u € P
Proof of (iii): Given i, k € N, and i-composable u;, u, € Py, we have
51134(141 *j Up) < 524(141) + 524(142)
thus supp(u; *; uz) S supp(ug) U supp(uz). Moreover, by Proposition 2.1.2.10(iii), we have
51;;/[(141') < 51&(”1 *j Up)
for j € {1, 2}, thus supp(u;) U supp(uz) C supp(ug *; us). |

Given n € NU {w}, we write
|-|: Pol,, — Set

for the canonical functor mapping P € Pol,, to |P| = Lixey, Px. The function supp” is then natural
in P:
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Proposition 2.4.3.3. Givenn € NU{w} and a morphismF: P — Q € Pol,, fork € N, andu € P,
we have

supp®(F(u)) = |F|(supp" (u)).

Proof. We prove this property by induction k and on an expression defining u (c.f. Proposi-
tion 1.4.1.16):

- ifu = g for some g € Py, then

supp(F(9)) = {F(¢)} U supp?(;_, (F(9))) U supp(3;_, (F(9)))
(by Proposition 2.4.3.2)
= |FI({g}) U supp®(F(9;_;(9))) U suppX(F(3_, (9)))
= |FI({g}) U IF|(supp® (3;_;(9))) U IF|(suppX(3_, (9)))

(by induction on k)
= |FI({g} U supp® (3, (9)) U supp?(5;_,(9)))
= |F|(supp(g)) (by Proposition 2.4.3.2),
- ifu= idg for some u € PZ_I, then,
supp®(F(id})) = supp®(id} ;)
= supp?(F(i1)) (by Proposition 2.4.3.2)
= |F|(supp" (i) (by induction on k)
= |F|(suppP(id§)) (by Proposition 2.4.3.2),

— if u = uy *; up for some i € Ny_; and u,u; € P then

SUPPQ(F(ul) *#; F(uz))
supr(F(ul)) U supr(F(uz)) (by Proposition 2.4.3.2)
= |F|(supp" (u1)) U |F|(supp (u3)) (by induction on u)

SUPPQ(F(ul *i Ug))

= |F|(supp® (u1) U supp” (u2))
= |F|(supp® (uy *; uz)) (by Proposition 2.4.3.2). O

Moreover, the supp function can be used to characterize the image of a free functor F* in the case
where F is a monomorphism:

Proposition 2.4.3.4. Givenn € NU{w}, a monomorphismF: P — Q € Pol,, k € N,, andu € QZ,
there exists u € P} such that F(u) = @ if and only if supp?(it) C |F|(|P|).

Proof. If there exists u € PZ such that F(u) = u, then, by Proposition 2.4.3.3,
supp® (@) = |F|(supp® (u)) < [F|(IP])

which proves one implication. We prove the converse one by induction on an expression defining .
So suppose that supp? (i) C |F|(|P|). Then,

- if @i = g for some § € Q, since § € supp? (i), there exists g € Py such that F(g) = F(§);
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- ifu= idg, for some @’ € Q;_,, since supr(idg,) = supp?(@’), by induction hypothesis,
there exists u” € P; | such that F(u) = @', thus F(idﬁ,) =1

— if 4 = 4y *; Ui, for some i € Ni_; and i-composable uy, u; € PZ, since

supp (ii;) U supp®(ilz) = supp® (i *; iiz),

by induction hypothesis, there exist uj,u; € P; such that F(u;) = u; for j € {1,2}.
Moreover, since F* is a monomorphism by Proposition 2.2.5.7 and 9] (ii;) = 9; (i), we
have 97 (u1) = 9; (uz). Thus, F(uy *; up) = L. O

2.4.3.5 — Stability. As explained earlier, in order to solve the word problem for a general poly-
graph P, given a cell u € P*, we need to define a finite “subpolygraph” of P that contains u. The
restriction of P to the generators of supp(u) is a good candidate, but is it a polygraph? More
generally, given S C |P|, this raise the question of knowing whether the restriction of P to S is
still a polygraph. Below, we define a property of stability on subsets of |P| and show that it is a
sufficient condition for the restriction of P to such subsets to be a polygraph.

Given n € N U {w} and an n-polygraph P, a subset S C |P| is stable when, for every k € N},
and g € S N Pk, we have

supp(9;_;(9)) U supp(d;_,(9)) € S.

As one can expect, supports of cells are stable:
Proposition 2.4.3.6. Givenn € NU {w}, an n-polygraph P, k € N, and u € P}, supp(u) is stable.

Proof. This is proved by induction on k and on an expression defining u. If k = 0, then the
property holds. So suppose that k > 1. If u = g for some g € Py, then, by definition,

supp(u) = {g} U supp(d;_,(g)) U supp(d;_,(9)).

By induction hypothesis, supp(9,_,(g)) and supp(9;_, (g)) are stable. Moreover, we have
supp(9;_,(9)) U supp(9;_,(9)) < supp(u)

so that supp(u) is stable. Otherwise, the cases where u = idg for some & € Py _, oru =u; *; up
for some i € Ni_; and i-composable u;, u; € P} are simple and left to the reader. m]

Moreover, polygraphs can be restricted to stable subsets:

Proposition 2.4.3.7. Given n € N U {w}, an n-polygraph P and a stable subset S C |P|, there
are unique n-polygraph Q and morphism F: Q — P such that Q. = S N Py for k € N, and such
that F.: Qi — Py is the embedding of S N Py in Py.

Proof. We show this property by induction on n. When n = 0, this property holds. So suppose
that it holds for some n € N. We show that it holds for n+1. So let P = (P’, P,+1) be an (n+1)-poly-
graph and S be a stable subset S C |P|. By induction hypothesis, there are unique n-polygraph Q’
and morphism F’: Q" — P’ such that Q; = S N Py for k € N,, and such that F} is the embedding
of S N Py in Py. Let Qu41 = S N Pyyq and f: Que1 — Ppyq be the embedding of S N P,,4q into Ppyg.
We now show that there exist unique d;,d: Q.41 — Q. that equip Q = (Q’, Qu+1) With a
structure of (n+1)-polygraph and such that (F, f) is a morphism of polygraphs P — Q. We start
with existence. Given g € Q41 and € € {—, +}, since g € S,4+1 and S is stable, we have

supp” (d5(f(9))) € SN [P'| = [F'[(Q)).
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Then, by Proposition 2.4.3.4, for € € {—, +}, there exists d},(g) € (Q’);; such that

(F')*(d7.(9)) = 4, (f(9))-

Moreover, for § € {—, +}, we have

(F')" (854 (dy(9))) = 3_, (F")*(d,(9)))
=3 1(d, (f(9))
=3 (&3 (f(9)))
= 35_,((F)*(d}(9)))
= (F')"(3)_,(d}(9)))

so that, since (F’)* is a monomorphism by Proposition 2.2.5.7, we have

X1 (dy(9)) = 3, (dh(g)).

Thus, d,,d}: Q41 — (Q'); as above equip (Q/, Qu+1) With a structure of (n+1)-polygraph. For
unicity, note that, since (F’);: (Q’); — (P’),; is a monomorphism by Proposition 2.2.5.7, the
functions d,, d}: Qu41 — (Q); are uniquely defined by (F’)*(d(g)) = d5(f(9)) for € € {—, +}
and g € Qu41-

The case n = w follows from the finite cases since Pol,, is a limit cone on the Poly for k € N by
definition. O

Up to isomorphism, the subobjects of a polygraph P obtained using Proposition 2.4.3.7 are exactly
the subobjects of P, as a consequence of the following property:

Proposition 2.4.3.8. Givenn € N U {w} and a morphism F: P — Q_ in Pol,, the set |F|(|P]) is
stable.

Proof. Let k € N and g € |F|(|P|) N Qk. Write g € Py for a k-generator such that F(g) = g.
For € € {—,+}, we have

supp(dy._,(9)) = supp(F"(di._,(9)))
= |F|(supp(d;_,(9))) (by Proposition 2.4.3.3)

thus supp(d;._, (9)) € IFI(|P]). .

Finally, we conclude that we can use the supp functions to find finite subpolygraphs whose free
categories contain a particular cell:

Proposition 2.4.3.9. Givenn € NU {w}, an n-polygraph P and ti € P*, there exist a finite n-poly-
graph Q, a monomorphism F: Q — P andu € Q" such that F*(u) = u and |F|(|Q]) = supp(u).

Proof. By Proposition 2.4.3.6, S = supp® (@) is stable. By Proposition 2.4.3.7, there exist an n-poly-
graph Q and a monomorphism F: Q — P such that Q¢ = SNPy and Fy. is the embedding of SN Py
in Py for k € N,,. Thus, |F|(|Q]) = supp® (@), and, by Proposition 2.4.3.4, there exists u € Q* such
that F(u) = . |
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2.4.3.10 — Support of terms. As suggested by Proposition 2.4.3.2, the support function can be
directly defined on terms of a polygraph, without evaluation. Given n € NU{w}, an n-polygraph P
and t € 7F, we define supp(t) C |P| by induction on t:

- if t = geny(g) for some k € N, and g € Py, then,
supp(g) = {g} U supp(d;_,(9)) U supp(di_, (9)).
- ift= Hi“(f) for some k € N,,_; and € 7, then,
supp(t) = supp(#),
- ift =t *;x t, for some i,k € N,, withi < kand t;,#, € 7'2, then,
supp(t) = supp(t1) U supp(2z2).
By a simple induction on t € WP, we have:

Proposition 2.4.3.11. Givent € ‘W, supp(t) = supp([t]").

Thus, we can compute the support of a cell u € P* directly from a well-typed term t € ‘WP such
that [[¢]P = u.

2.4.3.12 — Monomorphisms and terms. Finally, before concluding the correctness of the
method exposed earlier for solving the word problem on general polygraphs by reducing it on
finite polygraphs, we need to justify that the word problem behaves in the same manner (with
regard to well-typed terms and their evaluation) on a polygraph Q and on its subpolygraphs. First,
we prove that the subpolygraphs P of Q do not miss any well-typed term of Q that evaluates
tou € P*:

Proposition 2.4.3.13. Givenn € N U {w} and a monomorphism F: P — Q € Pol,, fork e N,
andu € P, the function WY induces a bijection between the subset of well-typed k-terms t € (WkP
such that [ ]| = u, and the subset of well-typed k-termst € "WkQ such that [t]Q = F*(u).

Proof. By Proposition 2.2.5.7, Fy.: P — Qq is injective for k € N, so ‘WY is injective, so that we
only have to prove the surjectivity part of the statement. Given k € Ny, u € P, and te (WkQ such
that [£] 2 = F*(u), we prove by induction on £ that there is t € ‘WP such that WF(¢) = :

- if = gen, (§) for some § € Qy, then, [{]2 = § = F*(u), so that, by Proposition 2.1.3.4(ii),
there exists g € Pi such that u = g. Thus, W¥ (gen,(9)) = £;

- ift = ﬁf_l(f’) for some t’ € (WI?_I, then F*(u) = id][fz,]]Q. By Proposition 2.1.3.4(i), there
existsu’ € P;_, such thatu = idﬁ,, so that F*(u’) = [#']?. By induction hypothesis, there
exists ¢ € ‘WP such that WF(t') = #’, so that (WF(;if_l(t’)) =t

- if t = #; ¥; t, for some i € Ny_; and 3,1, € (WkQ then F*(u) = [{,]]Q #; [£]Q. Since F* is
n-Conduché by Proposition 2.2.5.6, there exist i-composable u;, u, € Pz such that u = u;*;uy

and F*(u;) = [[£;]? for j € {1,2}. Then, by induction hypothesis, for j € {1,2}, there
exists t; € Wkp such that WF(tj) = fj, and, by Proposition 2.4.1.3, we have moreover

Fr([t;17) = [WF(tn]® = [5]1° = F* (uy)

so that [[¢;]|” = u; by Proposition 2.2.5.6. Since 3 (w) = 97 (uz), we have t =ty %; 4 t, € WP
and moreover W (t) = 1. |



2.4. WORD PROBLEM ON POLYGRAPHS 167

Moreover, we verify that the evaluation of well-typed terms is the same for Q as for its subpoly-
graphs:

Proposition 2.4.3.14. Givenn € NU {w} and a monomorphism F: P — Q € Pol,, fork € N,
andty,t, € W, we have [t1]]" =[] if and only if [WF ()] Q = [ WF (1) ]2

Proof. This is a consequence of the facts that, by Proposition 2.4.1.3, we have
[-1% o WF = F o[-
and, by Proposition 2.2.5.7, F* is a monomorphism. m|

2.4.3.15 — Solution to the word problem on general polygraphs. Given n € NU {w}, an
n-polygraph P, k € N, and 1,1, € W]f , we combine the properties of the section to describe a
method to decide whether [#,]7 = [[£.]".

First, let Q = P;. By the definition of W, we have t;,t, € W and, by the definition of [-]°,
IItl]]P = IItz]]P if and only if [[l'l]]Q = [[tz]]Q.

Thus, it is sufficient to decide whether [t;]? = [£]Q If []Q = [£.]Q, then, by Proposi-
tion 2.4.3.11, we have supp(t;) = supp(f;). We can easily calculate both supp(t;) and supp(t;)
using the inductive definition of supp on terms and verify that supp(¢;) = supp(t;) by Proposi-
tion 2.4.3.11 (otherwise, we conclude that [[#, |7 # [¢.]7). Thus, suppose that supp(t;) = supp(ts).
Using the constructive content of the proof of Proposition 2.4.3.9, the subpolygraph R of Q
induced by the stable subset supp(#;) satisfies that, by Proposition 2.4.3.4, there exist u;, uz € R,
such that F(u;) = [t;]@ for i € {1,2}. By Proposition 2.4.3.13 and by considering the canonical
embedding F: R — Q, we have that t;, 1, € WkR and, by Proposition 2.4.3.14, we have

[t:]2=[t]% ifandonlyif []R =[&].

Since R is a finite k-polygraph, we can use the computational method for finite polygraphs from
Paragraph 2.4.2.13 to decide whether [#;]|? = [[#.]|R, which is equivalent to [, " = [[.]]" as we
have shown.

2.4.4 An implementation in OCamL

In this section, we present the cateq program, which implements the solution to the word problem
for finite polygraphs given in Section 2.4.2 in OCaMmL. One uses cateq by first describing a
polygraph P, and then by querying the solution to several word problem instances on P. We first
describe the implementation of cateq and then illustrate how to use it on some examples.

2.4.4.1 — Implementation. The implementation of cateq is obtained from the constructive
content of the proofs of this section and the already introduced datatypes, together with additional
performance enhancements that we shall describe below. Our presentation differs from the actual
implementation, but it should nevertheless convey the main ideas.

In order to represent the terms of the polygraph we are considering, we use the datatype intro-
duced by Remark 2.4.2.3 that we recall below:
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(* The type of generators *)
type gen = int

(* The datatype of terms *)

type term =

| TermGen of int * gen

| TermId of int * term

| TermComp of int * int * term * term

A polygraph P is then described to the program using a term definition (c.f. Paragraph 2.4.2.7)
which is introduced generator by generator. Concretely, the user creates a new k-generator by
specifying a source (k—1)-term and a target (k—1)-term. A dictionary mapping generators to
these informations is maintained globally, and the following functions are available to retrieve
them:

val g_dim : gen -> int (* The dimension of a generator *)
val g_src : gen -> term (* The source of a generator *)
val g_tgt : gen -> term (* The target of a generator *)

By the description of the functor —[—]": Cat] — Cat,; we gave in Section 2.2.5, the cells of P*
are classes of sequences of classes of contexts (as defined in Paragraphs 2.2.2.1 and 2.2.4.1). We
encode these objects using datatypes adapted from the ones of Remarks 2.3.2.9, 2.3.2.19, 2.3.2.28
and 2.3.2.31. The datatypes for contexts and sequences are defined as follows:

(* The datatype of contezts of generator type *)

type ctxt =

| CtxtZ of gen (* a O-context of the type of a generator *)
| CtxtS of seqcl * ctxtcl * seqcl (* an (m+1)-context *)

(* The datatype of m-sequences *)

type seq =
| SeqZ of seqcl (* a zero-length m-sequence *)
| SeqP of ctxtcl list (* a positive-length m-sequence *)

The associated context classes (quotients of contexts under the relations ~,,) and sequences classes
(quotients of sequences under the relation =) are then represented by simple integer identifiers:

type seqcl = SeqCl of int
type ctxtcl = CtxtCl of int

Note that, contrary to the datatypes of Remarks 2.3.2.9 and 2.3.2.31, we did not define ctxtcl and

seqcl aslists of ctxt and seq respectively. The above definition allows for quicker comparison
of two classes: one just compares the two identifiers. In order to retrieve the sets of representatives
of context classes, a dictionary between the known context class identifiers and their context
representatives is maintained and can be queried with

val find_ctxtcl_reps : ctxtcl -> ctxt list option

Conversely, a dictionary between m-contexts and the known m-context class identifiers is main-
tained and can be queried with

val find_ctxt_cl : ctxt -> ctxtcl option

Moreover, a map between a context class identifier and a set of representatives can be added to
the global dictionary with
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val set_ctxt_cl : ctxt list -> ctxtcl -> unit
There are similar functions for sequences and sequence class identifiers:

val find_seqcl_reps : seqcl -> seq list option
val find_seq_cl : seq -> seqcl option
val set_seq_cl : seq list -> seqcl -> unit

We now present the implementation of the function which computes the set of representatives of
the class of a particular m-context under the relation ~,,, and then returns the associated context
class identifier. First, we introduce the structures that allows to manipulate sets of contexts.
In OCaML, this is done with:

(* Module which equips 'ctzt' with a total order *)
module Context =
struct
type t = ctxt
let compare = compare (* comparison function for 'ctzt' generated by O0Caml *)
end

(* Module that defines the types and operations on sets of 'ctzt' *)
module ContextSet = Set.Make (Context)

(* The actual type of sets of 'ctzt' #*)
type ctxt_set = ContextSet.t

Then, the context class identifier associated to a context is computed with the function

val get_ctxtcl : ctxt -> ctxtcl
let get_ctxtcl ctxt =
match find_ctxt_cl ctxt with
| Some cl -> cl
| None -> let cl = get_ctxtcl' ctxt in cl

It first checks with find_ctxt_cl whether the class identifier has already been computed, and
returns the saved value if it is the case (this is a classical dynamic programming technique, which
is nevertheless critical for efficiency here). Otherwise, it calls get_ctxtcl' to do the actual
computation:

val get_ctxtcl' : ctxt -> ctxtcl
let get_ctxtcl' ctxt =
match ctxt with
(* the case of 0O-contexts, which is trivial *)
| CtxtZ g ->
(* 0-context classes have only one representative *)
let reps = [ctxt] in
(* we obtain a fresh identifier for this class *)
let cl = fresh_ctxtclid () in
(* we associate 'cl' with the singleton set of representatives *)
set_ctxt_cl reps cl;
(* we return the class identifier *)
cl
(* the case of (m{+}1)-contexzts *)
| Ctxts _ ->
(* BFS that computes the other contexzt of the class *)
let rec aux already_done_set = function
(* if there ts nmo other contexzt to handle, we return *)
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| [0 -> already_done_set
(* otherwise, we handle the top context *)
| curr :: nexts ->
if ContextSet.mem curr already_done_set then
(* if 'curr' already handled, we continue *)
aux already_done_set nexts
else
(* otherwise, we compute the neighbors of 'curr' and add them
to the list of contexzts to exzplore *)
let ngbrs = ContextSet.elements (ctxt_rel_ngbrs curr) in
aux (ContextSet.add curr already_done_set) (List.append ngbrs nexts)
in
(* the above BFS returns the set of representatives for the class of 'ctzt' *)
let reps = ContextSet.elements (aux (ContextSet.empty) [ctxt]) in
(* we then get a fresh identifier, set the class and return *)
let cl = fresh_ctxtclid () in
set_ctxt_cl reps cl;
cl

The code of the case CtxtS in get_ctxtcl' is exactly the breadth-first search algorithm given in
the proof of Proposition 2.3.1.31, where

val ctxt_rel_ngbrs : ctxt -> ctxt_set

is the function which witnesses that the relations ~!, U ~! are effectively right finite for m € N,
and which is derived from the proof of Proposition 2.3.2.10. We skip the code of this function
since it is quite technical.

The computation of the set of representatives of a class of a particular m-sequence is done
similarly. First, we introduce the structures that allow manipulating sets of sequences:

module Sequence =

struct

type t = seq

let compare = compare
end

module SequenceSet = Set.Make (Sequence)

type seq_set = SequenceSet.t

Then, the retrieval of an m-sequence class identifier associated with a particular m-sequence is
done with the two functions:

val get_seqcl : seq -> seqcl
val get_seqcl' : seq -> seqcl

let get_seqcl seq =
match find_seq_cl seq with
| Some cl -> cl
| None -> let cl = get_seqcl' seq in cl

let get_seqcl' seq
match seq with
| Seqz _ ->
let reps = [seq] in
let cl = fresh_cid () in
set_seq_cl reps cl;
cl
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let rec aux already_done_set = function
| [1 -> already_done_set
| curr :: nexts ->
if SequenceSet.mem curr already_done_set then
aux already_done_set nexts
else
let ngbrs = SequenceSet.elements (seq_rel_ngbrs curr) in
aux (SequenceSet.add curr already_done_set) (List.append ngbrs nexts)

| SeqP _ ->

in

let reps = SequenceSet.elements (aux (ContextSet.empty) [seql) in
let cl = fresh_cid () in

set_seq_cl reps cl;

cl

Like for ctxts, the code of the case of SeqP in get_seqcl' is the procedure given in the proof
of Proposition 2.3.1.31, where

val seq_rel_ngbrs : seq -> seq_set

is the function which witnesses that the relation ~! U ~~1 is effectively right finite, and which is
derived from the proof of Proposition 2.3.2.29. We also skip the code of this function since it is
quite technical.

We then implement the source 97, target 9%, identity id and composition * operations for P*,
by unfolding the constructive proofs of Proposition 2.4.2.10(i) and Proposition 2.3.3.2, that jointly
implies that the strict category P* is computable. As a result, we obtain functions

val csrc : int -> seqcl -> seqcl

val ctgt : int -> seqcl -> seqcl

val identity : int -> seqcl -> seqcl

val comp : int -> int -> seqcl -> seqcl -> seqcl

which describe a recursive model of P* (c.f. Remark 2.3.1.35). Moreover, unfolding the proof of
Proposition 2.3.3.2 again, we obtain an implementation of the embedding function P — P*:

val gen_embed : gen -> seqcl

We then code the evaluation function [-]|P: WP — P*, following the constructive proof of
Proposition 2.4.2.10(ii):

val eval_wtterm : term -> seqcl
let rec eval_wtterm term =
match term with
| TermGen k gen -> gen_embed gen
| TermId k term' ->
let seqcl = eval_wtterm term' in
identity k seqcl
| TermComp (k,i,term_1,term_r) ->
let seqcl_1 = eval_wtterm term_1 in
let seqcl_r = eval_wtterm term_r in
comp i k seqcl_1 seqcl_r

The function which solves the word problem, given by Proposition 2.4.2.14, is then simply imple-
mented as follows:
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val solve_word_problem : term -> term -> bool
let solve_word_problem term_1 term_r =
eval_wtterm term_1 = eval_wtterm term_r

Concretely, solve_word_problem computes the seqcl identifiers of the evaluations of term_1
and term_r and compares them.

2.4.4.2 — Examples. We now show how to use cateq on several examples starting with a simple
one. Consider the 1-polygraph P with Py = {x} and P; = {f,g: x — x}. Let’s see how to query
cateq whether the cells f % g and g ¢ f are equal. We first populate the current polygraph with
the following commands:

# x := gen *
# f,g := gen x -> x

A command of the form [name] := gen * creates a 0-generator which is called [name] . The
syntax [name] := gen [src] -> [tgt] creates an (k+1)-generator called [name] of source and

target the k-cells [src] and [tgt] respectively. Several generators with the same source and
target can be defined by separating their names with commas, like was done for £ and g. We
then formulate our query with the command

#f x0g=g *0 £

and cateq replies
false

The cells are composed in the query using the composition operation *0 for 0-composable cells.
For composing cells in dimension 1, 2, etc. one then uses the operations *1, %2, etc. For identities,
one uses the syntax idt, id2, etc. For example, we can query

# £ %0 idl x = £

and cateq answers true .

Now consider the 2-polygraph P with Py = {x}, P; = 0 and P, = {a, B,7,6: id. = idl}. We
define it in cateq with the commands

# x := gen %
# alpha,beta,gamma,delta := gen idl x -> idl x

We then verify with cateq that a ¢ f ¢ y %o  can be expressed with two other expressions:

# alpha *0 beta *0 gamma *0 delta = (alpha *1 beta) *0 (delta *0 gamma)
# alpha *0 beta *0 gamma *0 delta = beta *1 alpha *1 gamma *1 delta

And cateq answers true to both queries. We see that alpha *0 beta *0 gamma *0 delta is quite

long to write. To solve this problem, we introduce a variable using the syntax [name] := [expr] :

# X := alpha *0 beta *0 gamma *0 delta

We can then make other queries using X :
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# X = gamma *1 (alpha *0 beta) *1 delta
# X = alpha *1 beta *1 gamma *1 gamma
# alpha *0 X = X *1 alpha

to which cateq answers true, false and true respectively.

Remark 2.4.4.3. The representatives of the 2-sequence class of X are in correspondence with the to-
tal orders on {«, f3, y, 8}. Thus, there are 4! representative 2-sequences of X that cateqhas to com-
pute in order to decide a word problem instance involving X . More generally, in order to decide an
equality involving the cell a; g - - - % o, for some distinct 2-generators ay, . . ., o : id,lc = id}C eP,
of a polygraph P, cateq has to consider all the representative k! 2-sequences of this expression for
computing the associated 2-sequence class. Thus, the worst-case complexity of cateq is pretty
bad: at least factorial in the size of the queried expressions. But cateq handles well queries
on expressions that do not have too many “bubble” generators like «, B,y or 8, so that it is still
efficient on a large class of word problem instances.

In Chapter 3, we will use cateq to justify the correctness of an important counter-example for two
pasting diagram formalisms, motivating the rest of that chapter (c.f. Paragraph 3.1.2.13). Moreover,
the results the latter will enable writing an extension to cateq which enables a simpler definition
of word problem instances (c.f- Paragraph 3.4.1.32).

2.5 Non-existence of some measure on polygraphs

Recall the definition of Makkai’s measure given in Paragraph 2.1.2.5. As we have shown there,
Makkai’s measure has good properties: it is natural, it is positive, and it admits an inductive
definition. But, it was remarked by Makkai [Mak05] that his measure has one defect: it double-
counts some generators. To some extent, such double-counting is sensible in particular situations.
For example, consider a polygraph P with a generator f: x — x € P;. Then, 524 (f)=2x+f,sox
is counted twice, but it seems logical since x “appears twice” in f as is illustrated in its graphical
representation:
x —)f X.
However, in other situations, double-counting does not seem adequate. For example, consider
the polygraph Q with two 0-generators y, z, two 1-generators g,h: y — z and one 2-gene-
rator a: g = h. Then,
M
dgla) =2x+2y+g+h+a

so that y and z get counted twice by M which does not seem natural since y and z “appear once”
in the graphical representation of a:
g
YR
y Ja z
A
h

We call polyplex a cell u € P* for some polygraph P such that the generators of P “appear exactly
once” in u. Intuitively, polyplexes are cells which are “as separated as possible”, i.e., without
non-necessary identifications between the sources and targets of the generators involved in these
cells. On the one hand, f is not a polyplex, since one can conceive a polygraph P’ with a 1-gene-
rator f': x; — x; with x| # xJ, so that f is a specialization of f’. On the other hand, & is a polyplex,
since all the identifications between the sources and targets of the generators seem necessary.
Polyplexes were first studied by Makkai [Mak05] through the related notion of computope, and
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then by Burroni [Bur12] (who introduced the name polyplex) and Henry [Hen18]. It was asked
by Makkai [Mak05] whether there exists another measure 7 on polygraphs with good properties
like the ones satisfied by Makkai’s measure and such that generators in polyplexes get counted
only once, i.e,, given a polyplex u of a polygraph P,

mp(u) = Z g.

gepP

Of course, there exist several measures that satisfy the latter property. Among them, we can
even find measures with several additional properties, like being positive. The really interesting
question that is left unanswered is whether there exists a measure 7 as above that would moreover
be natural in P. The existence of such a measure would be useful, since it could help characterize
polyplexes in particular.

In this section, we give a negative answer to this question. First, we introduce the definitions
of plexes and polyplexes (where plexes are, intuitively, polyplexes of length one), together with
some of their properties (Section 2.5.1). In the process, we answer another open question raised
by Makkai [Mak05] and show that a cell u € P* of the free strict category on a polygraph P can be
the specialization of several non-isomorphic polyplexes, and we do so by providing an example.
Then, by adapting the latter, we show that there is no natural measure on polygraphs that counts
exactly once the generators of polyplexes (Section 2.5.2).

2.5.1 Plexes and polyplexes

In [Mak05], Makkai defined the notion of plexes (calling them computopes) using the formalism
of concrete categories. We recall this formalism, and show that it can be used to derive both the
notion of plexes and polyplexes.

2.5.1.1— Concrete categories. A concrete category a category C endowed with a functor
|-|€: C — Set.

In the setting of [Mak05], the above concretization functor should be understood as a candidate
set representation of C in order to express C as a presheaf category, in the way suggested by the
following canonical example:

Example 2.5.1.2. Let C be a small category. C has a canonical structure of concrete category,
where |-|C is defined on preasheaves P € C by

PI€ = | | P(o)
ceCy

and extended naturally to morphisms between presheaves.

An equivalence of concrete categories between concrete categories (C, |—|¢) and (D, |—|?) is the
data of an equivalence of categories &: C — 9 and a natural isomorphism

®: |-P o0& = |-|°.

If such an equivalence exists, (C, |-|¢) and (D, |-|?) are said concretely equivalent. One might
then consider the following natural question:

When is some concrete category (C, |—|€) concretely equivalent
to a presheaf category (C, |-|€) for some small category C?
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When it is the case, we say that (C, |-|€) is a concrete presheaf category. In [Mak05], Makkai
gave a criterion, that we shall introduce in the coming paragraphs, to answer the above question.
He then used this criterion to show that Pol,, is not a concrete presheaf category, when Pol,, is
equipped with the concretization functor given by the below example:

Example 2.5.1.3. The functor |-|: Pol, — Set (already defined in Paragraph 2.4.3.1) which
maps P € Pol, to
Pl = | P

keN

equips Pol,, with a structure of concrete category.

Later, we will study the properties of Pol,, equipped with the above concretization functor. An-
other concretization functor on Pol,, that will be of interest for us is given by the below example:

Example 2.5.1.4. There is a functor |(—)*|: Pol,, — Set which maps P € Pol,, to

Pel=| | P

keN

and which is extended naturally to morphisms of Pol,,. This functor also equips Pol,, with a
structure of concrete category.

In order to distinguish with the preceding concrete category structures on Pol,, we use the
convention that we write Pol,, when considering the concrete category structure on Pol,, given
by |-| and Pol}, when considering the concrete category structure on Pol,, given by |(—)*|.

2.5.1.5 — Category of elements. Before presenting the criterion of Makkai, we shall first in-
troduce the category of elements associated with a concrete category. Given a concrete cate-
gory (C, |-|©), the category of elements Elt(C) of C is the category

- whose objects are the pairs (X, x) where X € C; and x € |X|C,

- and whose morphisms from (X, x) to (Y,y) are the morphisms f: X — Y € C such
that [f|€(x) = y. Given such a morphism f: (X,x) — (Y,y), we say that y is a specializa-
tion of x.

An object (X, x) € Elt(C) is principal when, for all morphism f: (Y,y) — (X,x) € Elt(C) such
that f is a monomorphism in C, we have that f is an isomorphism; it is primitive when it is
principal and, for all f: (Y,y) — (X, x) € Elt(C) where (Y, y) is principal, f is an isomorphism.

Example 2.5.1.6. Let C be a small category and consider the canonical concrete category structure
on C given by Example 2.5.1.2. The category Elt(C) has

- as objects the pairs (P, 1.(x)) where P € Cand x € P(¢),

- and as morphisms from (P, i.(x)) to (Q, t5(y)) the natural transformations «: P = Q such
that c = d and a.(x) = y.

Given (P, 1.(x)) € Elt(C), we have that:

- (P, 1(x)) is principal when P is the smallest subpresheaf P’ of P such that x € P’(c). In
particular, for all ¢ € C, (C(—,¢c),1.(id,)) € Elt(C) is principal;

- (P, 1c(x)) is primitive when the natural transformation : C(—, ¢) — P which maps id, to x
is an isomorphism.
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2.5.1.7 — Characterization of concrete presheaves. The criterion given by Makkai for char-
acterizing the concrete categories that are concretely equivalent to presheaf categories is the
following:

Theorem 2.5.1.8 ([Mak05, Theorem 4]). Let (C,|~|€) be a concrete category. C is concretely
equivalent to a presheaf category if and only the following conditions are all satisfied:

(i) |=|€ reflects isomorphisms,
(ii) C is cocomplete and |—|C preserves all small colimits,
(iii) the collection of isomorphism classes of primitive elements of Elt(C) is small,

(iv) for every element (X, x) € Elt(C), there is a morphism (U,u) — (X, x) for some primitive
element (U, u),

(v) given two morphisms f,g: (U,u) — (X, x) € Elt(C) where (U, u) is primitive, we have f = g,

(vi) given two morphisms f: (U,u) — (X,x) andg: (V,v) — (X, x) of Elt(C) where both (U, u)
and (V,v) are primitive, there is an isomorphism 0: (U,u) — (V,v) such thatgo 6 = f.

Makkai showed that Pol, was not concretely equivalent to a presheaf category by proving
that (v) was not satisfied in Pol,,, using the standard Eckmann-Hilton argument in strict cat-
egories [Sim11]. However, he did not know whether (vi) was true in Pol,. In the following, we
will show that Pol,, does not satisfy (vi).

2.5.1.9 — Plexes. Consider the category Elt(Pol,). An object of Elt(Pol,,) is a pair (P, g) where P
is an w-polygraph and g is a generator of P. By Proposition 2.4.3.9, such an object is principal
when P is the smallest subpolygraph of P that contains g or, equivalently, supp(g) = P. In this
case, P is finite and g is uniquely determined as the generator of maximal dimension of P. We
denote by gp this generator. So “being principal” reduces, in the case of Elt(Pol,,), to a property
on polygraphs: we say that an w-polygraph Q is principal when Q is finite and Q has a unique
maximal generator, denoted gq, such that Q is the smallest subpolygraph of Q that contains gq.
We then have directly:

Proposition 2.5.1.10. Given (P, g) € Elt(Pol,), the following are equivalent:
(i) (P, g) is principal,
(ii) P is principal and g = gp,
(iii) supp(g) = P.

Following the terminology of [Hen17], a plex is an w-polygraph P such that P is principal and
which satisfies that (P, gp) € Elt(Pol,,) is primitive. As far as we know, there is no easy character-
ization of plexes as there is for principal polygraphs. Intuitively, a plex is a principal w-polygraph
which is “as separated as possible”.

Example 2.5.1.11. Let P be an w-polygraph such that

Po = {x,y} Pi={f:x—>x9: x>y} P, ={a: f= f}
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and Py = 0 for k > 3. P can be pictured by

f
N g
x Ja x—y.
A
f

The w-polygraph P is not principal since it is not the smallest subpolygraph which contains a.
However, «a is the specialization of the generator @’ € P’, where P’ is the w-polygraph such that

Py ={x"}, Pi={f":x" - x'}, P,=A{a": f =9},
and P, = 0 for k > 3, and which can be pictured by
fl
Y

x o x.
N AN

/

g

P’ is principal but it is not a plex since @’ is the specialization of @”” € P”, where P” is the
w-polygraph such that

P(/)/ - {x//, y//} Pi/ - {f//’ g//: x// N y//} Pé/ — {a//: f// : g//}
and P}/ = 0 for k > 3, so that the cell @” can be pictured as

f//

and it can be verified that P” is a plex.

2.5.1.12 — Polyplexes. Consider now the category Elt(Pol})) (where, by the convention we intro-
duced, Pol’, denotes Pol,, equipped with the concretization functor of Example 2.5.1.4). An object
of Elt(Pol)) is a pair (P, u) where P is an w-polygraph and u is a cell of P*. Such an element is
principal when P is the smallest subpolygraph Q such that u € Q*. By Proposition 2.4.3.9, we
have directly:

Proposition 2.5.1.13. Given (P,u) € Elt(Pol})), (P,u) is principal if and only if P = supp(u).

Following again the terminology of [Hen17], a polyplex is an element (P, u) such that (P, u) is
both principal and primitive. Like for plexes, there is no simple characterization of polyplexes we
are aware of. Intuitively, they are the elements (P, u) € Elt(Pol},) with P = supp(u) such that the
generators defining u are “as separated as possible”.

Example 2.5.1.14. Let P be the w-polygraph such that
Po={x}, Pi={fix—x}, Pa={a:f=f}

and Py = 0 for k > 3, and u = & *; a, which can be pictured by
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The element (P, u) is principal, but it is not a polyplex, since u is the specialization of u” € P’*,
where P’ is the w-polygraph such that

P(l) — {xl’ yl} P; — {f,,g,, h/: xl N yl} Pé — {a/: fl ﬁg/,ﬂ,: g/ = hl}

and P; =0 fork > 3, and u’ = @’ *; §’, which can be pictured by

P

T

x'—9—v

W
%

and it can be verified that (P, u) is a polyplex.
We write U : Elt(Pol,,) — Elt(Pol})) for the canonical embedding. We then have:

Proposition 2.5.1.15. Let (P, g) € Elt(Pol,,). Then
(i) (P, g) is principal if and only if U(P, g) is principal,

(ii) (P,g) is a plex if and only if U(P, g) is a polyplex.

Proof. By Propositions 2.5.1.10 and 2.5.1.13, (i) holds. Suppose now that both (P, g) and U(P, g)
are principal. By Proposition 2.1.3.4(ii), U is fully faithful, so that it reflects isomorphisms. Thus,
if U(P, g) is a polyplex, then (P, g) is a plex. For the converse, note that if f: (Q,v) — U(P,g)
is a morphism of Elt(Pol’)), then, by Proposition 2.1.3.4(ii), v € Q, so that

(Qu)=U(Qu) and f=U(f).
Hence, if (P, g) is a plex, then U(P, g) is a polyplex. O
Conversely, there is a functor
V: Elt(Pol})) — Elt(Pol,)

which is described as follows. Given an w-polygraph Pand u € P, for some k € N, the image of the
element (P,u) € Elt(Pol})) by V is the element (P“*, g,,), where P“* is the w-polygraph obtained
from P by adding a k-generator hy: 9,_,(u) — 9{_,(u) and an (k+1)-generator g,: u — hy.
Given a morphism F: (P,u) — (Q,v) of Elt(Pol})), V(F) is the morphism of w-polygraphs
which maps g € P to F(g), hy, to h,, and g, to g,.

Proposition 2.5.1.16. Given (P,u) € Elt(Pol})), we have that:
(i) (P,u) is principal if and only if V (P, u) is principal,
(ii) (P,u) is a polyplex if and only if V (P, u) is a plex.

Proof. We have supp®* (¢,) = supp” (u) U {hy, g}, so that, by Propositions 2.5.1.10 and 2.5.1.13,
the property (i) holds. Suppose now that both (P,u) and (P“*,g,) are principal. If (P**,g,)
is a plex, then, given a morphism F: (Q,v) — (P,u) of Elt(Pol})) with (Q,v) principal, we
have that V(F) is an isomorphism by (i), which maps h, to h, and g, to g,, so that F is an
isomorphism. Conversely, suppose that (P,u) is a polyplex and let F: (Q,g9) — (P“*,g,) be
a morphism of Elt(Pol,) with (Q,g) principal. Then, we have F*(d*(g)) = hy, so that, by
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Proposition 2.1.3.4, d*(g) = h for some h € Q. Let v = d™(g) and Q be the smallest subpolygraph
of Q that contains v (given by Proposition 2.4.3.9). We then have:

IFI(1Q]) = |F|(supp(0)) (since |Q| = supp(v))
= supp(F*(v)) (by Proposition 2.4.3.3)
= supp(u)
= |P| (since (P, u) is principal).

Thus, the generators of Q are mapped to the generators of P. Hence, h ¢ Q. Moreover, since Q
is principal, Q = Qu {h, g}, so that there are an isomorphism ©: (Q“*, g») — (Q,9) and a
morphism F’: (Q,0) = (P,u) of Elt(Pol})) such that F o ® = V(F’). By (i), (Q,0) is principal
and, since (P, u) is a polyplex, F’ is an isomorphism and so is F. Hence, (ii) holds. O

We now answer the question raised by Makkai and prove that Pol,, does not satisfy the point (vi)
of the characterization of concrete presheaf categories (Theorem 2.5.1.8), giving another proof
that Pol,, is not a concrete presheaf category. First, we give a counter-example to (vi) for Pol},
proving by the way that it is also not concretely equivalent to a presheaf category:

Proposition 2.5.1.17. There exist (Q,v) € Elt(Pol’)) and morphisms
F: (P,u) > (Qo) and F: (P,u') > (Q0)
of Elt(Pol’)) where (P,u) and (P’,u’) are polyplexes such that P and P’ are not isomorphic in Pol,,.

Proof. Consider the w-polygraph Q with
Qo = {x} Q=0 Q; = {a: idl = idl} Q3 ={A:id® = o, B: a = id%}

and Qi = 0 for k > 4 together with the 3-cell v = (A ¢ @) *2 (B %9 a): @ = «a, which can be
represented by

gl A4l gl !
idy idy idy id,

Ava N/ N Bua

Y
x Ja x = x Ja x Ja x = x [Ja x.
N DA N

Al i1 1 1
idy, idy idy, idy,

The element (Q, v) is a specialization of the element (P, u) where
Po = {y} P,=0 P, ={f,y:id;, = id} } P;={C:id} = ,D: f = id>}
and u = (C %q y) *5 (D *¢ y), which can be represented by

idly idly idly id!
7N oy /7 N/ N Dwy /7
ylyy = vy lpylyy = vy lyy.
N N AN A A

.91 211 sl +q1
1dy 1dy 1dy 1dy

Moreover, (Q,v) is the specialization of the element (P’, u") where

Po={y'} P{=0 Py={p.y:id, =id,} P;={C:id, = p.D":y =>id}
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and u’ = (C" #q y’) #3 (B’ %o D’), which can be represented by

N N AN A N
ldly, idly, id;, ldly,

We verify that (P, u) is a polyplex. By Proposition 2.5.1.13, it is principal. Now let
G: (R,w) — (P,u) € Elt(Pol))
where (R, w) is principal. Then, by Proposition 2.1.2.8, ZG(5Q/I(W)) = 5?)4(1,4) and we compute that
ZG((S%A(W)) = 51F\,A(u) =5y+pf+y+C+D.

Thus, R has exactly two 3-generators C and D and exactly two 2-generators ﬁ~ and y that are
mapped to respectively to C, D, f and y by G. By Proposition 2.1.3.4, we can deduce the sources
and targets of f and y from the ones of f and y:

fid'(5) = id' () and j:id'(F) = id' (32)
for some 7y, §j; € Ry. We can moreover deduce the sources and targets of C and D:
C:id%({) = f and D: f = id®(§).
By computing 5&4(6) and 5&4(13) and using Proposition 2.1.2.10(iv), we have
31 < Sy (C) < &y'(w) and 3§, < Sy (D) < Sy (w)

so that, if §j; # 7, then 6y < 52’1(1,1), contradicting 51F\,A(u)y = 5. Thus ; = j,, and, since (R, w) is
principal, Ry = {7j; }. Hence, G is an isomorphism. We conclude that (P, u) is a polyplex. Using
similar techniques, we can prove that (P’,u’) is a polyplex.

We now verify that P and P’ are not isomorphic. Suppose by contradiction that there is an
isomorphism ©: P — P’ € Pol,,. Then, either ©(C) = C’ or ©(C) = D’. Since

d;(8(C)) =©"(d;(0)) =id?, # y' = d; (D)
we necessarily have ©(C) = C’, and thus, ©(D) = D’. But then,
B’ =d;(C") =©"(d3(C)) =" (d; (D)) =d; (D) =y
contradicting 8’ # y’. So P and P’ are not isomorphic. O

Finally, we answer the question of Makkai and conclude that Pol,, does not verify the condition (vi)
of Theorem 2.5.1.8:

Proposition 2.5.1.18. There exist (Q, g) € Elt(Pol,,) and morphisms
F: (P.gp) — (Qg) and F': (P,gp) = (Q.9)

of Elt(Pol,,) where (P, gp) and (P, gp/) are plexes such that P and P’ are not isomorphic in Pol,,.
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Proof. By Proposition 2.5.1.17, there are polyplexes (P, u) and (P’,u”) and morphisms
F: (P,u) > (Q,o) and F’': (P, u") - (Q,0)

for some (Q,v) € Elt(Pol})) such that P and P’ are not isomorphic. By applying V, we obtain
morphisms

V(F): (P, g,) = (Q™,9,) and V(F): (P, gu) = (Q™, g0)

of Elt(Pol,,), where (P**,g,) and (P"**, g,/) are plexes by Proposition 2.5.1.16. We now show
that P“* and P’** are not isomorphic. So suppose by contradiction that there exists an isomor-
phism ©: P¥* — P’“*. Since u and u’ are of the same dimension, g, and g, are the unique
maximal generators of P“* and P’#* respectively, so © maps g, on g,. Thus, © maps h, = d*(g,)
to h,y = d*(g.). So © induces an isomorphism between P and P’ seen as subpolygraphs of P**
and P+ respectively, which is a contradiction. O

2.5.2 Inexistence of the measure

In this section, we prove that there is no measure on polygraphs which is natural and which does
not double-counts generators of polyplexes. More precisely, we show that there exists no family
of functions 7 = (7p: |P*| — ZP)pepol,, such that

(PP-i) for all morphism F: P — Q in Pol,,, ZF o 7p = 7q o |F¥|,
(PP-ii) for every polyplex (P,u) € Elt(Pol})), 7(u); = 1 forall g € P.

2.5.2.1 — Unicity. We first prove that the properties (PP-i) and (PP-ii) completely determine
the family r, if it exists. This comes from the fact that every cell of the free w-category on an
w-polygraph can be “lifted” by a polyplex.

Let P be an w-polygraph. Given g € P, a plex lifting of g is a morphism

F: (Q,9q) = (P,9)

in Elt(Pol,,) where (Q, gq) is a plex. Given u € P*, a polyplex lifting of u is a morphism
F: (Q,v) — (P,u)

in Elt(Pol’)) where (Q, v) is a polyplex. In this situation, we say that (Q,v) lifts u. In [Mako05], it
is shown that “there is enough plexes”, i.e.,

Proposition 2.5.2.2 ([Mak05, Theorem 3]). Given an w-polygraph P and g € P, there exists a plex
lifting of g.

We deduce the same property for polyplexes:
Proposition 2.5.2.3. Given an w-polygraph P and u € P*, there exists a polyplex lifting of u.

Proof. By Proposition 2.5.2.2, there exist a plex (Q,g) and a morphism F: (Q,g9) — (P“*,g,)
in Elt(Pol,,). We have F*(d*(g)) = hy, so d*(g) = h for some h € Q. Let v = d™(g) and Q
be the smallest subpolygraph of Q that contains v. Since F*(v) = u, F maps the generators
of Q to generators of P. Since (Q, g) is principal, we have Q = Q U {h, g}. So there exists an
isomorphism ©: Q* — Qand F’: Q — P such that F o © = V(F'). By Proposition 2.5.1.16(ii),

the element (Q, ) is a polyplex and F’: (Q,v) — (P, u) is a morphism of Elt(Pol)). O
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We then have the following unicity result:

Proposition 2.5.2.4. There is at most one family of functions & = (7p: |P*| — ZP)pepol,, which
satisfies (PP-i) and (PP-ii).

Proof. Let P be an w-polygraph and u € P*. Then, by Proposition 2.5.2.3, there exists a mor-
phism F: (Q,v) — (P,u) where (Q,v) is a polyplex. Since 7 is natural and satisfies (PP-ii), we
have

7p(u) = ZF(nq(0)) = ZF() |, 9)

9€Q
s0 (7Tp)pepol,, is uniquely determined. O

2.5.2.5 — Designing a counter-example. So a family 7 that satisfies (PP-i) and (PP-ii) is unique,
but does it exist at all? By looking at the proof of Proposition 2.5.2.3, it would require some sort
of compatibility between the polyplex liftings of a cell u € P* of an w-polygraph P. Proposi-
tion 2.5.1.17 is already a bad sign for the existence of 7 but does not necessarily prevent the exis-
tence of 7: it could be the case that, for all P, u € P*, and polyplexes liftings (F*: (Q',v") — (P,u))

of u for i € {1, 2}, we have
ZF'( ) 9)=ZF () g)
9eQ! geQ?

even though Q! and Q? are not necessarily isomorphic. We show below that it is not the case by
exhibiting a counter-example, which refines the one of the proof of Proposition 2.5.1.17.

The idea to build such a counter-example is the following. Given an w-polygraph P with
3-generators A and B of the form

f f f
7N A Y B /X
x Ja x 2 x Ja x 2 x Ja x

a polyplex lifting of A *;, B is given by the polyplex (P’, A" *; B"), where A’ and B’ are of the form

f f f
Y A Y B Y
xl Ua/ y/ 5 xl Uﬂ/ yl E xl Uyl yl
N A N A N A
4 4 4

so that f has two pre-images in P’ and, if the family 7 exists, 7(A *; B); = 2. Now, if P has a
2-generator C of the form

f f
i e Y
x Ja x = x Uldf x
\}j& ‘\f/‘\

then, a polyplex lifting of A *, C is given by (P”/, A" %, C"") where A” and C”’ are of the form

f// fl/ f/l
Y, TN N
X! Ua// yu = X! U,B” y// = x!! Uld ., y//
N A N N

fr 1 1
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so that f has only one pre-image in P”” and (A ; C); = 1. So, we can control the number of
preimages of f in a polyplex lifting of A s, X by choosing the right 3-generator X € Ps. From this
remark, we build an w-polygraph P with 3-cells H, H’, K, K’ € P} satisfying

(H *3 K) %o (H, *2 K,) = (H #, K,) *0 (H, *; K)

and such that there are less preimages for some 1-generator f € P in the polyplex lifting associated
to the left hand-side than in the one associated to the right hand-side. Thus, this incoherence will
contradict the existence of 7.

Consider the w-polygraph P where

Po={x} Pi={f:x—>x}
P={A:id, = f, p: f=1id,, a: f = f}
P;={A:a = qA": idf >aB. a2 a,B:a=> idf}
together with the 3-cell
u=(H#K) *o (H %, K') = (H#o H') % (K %0 K’)

where

H=2A% A% p H =A% A" p
K=Ax Bx*p K' =A% B %1 p

so that u can be represented by
idL idl idL idl idl idL
x /U X —f—x == U x| e U x—f—
\fa)( U N x\fa)( \fa)(x x\fa)( U X
NEVAG Y2 Iy PANY: NEVANIIA
id!. idL idl idl

In the following, we describe two polyplexes that lift u. First, we prove some technical lemmas
relating Makkai’s measure and decomposition of cells with contexts:

Lemma 2.5.2.6. Let Q be an w-polygraph, k € N and g € Qi. Given m € Ni_; and an m-context E
of type g, we have

8 (%_, (ElgD) = 8§ (8, (Eg])) + 3 (df_,(9)) — 63 (dy_,(9))

and, given an m-context class F of type g, we have

8 (9, (FIg1)) = 68 (3_, (FIgD) + 85 (di_,(9)) — 63 (d_, (9))-
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Proof. We prove this by induction on m. If m = 0, then the property holds. So suppose that m > 0
and let (I, F/,r) = E. We have, using Proposition 2.1.2.9,

SN (97 (ELgD) = 8 (L om-s O, (F'[g) o1 )
= 08 (idf ™" sy O, (F'[g]) #mr idf )
= SN (1) + 833, (F'[g))) + B (r) = 83 (3}, (1) — 84 (3, (1))
= S (1) + (05, (F[g])) + 84(r) = 833} 1 (1) = 84 (9 (r)
+ (51\(-_1/[(dz_1 (9)) — 51\Q4(d;_1 (9)) (by induction hypothesis)
= 88 (id ™" sy 9, (F'[g]) #mr idf )
+83(d2,(9)) - 8M(dz,(9))
= 80 (Lom-1 9_; (F'[g]) om-17) + 68 (df_;(9)) = 6§ (df_;(9))
= 80 (9_, (E[g])) + 80 (df_, (9)) = 88 (dic_, (9))-

Moreover, given the fact that F = [ E’]] for some m-context E’, a similar equality holds for F. O

Lemma 2.5.2.7. Given an w-polygraph Q, k € N andu € Q_, if

u=Fi[g1] #g-1 "+ k-1 Filg1]
for somel € N and g; € Qi and (k—1)-context classes F; fori € N7, then
D oy =g+ +ar
9€Qx
Proof. Given g € Qg, m € Ny_; and an m-context E of type g, a simple induction on m shows that
> N(Elghy = > SQ(ENghy =g
9'€Qx 9'€Qx

Moreover, given (k—1)-composable u;, u, € QZ, by Proposition 2.1.2.9, we have

58[(141 g1 Up) = 521/[(7«!1) + 5?1/[(7«!2) - 5?14(3;:_1(7«!1))
so that, for all ¢’ € Qq,
5?1/[(”1 *k—1 uz)g’ = 51\(_1/[(”1)9' + 51(\1A(u2)g’-
Thus, the statement holds. m]

2.5.2.8 — The first polyplex. We now introduce a first polyplex of which the element (P, u) is
the specialization. Consider the w-polygraph P! where

P(l):{xl} P}Z{fl,gl,hlixl—wfl}
Pl ={ Miidy = fi,  Alridh = by,
p1: g1 = id}q, prih = id;lq’

a, a0y fi = g1, pr:hi = hy }
Py={A1: 1 = af, Aj:idy, = By, Bi: o] = @, Bj: pry = id, }

and the 3-cell

up = (Hy %2 Ky) %o (Hy %2 K{) = (Hy %o Hy) #5 (Ki %0 K{) € (P)3
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where

lej.l *1A1 *1p1 H{:A; *1A; *lp{
KIZAI *1B1 *1 P1 Kl’:/l{ *1B1 *1 P1

which can be represented by

iy, iy, iy, iy, iy, iy,

UM ’ A U }V m
/le U’A Hy*oH] f1 p th Ky#K] /le UA’

X1 Ual X|—h—>x = x Ual Uﬁl N = xn xl—h1—>x1

~ g1 91 hl \ 91
Ww U p U py U p1 Lp
iy, 1d1 ldl 1d1 1d1 iy,

Given the morphism F!: P! — P € Pol,, defined by the mappings

X1 X fi.g,hi— f

A AL = A pP1.p1 = P
a, a0 b a B «a
Al A Al A

B, — B B — B’

we have that (F!)*(u;) = u. We moreover verify that:
Proposition 2.5.2.9. (P!, u;) is a polyplex.
Proof. We compute
5241(u1) =23x1+3fi+3g1+4hi+ M+ A+ p1+pi+ar+aj +af + 1+ A+ A+ By + B} (2.14)

so that (P!, u;) is principal by Proposition 2.5.1.13. Let G: (Q,v) — (P!, u;) be a morphism
in Elt(Pol})) where (Q, v) is principal. Since ZG(5IC\§(0)) = 5% (u1) (by Proposition 2.1.2.8), Q3 has
exactly four generators,

A A, B, B
respectively mapped to A;, A}, By, B] by G, and Q; has exactly eight generators

A; /‘lls p_a p_,a &s C_{/: &”a ﬁ

respectively mapped to A1, A7, p1, p{, a1, @1, af’, p1 by G. Since G is an w-polygraph morphism,
by Proposition 2.1.3.4, we deduce that

Ara=a B:a' = a” (2.15)
A:id = B " = id; (2.16)

for some preimage h € Q; of hy. From (2.15) and (2.16), we deduce that

for some preimages f, g of f and g respectively, and that : h = h. We have

G*(az_(v)) = az_(ul) = (A1 %1 a1 %1 p1) %o (/1{ *1 P;)
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and we compute
ZG (O35 (0))) = M35 (w) = 9%y + fi+ gu + b+ Ay + A+ py+pl 4. (2.17)
By Proposition 2.1.2.10(iv), we deduce that
Aidi = f, p:g=idi, A:idd =k, p:h =id,
for some preimages h’, %, X’ € Q of the generators h, x, x respectively.
We now verify that h = h’. By Proposition 2.2.5.3 and Lemma 2.5.2.7, the cell v can be written
v = Fi[C1] %2 Fo[C2] #2 F3[Cs] #2 F4[C4]

for some 2-context classes F, Fy, F3, Fy and {Cy, Cs, C3,Cy} = {A, A’, B, B’}. By Lemma 2.5.2.6, we
have

8 (95 (F[CiD)) = 835 (0)) + Z [63(d3(Cy)) = 86 (d3 (Cy))] (2.18)

1<j<i

fori € {1,2,3,4}. Let p,q € {1,2,3,4} be such that C,, = A’ and C, = B’. Since
53(d; (B))p =1
we have 51(\14((92_ (FglCql))g = 1. Moreover, by (2.15) and (2.17),
8405 (0))7 = B (&5 (A))g = S5 (B))s = 0
so that, by (2.18), we have p < q. Then, since
1= O (d; () < 8M05 (Fp Gl and SY(d5 (AN, = SM(d5 (B, = 0

we have 1 < 584(82_ (v)); by (2.18) again. Moreover,

1< Y (W < 8435 o))
thus 1 < 5&4(62_ (v))j- Since both h and h’ are preimages of h and

(ZG (8N (35 (0)h = 843 (un ) = 1

we have h = k.

We now prove that f, g, h are the only 1-generators of Q. Suppose by contradiction that there
is another preimage f’ € Q; of f;. Then, since (Q,v) is principal, we have 5g(v)f, > 1 so there
exists r € {1,2,3,4} such that 5g(Fr [Cr])f > 1. By definition of A, A’, B, B, we have Sg(C,-)f, =0
fori € {1, 2,3, 4}. We deduce that 51(\14(62_ (F, [Cr]))f, > 1, and, by (2.18), that 51(\14(62_(0))]@ > 1. But

535 (0)F =1, ZG(53(d; (v))) = 531 (9; (w)) and  Sp1(d; (w))p; =1

so f = f’, contradicting f # f’. Thus, f is the unique preimage of f. The same argument gives
that g and h are the unique preimages of g and h respectively.

Finally, we have X = x’ since, otherwise, it would not be possible to compose the 1-, 2- and
3-generators of Q together, and, since (Q, v) is principal, there are no other 0-cells. So G is an
isomorphism. Hence, (Q, v) is a polyplex. O
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2.5.2.10 — The second polyplex. We now introduce another polyplex of which can be special-
ized to (P, u). Consider the w-polygraph P? where

Po={x2} Pi={f9}
Pi={ Apiidy, = f, A idy, = g,

’

p2: o= idxz, Py g2 = ide,
.o fp=fr Pubiige=9 }
Pi={Ay: oy 2 aj, Ay:id}) = fo, By: fr = Sy, By ag = idjrz}
and the 3-cell

up = (Hp #3 Kj) %0 (Hy 2 K3) = (Hp %9 Hp) *2 (K %0 K3) € (P?);

where

Hy = Ay %1 Ay %1 po H, = A; %1 A} %1 p,
K; = Ay %1 By %1 p2 Ky = A} %1 By %1 py

which can be represented by

idy, idy, idy, idy, idy, idy,
A , ) (PR /\m
/U f 2\[ 1|75 HyoH, m KoKy U2z ey
X2 o _x—92—x, == x, U U/fz X, = X9 — hH—> Xy Uﬂz
\fz - l,L p, \fz )( 92 U 0
idy, iy, idy, iy, id}, id},

Given the morphism F?: P> — P € Pol,, defined by the mappings

Xo > X fosg2 o f
Aoy Ay > A P2, Py = P
g, 0y > B2, By

Ay A Ay A

B, — B By +— B’

we have

(F*)*(u) = (H #o H') %3 (K’ %0 K)

= (H %o H') 5 [(K’ % idf;_(K)) %1 (id;(K,) %9 K)]  (by Axioms (S-iii) and (S-vi))
1 1

= (H %9 H') %5 (K’ %1 K) (by Axiom (S-iii))

= (H %o H') %, [(lda‘(K) %0 K') %1 (K % 1da+(K,))] (by Axiom (S-iii))

= (H %9 H') %5 (K %9 K') (by Axioms (S-iii) and (S-vi))

= (H %2 K) %o (H" %3 K')

=u

We then verify that:

Proposition 2.5.2.11. (P?,uy) is a polyplex.
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Proof. We compute
5%(142) =23x24+ 5 +5g2+ Ao+ Ay + pa+ py+as+a,+ Po+ Py + A+ A, + By + B,

so that (P?,uy) is principal by Proposition 2.5.1.13. Let G: (Q,v) — (P%u;) be a morphism
of Elt(Pol’,) where (Q,v) is principal. Since ZG(&g(v)) = 5% (u2) (by Proposition 2.1.2.8), we
deduce that Q has exactly four 3-generators

A A, B, B’
mapped to Ay, A;, By, B, respectively by G, and eight 2-generators
AN popsaa, Bp

mapped to Ay, A7, pa, p;, a2, a3, P, B, respectively by G. Since G is an w-polygraph morphism, by
Proposition 2.1.3.4, we deduce that

Araa B:f=p (2.19)
Aliidg = B:a > id (2.20)

for some preimages f,§ € Q; of f and g respectively. By (2.19) and (2.20), we have
ad:f=f and BJ:G=g.
Moreover,
G*(9; (v)) = 9, (u2) = (A2 1 p2) 0 (A3 *1 P2 *1 p3)

so that

ZG(6q (95 (0))) = 0pa (5 (2)) = 9%z + 2o + G + Ao + g + po + i + 2.
By Proposition 2.1.2.10(iv), 2f < 55/[(02) < 584(82_(0)) thus

Aridy, = f and p: f = id,

for some x € Q. Similarly, by considering d; (v) and 51;@ (95 (up)), we have

ANiidy =g and p':g=idy,
for some ¥ € Qq. By the same arguments as for (P',u;), we have that f, g are the only 1-gene-
rators of Q, ¥ = ¥’ and % is the only 0-generator of Q. Thus, G is an isomorphism. Hence, (P, v;)
is a polyplex. O

2.5.2.12 — Inexistence of a polyplex-compatible measure. Now that we have built the poly-
plex liftings
(PLu) and (P%u,)

of (P,u), we can conclude the inexistence of a natural measure 7 on polygraphs that does not
double-counts, since 7 would not be consistently defined on u:

Proposition 2.5.2.13. A family of functions = = (7p: |P*| = ZP)pepol,, can not satisfy both (PP-i)
and (PP-ii).

Proof. By contradiction, suppose that there exists a family r satisfying both (PP-i) and (PP-ii). We
compute 7p(u) in two different ways. First, note that there are exactly three preimages f;, g1, hy
of f by F!, whereas there are two preimages f,g, of f by F2. Then, on the one hand, we
have 7p(u) = ZF' (7p1 (u1)), thus 7p(u)¢ = 3. On the other hand, we have 7p(u) = ZF? (mp2(uy)),
so that 7p(u)s = 2, which is a contradiction. |



CHAPTER 3

Pasting diagrams

Introduction

Originally, the motivation behind pasting diagrams was to give a simpler description of cells of free
strict categories on polygraphs, and thus, of strict categories in general: the standard description
of the cells as classes of well-typed expressions given by Proposition 1.4.1.16, or even the one as
classes of sequences of context classes given in Section 2.2, are quite heavy and difficult to use
without computer assistance. Those descriptions seem necessary to handle the full complexity
that general polygraphs can induce, but appear excessive for most simple instances. Indeed, it
has now become common practice in the literature about strict categories (and, in particular,
this manuscript) to represent cells of strict categories simply by diagrams of generators, named
pasting diagrams. For example, one can consider the pasting diagram

b e

> v c S w f S x
Ug Ué
MU AN,

in any 2-category C that has 0-cells u, v, w, x, y, 1-cells a, b, ¢, d, e, f, g, h and 2-cells a, B, y, § whose
sources and targets satisfy the equalities suggested by the diagram:

(3.1)

~
S

R@=0=00) @=c=0(p P =d e
From this diagram, one easily finds expressions that compose “all the cells together” like

id2 wo (a1 B) *o ((y o id3) 1 (8 %o id}))
or

(idi *0 O % idi *0 idi) * (idi *0 idg %0 Y %o idi) * (idi %0 f3 %0 & *g idi).

A remarkable property of (3.1), and of pasting diagrams in general, is that all such expressions
are equivalent modulo the axioms of strict categories (c.f. Paragraph 1.4.1.1), so that the 2-cell
obtained by composing “all the cells of the diagram together” is well-defined. Moreover, there are

189
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subdiagrams of (3.1) that are also pasting diagrams, and they can moreover be composed together
by simply taking their set union. For example,

b e
/Tl O\ TR

)
g
)
=]
(=]
g
N
=
~
S

are subdiagrams of (3.1) that are pasting diagrams and that can be composed in dimension 0
along w to produce the subdiagram of (3.1)

b e

TR TR
v c > W > X

Lp !
\/

which is also a pasting diagram. However, not all subdiagrams of (3.1) are pasting diagrams. For
example, the subdiagram

~
o

b
TR h
>0 ¢ > w X —y (3.2)
N
d

is not a pasting diagram, since it is not possible to find an expression which composes the gener-
ators on the left-hand side with the ones on the right-hand side.

As suggested by the above example, a pasting diagram induces an w-category of the subdia-
grams that are pasting diagrams. In fact, this w-category is the free w-category on the canonical
w-polygraph associated with the diagram. For instance, the w-category of sub-pasting diagrams
of (3.1) is the free w-category on the w-polygraph P where

Po = {u,0, w,x,y}
Pi={a:u—>0o, becdiv—ow ef,g:w—x, h:x-—ouy}

Po={a:b=¢c Pp:c=>d y:e=>f ©6:f=g}

and Py = 0 for k > 3. Then, every cell u € P* can be faithfully represented by the sub-pasting
diagram of (3.1) associated with the subset supp(u) C |P|. Thus, the cells of the free w-category
on an w-polygraph Q associated with a pasting diagram admit a simple description as particular
subsets of |Q|, which contrasts with the complex descriptions as classes of well-typed expressions
or sequences of context classes.

In order for this description to be complete, one needs to be able to characterize the pasting
diagrams among general diagrams. A first issue which can prevent a diagram to be a pasting
diagram is that the cells of the diagrams can be composed in several non-equivalent ways. For

example, the diagram

y——p 7%
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is not a pasting diagram, since the loop there allows for several non-equivalent expressions which
compose all the generators of the diagram, like

axgbxc, b xq ¢ *q a, axqb*gcxgaxgbxgec, etc.

Another possible issue is that it might not be possible to compose the generators of the diagram
at all. Such problem is exhibited by non-connected diagrams, like (3.2). Another example is given

by the diagram
ot
x

T

where the “fork” prevents the existence of an expression which composes all the generators of the
diagram together. In dimension one, the absence of loops and forks, together with connectedness
and finiteness, completely characterize pasting diagrams: they are the diagrams of the form

z

7 Xn.

However, in higher dimensions, more subtle problems arise, making generalizations of the condi-
tions for dimension one insufficient, and one hardly finds sets of conditions that correctly filter
out all non-pasting diagrams.

The different pasting diagram formalisms that were introduced until now gave several propos-
als for such sets of conditions. The three main formalisms are Johnson’s pasting schemes [Joh89],
Street’s parity complexes [Str91; Str94] and Steiner’s augmented directed complexes [Ste04]. Even
though the ideas underlying the definitions of those formalisms are quite similar, they differ on
many points and comparing them precisely is uneasy. In particular, each of the three formalisms
has a specific notion of cell which represents a sub-pasting diagram. The most natural definition
of cell is the one adopted by pasting schemes, where cells are simply sets of generators, and, for
example, the pasting diagram (3.1) corresponds to the cell

{w,o,w,x,y,a,b,c.d,e, f,g.h,a, p,y, 5}.

In the formalism of parity complexes, the cells are constituted of several sets that keep the gen-
erators organized by dimension and by status of source or target. For example, the pasting
diagram (3.1) is represented by the cell consisting of five sets

Xz ={a, .y, 5},
Xi- ={a, b, e, h}, X1+ ={a.d, g, h},
Xo— = {u}, Xo+ = {y}

where X _ represents the i-source, X; ; the i-target, and X, the 2-dimensional part of the diagram.
Finally, in the formalism of augmented directed complexes, the definition of cell is similar to the
one of parity complexes, but the elements that appear in diagrams are seen there as generators of
free abelian groups, so that a cell consists of elements of free groups instead of sets. For example,
the pasting diagram (3.1) is represented there as the cell

Xo=a+f+y+56,
Xi-=a+b+e+h, Xi+=a+d+g+h,

X(],, =1u, X(],+ = y
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The latter definition of cell, even though it is less natural at first, has the advantage of allowing
the use of tools from group theory and linear algebra in the proofs.

To the best of our knowledge, no formal account of the differences between the above three
formalisms was ever made. In particular, it was not known whether one of these formalisms is
more expressive than another. In this chapter, we carry out the task of formally relating them.
It turns out that the three notions are incomparable in terms of expressive power (each of the
three allows a pasting diagram which is not allowed by others). In the process, it appeared
that the formalisms of parity complexes and pasting schemes are flawed, in the sense that the
sets of conditions provided by the two formalisms are inadequate to filter out all non-pasting
diagrams, refuting the related freeness properties of these structures claimed in the respective
articles [Str91; Joh89]. We illustrate this problem by giving an example of a diagram which is not
a pasting diagram but still accepted by both formalisms.

This motivated the introduction of a new formalism, called torsion-free complexes, whose
axiomatic corrects and generalizes the one of parity complexes, and which are able to encompass
augmented directed complexes and fixed versions of parity complexes and pasting schemes. More-
over, the good properties of their axiomatic allows for an efficient computational implementation
of torsion-free complexes, so that they can be used as part of a library for manipulating strict
categories.

We shall mention several recent works related to pasting diagrams and their formalisms.
In [Buc15], Buckley gave a mechanized Coq proof of several results of [Str91] but stops before
handling the freeness property of parity complexes, so that the deficiency we point out in this
chapter was missed. In [Cam16], Campbell isolates a common structure behind parity complexes
and pasting schemes, called parity structure, and introduces another formalism with stronger
axioms than the ones of parity complexes and pasting schemes, taking an opposite path from this
chapter where we introduce a more general formalism. In [Ngu17], Nguyen studies pre-polytopes
with labeled structures and shows that they induce a parity structure that satisfies a variant of
Campbell’s axioms that are enough to obtain another formalism for pasting diagrams.

Outline. This chapter is organized as follows. We first recall the definitions and the axioms of
each of the existing formalisms: parity complexes (Section 3.1.2), pasting schemes (Section 3.1.3)
and augmented directed complexes (Section 3.1.4). Then, by reusing the definitions used in parity
complexes, we introduce the formalism of torsion-free complexes (Section 3.1.5). We provide
general axioms for them (Paragraph 3.1.5.1) and also stronger ones that are more amenable to
computations (Paragraph 3.1.5.5). We relate each of the four formalisms to the unifying notion of
w-hypergraph (Section 3.1.1), so that each formalism can be described as a class of w-hypergraphs
(the ones that satisfy the axioms of the formalism) together with a notion of cell (which represents
a pasting diagram) and operations on these cells. We also discuss the counter-example to the
freeness property of parity complexes and pasting schemes (Paragraph 3.1.2.13).

Then, we prove that torsion-free complexes satisfy the properties expected from a pasting
diagram formalism. We first show that cells of a torsion-free complex have a structure of an
w-category by adapting the results of Street [Str91] (Section 3.2, c.f. Theorem 3.2.3.3), and then
prove that this w-category is the free w-category on a canonical w-polygraph associated with this
torsion-free complex (Section 3.3, c.f. Corollary 3.3.3.5).

Next, we give other possible definitions of cells for torsion-free complexes (Section 3.4). Indeed,
whereas we reused the definition of cells of parity complexes for torsion-free complexes, we
show that the w-category of cells can be equivalently obtained using other definitions for cells:
maximal-well-formed sets (Theorem 3.4.1.24) and closed-well-formed sets (Theorem 3.4.1.27). The
latter are similar to the cells of pasting schemes, and allow a more user-friendly approach of
torsion-free complexes. We illustrate this by providing an extension of cateq which enables
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to specify cells of free categories on polygraphs using closed-well-formed sets of torsion-free
complexes (Paragraph 3.4.1.32), after characterizing when a polygraph can be represented by a
torsion-free complex (Theorem 3.4.1.29).

Finally, we relate the torsion-free complexes to the three other formalisms (Section 3.4). We
show that the parity complexes, pasting schemes (after fixing their common deficiency), and
augmented directed complexes are special cases of torsion-free complexes (Theorem 3.4.2.3, The-
orem 3.4.3.9 and Theorem 3.4.4.22). Those are the only embeddings that exist between the four
formalisms and we provide counter-examples to the others (Section 3.4.5).

3.1 The formalisms of pasting diagrams

In this section, we introduce the definitions of the formalisms of pasting diagrams that we will
consider in this chapter. We present them through the common perspective of w-hypergraphs,
that are structures which encode the information in diagrams of generators like (3.1). Then, the
definition of each formalism roughly follows the same pattern. First, a definition for cells that
represent pasting diagrams is introduced, together with an identity and composition operations
that aim at equipping those cells with a structure of w-category. Then, a class of w-hypergraphs
that are correctly handled by the considered formalism is defined by the mean of axioms or
conditions.

We first introduce w-hypergraphs (Section 3.1.1) and then recall the definitions of the three
main existing formalisms for pasting diagrams: parity complexes (Section 3.1.2), pasting schemes
(Section 3.1.3) and augmented directed complexes (Section 3.1.4). Then, we introduce the new
formalism of torsion-free complexes that share the definitions of parity complexes but have different
axioms on w-hypergraphs (Section 3.1.5).

3.1.1 Hypergraphs

In this section, we introduce the structure of w-hypergraph that we will use as a common basis
in order to define the pasting diagram formalisms. This notion is essentially the same as the one
of parity structure introduced by Campbell in [Cam16] when defining a new formalism whose
instances are both parity complexes and pasting schemes. It is also similar to the notion of
oriented graded poset that, in a related context, Hadzihasanovic used to define presentations of
polygraphs [Had18].

3.1.1.1 — Definition. A graded set is a set P together with a partition

P:UPn

neN

the elements of P, being of dimension n. An w-hypergraph is a graded set P, the elements of
dimension n being called n-generators, together with, for n € N and for each generator u € Py,
two finite subsets u™, u* C P, called the source and target of u. GivenasubsetU C Pande € {—,+},

we write U€ for
U¢ = U u
uelU

Simple w-hypergraphs can be represented graphically using diagrams, where 0-generators are
represented by their names, and higher generators by arrows —, =, =, etc. that represent re-
spectively 1-generators, 2-generators, 3-generators etc.
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Example 3.1.1.2. The diagram

/ y \t
x lJa z (33)
N
y
represents the w-hypergraph P with
PO = {x’ Y, y/s Z}’ Pl = {a’ bs C,d}, PZ = {C(},
and P, = 0 for n > 3, sources and targets being
a ={x}, at ={y}, a ={ac}, at ={b,d},

and so on.

3.1.1.3 — Fork-freeness. Given an w-hypergraph P and n € N, a subset U C P, is fork-free (also
called well-formed in [Str91]) when:

— eithern=0and |U| =1,
— orn>0andforallu,o € Uande € {—,+}, we have u Nv° = 0.

For example, the subset {a, b} of (3.3) is not fork-free since a~ N b~ = {x}, but {a, c} is.

Remark 3.1.1.4. Note that the definition of fork-freeness depends on the intended dimension n.
This subtlety is important in the case of the empty set: 0 is not well-formed as a subset of Py but
it is as a subset of P, when n > 0.

3.1.1.5 — The relation <. Given an w-hypergraph P, n € N* and U C P,, for u,0 € U, we
write u 4%] v when u* Nov~ # 0 and we define the relation <y on U as the transitive closure of 4%,.
Given subsets V, W C U, we write V <y W when there exist u € V and v € W such that u <y v. We
define the relation < on P by putting u <v when there exists n € N* such that u,v € P, and u <p, 0.
The w-hypergraph P is then said acyclic when < is irreflexive.

Example 3.1.1.6. The w-hypergraph represented by
(3.4)

is not acyclic since a < b < a. On the contrary, the w-hypergraph represented by (3.1) is acyclic.
Given a subset V C U, we say that V is a segment for <¢; when for all uy, up, u3 € U such that
u,us €V and Uy <y Uy <y Us,

it holds that u, € V. For V C U, we say that V is initial (resp. terminal) in U when, for allu € U,
if there exists v € V such that u <y v (resp. v <y u), thenu € V.

Remark 3.1.1.7. In [Str91], < is defined as a transitive and reflexive relation whereas in [Joh89], it
is only defined as a transitive relation. Here, we prefer the transitive (and not reflexive) definition,
since it carries more information than the transitive and reflexive definition.
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3.1.1.8 — Other source and target operations. Given an w-hypergraph P, forn > 2, u € P,
and €, € {—, +}, we write u" for (u€)”7. We extend the notation to subsets U C P,, and write U¢"
for (U€)". Moreover, we write u* and u* for

ut=u \u" and ut=ut\u".
We also extend the notation to subsets U C P,, and write UT and U™ for

UF=U\U" and U*=U"\U".

Example 3.1.1.9. Consider the w-hypergraph represented by the diagram

SN
v up . X
b ~ " s €
) i 4 N ;
t —> u Ja ZW/ i) y — z - (3.5)
' d///
bl /c A ’
\l y U » Y e
™~ /d’r
W//
For this w-hypergraph, we have
a " ={u,0}, a” ={u,0'}, a " ={u}, att ={w'}
and, writting U for the set {a,b,c,d,e, [},
U™ ={t,u,0,w,x,y}, U' ={u0wxyz},
U™ = {1}, U* = {z}
and, writting V for the set {«, f5,y, 8},
V= {b, c, C”, C”’, d, d//, d”/, e}, V+ — {b/, C/, C”, C”/, d,, d//, d///’ el},
VT ={b,c,d, e}, VE={b" " d e}

From the above examples, one can intuitively describe the operations (=)~ and (—)* as computing
the “inner” sources and targets of a set of generators, whereas the operations (—)™ and (—)*
compute the source and target “borders” of a set of generators.

3.1.2 Parity complexes

In this subsection, we recall the formalism of parity complexes developed by Street in [Str91].
Most of the content will be reused when defining torsion-free complexes. The idea behind the
formalism is to represent an (n+1)-cell as a pair of source and target n-cells together with a subset
of P,+1 which “moves” the source n-cell to the target n-cell. Under the axioms of parity complexes,
these cells will have a structure of w-category.
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3.1.2.1 — Pre-cells. Let P be an w-hypergraph. For n € N, an n-pre-cell of P is a tuple
X = (XO,—s X0,+a e aXn—l,—: Xn—1,+: Xn)
of finite subsets of P, such that X;¢ € P; fori € N,,_; and € € {—, +}, and X,, € P,. By convention,

we often denote X, by Xj, - or X,, .. We write PCell(P) for the graded set of pre-cells of P.
Givenn € N, € € {—,+} and an (n+1)-pre-cell X of P, we define the n-pre-cell d;,(X) as

afl (X) = (XO,*y X0,+a DR anl,*s Xn71,+, Xn,e)-

The globular conditions g, 09, = 95097, are then trivially satisfied, so that the functions 9~, 9*
equip PCell(P) with a structure of an w-globular set.

3.1.2.2 — Movement and orthogonality. Let P be an w-hypergraph. Given n € N and finite
sets
MCP,,,, UCP, and V CP,,

we say that M moves U to V when

U=(VuM)\M* and V=(UUM)\M".
Intuitively, the first equation means that U is the subset obtained from V by replacing the target
of M by its source, and the second equation has a dual meaning.
Example 3.1.2.3. In the w-hypergraph (3.5), the set {a, 3, y, §} moves the set {a, b, c,d, e, f} to the
set {a,b’,c’,d’, ¢, f}.

3.1.2.4— Cells. Let P be an w-hypergraph. Given n € N, an n-cell of P is an n-pre-cell of P, such
that

(i) Xit1,e moves X;_ to X;4 fori € N,_; and e € {—, +},
(if) X is fork-free fori € N, and € € {—, +}.

We denote by Cell(P) the graded set of cells of P, which inherits the structure of globular set
from PCell(P). An n-cell X can be represented as on Figure 3.1 where each arrow

M

-_

U Vv

means that M moves U to V.

Example 3.1.2.5. The w-hypergraph represented by (3.5) has, among others,
- a0-cell ({t}),
- al-cell ({t},{w'},{a,b,c”"},{a,b,c"},{a}),
- a2-cell ({t},{z},{a,b,c,d, e, f},{a b, c’,d ¢, f}.{a By, 0}), etc.

Remark 3.1.2.6. In [Str91], cells are defined as pairs (M, N) with M, N C P satisfying conditions
similar to the fork-freeness and movement conditions. This definition is equivalent to the above
one: given an n-cell (in the sense of Street) (M, N), one obtains an n-cell X (in our sense), by
setting X, = M,, and, for i € N,_;, X;_ = M; and X; . = Nj, and an inverse translation is defined
easily.
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Xn—l,— Xn—1,+
Xn—2 - Xn—2,+

Xi- X1+
Xo,~ Xo+

Figure 3.1 - Movements in a cell

3.1.2.7 — Identity and composition of operations. Let P be an w-hypergraph. Given n € N
and an n-cell X, the identity of X is the (n+1)-cell

idn+1 (X) = (XO,—> XO,+3 LR} Xn—l,—: Xn—1,+» Xn: an 0) .

Given i,n € N with i < n, and i-composable n-cells X, Y € Cell(P),, the i-composition X =; Y of X
and Y is defined as the n-pre-cell Z such that, for j € N,, and € € {—, +},

Xj,e lf_] <1,
7 Xi- ifj=iande=—,
e Vit ifj=iand e =+,

X;eUYje ifj>i.
It will be shown in Section 3.2 that, under suitable assumptions, the composite of two n-cells is

actually an n-cell.

3.1.2.8 — Atoms and relevance. Let P be an w-hypergraph. Given n € N and u € P,,, we define
sets (u);e C P; fori € N, and € € {—, +} with a downward induction by

<u>n,— = <u>n,+ = {u}
and
<u>j,— = <u>7+1,— <u>j,+ = <u>ji+1,+

for j € N,_;. We often write (u), for both (u),_ and (u), +. The atom associated to u is then the
n-pre-cell of P

() = (Wo-, (Wosts - - -5 (Wn-1,- (Wn-1.4, (Un).

A generator u is said relevant when the atom (u) is a cell. When P is a parity complex, the relevant
generators of P will have the role of generating cells in the w-category Cell(P).
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Example 3.1.2.9. The atom associated to « in (3.3) is (@) with

(@)o,- = {u}, (@)1~ =A{a.c}, (@)2 = A{a},
(@)o+ = {z}, (@)1+ = {b,d},

and, since it is a cell, « is relevant.

3.1.2.10 — Tightness. Some defects were found in the first definition of parity complexes given
in [Str91], so that Street fixed his definition in [Str94]. His correction involves the notion of
tightness defined as follows. Given n € N, a subset U C P, is said to be tight when, for all u,v € P,
such that u<v and v € U, we have u™ N U* = (.

Example 3.1.2.11. In (3.5), U = {f, v} is not tight since @<y and ¢”’ € = N U*. Howeover, the
set U’ = {a, B,y, 8} is tight.

3.1.2.12 — Parity complexes. We can now state the definition of a parity complex, reformulating
the one given in [Str91] by taking into account the corrections introduced in [Str94]. A parity
complex is an w-hypergraph P satisfying the axioms (C0) to (C5) below:

(Co) forne N*andu € P,,u” # 0 and u™ # 0;

(C1) forne Nwithn >2andu € P,,u"" Uutt =u " Uu';
(C2) forn e N*and u € P,, u~ and u™ are fork-free;

(C3) Pis acyclic;

(C4) forn e N*, u,0 € Py, w € Pyyy, if u<o,u € w€ and v € w" for some ¢, € {—, +},
then € = n;

(C5) fori,n e Nwithi < nandu € P,, (u);— is tight.

Axiom (C0) ensures that each generator has defined source and target. Axiom (C1) enforces basic
globular properties on generators. For example, it forbids the w-hypergraph

a

w @ 2 (3.6)
since ™~ U a™ = {w,y} and a*~ U a™" = {x,z}. Axiom (C2) forbids generators with parallel
elements in their sources or targets. For example, the w-hypergraph

— %z (3.7)

does not satisfy Axiom (C2) since a~ = {x, y} is not fork-free. Axiom (C3) forbids w-hypergraphs
with some loops like (3.4). Axiom (C4) can be informally described as forbidding “bridges”. For
instance, the w-hypergraph
y —_—_—
/' \A
x Ja z
Yy

c (3.8)
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does not satisfy Axiom (C4). Indeed, a<c<b’ and a € ¢~ and b’ € a*. Axiom (C5) prevents more
subtle problems, like the one exposed by (3.13) discussed in Paragraph 3.1.5.3 (even though (3.13)
does not satisfy Axiom (C3) in the first place). It entails that the sources and targets of each
generator are segments (as defined in Paragraph 3.1.1.5), which is a condition that we will motivate
in Paragraph 3.1.5.3 when discussing Axiom (T3) of torsion-free complexes.

3.1.2.13 — A counter-example to the freeness property. Given a parity complex P, the main
result claimed in [Str91] is that the globular set Cell(P) together with the source, target, identity
and composition operations, has the structure of an w-category, which is freely generated by
the atoms (u) for u € P ([Str91, Theorem 4.2]). More precisely, this result states that there is an
w-polygraph Q and an w-functor F: Q* — Cell(P) such that

- Q=P fork eN,
- F(u) ={u) foru € Q,
- Fis an isomorphism.

Intuitively, this property says that parity complexes are adequate structures for representing
pasting diagrams, since then a cell X of Cell(P) corresponds to a unique class of expressions
that compose together the generators which appear in X by Proposition 1.4.1.16. Howeover, this
property does not hold as we illustrate with a counter-example.

Consider the w-hypergraph P defined by the diagram given by

a d
/b YLy
x b— y e—> 2 (3.9)
BUUP sU o
¢ f
together with two 3-generators
/e N\ TN
x b > Y e >z E b > Y e >z,
W w
f f
d d
TR T
x b >y e Sz > e >z .

b \
o S

By carefully checking Axioms (C0) to (C5), it can be shown that P is a parity complex. The
diagram (3.9) moreover defines a polygraph Q, whose induced w-category Q* is supposed to be
isomorphic to Cell(P), as a consequence of [Str91, Theorem 4.2], but it is not the case here. Indeed,
we can find two expressions that compose together the 3-generators A and B in Q*, inducing two
3-cells H; and H, with

Hy = ((aegy)sr Aoy (Bogf)) ey ((a'sgd) ey Bey(cogd’))
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and
Hy = ((cxegd) ey Bey (cog8)) ez ((aegy’)e1 Aey (B % f))

that share the same source and target

a d

/e Nl Y

9, (Hi) =9, (Hz) = x b——>Y e—> 2
WW

¢ f

a d

9y (Hy) = 9 (Hz) = x b——> Y

¢ f

Note that we used a precategorical syntax for H; and H, in order to avoid putting too many id®
so that we get more readable expressions. The canonical morphism F: Q* — Cell(P) maps H;
and H; to the same 3-cell X defined by:

X3 ={A, B},
Xo- ={a, By, 6}, X ={a’. By, 6"},
X1 ={a.d}, Xi+={c f}
Xo- = {x}, Xo- = {z}.

However, H; and H; are different cells in Q*. Let’s verify this fact with cateq (c.f Section 2.4.4).
First, we define the polygraph Q and the cells H; and H; in cateq:

# x,y,z := gen *

# a,b,c := gen x -> y

# d,e,f :=geny -> z

# alpha,alpha' := gen a -> b

# beta,beta' := gen b -> c

# gamma,gamma' := gen d -> e

# delta,delta' := gen e -> £

# A := gen alpha *0 delta -> alpha' *0 delta'

# B := gen beta *0 gamma -> beta' *0 gamma'

# H1 := ((id3 a *0 id3 gamma) *1 A *1 (id3 beta *0 id3 f))

*2 ((id3 alpha' *0 id3 d) *1 B *1 (id3 c *0 id3 delta'))
# H2 := ((id3 alpha *0 id3 d) *1 B *1 (id3 c *0 id3 delta))
*2 ((id3 a *0 id3 gamma') *1 A *1 (id3 beta' *0 id3 £))

We then query whether H; is equal to H; with the command
# H1 = H2

to which cateq answers false, so that H; # H; by Proposition 2.4.2.14 (before cateq was
implemented, a proof in Agda that H; # H, was given in [FM19]).

Hence, the distinct cells H; and H, of Q* are sent to the same cell of Cell(P) by F as one
could have expected, since the information that makes H; and H, different is the order in which A
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and B are composed, which can not be expressed by a cell of a parity complex. This refutes [Str91,
Theorem 4.2] which asserts that F is an isomorphism. Thus, parity complexes do not necessarily
induce free w-categories in general.

3.1.3 Pasting schemes

Johnson’s loop-free pasting schemes [Joh89] is another proposed formalism for pasting diagrams.
Like parity complexes, they are based on w-hypergraphs, but the cells will now be represented
as single subsets of generators instead of tuples like for parity complexes (which is arguably a
more natural representation of pasting diagrams compared to the cells of parity complexes). As
a consequence, one will rely on set relations, namely B and E, on the w-hypergraph to define
the globular operations on the cells. Concretely, B and E encode which generators to remove to
obtain respectively the target and the source of a cell. We introduce the formalism in detail below.

3.1.3.1 — Conventions for relations. First, we set some elementary definitions and notations
for relations. A relation between two sets X and Y is a subset L € X X Y. For (x,y) € X X Y,
we write x Ly when (x,y) € L. The identity relation on a set X is the relation L € X X X such
that x Ly iff x = y. Given a binary relation L between X and Y, and x € X, we write L(x) for the
set

L(x)={yeY|xLy}.

More generally, given a subset X’ C X, we denote by L(X") the set
{yeY|3Ixe X' xLy}.

The relation L is said finitary when, for all x € X, L(x) is a finite set. If L is a relation on a
graded set P = L,enPy, given k,I € N, we write Lﬁ{ for the relation between P; and Pj defined
as LN(P; X Py). Similarly, we write L! for the relation between P; and P defined as LN(P; X P).

Given relations L between X and Y and L’ between Y and Z, we write LL’ for the relation
between X and Z which is the composite relation defined as

Ll ={(x,z2) e XxZ|3JyeY,xLyand yL’z}.

3.1.3.2 — Pre-pasting schemes. A pre-pasting scheme (P,B,E) is given by a graded set P and
two relations B, E (for “beginning” and “end”) on P such that

(i) B andE are finitary,
.. . I _wl _
(ii) for k,l € Nwithl <k, B, =E,_ =0,
(iii) B’; (resp. E’,i) is the identity relation on Py,
(iv) fork,l e Nwithk <I[,L € {B,E},u € Pj;; and v € Py, uLi+1 v if and only if

I+1ny1 I+1171
ul, "B o and uL"E 0.

Example 3.1.3.3. The diagram (3.3) can be encoded as a pre-pasting scheme

Bi(a) = {a,c}, E{(a) = {b,d},
Bj(a) = {y}, Ej(a) = {y'},
By(a) = {x}, Eo(a) = {y} ...
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Note that the relations B and E of a pre-pasting scheme P are completely determined by the data
of B’,z“(u) and E’;*’l (u) for k € Nand u € Py. As a consequence, the data of a pre-pasting scheme
structure on P is equivalent to the data of an w-hypergraph structure on P: the correspondence
is given by

u = B’,i“(u) and u = Ef”(u)

for k € N* and u € Py,4. In particular, the relation < on a pasting scheme is defined as the one on
the associated w-hypergraph.

3.1.3.4 — Direct loops. Given an w-hypergraph P, P has a direct loop when
(i) either there exist n € N* and u,v € P, such that u <v and E(v) N B(u) # 0,
(ii) or there exists w € P such that E(w) N B(w) # {w}.

Example 3.1.3.5. The w-hypergraph

N,

— 2 (3.10)

N

y

has a direct loop by the first criterion, because o <f and y € B(a) N E(f). Examples of direct
loops by the second condition are given by the w-hypergraphs

a [}
b c
1_ 2 _ \K
PP=v Ja w and P°= x up z . (3.11)

7 D,

Indeed, in P!, we have a € B(a) N E(a), and, in P?, we have y € B(8) N E(p).

3.1.3.6 — Finite graded subsets. Let P be a pre-pasting scheme. We define the relationR € PxP
as the smallest reflexive transitive relation on P such that, for all k € N and x € Py, we have

B(x) UE(x) C R(x).

Example 3.1.3.7. In the case of the w-hypergraph (3.10), we have
R(a) ={x,y,z,a1,as,b,a} and R(P)={x,y,2z,b,c1,co f}.

A finite graded subset of dimension n of P (abbreviated n-fgs) is an (n+1)-tuple X = (Xo, ..., X,)
such that X C Py and X} is finite for k € N,,. We often identify the n-fgs X with the set Ugen, Xk,
but one should keep in mind that the n-fgs X and the (n+1)-fgs (X, ..., Xy, 0) are two different
objects. We say that X is closed when R(X) = X. Given n € N and an (n+1)-fgs X of P, we define
the source and the target of X as the n-fgs’s 9;, (X) and 9} (X) of P such that

9, (X)=X\E"(X) and & (X)=X\B"(Y).
Example 3.1.3.8. Considering the w-hypergraph (3.10), we have

8,;(R(a)) = R(O[) \ {b’ 6(} = {xa Y,z a, aZ} and a;(R(a)) = R(O() \ {y’ ai, aZ} = {x’ z, b}

Remark 3.1.3.9. The fgs’s of the form R(u) for u € P are the analogue of the atoms defined for
parity complexes.
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3.1.3.10 — Well-formed sets. Given a pre-pasting scheme P, we define by induction on n the
notion of well-formed n-fgs (abbreviated n-wfs): given n € N, an n-fgs X of P is well-formed when

(i) X is closed,
(ii) X, is fork-free,
(iii) when n > 0, 9, (X) and J;(X) are well-formed (n—1)-fgs.

We denote by WF(P) the graded set of n-wfs’s of P for n € N. By [Joh89, Theorem 3], for n € N,
the operations 9, and d;; on (n+1)-fgs’s restrict to functions

37 WE(P)yyy — WE(P), and 9% : WE(P)pe1 — WE(P),

and they equip WF(P) with a structure of w-globular set. In the following, the wfs’s will be the
“cells” of the pasting diagram formalism of pasting schemes.

Example 3.1.3.11. The pre-pasting scheme

Y1
x Uba—\; z (3.12)
NU p s
Y2

has, among others,
- the 0-wfs {x} and {z},
- the 1-wfs {x, y1, 2, a1, az} and {x, ys, 2, 1, c2 },
- the 2-wfs {x, y1, y2, 2, a1, az, b, c1, c2, @, B}.

3.1.3.12 — Identity and composition operations. We can introduce identity and composition
operations like we did for the cells of parity complexes. Let P be a pre-pasting scheme. Givenn € N
and an n-wfs X = (Xy, ..., X,) of P, the identity of X is the (n+1)-wfs id"*'(X) defined by

id"™(X) = (X, ..., X 0).

Given i,n € N with i < nand X,Y two n-wfs such that ] (X) = 9; (Y), the i-composition of X
and Y is the n-fgs X =; Y such that
X#Y=XUY.

Under the conditions of a pre-pasting scheme, it is not necessarily the case that the composite of
two n-wis’s is an n-wfs, but it will under the axioms of a pasting scheme introduced below.

3.1.3.13 — Loop-free pasting schemes. We now state the full definition of loop-free pasting
schemes, reformulating the one of [Joh89]. A pasting scheme is a pre-pasting scheme P satisfying
the following two axioms:

(S0) for k € Nand u € Py, B,’i”(u) # 0 and EZ”(u) # 0;
(S1) fork,l e Nwithk <I,L € {B,E},u € Pj;; and v € Py,

_ I+171 I+1 I+171
lqul LkvthenuEk voruBk Lkv,
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- ifu B;“L;c v then u B]l:l voru Ef“L;C v.

The pasting scheme P is a loop-free pasting scheme when it moreover satisfies the following
axioms:

(S2) P has no direct loops;
(S3) foru € P,R(u) € WE(P);
(S4) for k,n e Nwith k < n, X € WF(P)y and u € P,,

- if 9, (R(u)) € X, then (u)x - is a segment for <,

- if 9 (R(u)) C X, then (u)i+ is a segment for <, ;
(S5) forn € N, X € WF(P),, and u € P,4; with 9, (R(u)) C X, the following hold:

(@) XNE(u) =0,
(b) fory € X, if B(u) NR(y) # 0, then y € B(u).

Axiom (S1) enforces basic globular properties on generators and forbids, for example, the w-hyper-
graph (3.6). Axiom (S2) forbids w-hypergraphs with loops like (3.4), (3.10) and (3.11). Axiom (S3)
enforces fork-freeness on the iterated sources and targets of a generator (for example, it forbids the
w-hypergraph (3.7)). Axiom (S4) relates to Axiom (C5) of parity complexes and prevent situations
in the spirit of (3.13) discussed in Paragraph 3.1.5.3 (even though (3.13) does not satisfy Axiom (S2)
in the first place). We motivate this axiom in Paragraph 3.1.5.3 when we discuss a similar axiom for
torsion-free complexes. Axiom (S5) can be deduced from the other axioms (c.f. [Joh87, Theorem
3.7]) but it simplifies the proofs of [Joh89]. An example of a sensible pre-pasting scheme that
satisfy Axioms (S0) to (S3), but neither Axiom (S4) nor Axiom (S5), exists in dimension four
(see [Pow91, Example 3.11]).

3.1.3.14 — A counter-example to the freeness property. The main result claimed in [Joh89] is
similar to the one of [Str91]: given a loop-free pasting scheme P, the globular set WF(P) together
with the source, target, identity and composition operations has the structure of an w-category,
which is freely generated by the wfs’s R(u) for u € P ([Joh89, Theorem 13]), i.e., there exist an
w-polygraph Q and an w-functor F: Q* — WEF(P) such that

- Q=P forkeN,
- F(u) =R(u) foru € Q,
- F is an isomorphism.

But the same flaw as for parity complexes is present here too, which makes the freeness result
wrong. In fact, the counter-example to the freeness property of parity complexes, introduced in
Paragraph 3.1.2.13, is also a counter-example to the freeness property of pasting schemes: the
w-hypergraph P is a loop-free pasting scheme and the canonical morphism F: Q* — WEF(P)
sends H; and H; to the same 3-wfs X where

X=A{xy,z,apy6d, 0y, 8 AB}

refuting the freeness property [Joh89, Theorem 13].
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3.1.4 Augmented directed complexes

Augmented directed complexes, designed by Steiner in [Ste04], are not directly based on w-hyper-
graphs, but on chain complexes. Under the conditions required by Steiner, it happens that the
data of a chain complex is equivalent to the data of an w-hypergraph. The definition of cells for
this formalism strongly resembles the one of parity complexes. The only difference is that the
cells are tuples of group elements instead of subsets of an w-hypergraph. We recall the formalism
in detail below.

3.1.4.1 — Augmented directed complex. A pre-augmented directed complexes (K, d, e) (abbre-
viated pre-adc) is the data of

- for n € N, an abelian group K, together with a distinguished submonoid K}, € K,

- for n € N, group morphisms called boundary operators

dn: Ky — Ky,

- an augmentation, that is, a group morphism

e:K0—>Z.

An augmented directed complex, abbreviated adc, is a pre-adc (K, d, e) such that
eody=0 and d,od,y; =0forneN.

3.1.4.2 — Bases for pre-adc’s. Given a pre-adc (K, d, e), a basis of (K, d, e) is the data of a graded
set P C | |,,ey Ki such that each K, is the free commutative monoid on P, and each K, is the free
abelian group on K. Given a basis P of (K, d, e), every element u € K, can be uniquely written as

u= Z Ug9g,

gEPy

with u,; € Z such that u; # 0 for a finite number of g € P,. This representation induces a partial
order < where, forn € Nand u,0 € K,, u < v whenuyy; < v, forallg € P,. Givenn € N
and u,v € K,, we can define a greatest lower bound u A v of u and v by

UuAov= Z min(ug, v4)g.
gePn

Given n € N and u € K,41, we write u™, u™ € K} for the unique elements satisfying
d,(u)=u*—u" and u* Au*=0.

Moreover, we write u~, u* for

u” = Z ugg” and u'= Z Uugg™.

9g€Ppy1 g€Ppy

Remark 3.1.4.3. The elements u™ and u* are respectively denoted by 9~ (u) and 9" (u) in [Ste04].
We adopt the former notation for consistency with those of Section 3.1.2.
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3.1.4.4 — From w-hypergraphs to pre-adc’s with basis. Given an w-hypergraph P, we define
the pre-adc (K, d, e) associated to P as follows. For n € N, K is defined as the free commutative
monoid on P, and K, as the free abelian group on K;;. The augmentation e: K, — Z is defined as
the unique morphism such that e(x) = 1 for x € Py. Given n € N and a finite subset U C P,, we
write 2, (U) for },cy u € K. Then, d,;: K41 — K, is defined as the unique morphism such that

dn (1) = Zp(u") = Zn(u”)

for u € P,4q. Then, K canonically admits P as a basis. We say that P is an adc when K is an adc.

Example 3.1.4.5. We explicitly describe the pre-adc associated to the w-hypergraph (3.12) as
follows. Writting S* for the free commutative monoid on a set S, we put

Kg = {x’ yl: yz;z}*a K;( = {ahaZa ba Cl’cz}*’ K; = {aa ﬁ}*

and K; = {0} for n > 3. Ky, Ky, K; and K, for n > 3 are then the induced free abelian groups
on these monoids. The operations e and d are defined by universal property to be the unique
morphisms such that

e(x) =e(y1) =e(yz2) =e(z) =1
and
do(a1) =y1 — x, do(az) =z -y, do(b) =z —x,
do(c1) =y2 — x, do(c2) =z — v,
di(a) =b - (a1 + a2), di(B) = (c1 +c2) —b.

We can now give some examples for the operations (—)¥ and (—)* operations defined above:

(a1 +az)™ =x, (a1 +az)* =z,

(a+p)* =ay+ay, (a+p)* =ci +co.
We moreover illustrate the operations (—)~ and (-)*:
(a1 +a2)” =x+y (a1+a) =y +z
(a+ﬁ)_:al+a2+b (a+ﬂ)+:b+C1+C2.

Thus, the operations (—)* and (—)* compute the source and target “borders” of an element of K,
whereas the operations (=)~ and (—)" compute the sum of the “inner” sources and targets of
an element of Kj,. They are the analogues of the operations defined for w-hypergraph in Para-
graph 3.1.1.8.

3.1.4.6 — Cells. Let K be a pre-adc. Given n € N, an n-pre-cell of K is given by an (2n+1)-tuple
X = (XO,—a XO,+a e aXn—l,—: Xn—1,+: Xn)

with X;, € K, and X; _,X;, € K] for i € N,_;. For the sake of conciseness, we often refer
to X, by X,,_ or X, .. We write PCell*(K) for the graded set of pre-cells of K. When n > 0,
given € € {—, +}, we define the n-pre-cell J;,(X) as

a; (X) = (XO,—a X0,+a cees Xfl—l,—’ Xn—1,+> XH,S)‘

The globular conditions 5, 0 9, = 9 0 "

n+1 n+1

equip PCell*(K) with a structure of w-globular set.

are then trivially satisfied and the functions 97, 9"

Given n € N, an n-cell of K is an n-pre-cell X of K such that
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(i) fori e N, 1, di(Xiy1-) = di(Xiv14) = Xip — Xi -,
(i) e(Xo_) = e(Xp,) = 1.

We denote by Cell*(K) the graded set of cells of K, which inherits the w-globular structure
from PCell* (K).

Remark 3.1.4.7. The condition (i) is analogous to the moving condition (i) of parity complex
cells, and the condition (ii) is related to the fork-freeness condition (ii) of parity complex cells
instantiated in dimension 0.

3.1.4.8 — Identity and composition operations. Let K be a pre-adc. We define the identity

and composition operations that will equip Cell”(K) with a structure of w-category. Given n € N

and an n-pre-cell X of K, we define the identity of X as the (n+1)-pre-cell id"*! (X) of K such that
idn+1 (X) = (XO,—’ XO,+> ) Xn—l,—’ Xn—1,+, Xm Xn, O)

Given i,n € N with i < n and i-composable n-cells X, Y, we define the i-composition X *; Y of X
and Y as the n-pre-cell Z such that, for j € N, and € € {—, +},

Xjie+Yje when j > i,
7. Xi- when j =iand e = —,
e Yi+ when j =iand e = +,

X (or equivalently Y;) when j < i.
We then easily verify that Z € Cell"(K).

3.1.4.9— Atoms. Let K be a pre-adc equipped with a basis P. We define here the analogue
for adc’s of the notion of atoms for parity complexes, that will have the role of generating cells
in Cell*(K). Given n € N and u € P,, we define [u];c C P; fori € N, and € € {—, +} using a
downward induction by

and

[u]j,— = [u]j$+1,— [u]j,+ = [u]ji+1,+

for j € N,_;. For simplicity, we sometimes write [u],_ or [u],+ for [u],. The atom associated
to u is then the n-pre-cell of K

[u] = ([ulo~ [ulos - - - [uln-1 [U)n-14s [u]n).

Example 3.1.4.10. In the pre-adc associated to the w-hypergraph (3.12), the atom [«a] associated
to « is defined by

[a]: = a,
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3.1.4.11 — Unital loop-free basis. Let K be a pre-adc equipped with a basis B. Given i € N, we
define a relation <; on B as the smallest transitive relation such that, for k, € N with i < min(k, [),
and u € By, v € By with [u];+ A [0];— # 0, we have u <; v. The basis B is then said

— unital when for all u € B, e([u]o-) = e([u]o+) = 1,
— loop-free when, for all i € N, <; is irreflexive.

Example 3.1.4.12. Consider the pre-adc K with basis B derived from the hypergraph (3.4). The
basis B is then unital but not loop-free since a <y b <¢ a. Now, consider the pre-adc with basis B
derived from the hypergraph (3.7). The basis B is then not unital since e([a]o-) = e(x +y) = 2,
but it is loop-free. Now consider the pre-adc K with basis B derived from the hypergraph (3.5).
We have, among others, the relations

a<gb<gc<od<ge<qf,
a<0a<05<0f,
f<ia<yy and f<16<1y.

It can be verified that B is unital and loop-free.

3.1.4.13 — The freeness property. In [Ste04], the author shows that, given an adc K with a loop-
free unital basis B, the globular set Cell”(K), together with identity and composition operations,
has a structure of an w-category which is freely generated by the atoms [u] for u € B, i.e, there
exist an w-polygraph Q and an w-functor F: Q* — Cell*(K) such that

— Qg =B fork €N,
- F(u) = [u] foru € Q,
— F is an isomorphism.

Contrary to parity complexes and pasting schemes, the pre-adc with basis associated to the
w-hypergraph (3.9) is not a loop-free adc. Indeed, it is an adc with unital basis, but the basis
is not loop-free since A <; B <y A. Thus, augmented directed complexes are, to the best of
our knowledge, the only formalism of pasting diagrams among the three that we have already
introduced for which the freeness property holds.

3.1.5 Torsion-free complexes

In this section, we introduce torsion-free complexes. They are a new formalism for pasting diagrams
based on parity complexes. More precisely, torsion-free complexes rely on the same notion of cell
than parity complexes, but satisfy different axioms, namely the axioms (T0) to (T4) introduced in
Paragraph 3.1.5.1. Whereas the axioms (T0) to (T2) were already present in [Str91], Axiom (T3)
generalizes Axiom (C4) and Axiom (C5) of parity complexes, and can be thought as an equivalent
of Axiom (S4) of pasting schemes. Axiom (T4) prevents diagrams with “torsion” as exhibited by
the counter-example to the freeness property provided for parity complexes and pasting schemes
(c.f Paragraph 3.1.2.13). Under these new axioms, the category of cells (as defined in Section 3.1.2)
is freely generated by the atoms, as proved in Section 3.3. The proofs will be the object of the
following sections.
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3.1.5.1 — Definitions. Here, we give the axiomatics of torsion-free complexes, after giving a
concise reformulation of Axiom (S4), and introducing the notion of forsion, the consideration of
which solves the issue of parity complexes and pasting schemes illustrated by the example given
in Paragraph 3.1.2.13.

Let P be an w-hypergraph. Given k € N and u € P, we say that u satisfies the segment
condition when, for all n € Ny_; and every n-cell X such that (u), - € X,,, it holds that both (u), —
and (u), + are segments for <, .

Given n, k,l € N with 0 < n < min(k, ), u € Py, v € P; and an n-cell X, u and v are said to be
in torsion with respect to X when

<u>n,+ C X, <U>n,— C X, <u>n,+ N <U>n,— =0 and <u>n,+ <X, <U>n,— <X, <u>n,+-

We will give some intuition on these definitions in the following paragraphs after we gave the
definition of torsion-free complexes. The w-hypergraph P is then a torsion-free complex when it
satisfies the following axioms:

(T0) (non-emptiness) forallu € P,u™ # 0 and u* # 0;

(T1) (acyclicity) P is acyclic;

(T2) (relevance) for all u € P, u is relevant;

(T3) (segment condition) for u € P, u satisfies the segment condition;

(T4) (torsion-freeness) for all n, k,I € N* with n < min(k,[), u € Px, v € P; and every
n-cell X, u and v are not in torsion with respect to X.

We shall now give some intuition about these axioms.

3.1.5.2 — Axioms (T1) and (T2). Axiom (T1) enforces the same notion of acyclicity than for
parity complexes, forbidding loops like

f f

x@y and x’k %y.

z

Axiom (T2) requires that the generators of the w-hypergraph induce cells, forbidding w-hyper-
graphs like (3.6) and (3.7). It can be shown that Axiom (T2) entails Axioms (C1) and (C2) of parity
complexes.

3.1.5.3 — The segment Axiom (T3). Recall that our goal is to find conditions on w-hyper-
graphs P so that the w-category of cells Cell(P) is freely generated by the atoms. In particular,
every cell should be decomposable as a composite of context classes applied to atoms (c.f. Propo-
sition 2.2.5.3). But there are cells of w-hypergraphs satisfying Axioms (T0) to (T2) that can not
be decomposed this way. The problem comes from an incompatibility between two concurrent
phenomena:

(i) on the one side, the decomposition property that we want requires that some orders of
compositions be allowed;

(ii) on the other side, the relation < imposes restrictions on the orders in which the generators
can be composed.



210 CHAPIER 3. PASTING DIAGRAMS

z z
dl & la a4

y 4y (3.13)
a g a al 4 |a

X X

Figure 3.2 — A problematic w-hypergraph

We illustrate this incompatibility in an example. Consider the w-hypergraph P represented on
Figure 3.2 where, more precisely,

A” = {ay, ay}, A" ={a], a;},
a; =a; ={a}, af =" ={a'},
a, =a; ={d}, af =ay ={d’}, et

One can verify that P satisfies Axioms (T0), (T1) and (T2). In this w-hypergraph, there is a 2-cell X
given by
Xz = {ay, a2, a3, ay},

Xy- ={a, b}, X1+ ={c.d e},
Xo- = {x}, Xo+ = {z},
and a 3-cell Y given by
Y; = {A},
Yy = {ay, az, 03, a4}, Yo = {1, a, a3, 04},
Y- ={a b}, Yie ={c.d e},
Yo = {x} Yo+ = {z}

so that X = 9, (Y). Suppose by contradiction that Cell(P) is an w-category which is freely
generated by the atoms. Then, by the decomposition property of cells of free extensions (Propo-
sition 2.2.5.3), and by the value of Y3, Y can be written

Y = F[(A)] #2 - %2 Fi[(A)]

for some 2-context classes Fi, ..., Fi of type (A) (it can moreover be shown that k = 1 but it is
not important at the moment). Since X = 9, (Y), it implies that X can be written

X=¢p*x X x 9 (3.14)

where X’ = idjzp 0 05 ((A)) *o id; for some 2-cells @,/ and 1-cells f, g in Cell(P), illustrating (i).
Since Cell(P)<; ~ Cell(P \ {A})<2 and P\ {A} is a torsion-free complex, using Lemma 3.2.3.1
introduced later, the existence of the composite (3.14) implies that

the sets ¢, X; and ¢, form a partition of X, = {a, a2, @3, a4}, (3.15)
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and, using Lemma 3.3.3.3 introduced later, that

for (B,y) € (¢2 X (X3 U 1)) U (Y2 U X3) X ), we have —(y <x, f), (3.16)

or, more simply put, the partition ¢, X;, 1/, respects the relation <y, illustrating (ii). We show
that (3.15) and (3.16) entails a contradiction. Consider a; € X5. Since we have

XZI =A" = {a1,0{4},

by (3.15), either a; € ¢, or @y € Y. By (3.16), since a; <1;(2 az, we have a, € 1f,. Now con-
sider a3 € Xj. By (3.15), either a3 € ¢ or a3 € 1,. By (3.16), since a3 4;(2 a4, we have a3 € ¢,. But
then,

as €¢a, €Yy and @ <;(2 as,

contradicting (3.16). Hence, Cell(P) is not an w-category freely generated by the atoms.

Axiom (T3) prevents this kind of problems and, in particular, forbids the w-hypergraph P. Indeed,
we have
(Ao ={a,au} C X5, a1, 0x, a3, a4 and  ag, a3 & (A)s -

so that (A), _ is not a segment for <x,, and A does not satisfy the segment condition.

3.1.5.4 — The torsion-freeness Axiom (T4). The notion of torsion captures the essence of the
counter-example to the freeness property of parity complexes and pasting schemes presented
in Paragraph 3.1.2.13. Indeed, considering the w-hypergraph P represented by (3.9), there is a
2-cell X defined by
X; ={a’.B,y. 8"},
Xl,— = {aa d}a X1,+ = {C, f}9
XO,— = {x}s X0,+ = {Z}9

which is induced by the pasting diagram

a d

x\\“_ﬁ/y\lﬁs/ |
¢ f

Then, one can verify that A and B are in torsion with respect to X, so that P does not satisfy
Axiom (T4) (on the other hand, it satisfies Axioms (T0) to (T3)).

Intuitively, the situations with torsion are the minimal cases where the freeness property fails
for a parity complex P (and similarly for a pasting scheme P). When u,v € P are in torsion with
respect to a cell X of P, there are two possible order to compose u and v: first u then v, or first v
then u. And both composites produce equal cells in Cell(P). However, this equality can not be
deduced from an exchange law, since the torsion says basically that u and v cross each other,
preventing to obtain the left-hand side of Axiom (S-vi) of w-categories (c.f- Paragraph 1.4.1.1).

3.1.5.5 — More computable axioms. Axioms (T3) and (T4) happen to be hard to check in prac-
tice. Indeed, both involve a quantification on all the cells of an w-hypergraph, and enumerating
them can be tough since their number is exponential in the number of elements of the w-hyper-
graph in the worst case. Here, we give stronger axioms that are simpler to verify, in the sense
that they can be checked using an algorithm with polynomial complexity.
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Given an w-hypergraph P, for n € N, u,0 € P,, we write u ~ v when there exists w € Pp41
such that u € w™ and v € w* and we write ~* for the reflexive transitive closure of ~.
For U,V C P,, we write U ~* V when there exist u € U and v € V such that u ~* 0.
Consider the following axiom on an w-hypergraph P:

(T3’) for k,n € N* with k < nand u € P,, we do not have (u)g+ ~" (u)g .
Then, Axiom (T3) can be replaced by Axiom (T3’) in the axioms of torsion-free complexes:

Lemma 3.1.5.6. Let P be an w-hypergraph satisfying Axioms (T0), (T1) and (12). If P satisfies
Axiom (T3’), then it satisfies Axiom (T3).

Proof. Suppose that P satisfies Axiom (T3’). Let n, k € Nwithn < k, X be ann-cellandu € Py such
that (u),— C Xj,. If n = 0, there is nothing to prove, so we can assume n > 0. By contradiction,

suppose that (u), — is not a segment for <x . So there are r € Nwithr > 2and u,...,u, € X,
such that
1
uy, Uy € (Un,—, Uy, .. Up—1 & (U)n,— and w9y Uin
for i € N7_,. In particular, there are vy,...,0,_1 € P,; such that v; € u;’ Nu;,, fori € N7_,.

Given w € X, such that v; € w™, since X, is fork-free, we have w = u, ¢ (u),—. Thus, since u is
relevant by Axiom (T2), v; € (u);;_ = (U)n-1,+. Similarly, 0,1 € (U)n-1,-. S0 (U)p-1+ " (U)n-1-,
contradicting Axiom (T3’). Hence, P satisfies Axiom (T3). |

Now, consider the following axiom on an w-hypergraph P:

(T4’) for n,k,1 € N* with n < min(k,[), u € P, and v € Py, if (u)p 4+ N (0)p— = 0, then at
most one of the following holds:

= (Wn-14 ~* {O)n-1-,
= {O)n-14 N (Un-1,--
Then, Axiom (T4) can be replaced by Axiom (T4’) in the axioms of torsion-free complexes:

Lemma 3.1.5.7. Let P be an w-hypergraph satisfying Axioms (T0), (T1) and (T2). If P satisfies
Axiom (T4’), then it satisfies Axiom (T4).

Proof. Suppose that P satisfies Axiom (T4’). By contradiction, assume that P does not satisfy
Axiom (T4). So there are n, k, I € N* with n < min(k, [), u € P, v € P; and an n-cell X such that u
and v are in torsion with respect to X. That is,

<u>n,+ < Xu, <U>n,— C Xu, <u>n,+ N <U>n,— =0 and <u>n,+ <X, <U>n,— <X, <u>n,+-

By the last condition, there are r € N with r > 1, and wy, ..., w, € X, such that
wy € <u>n,+a wr € <0>n,—> Wo, oo, W1 € <u>n,+ U <U>n,—a and w; 4}(,1 Wit1
for i € N7_,. Thus, there are wy,...,w,_; € P,y such that w; € w;' Nwi, fori € N7_,.

Given w € X, with w; € w™, we have w = w; € (u),+ since X, is fork-free. Thus,

wi € <u)i+ = (Wn-1.4+-

Similarly, w,_1 € (0)p—1,—, S0 (U)p—14+ ™" (V)p—1—. Likewise, we have (v),_1+ ~* (u)p—1—, which
contradicts Axiom (T4’). Hence, P satisfies Axiom (T4). O
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3.2 The category of cells

In this section, we show that, given a torsion-free complex P,the w-globular set Cell(P) has a
structure of an w-category. Indeed, even though we defined identity and composition operations
in Paragraph 3.1.2.7, we do not know for now that the composition of two cells is a cell. In
order to show this, we adapt the proofs of [Str91] and take the opportunity to simplify them. In
particular, we give a detailed proof of the “gluing theorem” (Theorem 3.2.2.3, adapted from [Str91,
Lemma 3.2]), which enables to build an (n+1)-cell from an n-cell by gluing a set of (n+1)-gene-
rators.

3.2.1 Movement properties

Before being able to show the gluing theorem, we need some technical results about movement
(notion which appears in the definition of cells). We state and prove here several such properties,
some of which coming from [Str91].

In the following, we suppose given an w-hypergraph P. We first state a criterion for movement:

Lemma 3.2.1.1 ([Str91, Proposition 2.1]). Forn € N, finite subsets U C P, and S C Pp.1, there
exists V C P, such that S moves U toV if and only if S* C U and U N S* = 0.

Proof. If S moves U to V, then, by definition,
SFCc(VusSH)\St=U

and
UnsSt =(VusS)\sHnNS =0.
Conversely, if ST CUandUN ST =0,1let V= (UUS*)\ S. Then
(VUSH\ST=(WUustus)\s*
=(U\SHU(ST\S")
=UuUS* (since U N ST = 0)
=U (since ST C U)

and S moves U to V. m]

The next property states that it is possible to modify a movement by adding or removing “inde-
pendent” elements.

Lemma 3.2.1.2 ([Str91, Proposition 2.2]). Letn € N,U,V C P, and S C P, be finite subsets such
that S moves U to V. Then, given X, Y C P, such that

XCU, XNST =0 and YN(STUST) =0,
we have that S moves (UUY)\ X to(VUY) \ X.

Proof. By Lemma 3.2.1.1, we have S* C U and U N S* = 0. Using the hypothesis, we can refine
both equalities to
SFC(UuUY)\X and (UUY)\X)NS'=0.
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Using Lemma 3.2.1.1 again, S moves (U U Y) \ X to W where

W=(((UUY)\X)uSH)\S~

=((UuUSTUY)\X)\S™ (since XNS*CUNS"=0)
=(((UUSH\SHUY)\X (since Y NS~ =0)
=(VUY)\X. O

The following property gives sufficient conditions for composing movements.

Lemma 3.2.1.3 ([Str91, Proposition 2.3]). Letn € N, and U,V,W C P,, S,T C P41 be finite
subsets such that S movesU toV and T movesV toW, if ST NT* =0 then SUT movesU to W.

Proof. We compute (UU (SUT)*)\ (SUT)™:

(UUStUTH\(STUT)=((UUSH\SHUTH\T"
=(VUTH\ T
=W.

Similarly, ( WU (SUT)")\ (SUT)* =U and S U T moves U to W. O

Conversely, the next property enables to decompose movements, under a condition of orthogo-
nality: given n € N and finite sets S, T C P,, we say that S and T are orthogonal, written S L T,
when (S"NT7) U (St NT*) = 0. We then have:

Lemma 3.2.1.4 ([Str91, Proposition 2.4]). Givenn € N, finite subsetsU,W C P,,,S,T C Pp41 such
that SUT moves U to W and S¥ C U, if S L T then there exists V such that S movesU toV and T
movesV toW.

Proof. Let R = SUT. By Lemma 3.2.1.1, R* CUandUNS* CUNR" = 0. By Lemma 3.2.1.1
again, S moves U to V = (U U §*) \ S™. Moreover,

SSNTY*=8"nT* (since S*NT*=0,by S L T)
cunTtt (since ST C U, by hypothesis)
cunSun*
=0 (by Lemma 3.2.1.1).

so that
RTCU
o (SUTH\TH\S' CU
= (T-\THUSH\S*cU (since ST NT* =0)
& TTUS  cUUS*
=3 TFCc(UUSH\S (since T*"NS™ =0,by S L T).

Hence, T* C (UUS")\S™ =V and

VAT " c(UUSHNT C(UNRHU (S NTY) =0.
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By Lemma 3.2.1.1, T moves V to (V U T*) \ T~. Moreover,

SSNT " =S"nT* (since S L T)
CUNR* (since ST C U by hypothesis)
=0.

Therefore,

(VUTH\T = ((UUSH\SHUTH\T"
=(UUS*UTH\(STUT) (since STNT* = 0)
=W.

Hence, T moves V to W. O

The next three properties (not in [Str91]) describe which elements are touched or left untouched
by movement.

Lemma 3.2.1.5. Givenn € N, finite subsets U,V C P, and S C Py41, if S moves U to 'V, then
S*¥=U\V and S*=V\U.
In particular, if T movesU toV, then ST =T™ and S* = T*.
Proof. By the definition of movement, we have
V=(UuUSH\S and U=(VuUS)\S*
and therefore

Unv=Un{U\S)US
=U\S" (since U N S* = 0).

Similarly, U NV =V \ S*. Hence, ST =U \ Vand S* =V \ U. O
Lemma 3.2.1.6. Givenn € N, finite subsetsU,V C P, and S C Py41, if S moves U to 'V, then

U\S =U\ST=UNV=V\S*=V\S"

Proof.
U\S =U\S" (since U N S* = 0, by definition of movement)
=UnNvV (by Lemma 3.2.1.5)
—V\ St
=V\s* (since V.N'S™ = 0, by definition of movement)

Lemma 3.2.1.7. Forn € N, finite subsets U,V C P, and S C Pp.1, if S moves U toV, then

U=(UNV)US* and V=UNV)US™
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Proof. We have

U=(VUS)\S*
=(V\SHU(S\SY)

=(UNV)US* (by Lemma 3.2.1.6)
and
UnvV)ynstTcvns-
=((UUS)H\S)ns
= 0.
Hence, U = (U N V) U S™. Similarly V = (U N V) u S*. O

Finally, the last lemma enables to decompose a moving set starting from a subset which is a
segment:

Lemma 3.2.1.8. Forn € N, finite subsets U,V C P,, S C Pyy1 and T C S such that S is fork-free
and moves U toV, and T is a segment in S for <g, there exist L,R € S and A, B C P, such that

— L, T,R is a partition of S,
— L isinitial in S for <s and R is final in S for <,
— L movesU toA, T moves A toB and R moves BtoV.

Proof. Let
L={x€eS|x<T} and R=S\(LUT).

Thus, L, T, R is a partition of S, and since S is fork-free, we have
L1T LL1R T LR

Since T is a segment for <s, we have that L”NT* = 0, and, by definition of L and R, L "R* = 0 so
that L is initial in S. In particular, L¥ C U. Thus, by Lemma 3.2.1.3, writing A for (UUL*) \ L™, we
have that L moves U to A. Furthermore, since LNR = 0, we have T~ N R = @ so that R is terminal
in S. In particular, R* C V. Thus, by the dual of Lemma 3.2.1.3, writing B for (V UR™) \ R*, we
have that R moves Bto V. ]

3.2.2 Gluing sets on cells

In this section, we state and prove a property similar to [Str91, Lemma 3.2] which enables to build
(n+1)-cells from n-cells by gluing sets of generators. We adapt the proof given by Street to the
new set of axioms and simplify it (notably, we remove the need for the notion of receptivity).

3.2.2.1 — Gluings and activations. Let P be an w-hypergraph. Given n € N, an n-pre-cell X
of P and a finite set G C P,41, we say that G is glueable on X if G* C X,,. If so, we call gluing of G
on X the (n+1)-pre-cell Y of P defined by

Y1 =G, Yn,— = Xn, Yn,+ = (Xn U G+) \ G~ and Yi,e = Xi,e

fori € N, and € € {—,+}. We denote Y by Glue(X, G). Moreover, we call activation of G on X the
n-pre-cell Act(X, G) defined by

Act(X,G) = 9% (Glue(X, G))
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G Glue(X, G)
Xn (Xn UG\ G™
Xn—l,— ' Xn—1,+
: Act(X,G)
X1- X1+
Xo,- Xo+

Figure 3.3 — Cells involved and their movements in Theorem 3.2.2.3

We say that G is dually gluable on X when G* C X,, and we define the dual gluing Glue(X, G) and
the dual activation Act(X, G) in a similar fashion. For example, consider the w-hypergraph (3.13)
from Paragraph 3.1.5.3 and recall there the definitions of X and Y. Then {A} is glueable on X
and Glue(X, {A}) = Y, and Act(X, {A}) is the 2-pre-cell X with

Xo = {1, &), af, as},
Xl,— = {as b}s X1,+ = {C’ d/’ e}’
Xo,— = {x}, Xo,+ = {z}.

Conversely, {A} is dually gluable on X, and we have Glue(X, {A}) = Y, and Act(X, {A}) = X.

3.2.2.2 — The gluing theorem. We now prove the “gluing theorem”. It is an adaptation of [Str91,
Lemma 3.2] which enables to build new cells using the gluing and activation operations. The
theorem moreover gives additional results concerning intersections with the source and the
target sets of gluing sets, that will have as consequence that the composition in the category of
cell Cell(P) respects the relation < (see Proposition 3.3.1.10).

Theorem 3.2.2.3. Let P be an w-hypergraph which satisfies Axioms (T0), (T1), (T2) and (T3).
Given n € N, an n-cell X of P and a finite fork-free set G C Py such that G is glueable on X, we
have that

(a) Act(X,G) isacellandG* N X,, =0,
(b) Glue(X,G) is a cell,
(c) given a finite, fork-free subset G’ C Py41 which is dually glueable on X, G’ N G* = 0.
and dual properties hold when G is dually gluable on X.
Proof. See Figure 3.3 for a representation of the cells in the statement of the theorem. In the

following, write S for
S=Act(X,G), = (X, UGH)\G.
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Xn—l,— Xn—1,+

Xn—2,+

Figure 3.4 — The decomposition of X,

We prove the different subproperties (and their duals) of the theorem by induction on n.
Proof of (a): We prove (a) in two steps: first, in the case where |G| = 1, then, in the general case.

Step 1: (a) holds when |G| = 1. Let x € P,y be such that {x} = G. If n = 0, then there
exists y € Py such that Xy = {y}. By Axioms (T1) and (T2), there exists z € Py with y # z such
that x~ = {y} and x* = {z}. So Act(X,G) = {z} is a cell. So suppose that n > 0. Then, we
have S = (X, U x*) \ x™ and, in order to prove that Act(X, G) is a cell, we are required to show
that

- Smoves X1 - to X;—14+;
— S is fork-free.

Using Axiom (T3), we get that x™ is a segment in X, for <x, . By Lemma 3.2.1.8, we can decompose
the set X}, as a partition
X,=UUx UV

with U initial and V final in X}, and, writing A, B C P,,_; for
A=Xp-1-UU)\U™ and B= (X, UV)\V*
we have that
U moves X,_1— to A, x~ moves A to B, V moves B to Xj_1+

as pictured on Figure 3.4. In the following, for Z C P,_;, we write D(Z) for the (n—1)-pre-cell
of P defined by

D(Z)Tl—l = Z:
D(Z)ie = Xije forieN,_,ande e {— +}.

Since
D(A) = Act(D(Xp-1-),U), D(B) = Act(D(A),x7),

and D(Xy-1,-) = d,_,(X) is an (n—1)-cell and both U and x~ are fork-free, by using two times
the induction hypothesis of Theorem 3.2.2.3, first on D(X,,_; ), then on D(A), we get that

D(A) and D(B) are cells. (3.17)
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By Axiom (T2), we have that
x* is fork-free. (3.18)

Since x~ moves A to B, by Lemma 3.2.1.1, we get
ANnx*=0. (3.19)

By Axiom (T2), it holds that x** = x™ C A. By (3.17) and (3.18), using the induction hypothesis
of Theorem 3.2.2.3 on D(A), we get
Anxt™ =0. (3.20)

By Lemma 3.2.1.1, there exists B’ such that x* moves A to B’, and
B =(Aux™)\x™
= (A\x") U (= \xT)

=(A\xT)ux*t* (by (3.20))
=(A\x H)ux* (since x** = x~7, by Axiom (T2))
=(A\x ) U \xT) (by (3.19))
=(AUux ) \x~
=B (since x~ moves A to B).
Hence,
x* moves A to B. (3.21)

Since x** C D(A),—1 and U* C D(A),-1, using the induction hypothesis of Theorem 3.2.2.3, by (c)
we get
U nxtt=0. (3.22)

Similarly, with D(B), we get
xXTnvt=0. (3.23)

By definition, U moves Xj,_; - to A, and x* moves A to Bby (3.21). Moreover, by (3.22), U"Nx** = 0.
Using Lemma 3.2.1.3, we deduce that

U U x™ moves X, _ to B. (3.24)

Since U and V are disjoint and respectively initial and terminal in X,,, we have that U N V* = (.
Also, by (3.23), we have (x™™ N V*) = 0, therefore

UuxH ™" nvrc U nvHu(xnvh
=0.
Using (3.24) and Lemma 3.2.1.3, knowing that S = U U x* U V, we deduce that
S moves Xp—1 - t0 Xp—1.+. (3.25)

The set U UV is fork-free as a subset of the fork-free X,,, and x* is fork-free since x is relevant
by Axiom (T2). Moreover,

U nxt™=U nx** (by (3.22))
CU NA (by (3.21) and Lemma 3.2.1.1)
=0 (since U moves X,,_; _ to A),
Urnx™ =U*"nx*" (by (3.22))
CANx*t (by Lemma 3.2.1.1 since U moves X,,_1 - to A)

=0 (by (3.21) and Lemma 3.2.1.1).
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So U L x*. Similarly, x* L V. Hence, since S=U Ux" UV,
S is fork-free. (3.26)

Then, by (3.25) and (3.26),
Act(X,G) is a cell.

Finally, we prove the second part of (a). By Axiom (T1), x" Nx* =0 . Since U L x* andx* L V
(by (3.26)), using Axiom (T0), we deduce that

UNnxt=x"NnvV=0

so that
X, Nx*=Uux uV)nx =0
which concludes the proof of the Step 1.

Step 2: (a) holds. We prove this by induction on |G|. If |G| = 0, then the result is trivial.
Moreover, the case |G| = 1 was proved in Step 1. So suppose that |G| > 2. Since the relation <is
acyclic by Axiom (T1), we can consider a minimal x € G for <. Let

G=G\{x}, U=X,Uux)\x", V=(UUGH)\G"

and recall that we defined S as (X, U G*) \ G™. In order to show that Act(X, G) is a cell, we are
required to prove that:

- Smoves X;_1 - to X;—1.4;
— S is fork-free.

For this purpose, we will first move X, with {x} to U and use Step 1, then move U by G to V and
use the induction of Step 2. Finally, we will prove that V = S. So, using Step 1 with X and {x}, we
get that

- Act(X, {x}) is a cell;
- in particular, U is fork-free and, when n > 0, U moves X;,—1 - t0 X;,—1.+;
- X, Nx"=0.
By Lemma 3.2.1.1, we deduce that {x} moves X, to U. Moreover,
& =G\ G
= (G \x)\(G"\x") (since fork-freeness implies that G¢ = U,ccu®)

c((GT\x)\GHux"
=((GT\GH\x)ux"

C (X, \x)ux*t (since GT C X, by Lemma 3.2.1.1)
C (X, Ux")\x~ (since x~ N x* = 0 by Axiom (T1))
=U.

Also, G is fork-free as a subset of the fork-free set G. Using the induction hypothesis of Step 2
for G, we get that

— Act(Act(X, {x}),G) is a cell;
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- In particular, V = (U U G*) \ G~ is fork-free, and, when n > 0, V moves X1, to X143
- UNnG*=0.

By Lemma 3.2.1.1, we deduce that G moves U to V. Also, note that x™ N Gt = 0 since x
was taken minimal in G. Using Lemma 3.2.1.3, we deduce that G = {x} U G moves X,, to V.
ButS=(X,UG")\G sothatS=V.

The second part of (a) is left to show, that is, X;, N G* = 0. We compute that

X, NG"'=UuUx \x")NnG* (by Lemma 3.2.1.1, since {x} moves X, to U)
=((Uux)nG") \x*
=(UNG) \x* (sincex” NG =x"N(x"UG) =0)
=(UNGY
=0

which concludes the proofs of Step 2 and (a).
Proof of (b): By (a), Act(X, G) is a cell. To conclude, we need to show that G moves X, to S. By
definition of S, we have that S = (X, U G*) \ G~. Moreover,
(SUGH\G" = (X, UGH\G)HUG)\G"
=(X,UGTUG)\G"
= (Xx \G)UGT
=X,UG" (since X, N G* = 0 by (a))
=X, (since G is glueable on X).
Hence, Glue(X, G) is a cell.
Proof of (c): By contradiction, suppose that G'~ N G* # 0. Then, there are x € G’, y € G
and z € x~ Ny*. Consider
U={x"e€eG | x<sgx'}U{x},
V={y' €Gly wcy}uy}

By the acyclicity Axiom (T1), we have
urnv-=0.
Since U is a terminal set for <5/, we have in particular Ut N G’~ € U". So,
Ut=U*"\G)uU'NnG")cG*uU".

Hence, U* C G'* C X, (since G’ is dually glueable on X). Similarly, V¥ C X,. Using the
dual version of (a), the n-pre-cell Y = Act(X, U) is an n-cell such that Y,, = (X, UU™) \ U* (see
Figure 3.5) and we have

VvF=v¥T\U"* (since V- NU" = 0)
CX,\U" (since V¥ C Xp,)
C (X, UU")\U*
=Y,.



222 CHAPIER 3. PASTING DIAGRAMS

= =
Yn

Theorem 3.2.2.3

x, S

G ’
=
Z@ z

Figure 3.5 -V, U and Y,

Using Theorem 3.2.2.3(a) with Y and V, we get
Y,NV*=0.

But, since z € U* C Y, (by Axiom (T1)) and UT C Y,, z € Y, N V*, which is a contradiction.
Hence,
G™NG =0

which ends the proof of (c). O

3.2.3 Cell(P) is an w-category

Here, we prove that Cell(P) has a structure of an w-category. For this purpose, we first prove
that the composite of two cells is a cell using Theorem 3.2.2.3 shown above. Then, we quickly
verify that the axioms of w-categories are satisfied by Cell(P) (which is almost immediate by the
definitions of the operations of Cell(P)).

We first show that the (n—1)-composition of two n-cells is a cell, together with several in-
tersection results, that we will need for the general case and later for the proof of the freeness

property.

Lemma 3.2.3.1. Let P be an w-hypergraph satisfying Axioms (10), (T1), (T2) and (T3). Givenn € N*
and two n-cells X, Y of P that are (n—1)-composable, the following hold:

(@) X, NY;=0,
(b) XpNY, =0,
(c) X #p_1 Y is an n-cell of P.
Proof. Using Theorem 3.2.2.3(c) with d}_, (X), X,, and Y;,, we get
X, NnY; =0.
Moreover,

X Ny =xX;nY, (since X, N Y, = 0)
g Xn_1)+ ﬂ Yf’-l'.
=Yp1-0N Y,:—
= (by Theorem 3.2.2.3(a)).
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By Axiom (T0), it implies that X;, N'Y,, = 0. Similarly,
X NY; =0

So X, UY, is fork-free. For X #,_; Y to be a cell, X;, U Y,, must move X,,_;_ to Y,,_1+. But,
since X and Y are cells and are (n—1)-composable, we know that X,, moves X,,_; - to X,,_1+, ¥,
moves Yy,_1 _ to Y,_14 and Xj,—1+ = V-1 —. Since X;; NY,’, using Lemma 3.2.1.3, we get that X,,UY,,
moves X,_; — to Y;_1+. Hence, X *,_; Y is a cell. m]

We now prove the general case of composition of two cells, together with an intersection result,
that will also be useful later in the proof of the freeness property.

Lemma 3.2.3.2. Let P be an w-hypergraph satisfying Axioms (10), (T1), (T2) and (T3). Let i,n € N
withi < n and X, Y be two n-cells of P that are i-composable. Then,

(i) forje Nwithi<j<n (X;_ UX; )N _UY')=0,
(ii) X =; Y is a cell.

Proof. By induction on n —i. If n — i = 1, the properties follow from Lemma 3.2.3.1. So suppose
that n —i > 1. For €, € {—, +}, by induction hypothesis with 9;_, (X) and 82_1 (Y), we get

Xr:—l,e N Yr-;—l,n = 0
Therefore,
UuX

n—1,+

(X -

)N (Y, UY,,) = 0.
We moreover obtain
(X;_UX; )N(Y;_UY,)=0 forjeNwithi<j<n-1
Let Z = 97 _,(X) *; 9,_,(Y). By induction, Z is a (n—1)-cell and
Zn-1=Xp-14+U Y.

Using Theorem 3.2.2.3(c), we get
X, NY =0

which concludes the proof of (i).

For (ii), we already know that 9, _, (X) *;9,_,(Y) and 9} _, (X) *;d;_,(Y) are cells by induction.
So, in order to prove that X *; Y is a cell, we just need to show that X, U Y, is fork-free and
moves X,—1- U Y, 1_ to X1+ U Y14 But

Xy NYy =X, Ny, (by (1))
CZyiNY,
=0 (by Theorem 3.2.2.3(a)).
Similarly,
X, Ny, =0

s0 X, U Yy, is fork-free. Using the dual of Theorem 3.2.2.3(a) with Z and X,,, we get

Xr; N (Xn—1,+ U Yn—l,—) = X; N Yn—l,— = @
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Similarly, if Z" = 9, (X) *;9,_,(Y) then Z] | = X, 1 _UY,_; _. Using Theorem 3.2.2.3(a) with Z’
and X,,, we have

X; N (Xn—l,— U Yn—l,—) = X;: N Yn—l,— = 0
Since X, moves X;—1 - to X;,—1.+, using Lemma 3.2.1.2, we deduce that
Xpmoves X, ;- UY, 1_toX,-14.UY, .

Similarly,

Yn moves Xn_1,+ U Yn—l,— to Xn_1,+ U Yn_1’+.

Since X, N Y, = 0, by Lemma 3.2.1.3, we have
XnUY, moves X1 - UY, 1 _toX; 14+ UY, 14

Hence, X *; Y is a cell. |

We can finally conclude that Cell(P) has a structure of w-category given by the identity and
composition operations on cells:

Theorem 3.2.3.3. (Cell(P),d7,d%,1d, ) is an w-category.

Proof. We already know that Cell(P) is a w-globular set. By Lemma 3.2.3.2, the composition
operation * is well-defined on composable cells. Moreover, all the axioms of w-categories (given
in Section 1.4.1), follow readily from the definitions of 97, 9%, id and *. For example, consider the
exchange law Axiom (S-v). Given i, j,n € Nwithi < j < nand X,X’,Y,Y’ € Cell(P), such
that X, Y are i-composable, X, X" are j-composable and Y, Y’ are j-composable, let

Z=(X*j Y) *j (X,*j Y,) and Z,:(X*iX,) *j (Y*l Y/)

For k < nand € € {—, +}, we have

Xke U X,;e UYeeU Y,;E when k > j,

X;_UY;_ when k = jand € = —,

X;’+UYJ,”+ when k = jand € = +,
Zke =Zpe =\ Xe U Yie wheni < k < j,

Xi— when k =iande = —,

Yi+ when k =iand e = +,

Xk.e when k < i,

so Z = Z'. Thus, Cell(P) satisfies Axiom (S-v), and the other axioms are shown as easily. Hence,
the identity and composition operations equip Cell(P) with a structure of w-category. O

Remark 3.2.3.4. For the proof of Theorem 3.2.3.3, we did not use Axiom (T4), so that the same
property holds for an w-hypergraph which only satisfies Axioms (T0), (T1), (T2), (T3).
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3.3 The freeness property

In this section, we prove that, given a torsion-free complex P, Cell(P) is freely generated by the
atoms, under the form of Corollary 3.3.3.5. More precisely, for n € N, we prove that Cell(P)<p+1
is the free (n+1)-category on the canonical n-cellular extension (Cell(P)<y,, Py+1). For this pur-
pose, we will use the characterization of the functor —[—]: Cat; — Cat,; given in Section 2.2.
Concretely, we will prove that every (n+1)-cell of Cell(P) can be written as a composite

Fl[xl] ®n """ ®n Fp[xp]

and that this composition is essentially unique, relatively to the relation ~ defined in Section 2.2.
We first prove that cells of Cell(P) admit such decompositions. Then, we prove the unicity of the
decomposition, first handling the case p = 1 and the general case afterwards.

In this section, we write P for a torsion-free complex.

3.3.1 Cell decompositions

Here, we prove that the n-cells of Cell(P) can be written as composites of applied (n—1)-context
classes. Actually, we prove the stronger statement that such a composite exists for any total
ordering, called linear extensions, of the top-level n-generators that respects the relation <.

3.3.1.1— Linear extensions. Given a finite poset (S, <), a linear extension of (S, <) is the data
of a bijection o: NTSI — S such that, for i,j € NTSI’ if 0(i) < o(j), theni < j. Given two
linear extensions o, 0" : Nig| — S, a morphism of linear extensions of (S, <) between o and ¢’ is a
function p: NI*SI — NTS\ such that the triangle

p

£ *

N, > Nig)
s

is commutative (in particular, p is a bijection). We write LinExt(S) for the category of linear
extensions of S. Given n € N and a bijection p: N; — N7 we write Inv(p) € N for the number
of inversions of p, i.e.,

Inv(p) = {(i,/) €N, XNy [i<j and p(i) > p()}|

Moreover, given i, j € Ny, such that i # j, we write 7;; for the bijection N;, — Nj, which is the
transposition of i and j. We show that the morphisms of linear extensions are generated by the
transpositions:

Lemma 3.3.1.2. Given a poset (S, <) and 0,0’ € LinExt(S) and p: 0 — ¢’ € LinExt(S);, there
exist p € N and oy, .. ., 0p € LinExt(S) with o = 0y and o, = o', and p;: 0;_1 — 0; € LinExt(S)
fori € Ny, such that

p=p1*o---% pp and p; is a transposition fori € N;.

Proof. We prove the result by induction on the number Inv(p) of inversions of the bijection p.
If Inv(p) = 0, then
p=1y = id!

IS o
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So suppose that Inv(p) > 0. Thus, there exists k € NISI , such that p(k) > p(k +1). The
bijection & = 0 o i k41 is then a linear extension of (S, <) as in

Tk, k+1 POTk k+1
IS | ISI

gy

Indeed, for i, j € NTSI such that i # j and &(i) < &(j),

- if{i, j} n{k,k + 1} = 0, then o(i) < o(j) and i < J;

- ifi=kandj#k+1,theno(i+1) <o(j)andi+1<j,s0i< j;
—ifi=kand j=k+1,theni < j;
—ifi=k+1landj#k,theno(i—1) <o(j),s0i—1< j,and, since j # i,i < j;

- ifi=k+1andj=k,theno(k) < o(k+1),s00'(p(k)) <o'(p(k+1))and p(k) < p(k+1),
contradicting the hypothesis;

ifi¢ {k,k+1}and j € {k,k+ 1}, theni < jlike wheni € {k,k+1} and j ¢ {k, k+ 1}.

Moreover, the number of inversions of p o 7 k41 is Inv(p) — 1. By induction hypothesis, p o 7 k41
can be written as

P O Thkk+1 = P2 %0 """ *0 Pp
for some p € N and transpositions p;: 0;_1 — 0; € LinExt(S); fori € N; 1> so that
P = Thkk+1 *0 P2 *0 =" *0 Pp

is of the wanted form. O

3.3.1.3 — Decomposition theorem. In this paragraph, we show that cells can be decomposed as
composites of applied context classes that respect the relation <. First, we state a simple criterion
for the equality of two cells in Cell(P):

Lemma 3.3.1.4. Givenk,n € N withk <n,e € {—,+} and X,Y € Cell(P),, such that
9 (X) =9 (Y) and X =Y
forie{k+1,...,n}, wehaveX =Y.

Proof. It is enough to prove the case € = —. Moreover, by induction on n — k, it is sufficient to
prove the case k = n — 1. But, since X and Y are n-cells, we have

Xpr = (K- UXD\X, = (Y- UY)\ Y, =Yooy
sothat X =Y. O
Next, we show that we can write a cell as a composition by extracting a minimal element for <«

Lemma 3.3.1.5. Let n € N* and X be an n-cell and g be a minimal element of X, for <x. Then,
there exist n-cells Y and Z that are (n—1)-composable such that

Yn:{g} Zn:Xn\{g} X =Y %, Z.
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Proof. Since g is minimal for <y, , we have {g}* C X,,_; _. Moreover, since X is an n-cell, X, is
fork-free so that {g} L (X, \ {g}). Thus, by Lemma 3.2.1.4, writing V for (X,-;-Ug") \ g~, we
have that

{9} moves X,_;_ to V and X, \ {g} moves V to X,,_1 +.

By Theorem 3.2.2.3, the cell Y = Glue(d,_, (X), {g}) is an n-cell which satisfies that
Y,={9}, 9,,(Y)=9, (X)) and Y,41,=V.
By Theorem 3.2.2.3 again, Z = Glue(d}_,(Y), X, \ {g}) is an n-cell such that
Zn =Xy \{9}, 0,1(2)=0,_(Y) and Z,_1i=Xp 14
so that 97 (Z) = d7_,(X). Then, by the definition of *,_;, we have X =Y %,_; Z. O

The previous lemma implies that we can write a cell as a composite of cells with a single top-level
generator, that are moreover ordered by a given linear extension:

Lemma 3.3.1.6. Let n € N* and X be an n-cell of P, p = |X,| and o: Ny, — (Xn, <x,,) be a linear
extension. There exist n-cells X', ..., X? that are (n—1)-composable and such that

Xp={o()} forieN, and X=X'syy %0 XP.

Proof. We prove this property by induction on p. When p = 0 or p = 1, then the property is
trivial. So suppose that p > 1. Note that ¢(1) is minimal in X, for <x,. By Lemma 3.3.1.5, we
can write X = X! x,_; X’ where X! and X’ are (n—1)-composable n-cells such that X! = {o(1)}
and X = X,, \ {o(1)}. By induction hypothesis, we have that X’ = X? #,_; - - - %,_; X for some
(n—1)-composable n-cells X?, ..., X? such that X! = {o(i)} fori € {2,..., p}, which concludes
the proof. O

Next, we give a sufficient criterion for a cell to be written as an applied context class:

Lemma 3.3.1.7. Letk,n € N withk < n, g € P, and X be an n-cell such that
Xie=(qie forie{k+1,....,n}ande € {— +}.

There exists a k-context class F of type (g) such that X = F[(g)].

Proof. We show this property by induction on k. When k = 0, we have that X; . = (g);¢ fori € N},
and € € {—, +}. Moreover, since X is an n-cell, we have that (g); - moves X, _ to X+, so that

(D1 = (9o~ S Xo-

Since X is fork-free, we have | X, _| = 1. Thus, X, - = (9)o - and, similarly, X, + = (g)o+. Hence,
we have X = (g) and the property of the statement is verified with the unique 0-context class.

So suppose that k > 0. We have that X1 = (9)k+1.. moves Xy — to X+, 50 (@)r— € Xi.—-
By Axiom (T3), (g)k - is a segment for U and, by Lemma 3.2.1.8, there exist U,V C Xj_
and A, B C P_; such that

- U, {9)k-,V is a partition of Xj _,

- U moves Xj_; - to A, (9)x.— moves A to B and V moves B to Xj_1 +.
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Writing
L =Glue(d; (X),U) X*=Glue(d;_,(L),{(g)r-) R=Glue(d_(X*),V)
by Theorem 3.2.2.3, we have that L, X k R are k-cells that are (k—1)-composable and such that
I (X) =Logy X" ot R

By induction on i € {k + 1,n}, we define i-cells X’ such that a;_l(xi) = X1 and Xii = (9)i- by
putting . 4
X' = Glue(X'™, (g);)

which is indeed a cell by Theorem 3.2.2.3. Then, X" is an n-cell such that
J (X" =X* and X =(g)e forie{k,...,n}
Moreover, since I X" =X k.
L,X",R are (k—1)-composable and 9} (L ex_; X" &¢_1 R) = 9, (X).
Furthermore, we have that
Xi-=(9)i-=X;_ = (Leg-1 X" %1 R); -
for i € {k + 1, n} so that, by Lemma 3.3.1.4, we have that
X =Ley X" o1 R.

By induction hypothesis, there exists a (k—1)-context class F’ such that X™ = F’[(g)]. Writting F
for the k-context class [ (L, F’, R) ]|, we have that X = F[(g)] as wanted. O

We can now prove the decomposition theorem, which states that every cell of Cell(P) can be
written as a composite of applied context classes that respects a given linear extension:

Theorem 3.3.1.8. Givenn € N*, an n-cell X, p = |Xy| and a linear extension o: N}, — (X, <x,),
there exist (n—1)-context classes Fi, ..., F, of Cell(P) respectively of type (c(1)),...,{a(p)) such
that

X =Fi[{c(D)] en-1-- - on-1 Fp[{a(p))].

Remark 3.3.1.9. By Axiom (T1), given n € N* and a finite subset S C P, there always exists a

linear extension o: NTPI — (S, <s), so that an n-cell X of P has at least one decomposition of the

form given by Theorem 3.3.1.8.
Proof. By Lemma 3.3.1.6, X can be written
X=X'e, 1 -0 XP
for some n-cells X', . .., X? such that X} = {0 (i)} fori € N7,. We conclude with Lemma 3.3.1.7. O

We verify with the following property that Theorem 3.3.1.8 does not miss other possible decom-
positions:

Proposition 3.3.1.10. Given n € N* and X € Cell(P),, such that
X = Fi[{x1)] en-1 -+ on-1 Fie[{x)]

for somek € N, x1,...,xx € P, and (n—1)-context classes Fy, . . ., Fi of Cell(P), we have
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(i) Xn ={x1, ..., xx},
(ii) fori,j € N, withi # j, we have x; # xj,
(iii) the function p — x, of type N; — X, is a linear extension of (Xp, <x,,)-

In particular, if X satisfies moreover that

X = F{[<y1>] -1 *n-1 Fl,[<yl>]

forsomel e N, yy,...,y; € P, and (n—1)-context classes F;, . . .,Fl’, thenk =1 and

{xls‘”’xk} = {yli"'iyl}'

Proof. Given m < n, x € P, and an m-context class F of type (x), by a simple induction on m,
one can prove that (F[(x)]), = {x}. Thus, by definition of *,_;, we have X, = {x1, ..., xx}, so (i)
holds. Let i, j € NZ with i < j, and Y, Z be the n-cells defined by

Y =F[{x)] en-1-on1 Fi[{xi)] and  Z = Fiy [{xis1)] on-1 - - on—1 Fr[xx) ]

Then x; € Y, x; € Z, and Y,Z are (n—1)-composable. By Lemma 3.2.3.1, we have Y, N Z,, = 0.
Hence, x; # xj, thus (ii) holds. Moreover, by Lemma 3.2.3.1 again, we have (Y,)™ N (Z,)" = 0,
so that —(x; 4;{'1 xi). Thus, by contrapositive, given i, j € NZ such that x; 4;('1 xj, we have i < j,
and in fact i < j by Axiom (T1). Since <, is the transitive closure of <;(n, given i, j € Ny, we
have that x; <x, x; implies i < j, so the function p  x, is a linear extension of (X, <x,), which
concludes the proof of (iii). O

3.3.2 Freeness of decompositions of length one

In this section, we show the unicity of decomposition of cells of Cell(P) as an applied context
class, that is, given k,n € N with k < n, g € P,, and k-context classes Fy, F; of type (g) of Cell(P),
then F;[(g)] = F2[(g)] implies that F; = F,. In order to show this, we first prove two technical
lemmas on the manipulation of contexts by mutual induction. The first states that, as long as we
respect the relation <, we can modify the whiskers of the contexts:

Lemma 3.3.2.1. Letk,n € N* withk < n,e € {—,+},g € P, and E = (L, F,R) be a k-context of
type (g) of Cell(P). Consider the following subsets of Py.:

S =Ly URy, S"=SU (P ke
U={yeS|y<s(Pre} V={y €S |{(Pre<sy}

Then, for every partition U" UV’ of S such thatU C U’,V C V', U’ is initial in S and V' is final
in S, there exists a k-context E' = (L', F’,R") of type X such that

L, =U, R, =V, E~ E.

For k = 2, Lemma 3.3.2.1 states that, given g € P, for some n > 2 and a 2-context E = (L, F, R) of
type (g) Figure 3.6, E is equivalent through ~; to a 2-context E’ = (L', F’,R’) as on the right of
Figure 3.6. The second lemma gives sufficient conditions under which two composable context
classes can be decomposed in a way that allows them to be exchanged by the relations ~ or =
defined in Section 2.2:
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L, lu lu L
g ~2 g

Figure 3.6 — Illustration of Lemma 3.3.2.1

Lemma 3.3.2.2. Letk, ny,ny; € N* withk < min(ny, ny), g1 € Py, g2 € Pp,, and Fy, F, be k-context
classes of Cell(P), of type (g1) and (g,) respectively, such that

Fi[9{({gi)] = F2[9; ({g2))]  and  {gi)+ N {g2)k.- = 0.

There exist k-context classes F, F, of type (g1) and {(g,) respectively, such that

— either Fy, Fy are (k—1)-composable and
Fy = Fy o_1 F,[9 ({g2))] F = Fi[3{({g1))] #k-1 F2,
- or Fy, F; are (k—1)-composable and

Fy = Fy [0, ({g2)] -1 Fi Fp = Fy o1 F1[9({g1))].

Proof. We prove the two lemmas by induction on k.

Proof of Lemma 3.3.2.1. Let p = |Li|. Since U’ is initial in S, U’ N Ly is initial for <7, so there exists
a linear extension
o: N; - (Lk, <1Lk)

such that {i e N}, | (i) € U’} = {1,...,io} for some iy € N,. Writting x; for o (i) for i € N}, by
Theorem 3.3.1.8, L can be decomposed as

L =Fi[{x1)] ok-1 - ok—1 Fp[{xp)]

for some (k—1)-context classes Fy,...,F,. Fori € {ip+1,...,p}, we aim at transferring F;[x;]
from L to R using the relation ~ on k-contexts. If k = 1, then (x1), ..., (x,), 9 ({(g9)) are 0-com-
posable, so that

X1 g g Xp g (91e
which implies that xy,...,x, € U"and iy = p. Thus, we can suppose that k > 1. Assume moreover
that iy < p. To transfer the F;[x;]’s, our plan is to use Lemma 3.3.2.2. We only need to show how

to do this for i = p, and then iterate this procedure fori € {ip+1,...,p — 1}.
Note that Fy[d;_, ({xp))] = F[3,_,({g))]. Moreover, since x,, ¢ U’, we have x;, ¢ U, so that

xpk—1.4 NAPk-1- = 0.

Thus, using Lemma 3.3.2.2 inductively, we get (k—1)-context classes Fp and F of type (xp) and (g)
such that
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- either F,, F are (k—2)-composable and

Fp = Fp o2 F[9_,({9))] F = Fplo_({xp))] k-2 F
- or F, F, are (k—2)-composable and

Fp = F[9;_({g))] *k—2 Fp F=F ey Fpldp_({xp))]

By symmetry, we can suppose that we are in the first situation. Then, by axiom (=-L) of ~, we
get that E ~¢ E where E = (L, F, R) is such that

L =F[{x1)] ok=1 - o1 Fpo1[{xp-1)]
F= Fplog_, ((xp))] ek—2 F

R = (Fp[{xp)] k-2 F[9¢_; ({gN)]) %1 R

By iterating the above procedure for i € {iy+1,...,p — 1}, we obtain a k-context E’ = (L', F/,R’)
of type (g) such that

EzkE/ L;C=LkﬂU/ R;C=RkU(Lk\U/)

Using a similar method to transfer elements from R’ to L’, we get a k-context E” = (L”, F"”/,R")
of type (g) such that

E'~ B’ L/=LLUR\V) R/=R.NV’
Then, we have E ~; E” and we compute that
L/ =L U (R \V')
= (L NU) U RN\ V) U (L \ (U UV)

= (L NU)U (R NTU") (since Ly UR, = U U V")
=U’

and, similarly, R’ = V’. Thus, E”’ satisfies the wanted properties.

Proof of Lemma 3.3.2.2. Let E = (L, F, RF) be such that [Ex]| = Fx for k € {1,2}. Consider

M = Fi[9{ ({91))] (or, equivalently, F,[d} ({g2))]),
S,~=L;'CUR,"< fori € {1,2},

S =M,

Up={x €81 | x<s{(g)k+} Vi ={x €S | {g)k+ s x}

Uz = {x €S2 | x45(g2)x -} Vo ={x € Sz | (g2)k.- <5 x}

Since, by Axiom (T4), g; and g, are not in torsion with respect to F;[9;({g1))], we have

either  =((g1)k+ <5 (92)k-) o  —({g2)k- <5 (g1)k+)-

By symmetry, we can suppose that =({gz2)k - <s{g1)k.+)- Since we can use Lemma 3.3.2.1 (which
is proved for the current value of k) to change E; and E;, we can suppose that

L;i =U, Rllc =5 \U,
L =S\ W, R =V,
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&’
>

Figure 3.7 — The decomposition of M

Then,
(U1 U {gis) N ({g2)k,- U V2) =0

since, otherwise, it would contradict the condition =({g2)x — <s'{g1)k+). Consider the following
sets:

01 =0y, Q2 = {g1)k .+
Q3 =5"\ (U1 U(g1)i+ U (g2)k- U Va),
Q4 = (92)k - Qs = Vs

Then Q4, Q3, O3, Q4, Q5 form a partition of S’. Moreover, this partition is compatible with <.
Indeed, given x, y € S’ such that x <y v,

if x € Qy, then we can not have y € Q; since, by Axiom (T3), (g1)k.+ is a segment for <,

if x € Qs, then we can not have y € Q; U Q, (otherwise, we would have x € U; U (91)k.+),

if x € Qy4, then either y € Q4 or y € Qs by definition of Qs,

if x € Qs, then y € Qs since, by Axiom (T3), (g2)«- is a segment for <.
Thus, there exists a linear extension for (S’, <)
o: Ng — 8§
such that, for i,j € Nigjand r,s € N, if (i) € Q, and o(j) € Qs withr < s, theni < j.
Since S’ = My, using Theorem 3.3.1.8, M can be written

']

M= | Fl(e(i))]

i=1

for some (k—1)-context classes Fj, ..., Fs|. By gathering the terms corresponding to Q, ..., Qs
respectively, we obtain five k-cells M, M?, M3, M*, M € Cell(P); where

M= ] FEleG)]
ieo™1(Qj)

as in Figure 3.7 and such that

M=M oy M® oy M oy M* oy M°.



3.3. THE FREENESS PROPERTY 233

Since
o ,(LY=9_ (M)=0,_ (M") and L, =U; =M,

by Lemma 3.3.1.4, we have L! = M'. Moreover, since
I (F{{gn)]) = 9¢_ (L) = g} _,(M") = a,_;(M*) and (F[[3;({g:)) Dk = (g1)k+ = M,

by Lemma 3.3.1.4, it implies that
F{[9{({gi))] = M?

Similarly, we can show that
Fj[9;({g2))] =M* and R*=M".

Moreover, since
e 1 (L?) = 3y (M) = 9 (M" oy M? oy MP),
and
L} =5 \V
=5"\ ({(92)k.- U V2)
=Q1UQ,UQs,

by Lemma 3.3.1.4, we have
L2 = M e M2 op_; M°.

Similarly, we have
R' =M oy M* oy M.

Hence, writting

Fy=[(LLFLidg e (] and Fo= [(M°,F, RY)]
we have
Fy =Fi o1 F,[0.(92)] and F, =F [ (g1)] k-1 F:
as wanted. m]

From these two lemmas, we deduce that applied context classes are completely determined by
their sources (or targets):

Theorem 3.3.2.3. Givenk,n € N withk < n, g € P, and k-context classes Fy, F, of type {(g) such
that

I (Fil{@]) = 9 (F[{@)])  or G (Fil{9)]) = L (F[{@)]),

we have F; = Fs.

Proof. By symmetry, it is enough to prove the case where 9 (Fi[{(g)]) = 9} (F2[{g)]). We prove
this property by an induction on k. If k = 0, the result is trivial. So suppose that k > 0. Let

E; = (LL,F/,R") and E,= (L% F},R%
be k-contexts such that F; = [[E;] for i € {1, 2}. Thus,

L' o1 F'[3; ({(9))] k=1 R = L? o_y F'[9; ({g))] *k—1 R?
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In particular, L; U (g)r,- U R, = L U {(g)r,- U R* and, by Lemma 3.2.3.1, both sides are partitions,
so that we have LllC U R}c = L,?; v RIZC. Consider the following subsets of Py:

S=L, UR, S" = SU (g,
U={xeSs|xesg} V=5\U.
By Lemma 3.3.2.1, we can suppose that
1_ 72 _ 1 _p2 _
L,=L;=U and R =R =V.
Fori € {1, 2}, we have
ey (L) = 0 (F[{9)]) = 9, © 9 (Fi[{g)])
so that 9 (L") = 9, _,(L?). Thus, by Lemma 3.3.1.4, we have
L' =17
and, by a similar argument, R! = R%. Moreover, for i € {1, 2}, a;_l(Li) =9, (F/[{9)]), so
O (FI{p)]) = 9, (F3 [{p)]).
By induction hypothesis, we have F] = F;. Hence, F; = F,. O
In particular, we can conclude a unique decomposition of cells as applied context classes:

Corollary 3.3.2.4. Givenk,n € N withk < n, g € P, and k-context classes F, F, both of type (g)
such that F1[{g)] = F2[{g)], we have F; = F,.

Proof. In particular, we have 9 (F1[{g9)]) = 9, (F2[{9}]) so Theorem 3.3.2.3 applies. |

3.3.3 Freeness of general decompositions

We now consider the general case and prove the unicity, up to the relation ~ of formal se-
quences of applied context classes, of the decompositions of cells as composites of several applied
context classes of Cell(P). By the characterization of —[—]" given in Section 2.2, it will entail
that Cell(P)<p41 is the free (n+1)-category on the canonical n-cellular extension (Cell(P)<p, Ppt1)
introduced below and, more generally, that Cell(P) is freely generated by the atoms (x) for x € P.

3.3.3.1 — The canonical cellular extension. Given n € N, there is an n-cellular extension

9,0(=)

Cell(P)<n é% Pyt

where, for x € Ppyq and € € {—, +}, 95 o (—)(x) = 95({x)), which is an n-cell by Axiom (T2). We
write Cell(P)"™ for the (n+1)-category

Cell(P)"" = Cell(P)<n[Pp1]

i.e., the image of (Cell(P)<y, Py+1) € Cat}, by the functor —[—]": Cat], — Cat,+;. Remember from
Section 2.2 that the (n+1)-cells of Cell(P)"™* are the quotients under ~ of n-sequences

((91, F1), ..., (gk> Fi))®
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where g; € Pp1 and F; is an n-context class of type 9, ({(g)) for i € N;. For conciseness,
given g € P11 and an n-context class of type 9, ({g)), we write F[g] for

Flg] = [((g.F))*] € (Cell(P)*")ns1.
There is a morphism of n-cellular extension

idCell(P)Sn > <_

( D)
(Cell(P)<n, Pn+1) (Cell(P)<p, Cell(P)n+1)

which maps x € P,y to (—)(x) = (x). By the universal property of Cell(P)"* discussed in
Section 1.3.2, it induces a unique (n+1)-functor

eval”: Cell(P)™ — Cell(P)<pi1
often written eval for conciseness, such that

evall, = ideey(py., and eval(Flg]) = F[{g)]
for all g € P41 and n-context class F of type 9, ({g)).

3.3.3.2 — Freeness of Cell(P). We now show the freeness of Cell(P) by proving the unicity of
decomposition of cells as sequences of applied context classes up to the relation =. First, we show
an analogous of Theorem 3.3.1.8, i.e., that the decompositions in Cell(P)"™* can also be reordered
by linear extensions:

Lemma 3.3.3.3. Letn € N and X be an (n+1)-cell of Cell(P)"* such that
X=F1[x1] *n ""an[xp]

for some p € N, x1,...,x, € Pyyy and n-context classes Fy,...,F, of Cell(P). Then, we have
that the function q — x4 of type NZ — Xy41 is a linear extension of ()fn+1’<‘Xr_1+1)- Moreover,
if o is a linear extension of (Xpn+1, <x,,,,), then there exist n-context classes Fy, . . ., F of respective

types (o(1), .., (o(p)) such that
X = Flo(D)] o0 -~ on Fplo(p)].
Proof. Write p: N, — X, for the function such that
p(i) = x;
for i € N},. By the functoriality of eval, we have
eval(X) = Fi[(x1)] on - - - on Fp[(xp)]

so that p is a linear extension by Proposition 3.3.1.10. We are left to prove the second part of the
statement. We have a morphism of linear extensions

f=0"0p

between ¢ and p. By Lemma 3.3.1.2, we can suppose that f = 7;;4; for some i € N;_l. To
conclude, we only need to show that x; and x;;; can be swapped in the decomposition of X
as Fi[x1] ey - - o5 Fp[xp]. By contradiction, suppose that (x;)n+ N (Xiy1)n— # 0. In particular,
we have p(i) <x,,, p(i+1). Since p = ¢ o 7;,41, it implies o(i + 1) <x,,, o(i). Thus, since o is a

n+1
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linear extension, we deduce that i + 1 < i, which is a contradiction. So (x;)n+ N (Xjs1)n— = 0.

By Lemma 3.3.2.2, there exist n-context classes F; and F;;; such that, in Cell(P)<,[Ppn1]~,

(Cxis F), (xie1, Firn))® = ((xinn, Fi), (x5 Fian))®

so that

((x1, Fy), ..., (xp, Fp))®
X ((xl, Fl), cees (x,‘_l, Fi_1), (xl-+1, Fi), (xl-, Fi+1), (xi+2, Fi+2), o (xp; Fp))s

i.e., in Cell(P)™,
X =Fi[x1] on -+ - o Fic1[Xiz1] o Fi[Xi21] on Fis1[xi] on Fisz[Xis2] on - - - on Fp[xp]
which concludes the proof. O

We can now deduce that Cell(P)<,+; is canonically a free extension on Cell(P)<y:
Theorem 3.3.3.4. Forn € N, eval”: Cell(P)"" — Cell(P)<p+1 is an isomorphism.

Proof. Since eval<p, = idqgp_,. it is enough to prove that eval induces a bijection on the

(n+1)-cells. By Theorem 3.3.1.8, it is surjective, so we are left to prove injectivity. Let X! and X?
be (n+1)-cells of Cell(P)"™*, such that eval(X!) = eval(X?) and

X' = Fllxl] on o0 Bl )]

for some p; € N, xi, .. .,x;;i € P,.1 and n-context classes Fi, .. .,F;,i for i € {1, 2}. By functoriality
of eval, we have

eval(X") = Fi[(x)] on -+ oy F;i:i [<x;n>]

for i € {1, 2}, so that, by Proposition 3.3.1.10, we have p; = p,, and we write p for the common
value. Moreover,

{xll,...,x;,} = {xf,...,xlz,}.

By Lemma 3.3.3.3, we can suppose that le. = xJ2. for j € N7, and we write x; for the common value.
Since 9, (X") = d;, (Fi[x;]) for i € {1,2}, we have

9, (Fi[x1]) = 9, (F{ [x1])
so that, by Theorem 3.3.2.3, F! = F2. In particular, 9} (F} [x1]) = 9}, (F[x1]), so that
O (Pl on < on ESp)) = 35 (2] o - o 2,1

Thus, we can iterate the above procedure to show that F]l = F]2 for j € {1,...,p}, so that X' =Xx2
Hence, the (n+1)-functor eval is an isomorphism. |

By an inductive argument, we conclude that Cell(P) is freely generated by the atoms:

Corollary 3.3.3.5. There are unique polygraph Q € Pol,, and w-functor F: Q* — Cell(P) € Cat,,
such that Q, = P, forn € N and F(g) = (g) for g € P. Moreover, F is an isomorphism.
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Proof. We show by induction on n € N that there are unique n-polygraph Q" and morphism
F": (Q")" — Cell(P)<,

such that Q = Py for k € Nand F"(g) = (g) for g € Q", and that F” is moreover an isomorphism.
This is clear for n = 0. So suppose that n > 0. If Q" and F" as above exist, then, by the
unicity property of the induction hypothesis, we have Q% _, = Q"' and F?__ = F""'. The
n-functor F” is then uniquely defined by the universal pro_perty of (Q™)* = (Q™1)*[Q"] given
by Theorem 1.3.2.3 knowing that F"(g) = (g) for g € Q,;. Moreover, the n-polygraph structure
on Q" is unique since

dui(9) = (F"") ™ o d,,({9)) (3.27)

forg € Q] and € € {—, +}. Finally, F" is an isomorphism since, by Theorem 3.3.3.4, (evaln_l)_1 oF™
is the image by —[—]""! of the isomorphism

(F*',1p,): ((Q"")*,Q)) — (Cell(P)<p-1, Py) € Caty_,

so that the unicity of Q" and F”, and the fact that F” is an isomorphism are proved. For existence,
one defines the n-polygraph structure on Q" from the one on Q"' and with (3.27), and the
n-functor F" is then defined by extending F"~!, using the universal property of (Q")*.

Thus, by the definition of Pol,, and Proposition 1.2.3.12, we obtain unique w-polygraph Q
and w-functor F: Q* — Cell(P), such that Q, = P, for n € N and F(g) = (g), and F is moreover
an isomorphism. O

3.4 Relating formalisms

This section aims at relating all the introduced formalisms together. In particular, we show that
the formalism of torsion-free complexes is a Rosetta stone that can express the other ones (after
correcting the defect of parity complexes and pasting schemes). Embedding parity complexes
into torsion-free complexes is almost direct, since they share the same definition of cells and
several axioms. However, additional developments are needed for translating pasting schemes
and augmented directed complexes into torsion-free complexes. Indeed, in the first case, one
needs to show that a definition of cells analogous to the ones of pasting schemes can be used
for torsion-free complexes before being able to relate the axioms of the two formalisms. In the
second case, one needs to link the abelian group setting of augmented directed complexes to the
set setting of torsion-free complexes.

We first introduce two other set-based definitions of cells for torsion-free complexes: closed-
well-formed fgs’s and maximal-well-formed fgs’s (Section 3.4.1). The former is similar to the
well-formed fgs of pasting schemes, while the latter is a convenient intermediate between the
cells of torsion-free complexes and closed-well-formed fgs’s. The w-categories of cells induced
by these two other definitions is then isomorphic to the one obtained with the initial definition
(Theorems 3.4.1.24 and 3.4.1.27). Using the more natural definition of cells as closed-well-formed
fgs’s, we give a characterization of polygraphs that can be represented by torsion-free complex
(Theorem 3.4.1.29) and illustrate the use of torsion-free complexes with an extension of cateq
that enables to specify cells more easily (Paragraph 3.4.1.32). Next, we show the embeddings of
parity complexes (Section 3.4.2) and pasting schemes (Section 3.4.3) into torsion-free complexes.
Then, we develop the relation between the set-based and group-based definitions of cells before
showing the embedding augmented directed complexes into torsion-free complexes (Section 3.4.4).
Finally, we illustrate that those are the only embeddings between the formalisms by providing
counter-examples to the other ones (Section 3.4.5).
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3.4.1 Closed and maximal cells

In this section, we introduce two other set-based definitions of cells for torsion-free complexes,
namely closed-well-formed fgs’s and maximal-well-formed fgs’s, together with identity and com-
positions operations for them. We moreover provide translation functions between the different
definitions of cells, and show that the w-categories of cells with the new definitions are isomorphic
to the one with the original definition of cells (Theorems 3.4.1.24 and 3.4.1.27). Using this different
representation, we characterize the polygraphs that can be represented by torsion-free complexes
(Theorem 3.4.1.29). Finally, we illustrate the use of torsion-free complexes by introducing an
extension of cateq based on closed-well-formed fgs’s (Paragraph 3.4.1.32).

3.4.1.1 — Definitions. Let P be an w-hypergraph. Recall the definitions of fgs and closed fgs

from Paragraph 3.1.3.6. We write
Closed(P)

for the graded set of closed fgs’s of P. Given an n-fgs X of P, x € X is said to be maximal in
X when for all y € P such that xRy and x # y, it holds that y ¢ X. We write max(X) for the
n-fgs of P made of the maximal elements of X. The n-fgs X is then said to be maximal when
max(X) = X. We write

Max(P)
for the gradet set of maximal fgs. Given n € N and X an n-pre-cell of P, we write UX for the n-fgs
of P given by

UX = U (Xio UXiy).
ieN,

3.4.1.2 — Maximality lemma. Let P be an w-hypergraph. In order to relate the cells of Cell(P)
with the fgs’s of Max(P), we give here a simple criterion to characterize the maximal elements in

a cell of Cell(P):

Lemma 3.4.1.3 (Maximality lemma). Suppose that P satisfies Axioms (T0), (T1), (12) and (T3).
Letk,n € N withk < n and X € Cell(P),. Forx € Xy _ (resp. x € X ) with x not maximal in UX,

T +
we have x € X1 (resp. x € Xk+1’+).

Proof. We prove this property by induction on [ = n — k. By symmetry, we only prove the case
where x € X _. Since x is not maximal, by definition of R, there exist

peN, ne{-+}, x0,x1,....x, €P and e,...,¢, € {—+}

such that
Xo=X, Xp€Xpspy and x; €x; forieN,_;.

Suppose that p = 1. By Lemma 3.2.1.1, we have

+
Xk- N Xvkﬂ”7 =0.
Since x € x| and x; € Xj,1,, we have
eg=— and xe€ Xk$+1r]'

so that, by Lemma 3.2.1.5, x € X:H’_.

Otherwise, suppose that p > 1. Lety € Xj.p , be the smallest of Xy, , for <x,, suchthatyRx,_;.
If x,—1 € y~, then, by minimality of y, there is no § € Xy, such that x,_; € §*. Therefore,

¥
xp—l € Xk+P>’7 C Xk+p—1,—~
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Hence, x is not minimal in 9]

- p—l(X) and we conclude by induction. We now consider the

case x,_1 € y*. Let
G ={2 € Xkspn | 29, y} U{y} and Y= Act(a];p_l(X), G).

We have x € Y;_ and x,_; € Yi4p-1. Moreover, by Theorem 3.2.2.3, Y is a cell. By induction
hypothesis, we have x € ij:rl _. Since Xj4 — and Yj4y — both move Xj _ to Xj 4, by Lemma 3.2.1.5,
we have x € X" | _ which concludes the proof. O

The above criterion gives a simple description of the set of maximal elements of a cell of Cell(P).

Lemma 3.4.1.4. Suppose that P satisfies Axioms (T10), (T1), (T2) and (T3). Let k,n € N withk < n,
an n-cell X € Cell(P), and e € {—,+}. Then,

max(UX) N Py = X - N Xg 4.
Proof. By Lemma 3.4.1.3,
max(UX) N Pr = (X~ \ X ) U (X \ X1 L)
By Lemma 3.2.1.6, it can be simplified to

max(UX) N P = Xie— N Xpe 4 O

3.4.1.5 — The translation functions. We now provide translation functions between the graded
sets Cell(P), Max(P) and Closed(P) and introduce several properties on them. The functions we
introduce are the ones represented on the diagram

Max(P)
e !
o
PCell(P) 7 : ? Closed(P)
TC

and are defined as follows:
- TII\’AC: PCell(P) — Max(P) is defined by

TEAC (X) = max(UX) for X an n-pre-cell of P,

- T%AC: Max(P) — PCell(P) is such that, for X an n-fgs of P, T%AC (X) is the n-pre-cell Y of P

defined by
Yo =X,
and
Yo =X; UYE, Yie = Xi UYL
fori e N,_1,

- TI(\:AI: Max(P) — Closed(P) is defined by

Tlgl (X) =R(X) for X a maximal n-fgs of P,
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- Tﬁ: Closed(P) — Max(P) is defined by
TSII(X) = max(X) for X a closed n-fgs,
- Tgp: PCell(P) — Closed(P) is defined by
TEIC (X) = R(UX) for X an n-pre-cell of P,
- T}%: Closed(P) — PCell(P) is defined by
158 =g o1{!
These operations can be related to each other, as state the following lemmas.
Proposition 3.4.1.6. We have Tl(\:/[1 o Tﬁ = 1closed(P) and T&l o Tlgl = IMax(P)-
Proof. Let X be a closed n-fgs of P and x € X. We have T%(X) C X so
TH o THH(X) C X.

Moreover, for x € X, since X is finite, there is y € max(X) with y R x. It implies that y € Tf/ll (X)
and x € Tl(\:/[1 o Tl(\:/l1 (X). Therefore,
X C TM o TS (X),
which shows that
TN © Tﬁ = 1Closed(P)-
For the other equality, note that, for all n-fgs X of P, R(X) has the same maximal elements as X.

It implies that
Tl(\:Al OTI(\:/Il = lMax(P)- m}

Lemma 3.4.1.7. Suppose that P satisfies Axioms (10), (T1), (12) and (T3). Letn € N, X € Cell(P),
and Y = TiC(X). Then,

V,=X, and Y, =X,_NX;, fori e N,_;.
Proof. This is a direct consequence of Lemma 3.4.1.4. O

Proposition 3.4.1.8. Suppose that P satisfies Axioms (10), (T1), (I2) and (T3). Then, given a
cell X € Cell(P), we have T%AC o TfAC (X) =X.

Proof. Letn e N, X € Cell(P),, Y = TEAC(X) and Z = T%AC(Y). Fori € N, and € € {—, +}, we show
that X; . = Z; . by a decreasing induction on i. By Lemma 3.4.1.7, we have

Zn=Y, =X,
and, for i € N,,_;, we have
Zi,f = Yl U Ziil,—
= (Xi- N Xie) UXT, _
=X;_ (by Lemma 3.2.1.7).
Similarly,
Zi,+ = Aj+,

so X = Z. Hence, TyConAC(X) =X. |
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Proposition 3.4.1.9. We have Tlgl o TEAC = Tglc.
Proof. Let n € N and X € PCell(P),. Then,

Tl(\:/[1 o T&C (X) = R(max(UX))
= R(UX)
= T (X).

M _PC _ TPC
Hence, TCl o TM = TCl . O

3.4.1.10 — Sources and targets. Here, we define source and target operations for the graded
sets Closed(P) and Max(P). Later, we will show that they respectively equip the subsets of well-
formed closed fgs and well-formed maximal fgs with a structure of w-globular set. For now, we
prove that these operations are compatible with the translation operations.

Given n € N* and a closed n-fgs X, we define the source 9,_,(X) (resp. target d;_, (X)) of X
as the closed (n—1)-fgs Y defined by

Y =R(X\ (Xp UR(X))) (resp. R(X \ (Xp UR(X,)))).

Respectively, given n € N* and a maximal n-fgs X, we define the source 5;_1(X) (resp. tar-
get 5;_1(X )) of X as the maximal (n—1)-fgs Y such that

Yoo1 = Xp-1 UX, (resp. Y1 = X,-1 UX,) and Y;=X; fori €N, ,.

When P satisfies enough axioms of torsion-free complexes, we can prove several compatibility
results between these source and target operations and the translation functions, in the form of
the following propositions.

Proposition 3.4.1.11. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, forn € N*, ¢ € {—, +}
and X € Cell(P),, we have
Tyt (9521 (X)) = Jy (Ty (0)-

Proof. LetY = Tff(a;_l(X)), X' = TII\’AC(X) and Z = 52_1(X’). By Lemma 3.4.1.7, we have
Y1 = Xn—l,e and Y; = Xl',_ N X,‘).'. forie N,_1.

Moreover,
X, =X, and X/ =X;_NX;,+ forieN,_.

If € = —, then, by Lemma 3.2.1.7,
Zn-1= (Xn-1- N Xn14) UXy = Xpog -
and Z; = X/ = X;_ N Xj 4 fori € N,,_;,s0 Y = Z. Similarly, if € = +, we have Y = Z. ]
Proposition 3.4.1.12. Forn € N*, € € {—,+} and X € Max(P),, we have
T (05-1(X)) = 35 (TH(X)).
Proof. By symmetry, it is sufficient to handle the case € = —. Let

Y =TM(3,_, (X)) and  Z =0, (TH(X))
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By unfolding the definitions, we have
Y=R(X\X)UX) and  Z=RR(X)\ (X URCX))).
In order to show that Y C Z, we only need to prove that Y’ C Z where
Y'=(X\X,)UX,.
First, we have that Y’ C R(X). Moreover,

Y N (X, UR(X)))

= (X \ Xn) UX;) N (X, UR(XR))
= (X \ Xz) UX;) NR(X;)

= (X \ X») NR(Xy,)

=XN R(X:{)

=0 (since X is maximal).

So Y’ € Z, which implies that Y C Z.

Similarly, in order to show that Z C Y, we only need to prove that Z’ C Y where
7/ =R(X)\ (X, UR(X))).

But
Z' CY & R(X) CYUX, UR(X))

and

YUX, URX}) =R((X \ X,) UX;)UX, URX))
=R((X\ Xp) UXF UX) UX,
=R((X\ X,) UX; UX) UX,
=R((X\ Xp) UX; UXS UX,)
= R(X).

So Z’ C Y, which implies that Z C Y. Hence, Y = Z, which concludes the proof. O

Proposition 3.4.1.13. If P satisfies Axioms (10), (T1), (12) and (T3), then, forn € N*, ¢ € {—,+}
and X € Cell(P),,
Ty (3h1(X)) = 4 (T (X).

Proof. We have

T (351 (X)) = T o Tyt (954 (X)) (by Proposition 3.4.1.9)
= Tz[l(érez—l(TfAc (X)) (by Proposition 3.4.1.11)
= 95, (T o Tyy (X)) (by Proposition 3.4.1.12)

= a_rel—l (Tglc (X))

which concludes the proof. o
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3.4.1.14 — Identities and compositions. Here, we define identity and composition operations
for the graded sets Max(P) and Closed(P), and prove some compatibility results with the transla-
tions functions.

Given n € N and a closed (resp. maximal) n-fgs X, we define the identity of X as the closed
(resp. maximal) (n+1)-fgs id"* (X) defined by

id"™(X) = (X, ..., X 0).

Given i,n € N with i < n and two maximal n-fgs X, Y, we define the maximal i-composition of X
and Y as the maximal n-fgs X M Y defined by

X MY = max(R(X) UR(Y)).

Respectively, given i,n € Nwithi < nand two closed n-fgs X, Y, we define the closed i-composition
of X and Y as the closed n-fgs X ! Y defined by

Xy =xuy.
For simplicity, we sometimes write +! (resp. +M) for *fl (resp. *IIVI) We now prove several com-
patibility results of the identity and composition operations with the translation functions.
Proposition 3.4.1.15. Forn € N and an n-cell X € Cell(P),

Tos (id™ (X)) = id™ (Tey (X).
Proof. 1t readily follows from the definitions. O
Proposition 3.4.1.16. Forn € N and an n-cell X € Cell(P),
Ty (id™ (X)) = id™ (T}ys (X)).
Proof. 1t readily follows from the definitions. O
Proposition 3.4.1.17. Fori,n € N with i < n, and i-composable n-cells X and Y in Cell(P),
TEC(X #; Y) = Tog (X) 5 Tao(Y).

Proof. Let Z = X *; Y. We have
Tey (X % Y) = R(UZ)

and
TEC(X) « TEC(Y) = R(UX) UR(UY) = R((UX) U (UY)).

By definition of composition, UZ C (UX) U (UY), so
TG 4 Y) € TS 00 #TIS (),
For the other inclusion, note that X C Z; . for j € N, and € € {—,+} with (j,€) # (i,+), and

Xig = (Xim UX )\ Xy
g Zi,— U Z:l—l,—
C R(UZ)
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so UX C R(UZ). Similarly, UY C R(UZ), thus
(UX) U (UY) CR(UZ),

which implies that
TEC(X) +S TEC(Y) € TR (X #; Y).

Hence,
TEC(X) ¢ Toc (V) = Togd (X #; Y). O

Proposition 3.4.1.18. Fori,n € N withi < n, and X, Y € Closed(P)y,
T (X 51 Y) = TR (X) =M T (V).
Proof. We have
Ty (X) ! Ty (Y) = max(R(Ty (X)) UR(TH(Y)))
=max(X UY) (by Proposition 3.4.1.6)
= TR (X ' Y)
which concludes the proof. O
Proposition 3.4.1.19. Fori,n € N withi < n, and i-composable n-cells X and Y of P,
T (X % Y) = Ty (X) 2 Thy (V).

Proof. We have

Tf/[c (XY= Tg,ll o T&C (X *Y) (by Propositions 3.4.1.6 and 3.4.1.9)
= T (TEC(X) T TES (1) (by Proposition 3.4.1.13)
= Tg/ll o T&C (X) *llV[ TS[I o TgIC(Y) (by Proposition 3.4.1.18)
= T&C (X) #M T&C(Y) (by Propositions 3.4.1.6 and 3.4.1.9)
which concludes the proof. O

3.4.1.20 — Well-formed cells. We defined above source, target, identity and composition oper-
ations for both Closed(P) and Max(P). However, these operations are not expected to equip the
graded sets Closed(P) and Max(P) with a structure of w-category (in fact, not even a structure of
w-globular set). In order to obtain an w-category, we need to restrict to subsets of “well-formed”
elements of Closed(P) and Max(P). Then, we can show that the two induced w-category of cells
are isomorphic to Cell(P).

Let P be an w-hypergraph. Given n € N and X € Closed(P),, we say that X is closed-well-formed
when

- X, is fork-free,
- 9, ,(X) and 9} _, (X) are closed-well-formed,
-ifn>20, ,00, (X)=09, ,00, (X)andd} ,00d, (X)=0d}_,00,  (X).

We write Closedwr (P) for the graded set of closed-well-formed fgs of P. Respectively, givenn € N
and X € Max(P),, we say that X is maximal-well-formed when
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- X, is fork-free,
- 9, ,(X)and & _,(X) are maximal-well-formed,

- ifn>20_,0 5;_1(X) = 5;_2 o éz_l(X) and 5;_2 o ég_l(X) = 5;_2 o éz_l(X).

> Yn-2

We write Maxwr(P) for the graded set of maximal-well-formed fgs of P. We now aim at proving
that both Closedwr(P) and Maxwr(P) are w-categories isomorphic to Cell(P) when P satisfies
enough axioms of torsion-free complexes. We first show this property for Maxwr(P) after intro-
ducing several technical results.

Lemma 3.4.1.21. IfP satisfies Axioms (T10), (T1), (T2) and (T3), then, forn € N and X € Cell(P),,
we have T&C (X) € Maxwg(P)y.

Proof. We proceed by induction on n. If n = 0, the result is trivial. So suppose that n > 0 and
letY = T&C (X). Since Y,, = X,,, Y,, is fork-free. Moreover, by Proposition 3.4.1.11, we have

Gy (V) =TY[ (9, 1(X)) fore € {— +}.
By the induction hypothesis, 3°_, (Y) is maximal-well-formed. And, when n > 2, forn € {—, +},
we have
52_2 0d, (Y)= T&C(az_z 0d,_,(X)) (by Proposition 3.4.1.11)
= TII\)/IC(aZ—z ° 91 (X))
= aZ—z ooy _1(Y).
Hence, Y is maximal-well-formed. m]

Lemma 3.4.1.22. IfP satisfies Axioms (10), (T1), (T2) and (T3), then, forn € N and X € Maxwg(P),,
there exists an n-cell Y € Cell(P),, such thatTfAC(Y) =X.

Proof. We proceed by induction on n. If n = 0, the result is trivial. So suppose that n > 0. By
induction, let S, T € Cell(P),_; be such that T&C(S) = 5;_1(X) and TE/[C(T) = 5;_1(X). When
n > 2, for € € {—,+}, we have

;_5(S) = The 0 Ty (95,(S)) (by Proposition 3.4.1.8)
= Tpe (9o (T (5))) (by Proposition 3.4.1.11)
= Toc (952 © 91 (X))
= Tpe (95 0 351 (X)) (because X is maximal-well-formed)

= Tpe (95, (Ty (1))
= Tpe 0 Tyy (95_5(T))
= 95_,(T).
Moreover,
(St UXD\ X, = (X1 UXT UXD\ X,
= An-1 UX:
= lp-1-

Similarly, (T,,-1 U X)) \ X' = S,—1 so X,, moves S,,_; to T,,_;. Hence, the n-pre-cell Y defined by

Yn = Xn, Yn—l,— = Sn—l’ Yn—l,+ = 1p and Yi,5 = Si,5 forie Nn_g and § € {—, +}
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is an n-cell. Let Z = T&C( Y). We have Z,, = X,, and

0n_i(Z) = 0,y (T (V)
= Tyt (951 (V) (by Proposition 3.4.1.11)
=Ty (S)
= ér_l—l(X)-

So, by definition of 9, we have
ZnaUX, =X, UXT and Z;=X; forieN,_,.
Since X and Z are maximal, we have
Xn1 NX; =Zp1 NX,; = 0.
Hence, X,,-1 = Z,—1and X = Z = T&C(Y) which concludes the proof. O

Lemma 3.4.1.23. If P satisfies Axioms (T0), (T1), (12) and (13), then, TII\)/[C induces a bijection
between Cell(P) and Maxwrg(P).

Proof. By Lemma 3.4.1.22, T&C: Cell(P) — Maxwg(P) is surjective and, by Proposition 3.4.1.8, it
is injective, so it is bijective. O

We can now deduce that maximal-well-formed fgs’s are an adequate alternative definition of cells
for torsion-free complexes:

Theorem 3.4.1.24. If P satisfies Axioms (10), (T1), (T2) and (T3), then, Maxwg(P) is an w-category
and T&C induces an isomorphism between Cell(P) and Maxwg(P).

Proof. By definition of Maxwg(P), the functions 5];, 5; for k € N equip Maxwr(P) with a struc-
ture of w-globular set. We first prove that the composition operation ™ restricts to Maxwg(P).
Let i,n € Nwith i < n, and X,Y € Maxwr(P), be such that 5; (X) = 51._(Y). By Lemma 3.4.1.23,
there exist X', Y’ € Cell(P), such that T&C (X’) =X and TEAC(Y’) =Y. By Proposition 3.4.1.11, we
have

Ty (87 (X)) = 9 (X) = d; (Y) = Ty (35 (Y)),

and, by Lemma 3.4.1.23, 9] (X’) = 9; (Y’) so X" and Y’ are i-composable. By Lemma 3.4.1.23, we
have T&C (X’ #; Y’') € Maxwg(P) and, by Proposition 3.4.1.19, X *Ilv[ Y € Maxwr(P).

By Propositions 3.4.1.11, 3.4.1.16 and 3.4.1.19, T&C commutes with the source, target, identity
and composition operations and is a bijection when restricted to Maxwg(P), so that Maxwr(P)
is an w-category since Cell(P) is (by Theorem 3.2.3.3 and Remark 3.2.3.4), and T&C induces an
isomorphism of w-categories. O

We prove a similar property for closed-well-formed fgs’s after showing some technical results.
Lemma 3.4.1.25. Tg/[l induces a bijection between Maxwr(P) and Closedwg(P).

Proof. We already know that Tlgl is a bijection by Proposition 3.4.1.6. For n € N, we show that Tg
sends a maximal-well-formed n-fgs X to a closed-well-formed n-fgs by induction on n. If n = 0,
the result is trivial. So suppose that n > 0. Let Y = Tlgl(X). Then, Y, = X, is fork-free and,
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for € € {—,+}, we have 9;_,(Y) = Tlgl(éfl_l(X)) by Proposition 3.4.1.12, and it is closed-well-
formed by induction. Moreover, when n > 2,

35039, (V) =TN(_, 0 d,_,(X)) (by Proposition 3.4.1.12)
= T8 (0 © 934 (X)
= 0,509, 4(Y)

so Y is closed-well-formed. Similarly, Tl(\:/[1 sends closed-well-formed fgs to maximal-well-formed
fgs, which concludes the proof. O

Lemma 3.4.1.26. If P satisfies Axioms (10), (T1), (T2) and (T3), then, T}élc induces a bijection
between Cell(P) and Closedwr(P).

Proof. The result is a consequence of Proposition 3.4.1.9 and Lemmas 3.4.1.23 and 3.4.1.25. O

We can now conclude that closed-well-formed fgs’s are an adequate alternative definition of cells
for torsion-free complexes:

Theorem 3.4.1.27. If P satisfies Axioms (T0), (T1), (T2) and (T3), then, Closedwr(P) is an w-cate-
gory and Tlélc induces an isomorphism between Cell(P) and Closedwr (P).

Proof. By a proof similar to the one of Theorem 3.4.1.24, using Propositions 3.4.1.13, 3.4.1.15
and 3.4.1.17 and Lemma 3.4.1.26. O

3.4.1.28 — From polygraphs to torsion-free complexes. We saw earlier (Corollary 3.3.3.5)
that torsion-free complexes induce free w-categories on a canonical w-polygraph. However, in
practice, we are often interested in the inverse operation, i.e.,, representing the cells of an w-cate-
gory freely generated on an w-polygraph by the cells of a torsion-free complex. Here, we define
the w-hypergraph P associated to an w-polygraph P and, in the case where P! is a torsion-free
complex, give conditions under which the w-category Closedwr(P!) is isomorphic to the free
w-category P*.

Recall the definition of the support function supp given in Paragraph 2.4.3.1. Given P € Pol,,,
we define an w-hypergraph P! by putting P! = P, for n € N and, when n > 0,

g~ =supp”(d,_1(9)) NPur g =supp’ (d}_;(9)) NPuy

for g € P! Under this definition, supp” can be seen as a function P* — Closed(P). We then
have the following criterion to know whether P* can be faithfully represented by the closed-well-
formed fgs’s of PH:

Theorem 3.4.1.29. Let P € Pol,, such that P! is a torsion-free complex. Then, supp® is the un-
derlying function of an w-functor F: P* — Closedwy(P™) if and only if, forn € N*, g € P,
and e € {—,+}, we have

supp” (d5;_;(9)) = R(¢°).

In this case, F is moreover an isomorphism.

Remark 3.4.1.30. If the condition of Theorem 3.4.1.29 is satisfied, then T(P:IC oF: P* — Cell(PH) is
the unique isomorphism given by Corollary 3.3.3.5 which maps g € P to (g) € Cell(P™).
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Proof. If supp” induces an w-functor F: P* — Closedwr(P™), then we have

suppP(dZ_l(g)) = F(d;,_,(9))
= 0,_1(F(9))
= d,_1(R(9))
=R(g°) (by definition of d;,_))

which proves the necessity. For sufficiency, we prove by induction on n € N that supp® is the
underlying function of an n-functor F*: (P*)<, — Closedwr(P")<,. This is clear for n = 0, and,
when n > 0, we define F" by extending F"~! and so that F"(g) = R(g) using the universal property
of (P*)<;, = (P*)<n—1[Px]. This is possible since the condition of the statement implies that

F"(d5_1(9) = 351 (R(9))

for g € P, and € € {—,+}. We then obtain an w-functor F: P* — Closedwr(P) using Proposi-
tion 1.2.3.12, which satisfies that F(g) = R(g) for g € P. Then, by Theorem 3.4.1.27, Tglc oF is an
w-functor P* — Cell(P) which maps g to {g). It is then an isomorphism by Corollary 3.3.3.5, so
that F is an isomorphism too. ]

Example 3.4.1.31. Let P be the w-polygraph with

Po={xvy,z} Pi={fix—>vygq:y—>z} Pr={aa:9=7g"}
P; = {A: id? xo A = id;a'}

and Py = 0 for k e Nwith k > 4 asin

fxog f*og
g
VR N 4 N
x——>yalla’z and «x Uldf*o(x z = x U1df*0a’ z .

NN

frog’ frog

We can verify that PH is a torsion-free complex. But, by Theorem 3.4.1.29, the function supp”
does not induce an w-functor P* — Closedyr(PH) since

supp’ (d; (A)) = {x, v, 2. f.9. 9} # {y.2,9.¢",a} = R(A7).
However, by considering a modified version of P where
P3 = {A o = 0(,}

it can be verified that PY is still a torsion-free complex and that, by Theorem 3.4.1.29, the func-
tion supp” induces an w-functor P* — Closedwg(P") which is an isomorphism.

3.4.1.32 — A pasting diagram extension for cateq. We illustrate the use of pasting diagrams
by describing an extension of cateq that allows specifying cells using pasting diagrams or, more
precisely, closed-well-formed fgs’s of torsion-free complexes.

For example, consider the w-hypergraph (3.1) on page 189. It can be verified that it is a
torsion-free complex. The associated w-polygraph is then described in cateq by the following
commands:
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u,v,w,X,y := gen *
a :=genu ->v

b,c,d :=gen v -> w
e,f,g := gen w -> x

h := gen x ->y

alpha := gen b -> c
beta := gen c -> d
gamma := gen e -> f
delta :=gen f -> g

H OH OHF H H OHF H H H

Then, as suggested back there, the cell composing “all the generators together” can be defined
with the expressions

# X1 := id2 a *0 (alpha *1 beta)
*0 ((gamma *0 id2 h) *1 (delta *0 id2 h))

and

# X2 := (id2 a *0 alpha *0 id2 e *0 id2 h)
*1 (id2 a *0 id2 c *0 gamma *0 id2 h)
*1 (1d2 a *0 beta *0 delta *0 id2 h)

and one can verify that the answer of cateq on the query
# X1 = X2

is true . We can define this cell using pasting diagrams with the syntax {[gen1], [gen2],...}
asin

# X3 := {u,v,w,x,y,a,b,c,d,e,f,g,h,alpha,beta,gamma,delta}t

and one verifies that cateq answers true on the query X2 = X3. In fact, cateq applies the
closure operator R on a pasting diagram input, so that it is sufficient to specify the maximum
elements. Thus, we can define

# X4 := {a,alpha,beta,gamma,delta,h}

and verify that X3 = X4 evaluates to true . We are allowed to mix the pasting diagram syntax
with the usual syntax and write a query like

# id2 a *0 {alpha,beta,gamma,delta} *0 id2 h = X4

which cateq evaluates to true .

Let’s now look at another example and see how to specify the cells H; and H, associated with
the w-hypergraph P of Paragraph 3.1.2.13 using pasting diagram syntax. We can already use this
syntax to specify the generators, as in

# x,y,z := gen *

# a,b,c := gen x -> y

# d,e,f :=geny -> z

# alpha,alpha' := gen a -> b
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# beta,beta' := gen b -> c
# gamma,gamma' := gen d -> e
# delta,delta' := gen e -> £

# A .
# B :

gen {alpha,delta} -> {alpha',delta'}
gen {beta,gamma} -> {beta',gamma'}

Then, H; and H, can be defined with

# H1
# H2 :

{beta,A,gamma} *2 {alpha',B,delta'}
{alpha,B,delta} *2 {gamma',A,beta'}

which is more economical than the expression used in Paragraph 3.1.2.13. Note that, even though P
is not a torsion-free complex, the definition of H1 is accepted. Indeed, cateq allows the use of
the pasting diagram syntax for a local expression when the sub-w-hypergraph induced by the ex-
pression is a torsion-free complex. For example, the two sets of generators {f, A, y} and {a’, B, 5’}
induce two sub-w-hypergraphs (by applying the R operation) of P that are torsion-free complexes,
so that the definition of H1 is accepted by cateq. However, cateq refuses the definition of H
done by command

# H := {A,B}

since the sub-w-hypergraph induced by {A, B} (which is P) is not a torsion-free complex.

Remark 3.4.1.33. In fact, cateq checks that an w-hypergraph is a torsion-free complex using the
stronger Axioms (T3’) and (T4’), since they are more efficiently computed. As a consequence,
it might miss some torsion-free complexes that only satisfy Axioms (T3) and (T4) but not the
stronger ones.

Remark 3.4.1.34. When provided with a command involving a pasting diagram syntax, cateq
verifies that the condition given by Theorem 3.4.1.29 is satisfied with regard to the current poly-
graph, and otherwise refuses the command and alerts the user, so that the use of pasting diagram
syntax in cateq is always safe.

3.4.2 Embedding parity complexes

In this section, we show that parity complexes are a particular case of torsion-free complexes,
under two reasonable caveats. Firstly, since parity complexes do not require all the generators
to be relevant, there are parity complexes that are not torsion-free complexes. But, by [Str91,
Theorem 4.2], irrelevant generators of a parity complex P do not play any role in the generated
w-category Cell(P), so that, by restraining P to the w-hypergraph P of relevant generators, we
have Cell(P) = Cell(P). Thus, it is reasonable to assume that all the parity complexes we are con-
sidering for embedding in torsion-free complexes have relevant generators, i.e., satisfy Axiom (T2).
Secondly, as discussed in Paragraph 3.1.5.4, general parity complexes are not freely generated by
their atoms and, since the latter property is supposed to be the raison d’étre of such structures,
it is reasonable to only consider the parity complexes that satisfy this property. We believe that
Axiom (T4) is the minimal additional condition to require for the w-category of cells of a parity
complex to be freely generated, so we will only consider parity complexes that moreover satisfy
Axiom (T4).

Under the assumptions given above, we are only left to derive Axiom (T3) from the axioms of a
parity complex. We show below that it is essentially a consequence of the tightness requirements
stated by Axiom (C5). First, we recall from [Str94] the link between tightness and the segment

property:



3.4. RELATING FORMALISMS 251

Proposition 3.4.2.1 ([Str94, Proposition 1.4]). Let P be an w-hypergraph. For n € N*, subsets
U,V C P, withU tight, V fork-free and U C V, we have that U is a segment for <y.

Proof. Let x,y,z € V such that x,z € U and x 4%, y <y z. Then, there is w € x* N y~. By definition
of tightness, since y <y z, we have y~ N U* = (. So there is § € U such that w € §~. Since V is
fork-free, y = §j. Hence, U is a segment for <y . O

Then, we show how to derive the segment property from the axioms of parity complexes:

Lemma 3.4.2.2. Let P be a parity complex which satisfies Axiom (T2). Givenn € N and x € P,, x
satisfies the segment condition.

Proof. Let k,n € N with k < n, x € P, and X be a k-cell. Suppose first that (x);_ C Xi. By
Axiom (C5), the set (x) — is tight, so that, by Proposition 3.4.2.1, (x)i _ is a segment for <x, .

Now suppose that (x); . C Xi. By contradiction, assume that (x) . is not a segment for <x, .
By definition of «x,, there exist p > 1 and uy, ..., u, € Xi such that

Up, Up € (k> Ug,- csUp1 € (r+ and 4}(,( Uit1-

By definition of <! x there exist 2o, ..., zp—1 such that z; € u;r Nug,,. Note that z; € (x),f e Indeed,

if zp € v~ for some v € X, then, since Xj is fork-free, v = uy, so v & (x)k+- Sim’ilarly, we
have z,-; € (x)[,. Since x is relevant by Axiom (T2), we have

<x>]::+1,+ = <x>k,+ g Xk‘

By [Str91, Lemma 3.2] (which is the analogous for parity complexes of Theorem 3.2.2.3) and
Axiom (T2), we have that
<x>k,— nNX, < <x>];+1’+ NX,=0

and the k-pre-cell Y = Act(X, (x)x41+) is a k-cell. Moreover, by Lemma 3.2.1.6,

Yie = (X U (0 p.0) \ 0y = (e \ () U (k-

Thus, (x)r - C Yk and, as shown by the first part, (x), _ is a segment for <y, . Since
WOF =07, and (0F =07,
there exist d, ii, € (x)r— such that z; € 4§ and z,_; € ﬁ;. So
flg <y, U1 < < Up-1 %, dp

with uy, ..., up—1 & (x)k - (since (x).,, ., N X, = 0), contradicting the fact that (x) - is a segment
for <y,. Thus, (x)k + is a segment for <x, . Hence, x satisfies the segment condition. O

We can conclude that parity complexes are embedded into torsion-free complexes:

Theorem 3.4.2.3. Given a parity complex P which satisfies Axiom (T2) and Axiom (T4), P is a
torsion-free complex.

Proof. Axiom (T0) is a consequence of Axiom (C0). Axiom (T1) is a consequence of Axiom (C3).
And Axiom (T3) is a consequence of Lemma 3.4.2.2. O

Remark 3.4.2.4. Given P as in Theorem 3.4.2.3, the category Cell(P) of cells of the parity complex P
is, of course, exactly the category Cell(P) of cells of the torsion-free complex P.
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3.4.3 Embedding pasting schemes

In this section, we show that loop-free pasting schemes are a particular case of torsion-free com-
plexes, under the caveat that we only consider loop-free pasting schemes that satisfy Axiom (T4)
since, like for parity complexes, loop-free pasting schemes do not induce free w-categories in
general. We think that it is a reasonable requirement since we also believe that Axiom (T4) is the
minimal additional condition to add to the axioms of loop-free pasting schemes for this property
to hold.

In order to embed pasting schemes into torsion-free complexes, our main concerns will be
to derive Axioms (T2) and (T3) from Axioms (S3) and (S4). For this purpose, we will need to
relate the cells of torsion-free complexes with the wfs’s (as defined in Paragraph 3.1.3.10), using
closed-well-formed fgs’s (as defined in Paragraph 3.4.1.1) as an intermediate. In fact, we will prove
that the latter are exactly the wfs’s. First, we prove a technical result about the relations B and E:

Lemma 3.4.3.1. Let P be a pasting scheme, k,n € N withk < n,x € P, andy € Py. IfxBZ_lRZ_ly
then
y €Bi(x) or xEl_ R 'y

Dually, if x EZ_IRZ_l y then

y€E}(x) or xB_ Ry

Proof. We do an induction on n — k. If k = n — 1, the result is trivial. If k = n — 2, the result is a
consequence of Axiom (S1). So suppose that k < n — 2. We will only prove the first part, since
the second is dual. So assume that y ¢ B} (x). By the definition of B, we have

-(xBI_Bf'y) or —(xB)_Ef'y).
By symmetry, we can suppose that —(x BZ_lEZ_l y). Let u € P,_; be minimal for < such that
xBl_ uRl ™y
Then, there are two possible cases: either u BZ:;RZ_Z yoru EZ:;RZ‘Z y.
In the first case, let v € P,_; be such that u B~} v Rz_z y. By the minimality of u, we have
~(xB),_ En 3 0),
so =(xB"_,0) by definition of B. By Axiom (S1), we have xE_ E""} v. So xEZ_lRZ‘l y.

In the second case, since we supposed —(x BZ_IEZ_1 y), we have —(u EZ‘I y). By induction hy-
pothesis, we deduce u BZ:;RZ‘Z y and we can conclude using the first case. O

Then, we prove that the source and target of wfs’s computed by the operations defined for pasting
schemes in Paragraph 3.1.3.6 are the same as the ones computed with the operations defined for
closed fgs’s in Paragraph 3.4.1.10:

Lemma 3.4.3.2. Let P be a loop-free pasting scheme. Givenn € N*, € € {—, +} and an n-wfs X of P,
we have d;,_,(X) = d;,_,(X).

Proof. We only prove the case € = —. Recall that
9,1(X) =X \E(X) and 9, ,(X) =R(X\ (Xp UR(X)))).
We first prove d,_,(X) C 9, _,(X), that is,

R(X\ (Xn UR(X)))) € X\ E(X).
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Since X \ E(X) is closed (by [Joh89, Theorem 12)), it is equivalent to
X\ (Xn UR(X)) € X \E(X)
which is itself equivalent to
E(X) € (Xa UR(X}))
which holds. We now prove 9, _,(X) C d,_,(X), that is,

X\E(X) € R(X\ (Xn UR(X)))) = 9, (X).

Let k € Ny and x € (X \ E(X)). If x ¢ R(X;}) then x € J,_,(X). So suppose that x € R(Xj}).
Since E(X),-1 = X;/, it implies that k < n — 1. By definition of R(X}), there exists y € X,, such

that yEZ_lRZ_lx and, by Axiom (S2), we can take y minimal for < satisfying this property. By

Lemma 3.4.3.1, it holds that y Bz_lRZ_l x. Let z € P,_; be such that y B)_, zRZ‘1 x. Then, there is
no i € X, such that §E}_, z: otherwise, i Eﬁ_lRZ_l x and ¢ <y, contradicting the minimality of y.
So z ¢ R(X;}) and zR x. It implies that z € X \ (X,, UR(X})) and x € 9, _,(X). O

We can then prove the inclusion of wfs’s into closed-well-formed fgs’s:

Proposition 3.4.3.3. Let P be a loop-free pasting scheme. Given n € N and an n-wfs X € WF(P),,
we have X € Closedwr(P),.

Proof. We prove this lemma by induction on n. If n = 0, the result is trivial. So suppose n > 0.
Since X is well-formed, X,, is fork-free. Moreover, by Lemma 3.4.3.2, for € € {—, +}, we have
that 05_,(X) = 95_,(X) is a well-formed (n—1)-fgs. By induction, d;_,(X) € Closedwg(P),-1.
Moreover, when n > 2, since 9;,_, 0 3, _,(X) =d;_, o d'_,(X), by Lemma 3.4.3.2,

2 © 91 (X) = 9y © 951 (X).
Hence, X € Closedwg(P),. O

Next, we prove an analogue of the gluing Theorem 3.2.2.3 for wfs’s:

Lemma 3.4.3.4. Let P be a loop-free pasting scheme, n € N, X be an n-wfs, S C P, be a finite
subset with S fork-free and ST C X, andY = X UR(S). Then, Y is an (n+1)-wfs of P and 3, (Y) = X.

Proof. We show this lemma by induction on k = |S|. If k = 0, the result is trivial. If k = 1, the
result is a consequence of [Joh89, Proposition 8]. So suppose that k > 1. By Axiom (S2), take
x € S minimal for <. By minimality, we have

x~ cStcX.

Using [Joh89, Proposition 8], X U R(x) is well-formed. By Axiom (S5), X N E(x) = 0, so we have
that 9, (X UR(x)) = X. Let

X =0 (XUR(x)) and S=S5)\{x}.
We have

X,uS*

LUSTUXx”

X, \x )uxtuSTux
n

n

SFcX, oS5 cX
X
(
X, uUs*
X

=33

N

IN

=233

N

=28

N

o St

N
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so ST C X. By induction, X U R(S) is well-formed and d, (X UR(S)) = X. Since WF(P) has the
structure of an w-category by [Joh89, Theorem 12], we can compose X U R(x) and X UR(S). So

X UR(S) = X UR(x) UX UR(S)
is well-formed and a,, (X UR(S)) = X. |
We can now prove the converse inclusion of closed-well-formed fgs’s into wfs’s:

Proposition 3.4.3.5. Let P be a loop-free pasting scheme. Givenn € N and X € Closedwg(P),, we
have X € WF(P),.

Proof. We prove this lemma by induction on n. If n = 0, the result is trivial. So suppose n > 0.
Let Y = 9., (X). By definition of Closedwr(P), Y € Closedwr(P) and, by induction, Y € WF(P).
By definition of 0~, we have X C Y. Moreover, by Lemma 3.4.3.4, Y U R(X,,) is well-formed.
But Y = R(X \ (X, UR(X}))), so that X = Y UR(X,) is well-formed. O

We now give a simple form for the sources and targets of atomic wfs’s:

Lemma 3.4.3.6. Let P be a loop-free pasting scheme. Given i,n € N such thati < n, ¢ € {—,+}
and x € P,, we have

9; (R(x)) = R((x}ie)-
Proof. By symmetry, we can suppose that e = —. We have

97 (R(x)) = 3 (T ({x}))
= Tlgl(éi_({x})) (by Proposition 3.4.1.12 and Lemma 3.4.3.2)

= T ((x);)
= R((x)io)-

Hence, 9; (R(x)) = R({x);-). |
Using the above lemma, we deduce the relevance of the generators:
Lemma 3.4.3.7. Let P be a loop-free pasting scheme. Givenn € N and x € P, x is relevant.

Proof. By Axiom (S3), R(x) is well-formed. So, for i € N,_; and € € {—,+}, 9; (R(x)) is well-
formed. Then, by Lemma 3.4.3.6, (x);_ and (x);+ are fork-free. We show that (x);—;l’_ = (x)i+
and (x)f, , = (x);-. We have

(On- =) =" = (14

and, similarly, (x);, = (x)n-1,-. For i € N,_;, we have

(0)i1- = (0] REx)i1,-))i (by definition of )
= (9} © 9.1 (R(x))); (by Lemma 3.4.3.6)
= (97 (R(x)))i (by globularity)
= (R({x)i+))i (by Lemma 3.4.3.6)

= (X)i+



3.4. RELATING FORMALISMS 255

F
i+1,+

()i U ()i )\ (0i1- = ()i \ (01,0 U (0, \ (07 -

= (- \ (i = (i

and similarly, (x) = (x);—. Moreover, we have

and
(i U )iy, )\ g - = (g o \ (0 71,2) U )iy ) \ ()i -
= (- \ (o = (X)i-
80 {x)i+1— moves (x);_ to (x); 4+ and, similarly, so does (x);+1+. Hence, (x) is a cell. O

We now prove that the cells (in the sense of Paragraph 3.1.2.4) of pasting schemes are sent to

wis’s by Tlélc, and that all the generators satisfy the segement condition:

Lemma 3.4.3.8. Let P be a loop-free pasting scheme and n € N. The following hold:
(i) forx € Py, x satisfies the segment condition,

(ii) for X € Cell(P),, TS (X) € WE(P)n.

Proof. We prove this lemma by an induction on n. If n = 0, the result is trivial. So suppose
that n > 0.
We first prove (i). Let k € N,,_;, x € P,, X be a k-cell such that (x);_ € X,and Y = Tg‘f (X).
By induction, Y € WF(P). Moreover, by Lemma 3.4.3.6,
9 (R(x)) =R({x)r-) € Y.

So, by Axiom (S4), (x)i - is a segment for <y, = <x, . Hence, x satisfies the segment condition.
We now prove (ii). Let X € Cell(P),. By Proposition 3.4.3.5, it is enough to show that Tglc (X)

is closed-well-formed. This latter property can be obtained from Theorem 3.4.1.27 which requires

the full segment axiom. But we can consider the restriction of P to an w-hypergraph P where

P,=Pifori<n and P;=0fori> n.

By (i), P satisfies Axiom (T3). Then, using Theorem 3.4.1.27, Tg(f (X) is closed-well-formed and is
still closed-well-formed in P. Hence, by Proposition 3.4.3.5, Tglc (X) € WF(P). O

We can conclude the embedding of pasting schemes into torsion-free complexes:

Theorem 3.4.3.9. Let P be a loop-free pasting scheme. Then, P satisfies Axioms (10), (T1), (12)
and (T3). In particular, if P satisfies Axiom (T4), then P is a torsion-free complex.

Proof. The different axioms of torsion-free complexes can be deduced as follows: Axiom (T0)
is a consequence of Axiom (S0), Axiom (T1) is a consequence of Axiom (S2), Axiom (T2) is a
consequence of Lemma 3.4.3.7 and Axiom (T3) is a consequence of Lemma 3.4.3.8. O

Moreover, one translates the cells of the pasting scheme to the wfs’s using the operation TIC)(I::

Theorem 3.4.3.10. Let P be a loop-free pasting scheme. Tglc is an isomorphism between the w-cate-
gories Cell(P) and WF(P). Moreover, for allx € P, T}élc((x>) =R(x).

Proof. By Propositions 3.4.3.3 and 3.4.3.5, we have
ClOSBdWF(P) = WF(P)

as graded sets and, by Lemma 3.4.3.2 and the definition of id, xCl and =, the two have the same
structure of w-category. Thus, by Theorems 3.4.3.9 and 3.4.1.27, Tlélc: Cell(P) — WF(P) is an
isomorphism. Moreover, by Proposition 3.4.1.9, for x € P, we have

TR (o)) = T 0 T () = T ({}) = R(x). 0
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3.4.4 Embedding augmented directed complexes

In this section, we relate the set-based approach of torsion-free complexes to the group-based
approach of augmented directed complexes with loop-free unital basis and show an embedding
of the latter into torsion-free complexes. More precisely, given an adc with a loop-free unital
basis, we prove that the basis induces an w-hypergraph which is a torsion-free complex such
that the w-category of cells of the adc is isomorphic to the w-category of cells of this torsion-free
complex. For this purpose, we relate properties defined for w-hypergraphs, like fork-freeness
(Paragraph 3.1.1.3) and movement (Paragraph 3.1.2.2), to analogous properties in augmented
directed complexes, and define translation functions between the cells of augmented directed
complexes and the ones of the associated w-hypergraphs.

3.4.4.1— Adc’s as w-hypergraphs. Here, dually to the translation given in Paragraph 3.1.4.4,
we associate a canonical w-hypergraph to an adc with basis, and we will prove in the following
paragraphs that it is a torsion-free complex when the adc is loop-free unital.

Let (K, d,e) be an adc with a basis P. Note that P is canonically a graded set and, in the
following, given n € N and x € P,, we write X to refer to x as an element of the graded set P
whereas x alone refers to x as an element of the monoid K;;. Given n € N,

- for s € K};, we write S,,(s) for {x € P, | x < s},
— for a finite subset S C P,,, we write %,(S) for .5 x.
From these definitions, we readily have:
Lemma 3.4.4.2. Foralln € N, S, 0%, = 1p,(p,).
For n € N* and x € P,,1, we define subsets ¥, x* C P, such that
¥ =S,(x7) and x*=S,(x")

where x7, x* are the elements of K,,_; defined in Paragraph 3.1.4.2. We thus obtain an w-hyper-
graph (P, ()7, (—)*) that we call the w-hypergraph associated to K. In the following, we prove
that, when P is a unital loop-free basis of K, P is a torsion-free complex. We already have:

Lemma 3.4.4.3. If P is a unital basis of K, givenn € N* and x € P,, we havex~ # 0 and x* # 0.
That is, P satisfies Axiom (T0).

Proof. By contradiction, if X~ = 0, it implies that [x],—;— = 0. Hence, [x];— = 0 for i € N,,_;.
In particular, e([x]o-) = 0, contradicting the fact that the basis is unital. Hence, x~ # 0 and,
similarly, x* # 0. O

3.4.4.4 — Fork-freeness and radicality. We now define an analogue for adc’s of the notion of
fork-freeness defined for w-hypergraphs, and relate the notions between the two settings.

Let (K, d, e) be an adc with a loop-free unital basis P. Given n € N*, an element s € K, is said
fork-free when for all x,y € P, such that x + y < s, it holds that

Ny =0 foree{-+}.

Moreover, in dimension 0, s € K is said to be fork-free when e(s) = 1. We extend the notion
of fork-freeness to cells: given n € N and X € Cell*(K), X is said fork-free when, for i € N,
and € € {—, +}, X is fork-free.

Contrary to subsets of the w-hypergraph P, an element of P can appear in an element of K,
with a multiplicity greater than one (since K}, is the free monoid on P,). It is then useful to
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distinguish the elements of K, where generators appear with multiplicity at most one: givenn € N
and s € Kj;, s is said radical when for all z € K, such that 2z < s, we have z = 0. We then readily
have:

Lemma 3.4.4.5. Foralln € N and s € K}, radical, 3, 0S,(s) = s
Moreover, fork-freeness implies radicality:
Lemma 3.4.4.6. Givenn € N and s € K},, if s is fork-free, then s is radical.

Proof. If n = 0, s € K, can be written s = }}; ;< x; for some k € N and x; € P for i € Nj.
So e(s) = k, and, by fork-freeness, k = 1. Hence, s is radical.

Otherwise, assume that n > 0. By contradiction, suppose that there is ¥ € P, such that 2x <s.
By Lemma 3.4.4.3, it means that X~ N x~ # 0, contradicting the fact that s is fork-free. Hence, s is
radical. ]

Like for cells of torsion-free complexes, cells of adc’s with loop-free basis are fork-free:
Lemma 3.4.4.7. Givenn € N and X € Cell*(K),, X is fork-free.

Proof. We prove this lemma using an induction on n. If n = 0, since e(Xj) = 1, X is fork-free by
definition.

Otherwise, suppose that n > 0. By induction, ,_,(X) and d}_,(X) are fork-free, so Xj is
fork-free for i € N,y and € € {—,+}. Let X,§ € P, be such that x + y < X,,. By contradiction,
suppose that there is Z € P,_; such that z € X~ N . By [Ste04, Proposition 5.4], there are

k>1, #i,...%€P, and X ...,X* e Cell*(K)
with X! = x; fori € N} and such that
X =X"spg gy X

so Xp = x1 + - - - + xi. Hence, there are 1 < iy, i, < k with i; # iy such that x;, = x and x;, = y. By
symmetry, we can suppose that iy < i,. If there is some i such that zZ € x/, by [Ste04, Proposition
5.4], we have i < iy. So, for iy < i < iy, itholds that z ¢ %7. Let Y = X" s,y X" sy g X2
We have that Y € Cell*(K) and

Yn—l,—= Z [xi]n—l,—_ Z [xi]n—1,++Yn—1,+

iy <i<ip iy <i<iy

with
22< ) [xilar- and =(z< ) [xile1s) and Yyog4 >0

i1 <i<iy i1 <i<iy
so0 2z < Y,y _, contradicting the fact that 9,_, (Y) is radical by Lemma 3.4.4.6. Thusx™ N g~ =0
and, similarly, x* N §* = 0. Hence, X is fork-free. m]

We now give several compatibility results for the operations %, with sets and the structure of
w-hypergraph on P:

Lemma 3.4.4.8. Letn € N, U,V C P, be finite subsets and x € P,. The following hold:
(i) ifUNV =0, then3,(U) AZ,(V) =0 and 3,(UU V) = 5,(U) +2,(V),

(ii) ifU €V, then3,(U) < 2,(V) and 2,(V\U) = 2,(V) - 2,(U),
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(iii) ifn > 0, then 3,1 (x€) = x¢,

(iv) Suppose that U is fork-free. Then 3,(U) is fork-free. Moreover, in the case where n > 0, we
have 3,1 (U€) = (£,(U))".

Proof. (i) and (ii) are direct consequences of the definitions. For (iii), note that x¢ = S,_; (x¢). By
Lemma 3.4.4.7, [x]p-1, is fork-free and, by Lemma 3.4.4.6, it is radical. So, by Lemma 3.4.4.5, we
have %,_{(x€) = x¢.

For (iv), suppose that U C P, is fork-free. If n = 0, the result is trivial. So suppose that n > 0.
Given x,y € P, withx < 3,(U) andy < %,(U), Z € P,_; and € € {—,+} such that z < x¢
and z < y¢, we have z € € and Z € °. Since U is fork-free, x = y. Also, 2,(U) is radical by
definition of %, so that =(x + y < ¥,(U)). Hence, %,,(U) is fork-free. For the second part, note
that, for x,y € U with x # y, we have x¢ N §° = 0. Hence,

2n-1(U€) = Ep-1(Ugeux©)

= > Spa(x9) (by ()
xeU
= > x (by (i)
xeU
= (Sa(U))". o

We give analogous compatibility results for the operations S,, with the group structure of K, and
the operations (—)~ and (—)* defined on Kj,:

Lemma 3.4.4.9. Letn € N, u,0 € K}, be such that u,v are radical and z € P,. The following hold:
(i) ifu ho =0, thenS,(u) NS,(v) =0 and S,,(u +v) = S,(u) U Sy, (v),
(ii) ifu < o, then Sp(u) C Sp(v) and Sp(v —u) = (Sn(v)) \ (Sa(w)),
(iii) ifn > 0, then S,_1(z°) = z¢,

(iv) Suppose that u is fork-free. Then, S,(u) is fork-free. Moreover, in the case where n > 0, we
have Sp—1(u€) = (Sp(u))“.

Proof. (i), (ii) and (iii) are direct consequences of the definitions. For (iv), suppose that u is fork-
free. If n = 0, the result is trivial, so suppose that n > 0. Given X, € S,(u),Z € P,_;and € € {—, +}
such that Z € ¢ N §°, we have z < x€ and z < y°. By fork-freeness, ~(x +y < u). But x < u
and y < u, so that x = y. Thus, S, (u) is fork-free. For the second part, note that, for x,y € P,
with x # y, x < uand y < u, we have x® A y® = 0. Hence,

Sna(u) =Spa( . x9)

x€Py,x<u
= |J s (by (0))
x€Pp,x<u
= |J = (by (iii))
x€Py,x<u

(Sn(u))©. o
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3.4.4.10 — Movement properties. We now relate the movement properties of w-hypergraphs
(Paragraph 3.1.2.2) to properties of augmented directed complexes. Such results will be required
for proving the correspondence between the cells of w-hypergraphs and the cells of augmented
directed complexes.

Let (K, d, e) be an adc with a loop-free unital basis P. We first prove a compatibility result of
the functions %, with the operations (=) and (—)* on w-hypergraphs and adc’s:

Lemma 3.4.4.11. Letn € N*, u € K, fork-free and U = S,,(u). We have
ut=%,.1U%) and u*=3,_,(U%).

Proof. We have

d(u) =u* —u*
=u"—u”
=%,1U"-2,.1(U") (by Lemma 3.4.4.8)
= (Zp1(UH)+ 2, (UTNU))
-G (UH+2,.0(UTNTU)) (by Lemma 3.4.4.8)

=3,.1(U%) = 2,1(U7).
Since U* N U™ = 0, we have %,,_; (U*) A 2,-1(U7) = 0. By uniqueness of the decomposition,
ut =3,.1(U%) and u*=2%,,(U%). m|
Now, we show a compatibility of the operations %, with movement:

Lemma 3.4.4.12. Letn € N, S C P, be a finite and fork-free set and U,V C P, be finite sets such
that S moves U to V. Then, d(2,41(S)) = Z,(V) = 2,(U).

Proof. By definition of movement, V = (U U §*) \ S”. Hence,

3.(V) =Z,((UUSH\S)
=2, (UUS") —=2,(5) (by Lemma 3.4.4.8, since S~ C U U S¥)
=2,(U) +2,(87) = 2,.(57) (since U NS = 0 by Lemma 3.2.1.1)
=50(U) + Cp1(8)" = En(8))~ (by Lemma 3.4.4.8)
=2,(U) +d(Zn41(9)). =

Conversely, we prove sufficient conditions for the operations S, to induce movement:

Lemma 3.4.4.13. Letn € N,s € K, fork-free, u,v € K, withu,v radical, such that
d(s)=v—-u, uAs"=0 and s Av=0.

Then, S;,+1(s) moves S, (u) to S, (v).

Proof. Let S = S,41(s), U = S, (u) and V = S, (v). Since d(s) = v — u, we have

sT<s +uo=u+s"
SO
S =S,(s)CS,(u+s")=UUS".
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Thus,

Za(UUSH\ST) =Z,(UUSY) =3,(57)
=3,0S,(u+s")—s" (by Lemma 3.4.4.8)

50, by Lemma 3.4.4.2, V = (UUS*) \S™ . Similarly, U = (VUS™)\ S*. Hence, SmovesU to V. O

Finally, we show empty intersection results for cells of Cell*(K), whose analogous for Cell(P)
hold:

Lemma 3.4.4.14. Letn € N* and X € Cell*(K),. Then, fori € N,_; and € € {—,+}, we have

=0 and X,

i+l,e

Xi—- A Xt

i+1,e

AN Xi,+ = U.

Proof. By contradiction, suppose given n € N*, X € Cell*(K),, i € N,,_; and € € {—, +} that give
a counter-example for this property. By applying -, 9* sufficiently, we can suppose that i = n—1.
Also, by symmetry, we only need to handle the first case, that is, when there is z € P,_; such
that z < Xj,_1 - A X}. So there is x € P, such that x < X,, and z < x*. By the definition of a cell,
we have d(X},) = Xp—1+ — Xpn-1-, thus

Xn—1,+ + Z u = Xn—l,— + Z ut
ueP,u<Xy, ueP,u<X,

> 2z

and, since Xj,_; 4 is radical, there is y € P, with y < X, such that z < y~. By [Ste04, Proposi-
tion 5.1], there are k € N*, xq,...,xx € P, withx; + -+ - + x3 = X}, 1,02 € Nz with i; <ip, x;, =x
and x;, = y, and X',..., X* € Cell*(K) with X} = x; for i € N; such that X = XUy g ooy XK
LetY = X! %, 4---%,_4 X". Since Y is a cell, we have

- +
Yn—1,++ Z X; = Yp-1-+ Z X;

1<i<k 1<i<k
+
1<i<k
> 2z.

Moreover, since X is fork-free and z < x;, we have =(z < xj) for i € N;. So 2z < Y14,

contradicting the fact that Y,,_; 4 is radical by Lemmas 3.4.4.7 and 3.4.4.6. Hence, X; - A X} =0. O

3.4.4.15 — The translation operations. We now introduce translation functions between the
cells of augmented directed complexes and the cells of their associated w-hypergraphs, and show
that these translations are bijective.

Let (K,d, e) be an adc with a loop-free unital basis P. We extend the operations %, and S,
to translation functions between the pre-cells of P and the pre-cells of K. Given n € N and
an n-pre-cell X € PCell(P),,, we define 3(X) € Cell*(K) as the n-pre-cell Y such that

Yie =2i(X;e) fori € N, and € € {—, +}.
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Similarly, given an n-pre-cell X € PCell*(K), we define S(X) € PCell(P) as the n-pre-cell Y such
that
Yie =Si(Xie) fori € N, and € € {—,+}.

We then have:

Proposition 3.4.4.16. ¥ induces a bijection with inverse S from Cell(P) to Cell*(K). Moreover,
given x € P, we have S([x]) = (X).

Proof. Letn € N and X € Cell(P),. Then, by Lemma 3.4.4.8, given i € N, and € € {—, +}, %;(X;.)
is fork-free. Moreover, when i < n, by Lemma 3.4.4.12, we have

d(ii+1 (Xi+1,e)) = z_:i(Xi,+) - z_:i(Xi,—)

so %(X) € Cell*(K). Conversely, let n € N and X € Cell*(K),. By Lemma 3.4.4.9, given i € N,
and € € {—, +}, S;(X;¢) is fork-free. Moreover, when i < n, by Lemmas 3.4.4.13 and 3.4.4.14, we
have

Si+1(Xit1,e) moves S;(X; -) to S;(Xi+)

s0 S(X) € Cell(P). By Lemma 3.4.4.2, for X € Cell(P),
So3(X) = X,

and, by Lemmas 3.4.4.7, 3.4.4.6 and 3.4.4.5, for X € Cell*(K),
YoS(X) = X.

Hence, > and S induce bijections between Cell(P) and Cell*(K) and are inverse of each other.
Now let n € N, x € P, and X = S([x]). We have X,, = S,([x],) = {x}. We show by a
decreasing induction on i that X; ¢ = (x); for i € Nj,_; and € € {—, +}. We have [x];- = [x]},
0, by Lemmas 3.4.4.7 and 3.4.4.11,
Xi- = Si([x];L—) = X,

i+1,—
Thus, X; — = (x); . Similarly, X; ; = (x);+. Hence, S([x]) = (x). |

3.4.4.17 — Adc’s are torsion-free complexes. We have now enough material to prove that the
w-hypergraphs associated to adc’s equipped with loop-free unital bases are torsion-free complexes.
In fact, we will show that they moreover satisfy the stronger Axioms (T3’) and (T4’).

Let (K, d, e) be an adc with a loop-free unital basis P. We have already shown how to derive
Axiom (TO0) for P in Lemma 3.4.4.3, and we now derive the other ones in the following lemmas.

Lemma 3.4.4.18. P satisfies Axiom (T1).

Proof. Note that, for n € N* and %, € P,, X<}, § implies X <,_; 7. So, by transitivity, we
n

have <p, C <,_;. Since the basis P is loop-free, <, is irreflexive and so is <p,. Hence, < is

irreflexive. o

Lemma 3.4.4.19. P satisfies Axiom (T2).

Proof. Given ¥ € P, we have S([x]) = (x) By Proposition 3.4.4.16. Moreover, by Proposi-
tion 3.4.4.16, we have S([x]) € Cell(P). Hence, x is relevant. |

Lemma 3.4.4.20. P satisfies Axiom (T3’).
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Proof. By contradiction, suppose that there are n € N*, i € N,,_; and x¥ € P, with (X);y ~* (X);_.
So there are k > 1, 4y, ..., §x € P; such that

U1 €{X)i+, Ur €(X)i— and 7 ~vPjqforl<j<k.

By definition of ~, it gives Z;,...,2Zx_1 € Piy; with §; € z; and 741 € Z}' for1 < j < k. So we
have
X <;jz21<j " <jZk-1 <iX,

contradicting the loop-freeness of the basis P. Hence, P satisfies Axiom (T3’). O

Lemma 3.4.4.21. P satisfies Axiom (T4’).

Proof. By contradiction, suppose that there are i € N*, m,n € Nwithm > iandn > i, x € Py
and § € P, such that

(B N(Gi- =0, (Ficre A~ (Pic- and  (Gimre A (K)iz1 -

By the same method as for Lemma 3.4.4.20, we get r,s € N, uy,...,u, € P;, v3,...,05 € P; such
that

X<iu <j - <jU <;Yy<ijo; <j - <j0s <X,
contradicting the loop-freeness of the basis P. Hence, P satisfies Axiom (T4’). O

We can conclude that:

Theorem 3.4.4.22. The w-hypergraph P associated to K is a torsion-free complex.

Proof. This follows from Lemmas 3.4.4.3, 3.4.4.18, 3.4.4.19, 3.4.4.20, 3.1.5.6, 3.4.4.21 and 3.1.5.7. O
Finally, we show that ¥ exhibits an isomorphism between the two w-categories of cells:

Theorem 3.4.4.23. 3 induces an isomorphism of w-categories between Cell(P) and Cell*(K). More-
over, for x € P, we have %({(x)) = [x].

Proof. By definition, ¥ commutes with the source, target and identity operations defined on the
w-categories Cell(P) and Cell*(K). We show that it commutes with the composition operations.
Given i,n € N with i < n, i-composable cells X, Y € Cell(P),, by Lemma 3.2.3.2, we have

XjeNYje=0 forjeNwithi<j<nandee€ {-+}.

Thus, by Lemma 3.4.4.8, it follows readily that 3, (X *;Y) = 2,(X) *;%,(Y). Thus, ¥ is a morphism
of w-categories. We conclude with Proposition 3.4.4.16. O

3.4.5 Absence of other embeddings

We conclude our comparison of the pasting diagram formalisms by showing that there are no
embeddings between the four formalisms except the ones already proved, that is, that parity
complexes, pasting scheme and augmented directed complexes are particular cases of torsion-free
complexes (under the caveats stated for parity complexes and pasting schemes). We show these
inexistence results by simply exhibiting counter-examples to the other embeddings.

Since adc’s are not exactly w-hypergraphs, we should make the following precisions. When
we say that “there is no embedding of adc’s with loop-free unital bases into the formalism X”,
we mean that, in general, the w-hypergraph obtained from an adc with loop-free unital basis (as
described in Paragraph 3.4.4.1) is not an instance of X. Conversely, when we say that “there is no
embedding of the formalism X into adc’s with loop-free unital bases”, we mean that, in general,
the pre-adc with basis obtained from an w-hypergraph which is an instance of X (as described in
Paragraph 3.1.4.4) is not an adc with loop-free unital basis.
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3.4.5.1 — No embedding in parity complexes. We show that there are no embeddings into
parity complexes of the other formalisms. Considering the axioms of parity complexes, Axiom (C4)
is relatively strong, and it has no real equivalent in the other formalisms, so it can be used to
build a counter-example to embeddings. The w-hypergraph (3.8) is a pasting scheme satisfying
Axiom (T4) (and thus is a torsion-free complex) and is an adc with loop-free unital basis. But it is
not a parity complex as we have seen in Paragraph 3.1.2.12, because it does not satisfy Axiom (C4).
So pasting schemes, augmented directed complexes and torsion-free complexes are not parity
complexes in general.

3.4.5.2 — No embedding in pasting schemes. We now show that there are no embeddings
into pasting schemes of the other formalisms. We use the relatively strong Axiom (52) to build a
counter-example to the embeddings. The following w-hypergraph is a parity complex satisfying
Axiom (T4) (and thus it is a torsion-free complex) and is an adc with loop-free unital basis but it
is not a pasting scheme:

(3.28)

Indeed, Axiom (52) is not satisfied because ; <a3 and y € B(a,) N E(a3) # 0. Note that (3.28) is
essentially the w-hypergraph (3.13) without the 3-generator A and the 2-generators a; and a;.

3.4.5.3 — No embedding in augmented directed complexes. Finally, we prove that there
are no embeddings into augmented directed complexes with loop-free unital basis of the other
formalisms. As shown in Section 3.4.4, such adc’s satisfy Axiom (T4’), which is a stronger version
of Axiom (T4). Thus, we can find a counter-example to embedding into adc’s with loop-free unital
basis by considering an adequate w-hypergraph which satisfies Axiom (T4) but not Axiom (T4’).
Consider the w-hypergraph P from Figure 3.8 where the 3-generators P;{A, B, C} are such that

A” ={B.v}, AT ={py'},
B~ = {6, ¢}, Bt ={&" €'},
C ={ay.0. ¢} Ct={a"y". '}

It can be shown that it is a parity complex and a pasting scheme. It moreover satisfies Axiom (T4)
so that it is a torsion-free complex by Theorem 3.4.3.9. But its associated pre-adc is an adc with a
basis which is not loop-free unital. Indeed, we have

e < [Ali+ A [Bli-, h<[Bli+ A[Cli- and b <[Cli- A[A]i4,

so that
A<;B<C< A

Hence, the basis of the associated augmented directed complex is not loop-free.



264 CHAPIER 3. PASTING DIAGRAMS

a d 9
Al

a d 9
Bl

a d 9
cy

d

a g
w————x Yy’ vy

Figure 3.8 — The w-hypergraph P



CHAPTER 4

Coherence for Gray categories

Introduction

Algebraic structures, such as monoids, can be defined inside arbitrary categories. In order to
generalize their definition to higher categories, the general principle is that one should look for
a coherent version of the corresponding algebraic theory: this roughly means that we should
add enough higher cells to our algebraic theory so that “all diagrams commute”. For instance,
when generalizing the notion of monoid from monoidal categories to monoidal 2-categories,
associativity and unitality are now witnessed by 2-cells, and one should add new axioms in
order to ensure their coherence: in this case, those are MacLane’s unit (1.16) and pentagon (1.17)
equations, thus resulting in the notion of pseudomonoid. The fact that these are indeed enough
to make the structure coherent constitutes a reformulation of MacLane’s celebrated coherence
theorem for monoidal categories [Mac63]. In this context, a natural question is: how can we
systematically find those higher coherence cells?

Rewriting theory provides a satisfactory answer to this question. Namely, if we orient the
axioms of the algebraic structures of interest in order to obtain a rewriting system which is
suitably behaved (confluent and terminating), the confluence diagrams for critical branchings
precisely provide us with such coherence cells. This was first observed by Squier for monoids,
first formulated in homological language [Squ87] and then generalized as a homotopical condi-
tion [SOK94; Laf95]. These results were then extended to strict higher categories by Guiraud and
Malbos [GM09; GM12; GM18] based on a notion of rewriting system adapted to this setting, which
is provided by the polygraphs for strict categories (as introduced in Section 1.4.1). In particular,
their work allow to recover the coherence laws for pseudomonoids in this way.

Our aim is to generalize those techniques in order to be able to define coherent algebraic
structures in weak higher categories. We actually handle here the first non-trivial case, which is the
one of dimension 3. Namely, it is well-known that tricategories are not equivalent to strict 3-cate-
gories: the “best” one can do is to show that they are equivalent to Gray categories [GPS95; Gur13],
which is an intermediate structure between weak and strict 3-categories, roughly consisting in
3-categories in which the exchange law is not required to hold strictly. This means that classical
rewriting techniques cannot be used out of the shelf in this context and one has to adapt those
to Gray categories, which is the object of this chapter. It turns out that precategories offer a
nice setting for rewriting, as could already be intuited from Chapters 2 and 3. Their 2-dimen-
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sional instances, namely sesquicategories, were already advocated by Street in the context of
rewriting [Str96]. Precategories have gained quite some interest recently, by being at the core of
the graphical proof-assistant Globular [BKV16; BV17], which allows working with several kinds
of semi-strict higher categories expressed as precategories. In particular, Gray categories are
3-precategories equipped with exchange 3-cells satisfying suitable axioms.

Outline. We first give additional results on precategories (Section 4.1), that justify their use as
a computational framework for semi-strict higher categories. In particular, we show that the
cells of free precategories admit a simple description as sequences of applied whiskers (that are
analogous to contexts and context classes for strict categories), which allows a simple solution to
the word problem on prepolygraphs. Then, we show how Gray categories can be presented by
the mean of precategories after recalling the definition of Gray categories as categories enriched
with strict 2-categories enriched with the Gray tensor product (Section 4.2). Next, we extend
the theory of rewriting to prepolygraphs and, more specifically, presentations of Gray categories
and show that the resulting theory has good properties similar to the ones of term rewriting
systems (Section 4.3). In particular, a finite presentation of a Gray category always has a finite
number of critical branchings, which contrasts with the case of strict categories [Laf03; GM09;
Mim14], and the computational properties of precategories enable a mechanized computation of
those critical branchings. Then, we derive a Squier-type coherence theorem (Theorem 4.3.4.8)
and show that, given a presentation where the confluence diagrams of the critical branchings are
“filled” by coherence cells, the presented Gray category is coherent. Finally, we apply our results
to several algebraic structures (Section 4.4), which allows us to recover known coherence results
and find new ones, such as for pseudomonoids (Section 4.4.1), pseudoadjunctions (Section 4.4.2),
self-dualities (Section 4.4.4) and Frobenius pseudomonoids (Section 4.4.3).

4.1 Precategories for computations and presentations

In Chapter 2, we showed that strict categories could be seen as precategories satisfying additional
equations. This fact allowed us to give a syntactical description of cells of free strict n-cate-
gories in the form of sequences of applied context classes, and which is moreover amenable to
computation. This motivates using precategories as a more general computational framework
for studying other semi-strict higher categories, as we will do in the following sections. In the
present section, we give additional properties and constructions on precategories that will make
them suitable for computations and for presenting other higher categories, like Gray categories.

We first give a syntactic description of free precategories by adapting the description of free
strict categories given in Section 2.2. In particular, we define the notion of whisker (Section 4.1.1),
which is the analogue of contexts and context classes for prepolygraphs and show that the cells of
free precategories can be described as sequences of applied whiskers, which implies that free pre-
categories admit a simple computational representation and the word problem on prepolygraphs
has a trivial solution (Section 4.1.2). Then, we introduce several notions and constructions that
will allow us to present precategories by the mean of prepolygraphs (Section 4.1.3).

4.1.1 Whiskers

Here, we define an analogue of contexts and context classes for precategories, called whiskers,
and study their properties by closely following what we did in Section 2.2.2.

4.1.1.1 — Definition. Let n € NU {w} and C be an n-precategory. Recall the notion of type from
Section 2.2.2. For every m € N,, and m-type (u, u’), we define by induction on m
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- the notion of m-whisker of type (u,u’) of C,

- for k € N, with k > m, the evaluation of an m-whisker E of type (u,u’) ata cell v € Cy of
type (u,u’), which is a k-cell of C denoted E[v].

Together with the above inductive definition, we prove the following:

Proposition 4.1.1.2. Given m,i,k € N, withm < i < k, v € Ck, an m-whisker E of type v
and € € {—,+}, we have
9; (E[]) = E[9; (0)].

There is a unique 0-whisker, denoted [—] and, given k € N, and v € Cy, the evaluation of the
0-whisker [—] at v is v, so that Proposition 4.1.1.2 holds directly for m = 0. Given m € N,,_; and
an (m+1)-type (u,u’), an (m+1)-whisker of type (u,u’) is a triple E = (L, E/, r) where

- E’is an m-whisker of type (9,,_,(u),d} _,(u")),
- land r are (m+1)-cells of C such that d},(I) = E’[u] and 9, (r) = E’[u/].
Given k € N, with k > m+ 1 and v € Cy of type (u, u’), the evaluation E[v] of E at v is the k-cell
E[v] =lep E'[v] o 1.
Moreover, given i € N, with m+ 1 < i and € € {—, +}, we have

9; (E[v]) = 0f (Lom E'[v] om T)
=lep (91-6(E/[U]) °m 1
=1lep E'[0 (0)] o 1 (by the induction hypothesis)
= E[d; (0)]
so that Proposition 4.1.1.2 holds, which ends the definition of whiskers.
Example 4.1.1.3. Let P be the 2-prepolygraph such that
Po = {w,x,y,z}

Pi={a:w—oz bb:w—ox c¢c:x—>y dd:y—z e w-—oz}

Po={a:a=beced, p:b=0b, 6:d=4d, e b ec ond = e}

which can be represented by

There are several 1-whiskers of type (x, y), such as the following ones:

- (ldylc’ [_]’ ldL),
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- (b’ [_]aldb):
- (i, [-], @),
~ Efn=(f.[-],g) for f € {b,b’} and h € {d,d"}.

Note that, for f € {b,b’} and h € {c, ¢}, the evaluation of E¢, at g € {c,c’} is f ¢ g ¢ h. There
are several 2-whiskers of type (c, ¢’), as the following ones:

— Er=(aei (feocegd) e (b'eced)Epya,e),
— Er=(ae(begced) e (Boocod) Eva,e),
Ey=(ae (begce ), Epa,(Beoc’ od)ere),
Es=(ae (feoceod),Epa (b ec’ o) ee),
Ey = (a,Epa, (Beoc’ s d) e (b e’ o b)),
Ey = (a,Epg, (begc’ o 5) e (Begc’ogd’) e €).

The reader is invited to compare the above whiskers with the contexts of Example 2.2.2.3.

4.1.1.4 — Source and target of whiskers. Let n € NU {w} and C be an n-precategory. Given
an integer m € N}, an m-type (u,u’) of C and an m-whisker E = (I, F, r) of type (u, u’), the source
and the target of E are respectively the (m—1)-cells

3,_1(E)=9,_,(I) and o},_,(E)=23}_,(r).

m—1

When m > 1, we moreover have
05200, ((E)=0;, 40 a:-n—l(E)
for € € {—,+}. Indeed, given (I’,E",r’') = E’,
()=l e 2 E"[u] oz’ and 9, _;(r) =1 ey E"[t/] epat’
so that
Oy © Opy_1(E) = 0p,_5 00, (1)
=02 © Iy (D)
=9, _,(")
= 0y 0 9y (1)
=y © Iy (1)
= Oy 0y (E)
and similarly, 9} _, 0o 9, (E) = 9} _, 09} _(E). Giveni € N,,_1, € € {—+}, we write 5 (E)
for o o 95 _, (E). With these notations, for i € N,,_;, we can extend the notion of i-composable

sequences of globes of globular sets to sequences X, . .., X for some I € N* where X; is either a
whisker or a cell of C for s € N;‘, and say that X, ..., Xj is i-composable when

97 (Xs) = 0; (Xg41) for s e Nj__.

It is immediate that the source and target operations are compatible with the evaluation of
whiskers:

Proposition 4.1.1.5. Given i,m,k € N, withi < m < k, e € {—,+}, ak-cellu € C and an
m-whisker E of type u, we have

o (E[u]) = o (E).
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4.1.1.6 — Identity whiskers. Let n € NU {w} and C be an n-precategory. Given m € N,, and
an m-type (u,u’) of C, we define an m-whisker I(*%) called the identity whisker on (u,u’), by
induction on m. When m = 0, we put

I(x,*) — [_]

and, when m > 0, we put
) — (id™, [(Oma (W07, 5 (u ))’ id™)
If C is part of an n-cellular extension (C, X) € PCat}, given g € X, we write Y for

I(a:l—l (9),‘9;—1 (9) .

The identity whiskers have then trivial evaluations:

Proposition 4.1.1.7. Form,k € N,, with m < k, an m-type (u,u’) andv € Cy of type (u,u’), we
have
1) [o] = .

Proof. This is shown by a simple induction on m. O

4.1.1.8 — Composition operations. Let n € NU {w} and C be an n-precategory. Let i, m € N,
with i < m, (u,u’) be an m-type and E = (L,E’,r) be an m-whisker of type (u,u’). Given a
cell v € Cy4q such that (v, E) is i-composable, we define an m-whisker v o; E using an induction
onm — i by

Uol-E:

(ve; LE'r) ifi+1l=m,
(vejLve;E',uoer) ifi+1<m.

Similarly, when (E, v) is i-composable, we define an m-whisker E ¢; v using an induction on m — i

by

(laElyr.iu) 1fl+1:m,
E U= )
(leju,E'o;u,re;v) ifi+1<m.
These composition operations satisfy properties similar to the axioms of (n+1)-precategories:

Proposition 4.1.1.9. Given m € N, an m-type (u,u’) of C and an m-whisker E of type (u,u’), we
have

(i) foralli € Np,_y and uy = 9; (E), up = 9} (E),
id' ¢ E=E=E«id;",

(ii) foralli € Ny,_; and uy, uy € Ciyq, if uy, uy, E are i-composable or uy, E, uy are i-composable
or E, uy, uy are i-composable, then we respectively have

(ur o uz) & E =uy e (uz e E)
or

(ur o E) o ug = uy o (E o uy)
or

(E oj u1) o uz = Eo; (uy o u),

(iii) for alli,j € Np,_q such thati < j, and uy,uy € Ciyq and vy,v5 € Cjyq such that uy, E, uy are
i-composable and v1, E, v, are j-composable, we have

uy o (0105 Eejvg) ety = (uy o 010 Up) e (g o Eejtig) e (g 9 020 ).
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Proof. By a direct adaptation of the proof of Proposition 2.2.2.11. O
Finally, we prove that the composition operations on whiskers are compatible with evaluation:

Proposition 4.1.1.10. Giveni,m,k € N,, withi < m < k, u € Ci41,v € C and an m-whisker E of
typev, ifu, E are i-composable, then

(uei E)[v] =ue (E[0])
and otherwise, if E, u are i-composable, then
(E e u)[v] = (E[0])  u.
Proof. By a direct adaptation of the proof of Proposition 2.2.2.13. ]

4.1.1.11 — Whiskers and functoriality. Let n € N U {w} and C, D be two n-precategories.
Given an n-prefunctor F: C — D, we extend F to m-whiskers. More precisely, given m € N,
an m-type (u,u’) of C and an m-whisker E of type (u,u’), we define an m-whisker F(E) of
type (F(u), F(u’)) by induction on m as follows. If m = 0, we put

Otherwise, if m > 0, given ([, E’,r) = E, we put
F(E) = (F(I), F(E"), F(r)).

We then have compatibility results between F and the operations on whiskers, analogous to the
ones shown for contexts and context classes:

Proposition 4.1.1.12. Givenm, k € N, withm < k, u € Cy and an m-whisker E of type u, we have
F(E[u]) = F(E)[F(u)].

Proof. By a simple induction on m. O

Proposition 4.1.1.13. Given m € N,, and an m-type (u,u’), we have F(I1w)y = [F@),.F@))

Proof. By a simple induction on m. O

Proposition 4.1.1.14. Giveni,m € N, withi < m, u € Ciy1 and an m-whisker E, ifu, E (resp. E, u)
are i-composable, then

F(ue; E) = F(u) & F(E)  (resp. F(Eeu)=F(E)« F(u)).

Proof. By a direct adaptation of the proof of Proposition 2.2.2.17. O

4.1.2 Free precategories

Let n € N. Following what was done in Section 2.2.3 and Section 2.2.4, we give a concrete
description of the functor
—[-]": PCat], — PCat,,,

based on whiskers. By adapting the content of Sections 2.3 and 2.4, this description allows a
simple computational representation of cells of free precategories, providing a trivial solution
to the word problem. The results of this section thus advocate the use of precategories for the
computational treatment of semi-strict higher categories like Gray categories.
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4.1.2.1 — Free extensions with whiskers. Let (C,X) € PCat}, be an n-cellular extension. We
write C[X] for the (n+1)-globular set such that C[X]<, = C and C[X],+; is the set of sequences
of the form

s =((91.E1), - .., (9x Ex))

for some k € N, called the length of s, and where g; € X and E; is an n-whisker of type g; for i € N}
(when k = 0, by convention, there is an empty sequence (), for each u € C,). The source and
target of s as above are defined by

9, (s) = Ei[d, (91)] and 9} (s) = Ex[dy(g)]
so that C[X] is an (n+1)-globular set by Proposition 4.1.1.5.

We now equip C[X] with a structure of (n+1)-precategory that extends the one of C. Given an
n-cell u € C,, we put
idZH = Ou-

Given s = ((g1,E1), ..., (gk, Ex)) € C[X]n+1 and i € N,,_q, for u € Ci4q such that u, s are i-compo-
sable, we put
Uue;s = ((gl’ Use; El)’ e (gk: Use; Ek))

and, similarly, for v € C;;; such that s, v are i-composable, we put
se0=((g91,E10),...,(gk, Ex % v))
and, finally, for s = ((g}, E]), . . ., (g}, E})) € C[X]n+1 such that s, s” are n-composable, we put
sens’ = ((91,E1), ..., (k> Ex), (91, EDs -, (9, E)))-
We check that:

Proposition 4.1.2.2. The operations id™" and «; defined above equip C[X| with a structure of an
(n+1)-precategory.

Proof. The axioms of precategories are easily verified using Proposition 4.1.1.9 and the fact that C
is an n-precategory. ]

In particular, we can use whiskers and whisker evaluations in C[X]. We then observe that:
Lemma 4.1.2.3. Givenm € N, g € X and an m-whisker E of type g, we have
E[(g.1%)] = (9. Etn)

where, for k € N, with k > m, Ey is the k-whisker of type g defined inductively by

ETk:{E.k K l:szm’

(dg, 1op @1 Bt 1dp, par ) > m.

In particular, if m = n, we have E[(g,19)] = (g, E).
Proof. By a simple induction on m. O
With the above lemma, we can deduce the freeness of C[X]:

Theorem 4.1.2.4. The (n+1)-precategory C[X] is the free (n+1)-precategory relatively to the for-
getful functor Vj.: PCat,,; — PCat;.
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Proof. Let D € PCaty4; and (F, f): (C,X) — (D<p, Dpy1) € PCat}. We define a function
f/: C[X]ns1 — Dpa

by putting, for u € C,,,
£(O0) = idz,
and, for s = ((g1, E1), - - -, (gk, Ex)) € C[X]n+1,
f'(s) = F(E)[f(g)] on -+ on F(Ex)[f(gx)]

*

which is well-defined since, for i € N

k-1’

I (F(E)[f(90)]) = F(E)[3;,(f(9:))] (by Proposition 4.1.1.2)
= F(E;)[F(d;(9:)]
= F(E;[d}(g9:)]) (by Proposition 4.1.1.12)
= F(Ei+1 [d; (9i+1)])
= F(Eiy1)[F(d,;(gi+1))] (by Proposition 4.1.1.12)
= F(Ei+1) [, (f(gis1))]
=9, (F(Eir1)[f(gi+1)]) (by Proposition 4.1.1.2).

Moreover, a similar computation shows that, for € € {—, +},

9,(f"(s)) = F(E1[d, (g1)]) = F(3,(s))

so that (F, f'): C[X] — D is a morphism of (n+1)-globular set. We verify that it is an (n+1)-pre-
functor. By definition, (F, f’) commutes with the identity operations. Leti € N,,_j, acellu € Cj44
and s = ((91, E1), .-+, (gk, Ex)) € C[X]n+1. If u, s are i-composable, we compute that

f'(ueis) =F(ue ED[f(g)] on - on F(usi E)[f(gi)]
= (F(u) & F(E))[f(g)] on - - - on (F(u) & F(Ex))[f (95)]
(by Proposition 4.1.1.14)

= (F(u) & F(ED)[f(g0)]) on - - - on (F(u) & F(Ex)[f(g)])
(by Proposition 4.1.1.10)

=F(u) o (F(E)[f(g0)] e -+~ on F(EQ)[f (91)])
=F(u)« f'(s)

and, similarly, if s,u are i-composable, we have f’(se; u) = f’(s) &; F(u). Thus, (F, ') is an
(n+1)-prefunctor.

The operation (F, f) + (F, f’) defines a function
Bp: PCat!((C, X), (Dt Dys1)) = PCaty; (C[X], D)
which is natural in D. It is injective since, by Propositions 4.1.1.7 and 4.1.1.13, we have
F(((g.19) = f(9)
for all g € X, and it is surjective since, by Lemma 4.1.2.3 and Proposition 4.1.1.12, a morphism
(F, f): C[X] — D € PCat,y,

is completely determined by F and the images of ((g,19)) € C[X]n41 by f for g € X. Thus, C[X]
is the free (n+1)-precategory on (C, X). |
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The above theorem gives a unique normal form property for the cells of C[X]:

Corollary 4.1.2.5. Givenu € C[X],41, u can be uniquely written as
U= Uy o Uk
for somek € N anduy, ..., ur € C[X]|,41 such that, fori e N7,
Ui =lipnen-1 (in-1on—2---o1(lizre0gi®ori1) *1 " *n-2Tin-1) *n-1Tin (4.1)

for some g; € X and l; j,r;; € C; for j € Ny, and the decomposition (4.1) of each u; is moreover
unique.

Proof. By Theorem 4.1.2.4, u can be uniquely written as

u=Ei[g1] en - - - on Exlgx]

for some k € N, (n+1)-generators gi, . . ., g € X and whiskers E, ..., Ex. Putting u; = E;[g;], one
obtains the decomposition (4.1) of u; by expanding the definition of E;[g;]. This decomposition
of u; is unique since E; is unique relatively to u. O

Anticipating the use of precategories for rewriting in Section 4.3, we call rewriting step an
(n+1)-cell of C[X] of the form (4.1). In the case n = 2 that will mostly concern us in the fol-
lowing, a rewriting step of C[X] is then a 3-cell S of the form

S=Aey(legAeyr)erp

for some I,r € C;, A,p € C;and A € X.

Remark 4.1.2.6. By adapting the terminology of Section 2.3.1, if the n-cellular extension (C, X)
is equipped with an injective and decidable encoding & ¢ x), one can define an injective and
decidable encodings for the m-whiskers of C, by taking inspiration from Proposition 2.3.2.7(i).
Then, using the standard derivation of encodings for finite sequences (c.f. Paragraph 2.3.1.12), one
obtains an encoding of the (n+1)-cells of C[X], and thus, an encoding &Ec[x) of the (n+1)-pre-
category C[X] that extends Ec. Moreover, our description of C[X],+1 turns into a computable
function which takes as input a code for the n-cellular extension (C, X), and outputs a code for
the (n+1)-precategory C[X] and a code for the function which maps g € X to ((g,19)) € C[X]n+1-

4.1.2.7 — The word problem on prepolygraphs. One can consider an analogue of the word
problem on strict polygraphs for prepolygraphs, that we shall explicitly describe. Let n € NU {w}
and P be an n-prepolygraph. For k € N,,, we define the sets of k-terms 7 ,': of P inductively as
follows:

— for k € N, and g € Py, there is a k-term gen, (g) € ‘7']5,

- fork € N,_; and a k-term t € 7, there is a (k+1)-term ﬁf“(t) € TII:H,

- for k,I,m € N; with m = max(k,[), a k-term t; € 7','2 and an [-term ¢, € 7'}), there is an

m-term t; o ; t; € Tfn.

Following Section 2.4, one then defines the set W’ = | ke, ‘Wkp of well-typed terms and an
evaluation function

[-1°: wP - p.

The word problem consists in, given t, t, € ‘WP, deciding whether [#,]" = [.]* or not.
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Remember that the key step in our description of a solution to the word problem on polygraphs
of strict categories was to show that one can compute the codes of the free (n+1)-categories
on n-cellular extensions (Remark 2.3.2.36). This is rather trivial for precategories, as stated by
Remark 4.1.2.6. Thus, by adapting the formalism given in Section 2.4.2, we get an implementable
solution to the word problem on prepolygraphs. More precisely, by directly adapting the no-
tions of set-encoded polygraph, term definition of polygraphs, and of word problem instance to
prepolygraphs, we get a decidable property analogous to Proposition 2.4.2.14:

Proposition 4.1.2.8. The function which takes as input an n-word problem instance (D, (t1,t5))
(of prepolygraphs) and outputs 0 if [ t1] # [t:], and 1 if [t1] = [t2], is computable.

Proof. By adapting the content of Section 2.4.2 to prepolygraphs, using Remark 4.1.2.6. O

4.1.3 Presentations of precategories

In this section, we introduce the tools that we will use to present precategories, like Gray cate-
gories, by the mean of prepolygraphs. First, we specify in which sense an (n+1)-prepolygraph
present an n-precategory. Basically, the (n+1)-generators of such prepolygraph induce a relation
on the n-cells of the free n-precategory that one can use to quotient those cells, and the quoti-
enting operation can be simply defined as a left adjoint to (—)?gﬁn Then, since the techniques
we develop in the next sections will target (3, 2)-Gray categories, i.e., a subset of 3-precategories
where each 3-cell is invertible, we moreover recall the classical localization construction in the
case of precategories. Such construction will allow us later to consider the free (3, 2)-precategory

associated to a 3-precategory presented by the mean of a 4-prepolygraph.

4.1.3.1 — Quotienting top-level cells. Given n € N* and an n-precategory C, a congruence
for C is an equivalence relation ~ on C, such that, for all u,u” € C, satisfying u ~ v’,

- 0_,(u) =9 _ (u') for e € {—, +},
- fori € N,,_; and v, w € Cj41 such that v, u, w are i-composable, we have

ve; U W~ Ve U oW,

Given such a congruence for C, there is an n-precategory C/~ which is the n-precategory D such
that D; = C; for i € N,_; and D,, = C,/~ and where the identities and compositions are induced
by the ones on C. If C = C<, for some (n+1)-precategory C, there is a canonical congruence ~“
on C which is induced by the (n+1)-cells Cps1, i€, ~€ is the smallest congruence on C such
that 9, (u) ~© 8% (u) for u € C,yy. Writing Cyyn for C<n/~C, there is a quotient functor

[[_]]C: CSn - C_//n

often simply denoted [[ ]|, which is the identity on C; for i € N,,_;, and which maps u € C, to its
class [[u] under ~C. The operation C + C;, extends to a functor

(=) o1t PCatyyy — PCat,

often simply denoted (—)}Dﬁf‘t, which satisfies that:

Proposition 4.1.3.2. (—)fﬁfﬁm is a left adjoint to (—)?gf; .
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Proof. Let C € PCat,,; and D € PCat,,. Given an (n+1)-prefunctor
F: C — Dppyq € PCatpyy,
we build an n-prefunctor F’: C;;,, — D by putting
FlL, 1=F<u1 and F'([u]]) =F(u) foruecC,,
and this is well-defined since, for v € C,41, we have
F(95 0)) = 3, (F(0)) = 5 GdErL ) = 05 GAErL ) = 05 (F(2)) = F(2}(2)

so that F,, is compatible with ~C. Moreover, F’ is easily shown to be compatible with the structure
of n-precategory, so that it is indeed an n-prefunctor.

Conversely, given an n-prefunctor
G: C//n — D € PCat,,
we build an (n+1)-prefunctor G’: C — D4,y by putting

G.,=Go [[—]]c and G'(v) = idgﬁ[ag(v)]]) for v € Cpy1.

We now show that this definition is compatible with the structures of (n+1)-precategories of C
and Dtpq. Given v € Cyyq and € € {—, +}, we have

6'(9500) = LKD) = G5 )]) = G - ) = (G (@),
and, given u € C,, we have
7 qn+ly _ s qn+l _ ;qn+l
G'(id, ") = 1dG([[a,—,(idg*l)]]) = 1dG ()
Moreover, given i € N, v; € Ciy1 and vy € Cpyq such that vy, v, are i-composable, if i < n, then
’ o 1 _ . 1 _ ’
G (01 2 02) = 15[ 57 oy ) = 21 196 07 (o)) = 01 % G (22)

and, if i = n, then

, . 1
G'(vyep02) = ldgr([a;(ornvz)]])

= 8 a5 00

= 148 o o0 ) *n 196135 00 D)

=15 (o)) *n D o5 o0 ) (by definition of ~©)
= 1450 92 (o) * 196 3 o) ]

= G'(v1) o0 G'(v2)

and similarly for i-composable v; € Cp1q and vy € Cyyq. Thus, G’ is an (n+1)-prefunctor.

The operations F — F’ and G +— G’ are easily proved to be inverse of each other, so that we get
a bijection
\IIC,D : PCatyy4 (C, DTn+1) - Pcatn(c//n’ D)

which is natural in C and D. Thus, (—);’/Cnazﬂ is a left adjoint to (—)?ff; o |
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4.1.3.3 — Presenting with prepolygraphs. Given n € N, the quotienting operation defined is
the previous paragraph naturally defines a notion of presentation of n-categories by (n+1)-pre-
polygraphs. Consider the functor (-): Pol,; — PCat, defined as the composite

PCat
Pols ~ " PCatyyy — " PCat,
which, to an (n+1)-prepolygraph P, associates the n-precategory P = P*/~". By the definition
of ~P" and the description of —[—]" given in Section 4.1.2, we have that ~" is the smallest
congruence on P* such that d;, (g) ~" d?(g) for g € Pp,1, so that we often simply write ~" for ~"
In the following, we say that an (n+1)-prepolygraph P is a presentation of an n-precategory C
when C is isomorphic to P.

4.1.3.4 — (3, 2)-precategories. We now recall the classical localization construction in the case
of precategories, that will allow us later to consider (3, 2)-precategories presented by 4-prepoly-
graphs.

Given a 3-precategory C, a 3-cell F: ¢ = ¢’ € Cs is invertible when there exists G: ¢’ = ¢ such
that Fe, G = id¢ and Ge F = id¢,. In this case, G is unique and we write F~! for G. A (3, 2)-pre-
category is a 3-precategory where every 3-cell is invertible. The (3, 2)-precategories form a full
subcategory of PCats; denoted PCat (s ;). There is a forgetful functor

U: PCat(3,2) — PCat3

which admits a left adjoint (—)T also called localization functor described as follows. Given a
3-precategory C, for every F: ¢ = ¢’ € C3, we write F* for a formal element of source ¢ and
target ¢’, and F~ for a formal element of source ¢’ and target ¢. A zigzag of C is a list

(F{',....F") (4.2)
forsome k € N, Fi,...,Fr € C3and €y,..., e € {—,+} such that

95 (Fi') = o5 (Fi1t') fori e Ny_,

i+1

where we use the convention that there is one empty list ( )y for each ¢ € P;. The source and the
target of a zigzag as in (4.2) are 9, (F;') and 9] (F;" ) respectively. Then, we define a 3-globular
set C" such that (C")<; = C<; and C; is the quotient of the zigzags defined above by the following
equalities: for every zigzag (F;,..., F]f"),

- if F; = idf// for some i € NZ and ¢ € C,, then

(FO,.. B = (FO, L FO P, L FE),

i-1°7i0+1°

- if¢; = €41 = +for some i € Nk » then
(FO, . F) = (FO, . FE, (Frog Fia ) FER, L FE),
- ife; = €41 = —forsome i € NI’Z . then
€ i €
(Fi's..  EF) = (F', . F (Faa s FO) L F . B,
- if {e;, €111} = {—, +} and F; = Fjy; for some i € N, _, then

(F'...,FF) = (F{', .. FL Fi . FF).

i-1°7i+2°
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We write [[—] for the function which maps a zigzag to its class in C; . Since the definitions of
source and target of zigzags are compatible with the above equalities, they induce source and
target operations d,,d; : C; — C, . Given ¢ € C,, we put

idy = [Og].-
Moreover, given i € {0,1}, u € Ciyy and F = [(F',..., F)] € C] with d] (u) = 9; (F), we put
ue F=[((ue F1)%,...., (ue F))]
and, given G = I[(Gfl, e GI(S’)]] € (C")s, we put
FoG=[(F0,....F* G, ...,G].

All these operations are well-defined since they are compatible with the above quotient equalities,
and they equip CT with a structure of 3-precategory.

There is a canonical 3-prefunctor n: C — C7 sending F € Cs to [(F*)] € C;. Moreover,
given a (3,2)-precategory D and a 3-prefunctor G: C — D, we can define G’: CT — D by
putting G_, = G and

G'([(F',....E)]) = G'(F") o ... G'(F¥)

for [(F{',..., FZ")]] € (CT)3, where we use the convention that
G(F if e =+,
GI(Fe) — ( ) 1re
G(F)™! ife=-,

for F € C5 and € € {—, +}. The definition of G’ is compatible with the quotient equalities above
so that G’ is well-defined, and G’ can be shown to uniquely factorize G through 7. The opera-
tion C +— CT naturally extends to a functor (—)": PCat; — PCat(s ;) and the above discussion
shows that:

Proposition 4.1.3.5. ()7 is a left adjoint for U.

In the following, given a 3-precategory C and F € C3, we simply write F for n(F) € C;.

4.2 Gray categories

Strict 3-categories are categories enriched in (Caty, X). Similarly, Gray categories are categories
enriched in Cat, together with the Gray tensor product. The latter can be described as an “asyn-
chronous” variant of the cartesian product where two interleavings of the same morphisms are
related by “exchange” cells. Typically, consider the 1-categories C and D below

C=x—>f x’ D=yﬁg y’

their cartesian and Gray tensor products are respectively

fp ., iy , ,
(xy) 25 (x,y) (x,y) 25 (x',y)
CXD= (xg| = Q9 CaD= xg Uy L~9

(x,y)@k)(x,y) (x,y)@k)(x,y)
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where the exchange 2-cell y can be invertible or not, depending on whether we consider the
pseudo or lax variant of the Gray tensor product. We first recall those two variants of the Gray
tensor product (Section 4.2.1). We then give a more explicit description of Gray categories in terms
of generators and relations (Section 4.2.2). Then, we introduce an economical way to describe
the structure of a Gray category with Gray presentations (Section 4.2.3), and show that the latter
correctly present Gray categories (Section 4.2.4).

4.2.1 The Gray tensor products

We recall here the definitions of the lax and pseudo variants of the Gray tensor products, that are
both tensor products on the category of strict 2-categories Cat,. We refer the reader to [Gra06,
Section I, 4] for details.

4.2.1.1 — The lax Gray tensor product. In the following, we consider the 2-precategorical
syntax for strict 2-categories, as given by Theorem 1.4.3.8. By the condition (E), a strict 2-category
is then simply a 2-precategory C such that, for all 0-composable ¢, € Cs,

(¢ 20 07 (1)) +0 (91 () 20 ) = (1 (§) %0 ¥) %0 (¢ 0 O] (V).

Given two strict 2-categories C, D € Cat;, we define another strict 2-category C ®% D which is
presented as follows:

~ the 0-cells of C ®** D are the pairs (x, y) where x € Cy and y € D,

~ the 1-cells of C ®#* D are generated by the 1-cells

(fy): (xy) = (x"y) and (x,9): (x.y) = (xy),
forf:x > x"e€Ciandg: y — ¢’ € Cy,

~ the 2-cells of C ®#* D are generated by the 2-cells

(¢.y): (fiy) = (f.y) and (x9): (x.9) > (x.9)
forx,y e Cop,¢p: f = f' € Cyand y: g = g’ € C,, and by the 2-cells

(f.y) ,
() L% (' y)

wo| Lf9) |
(x.y") T4 (x".y")
for f:x > x’e€Ciandg: y > ¢’ € Cy,

under the conditions that

(i) the 1-generators are compatible with 0-composition, meaning that

.11 _ 31y _ s g1
(idy,y) = (x,id,) = 1d(x,y)

(Fofy) =y (fy)
(x,9%9") = (x,9) % (x,9)

for all x € Cy, y € Dy, 0-composable f, f’ € C; and 0-composable g, ¢’ € Dy,
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(ii) the 2-generators are compatible with 0-composition, meaning that

.12 _ 212\ _ :32
(id, y) = (x,idy) = id(, )

(1% 92.y) = ($1,Y) % (P2, y)
(x, Y1 o0 ¥2) = (x, Y1) 0 (x, )

forall x € Cy,y € Dy, 0-composable ¢, ¢’ € C, and 0-composable i/, i/’ € D,, i.e., graphically,

(id}.y) (x.idy) idiy )
(x’ y) U (ldyzc’ y) (x’ y) = (x’ y) U' (X, ldy) (xa y) = (x! y) 'Uld(x’y) (x: y)
(idk,y) (x.idy) idf, )
(fiof2o,y) (fi.y) (f2.9)
(x0,y) UP120d2,y) (x2,y) = (x0,y) Wdr.y) (xy) Ug2y) (x2,9y)
(Fifios) (f-9) (5-9)
(x,91%092) (x,91) (x,92)
(x,y0) U(x,vreoi2) (x,y2) = (x,y0) U(x, 1) (xy1) U(xve) (xy2),
(x.9,%095) x.9, x.)

(iii) the 2-generators are compatible with 1-composition, meaning that

it = idy
(101 92.Y) = ($1,4) *1 (P2,y)
(x,id}) = idf, )

(x, Y101 ¥2) = (x, 1) &1 (x,¥2)
for parallel fy, fi, fo € C; and parallel gy, g1, g2 € D; and 2-cells
¢i:ﬁ_1:>ﬁ:x—>x'€C2 and wi:gi—l:gi:y_)y,EDZ

fori € {1,2}, and 1-cells f: x = x” € C; and g: y — y’ € Dy, i.e, graphically,

(foy) (foy)
(x,y) LGdny) (x,y) = (x,y) Uld(f,y) (x",y)
~_ ~_
(f.m) (foy)
(fo-y)
(ow) foy

R V(g1 y)
(x,y) L(d1192,y) (x",y) = (x,y) — () — (X', 1)

U (¢2, 1)

(f29)
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(%.9) (x.9)
(x9 y) U‘ (x! ldg) (xs y/) = (x’ y) ’U’ld(x,g) (x> y’)
~_ ~_

(x.9) (x.9)

(x,90)

(x.90)
R U (x, ¢n)

(6 y) UG hays) (xy') = (xy) — (o) —> (x',y)

UG, 1)

(x,gz)

(iv) the interchangers are compatible with 0-composition, meaning that

(idy, 9) = idf, )
(fieo f2o9) = ((f1-9) %0 (f2,9)) &1 ((f1.9) %0 (fo-¥))
(f.1dy) = id¢p, )

(f.91%092) = ((f.91) % (x",92)) &1 ((x,91) % (f.92))

for all fi: x;-1 — x;and ¢;: y;—1 — y; fori € {1,2} and f: x — x"and g: y — v/, ie,

graphically,
(id}.) X,
() — =Y s (2 y) (x.9)
. <12
("’g)l (ldég) l(x,w = (x) gdgga (x9)
(x,y') —>(i v (x,y") (x.1)
(fivof2oy) (fi-y) (f2oy)

(o y) — 20 (o ) (o y) — 22 () — 22 ()
(x0>g)l U (fieofor 9) l(xw) = (xo,g)l U(fi.9) (xi9) U(fa 9) l(xz,g)
(Xo:y)m)(xz,y) (any)W(xl,y)W(sty)
(fy) , (fsy)

(x,y) ——— (x",y) Py
(x,id;)l U(f.idy) l(x’,id;) = (x,y) U\ldf% (x",y)

Cy) —55 &) (f.9)

,Y)
(f>y0) ,
(%, 90) — 22 (x', o)
(x, o) ECLDENy Y0) (x,gl)l U(f. 90 l(x’,gl)
(x’gl.ogZ)\L U(f. g1%92) l(x'agl'ogz) = (oy) —Fw > X y1)

(%, y2) W (x",y2) (x’-‘”)l U(f.92) \L(x -92)

(x,y2) W (x',y2)

(v) the interchangers commute with the 2-generators, meaning that

(f:9) o1 ((x.9) %0 (4.4)) = ((($.y) 0 (x,9)) &1 (f",9))
(f29) 1 (5 9) % (f,y))) = (fry) 0 (x",9)) &1 (f.9)
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forg: f=f:x—>x"andy: g= ¢g’: y — v/, ie., graphically,
(f-9) (£

/N /—\
(xy U(f,9) .y (xy) U(gy ((xy)
<x,g>l /(f% l("'*") = <x,g>l \(fy)/’ l(x’,g)
(xy) V(oY) (x.y") (xy) U(f9 x.y)
~_ 7 ~_

Fv) Fv)
(x.y) 225 () (x.y) ~225 ()

(xg) Q(XJ)D (x9 (f9) ><xcg> = <x,g'>g(f 9 ) éx}:@ (x'g) -
(0 y) o (Y (0 y) oy (Y

Remark 4.2.1.2. More formally, the construction of C ®'®* D is done by considering the adequate
quotient of the free 2-category P* on a 2-polygraph P of strict categories, where

Po={(x,y) | x € Co, y € Do}
Pi={(f9): (x,y) = (x,y) | f: x = x" € C1, y € Do}
U{(x,9): (x,y) = (x.y") | x€Co, g: y = y" € D1}
Po={(¢9): (fiy)= (f.y) | ¢: f= f €Cy y € Do}
U{(x1): (x.9) = (x,9) | x € Co, ¥: g = g’ € Dy}
U{(f.9): (f.y) o (x'9) = (x,9) %0 (f,.y) | frx > x" €Ci, g:y >y € Di}.

The quotient is constructed as a coequalizer

!
E:r; Pf——-S CE™ D

where E is a coproduct based on the above equations, and [, r are 2-functors that respectively
correspond to the left-hand side and right-hand side of these equations. Such a coequalizer exists
since Cat; is cocomplete by Proposition 1.4.1.4.

The construction (C, D) — C & D naturally extends to a bifunctor
(-) R™ (-): Cat, x Cat, — Cat,
that sends a pair of 2-functors
F:C—>C" and G:D—>D’

to the 2-functor F ®®* G uniquely defined by the following mappings of generators:

(¢, y) = (F(4).G(y))
(x.9) = (F(x),G(¥))
(f.9) = (F(£).G(9))

forallx € Cyp,y € Dy, p € Co, Y € Dy, f € C; and g € D;.
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Writting 1 for the terminal strict 2-category whose only 0-cell is denoted *, for C € Cat,, there
are a 2-functors
Alcaxz 1R C > C and plcaxz CR™1—C

uniquely defined by the mappings
A (=) =y and  p& (%) = ¢
for ¢ € Cy, and both are isomorphisms natural in C.

For C, D, E € Cat,, there is a 2-functor
alc'“‘,’}),E: (c X D) R E 5 C mlX (D Rax E)

uniquely defined by the following mappings on generators

((9:y),2) — (¢, (y,2)) ((f:9),2) = (f.(9:2))
((x, ), 2) = (x, (1, 2)) ((f.y),h) = (x, (g, h)
((x,y),¥) = (x, (y,¥)) ((x,9),h) = (x,(g,h)

forx € Cy,y e Dy,z€ Ey, f €Cr,g€ D1, h € E;,p € Cy, x € Dy, ¥ € Ey, and alg,xD,E is moreover
an isomorphism natural in C, D, E.

By checking coherence conditions (1.16) and (1.17) of monoidal categories (c.f. Paragraph 1.5.1.1),
one can verify that:

Proposition 4.2.1.3. (Caty, 1, mlax plax P o) is a monoidal category.
The monoidal structure (Cat,, 1, =X Alax, plaX, ala") is called the lax Gray tensor product.

4.2.1.4— The pseudo Gray tensor product. The other variant of Gray tensor is called the
pseudo Gray tensor product and is the monoidal structure (Caty, 1, ®, A, p, &) such that, given two
2-categories C,D € Cat,, C ® D is defined the same way as C ®!#* D, except that we moreover
require that, for f: x — x’ € C; and g: y — y’ € Dy, the 2-cell (f,g) of C ® D be invertible
for ;. The natural isomorphisms A, p, @ are then uniquely defined by similar mappings than
those defining Alax, P a1 By checking the coherence conditions (1.16) and (1.17) of monoidal
categories, one can verify that:

Proposition 4.2.1.5. (Caty, 1,R, A, p, a) is a monoidal category.

Remark 4.2.1.6. More formally, given C, D € Cat,, C ® D is built by adapting the construction of
Remark 4.2.1.2: the strict 2-category C ® D is the quotient of the free 2-category Q* where Q is
the 2-polygraph of strict categories such that
Q=P Q=P
Q=P U{(f.9) 7 (g0 (f.y) = (fi) (x'.9) | frx > x"€Crg:y >y €Dy}
Like for C ®!** D, the strict 2-category C ® D is then obtained by quotienting Q* by the mean of a

coequalizer derived from the equations (i) to (v) and moreover the ones of the following additional
condition:

(vi) for f: x > x" € Ciandg: y > y’ € Dy,
(f,9) s (£ =id®((fiy) « (x',g)) and  (f,9)" &1 (f,9) = id*((x,9) % (f,y"))-
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4.2.2 Gray categories

To each of the two Gray tensor products that we defined in the previous section, there is an
associated notion of 3-category, that is a category enriched in Cat; equipped with one of the two
tensor products (c.f. Paragraph 1.5.1.4 for the definition of enriched categories). We describe the
two notions of 3-categories, namely lax Gray categories and pseudo Gray categories. We moreover
introduce (3, 2)-Gray categories, which are lax Gray categories where every 3-cell is invertible,
that we will study in the following sections.

4.2.2.1 — Lax Gray categories. A lax Gray category (as in [Gra06, Section I, 4.25]) is a category
enriched in the category Cat; of strict 2-categories equipped with the lax Gray tensor product.
Alternatively, we give a more explicit definition using generators and relations: a Gray category
is a 3-precategory C together with, for every pair of 0-composable 2-cells

p:f=f:x>y and Y:g=>9:y—>oz
of C, a 3-cell
Xpy: (@@ (ff0y) = (fo)e(dng)

called interchanger, which can be represented using string diagrams by

f g I g
.
f g f g

and satisfying the following sets of axioms
(G-i) (compatibility with compositions and identities) given 2-cells
¢:f=f  ¢:f=f" Yig=>9 Y:gd=9"
of C and 1-cells e, h of C such that e, ¢, {/, h are 0-composable, we have
Xigzy = idl ) Xpugy = (P09 1 Xy y) o Xpy a1 (9% 9))
Xpia2 = iy, Xpymy = Xgyg ot (F o0 ¥)) o2 (Foo ) o1 Xgy)

and

Xewpy = €20 Xpy  Xpyuh = Xpy 0 h.
Moreover, given ¢, € C, and f € C; such that ¢, f, i are 0-composable, we have
Xty = Xg.foy
(G-ii) (exchange law for 3-cells) given 3-cells
Arp 29y €Cs B:y =y €Cs
of C such that A, B are 1-composable, we have

(Aey ) oy (¢" o1 B) = (pe1 B) oy (Aer ¥'),
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(G-iii) (compatibility between interchangers and 3-cells) given 3-cells
Arpg=¢"u=u and B:y=¢y 0=
of C such that A, B are 0-composable, we have

((Aegv) ey (u' oo 1)) o2 Xy =Xp o2 (eg 1)) o1 (Asg0’))
((Peov) ey (u' o B)) ey Xgyr = Xpy o2 (e B) oy (Peg0)).

A morphism between two lax Gray categories C and D is a 3-prefunctor F: C — D such that

F(Xpy) = Xr(p).Fp)
for 0-composable @, € C,.

4.2.2.2 — Pseudo Gray categories. We similarly have a notion of pseudo Gray category which is
a category enriched in the category of 2-categories equipped with the pseudo Gray tensor product.
In terms of generators and relations, a pseudo Gray category is a lax Gray category C where Xy
is invertible for 0-composable ¢,y € C;. A morphism between two pseudo Gray categories C, D
is a morphism of lax Gray categories between C and D.

4.2.2.3 — (3, 2)-Gray category. A (3,2)-Gray category is a lax Gray category whose underlying
3-precategory is a (3, 2)-precategory. Note that it is then also a pseudo Gray category. As one
can expect, a localization of a lax Gray category gives a (3, 2)-Gray category:

Proposition 4.2.2.4. IfC is a lax Gray category, then C" is a (3, 2)-Gray category.

Proof. Given 1-composable F: ¢ = ¢’,G: = ¢’ € Cs, by the exchange law for 3-cells, we have,
in C;,
(Fer9) o2 (¢"91G) = (o1 G) o2 (Fer ¥).
By inverting F ¢; ¢ and F ; {/’, we obtain
(9" o1 G) oy (F o ¢f) = (F o1 ) o2 (p 1 G).
Similarly,
(91 G (For ) = (For ') e (§'e1 G™)
and
(F o) e (pa1G) = (¢ 1 G ey (Fh o).
Now, given general 1-composable F: ¢ = ¢’,G: ¥ = ' € C;, we have that
F=FioFyl ey Fop_y 0 Fyy
and
G=G1oG; o oGy 1% Gy

for some k,! € N* and F;,G; € C; fori € Nj,_and j € N},. By applying the formulas above 4kl
times to exchange the F;’s with the G;’s, we get

(For ) o2 (¢" 01 G) = (¢po1G) ez (Fer Y').

A similar argument gives the compatibility between interchangers and 3-cells of CT. Thus, CT is
a (3,2)-Gray category. O
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4.2.3 Gray presentations

Starting from a 3-prepolygraph P such as the one of Example 1.4.2.12 on page 69, we want to
add 3-generators to P and relations on the 3-cells of P} so that we obtain a presentation of a
lax Gray category. This can of course be achieved naively by adding, for each pair of 0-compo-
sable 2-cells ¢, in Pj, a 3-generator corresponding to the interchanger “Xy ”, together with
the relevant relations, but the resulting presentation has numerous generators. We detail below
a more economical way of proceeding in order to present lax Gray categories. The proof that
our notion of presentation of Gray category really induces a Gray category is given in the next
section.

4.2.3.1 — High-level definition. We give here the high-level definition of Gray presentations
and defer some technicalities to the next paragraph. A Gray presentation is a 4-prepolygraph P
containing the following distinguished generators:

(i) for 0-composable a, g, f with a, § € P,, g € P}, a 3-generator X, 45 € P3 called interchange
generator, which is of type

Xagp: (@sngeh)e (ffeogenf) = (feogeph)e(asngeh’)

which can be represented using string diagrams by

f g h f g h

I g w I g h
(ii) for every pair of 3-generators A,B € P3 and e,e’,h,h’ € P and y € P; asin

f

e

w < / P bx > z (4.3)

3\ @ /
~_ 7

’

g

a 4-generator of type I' = A, called independence generator, where
I'=((eegAsgh)er yor1 (e ogegh’)) ez ((eed e h)er yo1 (e oBeyh’))
and

A= ((eegpegh)es yor (e sgBegh’)) sy ((eegAsgh)ey yo (& oty oh’)),
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111) for all 0-composable A, g, b wit € P;,g € an € P,, and respectively, 0-compo-
iii) for all posable A, g ith A € P3, g € P] and P d respectively, p
sable @, g’, B with a € P, g’ € P] and B € P3 as on the first or the second line below

f h

TN

RS .
x o=l ¥ ————— up y
N A

f/ h/
(4.4)
f h
x e X ————y Y=y _y
\_/!

f/ h/

a 4-generator, called interchange naturality generator, respectively of type
((Aeggegh)er (f o0 g0 f)) o2 Xpr gup = Xpgep o2 (oo heg f)er (Aeggeg b))
and
((as9g" s h)e1 (f %0 g % B)) o2 Xawg.y = Xawygyp %2 ((f 20 g % B) ey (cxeg g’ e h'))

where X, ,, € P} for 0-composable y1, y» € P; is defined in the following paragraph.

4.2.3.2 — Presentation of interchangers. The 3-cells X, € P3, which appear in the above
definition, generalize interchange generators to any pair of 0-composable 2-cells ¢ and . Their
definition consists in a suitable composition of the generators X, , 5. For example, consider a
Gray presentation Q with

Q={x}, Q={l:x—>x} and Q={r:1=>1}

where 7 is pictured by ¢. Then, the following sequence of “moves” is an admissible definition

fOr Xy vy % % . $ i ) I % R ﬁ _ %% (45)

Each “move” above is a 3-cell of the form ¢ ¢; X ;1 . 1 ¢ for some ¢,y € Q; and where X1 ,
is an interchange generator provided by the definition of Gray presentation. Another admissible
sequence of moves is the following:

R )

We see that there are multiple ways one can define the 3-cells Xy 4 based on the interchange
generators of a Gray presentation P. We will show in Proposition 4.2.4.8 that, in the end, the
choice does not matter, because all the possible definitions give rise to the same 3-cell in P. Still,
we need to introduce a particular structure that allows to represent all the possible definitions
of the 3-cells Xy y and reason about them. This structure consists in a graph ¢ LU ¢ associated
to each pair of 0-composable ¢,/ in P: intuitively, a vertex in this graph will correspond to an
interleaving of the 2-generators of ¢ and ¢/, and an edge will correspond to a “move” as above,
i.e., an interchange generator X, 4 s in context that exchanges two 2-generators a from ¢ and f
from ¢, which appear consecutively in an interleaving of ¢ and . Given 2-cells

p=cre1--01 P €P and Y=o o1y €P

with ¢; = fieo @i % gi and ¢/; = j;,’ o a}’. o g;. for some fi,gi,j;’, g} € P and «;, ocj" € Py, we define
the graph ¢ LWy
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— whose vertices are the shuffles of the words |; ...l and ry ... ri on the alphabet
Ztﬁ,lﬁ = {lls ] Ik; r'1> ey rk'}ﬁ

- whose edges are of the form X,, ./ : wlirjw’ — wr;l;w’ for some i € NZ, je Nz, and some

words w, w’ € 225,1/1 such that wljr;w’ € (¢ LU ¥),.

Giveni € N, j € Ny, p € Ni_j4q, ¢ € Np_jiq and a shuffle u of the words

Ii~~|i+p—1 and I‘j...l‘j+q_1,

Lj

4y € P (or simply [4]%/) by induction on p and g:

we define [u]

(%0 OF (¥j)) &1 (w17 ifu =L,
[u]™ = (07 ($0) %0 ¥) o1 [ 1" ifu=rju,
9 (i) %0 7 (¥5) if u is the empty word,
where, by convention, 9} (¢o) = 9] (¢1) and 9; () = 9; (Y1). Note that the indices of [u]*/ are
uniquely determined if u has at least an | letter and an r letter. Intuitively, the letters |; and r;
correspond to the 2-cells ¢; o) (—) and (—) ¢ /; where the 1-cells (—) are most of the time uniquely

determined by the context, so that [u]"! for u € (¢ W ), is an interleaving of the ¢; s (—)
and (=) ¢ ;. Now, given X, ulirjo — urjliv € (¢ L ¢);, we define the 3-cell

[Xuolgy: [ulirjv];’,;/ > [urjliv];’jb eP;

by
i+1,j+1

[Xuolgy = [u]ql;i/, o1 (fieo Xarginf).ol; 0 g7« [0]45,1/,
We thus obtain a functor
(=l (pLY)" — P (3] (¢) *0 9; (), 8 ($) % 97 ()

where (¢ L /)" is the free 1-category on ¢ LLI {/ considered as a 1-polygraph, and where [~]g , is
defined by the mappings

we (g o (]l € P}
Xu,v € (¢ L ¢)1 s [Xu,v]gb,lﬁ € P;

For example, for Q defined as above and ¢ = ¢/ = 717, [l1l2r115]g 4 and [lir1l2r2] 4,y are respectively

the 2-cells of Q;

and [Xj,r,]g.y and [Xj 1, elg,y are respectively the 3-cells of Q]

R S

We write Xy, for the path

Xul,v1 o v eg Xukk”vkk’ <€ (¢ L ¢)*(|1 codgri ool Ik)
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defined by induction by
up=1y... ke and V1=Try... I

and where u;,1, ;4 are the unique words of 2; " such that

+ .
9 Xuzo;) = Uir1lprgvisy with Oig1 = Fge1 - - Tirlper o

for some p, g € N. We can finally end the definition of Gray presentations by putting

Xpy = Xpylpy-
For example, for Q defined as above, X;. 7 ., is the composite of 3-cells of Q; given by (4.5).

Example 4.2.3.3. We define the Gray presentation of pseudomonoids as the 4-prepolygraph obtained
by extending the 3-prepolygraph for pseudomonoids P introduced in Example 1.4.2.12 on page 69.
First, we add to P5 the 3-generators

Xw Y IS 2 DY X T [Ho 2 U9
e ¥ [l = G Xt Qe = o ]9

for n € N. Second, we define P, as a minimal set of 4-generators such that, given a configuration
of cells of (P<3)* as in (4.3), there is a corresponding independence generator in P4, and given a
configuration of cells of (P<3)* as in the first or the second line of (4.4), there is a corresponding
interchange naturality generator in Py.

4.2.4 Correctness of Gray presentations

Until the end of this section, we suppose given a Gray presentation P. The aim of this section is to
prove that our definition of Gray presentation is correct, i.e., that P has a structure of a lax Gray
category (Theorem 4.2.4.14). This will moreover implies that the localization of P has a structure
of (3, 2)-Gray category (Corollary 4.2.4.15).

Recall the definition of rewriting steps given in Paragraph 4.1.2.1. We start by showing the ex-

change law for the 3-cells of P that we first prove on rewriting steps:

Lemma 4.2.4.1. Given rewriting stepsR;: ¢; = ¢; € P} fori € {1,2}, such that Ry, Ry are 1-com-
posable, we have, in P,

(Ry *1 ¢2) &2 (¢1 *1 Ra) = (¢1 1 R) &2 (R1 o1 63).
Proof. Let li,_ri € P, A pi € P,, A; € P; such that R = Ai oo (Lo Aj e 1;) e p; fori € {1,2},
and y, i € Py such that A;: y; = pf for i € {1,2}. In P53, we have
(Ry o1 $2) o2 (¢7 *1 R2)
=N
o1 [((Lisg A1 oo r1) o1 pro1 Az o1 (2% pi2 % 72))
o2 ((Lyso py o0 r1) o1 pre1Azer (Lo Az o 72))]
°1 P2 (by precategories axioms)
=
o1 [((Li o0 pr1 oo 71) o1 p1o1 Az o1 (L2 % Az o 72))
oo ((Ly g Ay sg 1) o1 p1e1 Az ey (L2 g p15 % 12))]
* P2 (by independence generator)
= (¢1 01 R2) o2 (R1 #1 ¢3). O
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We can now conclude the exchange law for 3-cells:

Lemma 4.2.4.2. Given F;: ¢; = ¢] € 53 fori € {1,2} such that F,, F, are 1-composable, we have,
in 53,

(Fr o1 ¢2) o2 (91 1 F2) = ($1 01 F2) o2 (F1 o1 §7).
Proof. Fori € {1,2}, as an element of Ps, F; can be written F; = Ri1 e -+ R;k, where
Rij=MAijer (lijeg Aijeorij) e pij
for some k; € Nand A, j, p;j € P,, lij,rij€ P, Ajj€ePsforje NZ,«' Note that
Frepdo = (R $2) o2 o2 (Rik, o1 ¢2)

and
P1 o1 Fo = (¢ o1 Ry1) 2 -+ o (§7 91 Rogy).

Then, by using Lemma 4.2.4.1 k;k, times to reorder the Ry j,’s after the R, ;,’s for i € {1,2}
and j; € N} , we obtain that

(F1 o1 ¢2) o2 (91 1 F2) = ($1 01 F2) o2 (F1 o1 $7). o

We now prove the various conditions on X_ _. First, a technical lemma:
Proposition 4.2.4.3. Given f € P}, ¢,¢ € P, with f,¢,1 0-composable, there is a canonical
isomorphism (f e ) LY = ¢ LY and for all p € (¢ LU ¢);, we have

[P)fegy = f o0 [Plgy-
Similarly, given ¢,y € P, and h € P} with ¢,y, h 0-composable, we have a canonical isomor-
phism ¢ LI (Yoo h) =~ ¢ LI and for all p € (¢ LU (Y o h))], we have

[P]¢,1//o0h = [p]¢,¢ * h.
Finally, given ¢, € P, and g € P} with ¢,g,¢ 0-composable, we have a canonical isomor-
phism (¢ e g) LY =~ ¢ LI (g V) and for allp € ((¢ o g) LU )], we have

[Plgngy = [Plpguoy-

Proof. Let f € P, ¢,y € P, with f, ¢, 1 0-composable, r,s € N, f;,g; € P and o; € P, for i € Ny,
and fj’, g} € P] and aj’. € P, for j € N} such that

p=(fivare0g) oo (freoareng) and ¢ =(feajeg;) e o (f % g)
By contemplating the definitions of (f ¢ ¢) LUl i/ and ¢ LUl i/, we deduce a canonical isomorphism
between them. Under this isomorphism, we easily verify that we have [w]r,4y = f o0 [Wlgy
for w € ((f % ¢) LU ). Now, given ul;rjo € ((f o ¢) LI /), we have

Xuolfapy = [l fagy 1 (f 20 fi %0 Xagimfiar; %0 95) 1 [0]fpy
= froo ([ulg.y o1 (fi 20 Xaigimo sy, 20 95) 1 [0]g.9)
= f'O [Xu,v]qﬁ,w-

By functoriality of [~]f.,4,4 and [~]sy, we deduce that, for all p € (f o ¢) LU ¢/,

[Pl gy = o0 [Plpy-

The two other properties are shown similarly. O
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We can now conclude the most simple properties of X_ _:

Lemma 4.2.4.4. Given ¢: f = f’ € P, andy: g = g’ € Py, we have the following equalities
in P3.‘

(i) Xid},l// = id;.m// and de?; = id?;s.og when ¢, are 0-composable,
(i) Xpoypy = Lo Xgy forl € P] such thatl, ¢,y are 0-composable,
(ii1) Xpoymy = Xp,meoyy for m € P such that ¢, m,y are 0-composable,
(iv) X yor = Xgp,y 0 1 forr € P} such that ¢, 1, r are 0-composable.

Proof. The point (i) is clear, since both Xid;i yandX gid2 are the identity paths on the unique 0-cells

of (idjzc W ¢)* and (¢ LU id;)* respectively. (ii) is a consequence of Proposition 4.2.4.3, since Xz, ¢,y
is sent to Xy by the canonical isomorphism (fe¢) LY = ¢LLUY. (iii) and (iv) follow similarly. O

The last required properties on X_ _ are more difficult to prove. In fact, we need a proper coherence
theorem stating that, for 0-composable ¢, 1 € Py, Xy = [plg,y forall p € (¢LUY)] parallel to Xy .
We progressively introduce the necessary material to prove this fact below.

Given a word w € (¢ LI /)y, there is a function

[-index,, : NT

ol = N

[P 1+

defined such that, for i € NT¢|, if w = w’l;w”, then l-index,, (i) = |w’| + 1. The function I-index

characterizes the existence of paths in (¢ LLI /)*:

Lemma 4.2.4.5. Given 0-composable ¢, € P; and w, w’ € (¢ LU )y, there is a path
prw—ow e (pwy);

if and only if l-index,, (i) < l-index,y (i) fori € NT¢|.

Proof. Given Xy, »: ul,rso — urgl,o € (§ LU ¢);, it is clear that |-indexy, r,o (i) < l-indexyy |, (i) for

alli e NTqﬁl’ so that, given a path p: w — w’ € (¢ LW ¥);, by induction on p, we have

[-index,, (i) < l-index,, (i)

fori e NT It Conversely, given w,w’ € (¢ LW ) such that |-index,, < |-index,,, we show by
induction on N(w, w’) defined by

N(w,w') = Z l-index,y (i) — l-index,, (i)
1<i<|¢|

that there is a path p: w — w’ € (¢ W );. f N(w,w’) = 0,then w = w’ and 1,,: w — W' is
a suitable path. Otherwise, let imax be the largest i € N4 such that I-index,, (i) > I-index,,(i).
Then, either iy, = |P| or I-index,y (imax) + 1 < l-index,, (imax + 1) since

I-index,, (imax) + 1 < l-index., (imax)
< l-indexy (imax + 1)

= l-index,, (imax + 1).
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So we can write w = ul;_ r;o for some words u,0 and j € NT gl Thus, there exists a path

generator X, ,: w — w € (¢ W /); where w = ur;l; 0. Then,

Imax

I_. d w . f .maX,
|-indexw(i) = { maex (l) Hi#i

I-index,, (imax) + 1 if i = ipax,
so |-index w < l-indexw’ and N(w, w’) < N(w, w’). Thus, by induction, we get

pliw—ow e (W)
and we build a path X, , ¢ p’: w — w’ € (¢ LWL ) as wanted. O
Given 0-composable ¢,y € P; and w = wy ... wigj4y| € (¢ LI Y)o, we define Inv(w) as

Inv(w) = [{(i,j) € (NT¢|+W/|)2 |i<jand w; =ry and wj =1j
for some i’ € N and] € N|¢|}|

The function Inv characterizes the length of the paths of (¢ LU /)*:
Lemma 4.2.4.6. Given 0-composable ¢,y € P, andp: w — w’ € (¢ L ¢));, we have

Ip| = Inv(w’) — Inv(w).
In particular, given w,w’ € (¢ LI ), all the paths p: w — w’ € (¢ LU ¢); have the same length.

Proof. We show this by induction on the length of p. If p = id}, then the conclusion holds.
Otherwise, p = Xy, ¢ r for some u,u’ € X4y and r: w — w’ € (¢ LW ¢);. Then, by induction
hypothesis, |r| = Inv(w’) —Inv(w). Note that, by the definition of X, ,,, w = ul;rju” and w = ur;l;r

for some i € N and] € N I Hence,

Ip| = |r| + 1 =Inv(w’) — Inv(w) + Inv(w) — Inv(w) = Inv(w’) — Inv(w). m|
Given 0-composable ¢, € P}, we now prove the following coherence property for (¢ L 1/)*:

Lemma 4.2.4.7. Let ~ be a congruence on (¢ LU {)*. Suppose that, for all words uy, uz, uz € X4y,

andi,i’ € N|¢|, ,j € NW| such that uilir juplyrjrus € (¢ LW )y, we have

uilirjuglyrjrus

u1 upl; as, /IV \Xu‘l[irjuz,zg

uprjliuglyrjrus uilirjuarjrlyus

X“Nj'iuz’lN /ul uzrjfli/ug
3

uirjliugrjlyu
then, for all p1, p2: v — w € (¢ W Y);, we have p; = p.

Proof. We prove this by induction on [p;|. By Lemma 4.2.4.6, we have |p;| = |p2|. In particular,
ifp; = idzlj, then p, = idzl,. Otherwise, p; = q; % r; with ¢;: v — v; and r;: v; > wand |g;| = 1
for i € {1, 2}. If q; = g3, then we conclude with the induction hypothesis on r; and r,. Otherwise,
up to symmetry, we have q; = Xuyplyr s and g, = Xy, ¢ty 113 for some uq, uy, u3 € qu g b i,i’ € NT¢|
and j, j’ ENW Let

’ ’ ’
q, = Xulrjliuz,u3 9, = Xul,uzl’jllilug 0 = ulrjliuzrj’li’uS-
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Since we have a path v 2, U1 2w, by Lemma 4.2.4.5, we have |-index,(s) < l-index,,(s)

fors e NT¢|. Moreover,

[-index, (i) < l-index,, (i) < l-index,,(i) and I-index,(i") < l-index,,(i") < I-index,,(i").

Also, for s € NT(#I’
l-index,(s) +1 ifs e {i,i’},

I-index,(s) otherwise.

I-index, (s) = {

From the preceding properties, we deduce that I-index, (s) < I-index,,(s) for s € NT e Thus, by
Lemma 4.2.4.5, there isapathr’: " — w € (¢ W) asin

Since |r;| = |p;| — 1 for i € {1,2}, by induction hypothesis, we have r; ~ q] o r’ for i € {1,2},
which can be extended to g; ¢ r; = q; % q; % r’, since ~ is a congruence. By hypothesis, we
have q; & q; = q2 % gq;, which can be extended to q; ¢y g} « " = g2 % q; % r’. By transitivity of =,
we get that q; ¢ 11 = q2 % 12, that is, p; ~ p,. m]

We then apply this coherence property to [—]- _ and get that “all exchange methods are equiva-
lent”, as in:

Proposition 4.2.4.8. Given 0-composable ¢, € Py, for all py, py: u — v € (¢ LU V)], we have,
in ﬁg,

[p1lgy = [P2lpy-

Proof. By Lemma 4.2.4.2, for all words uy, uz, uz € Xy, i,i’ € NT¢| and j, j € NTM such that

urlirjuglyrjrus € (¢ LW )y,

we have
[ull,-rjuzli/rj/ug](]g’w
[Xul,u2|i/ rjrus ](/),l// [Xulli"j"25“3 ]lﬁ,l,//
[ulrjl,-uzlifrj/u3]¢’l/, = [ullirjuzl‘jfll'/U3]¢,¢ .
[Xulrjli”ZJiS ]‘]5:‘// [Xul,uzrj/li/u3 ](;Sg&

[ulrjliu2rj’li’u3]¢,1//
Moreover, the relation ~ defined on parallel p;, p; € (¢ LU ¥/); by
pr~py when [pilgy = [p2lgy

is clearly a congruence. Hence, by Lemma 4.2.4.7, we have that [p;]gy = [pz]4,y for all parallel
paths py, p2 € (¢ LY. O
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The preceding property says in particular that Xy = [p]g,y for all 0-composable ¢,y € P; and
paths p € (¢ LU )] parallel to X .

Let ¢, € P; be 0-composable 2-cells, and ¢’, /" € P} be 0-composable 2-cells such that ¢, ¢’
and 1/, ¥’ are 1-composable. To obtain the last required properties on X_ _, we need to relate ¢ LY/
and ¢’ LW Y’ to (P e @) L (Y o1 ¢'). Given w € (¢ LU ¢)y, there is a functor

w(=): (¢ WY = (per¢") W (Yo y’))
which is uniquely defined by the mappings
u— wl(u)
Xur,uz 7 X (un). T (wz)

foru e (¢’ W) and Xy, 4, € (¢’ W ¢Y'); and where, forv =v; ... 0, € Z;/ o the word

1(0) € 240, oy
is defined by

*

M), = {I|¢+i ifv, = I; for some i € le’l’

rigl+j ifo, =r; for some j € N|¢’|’

for r € N;. Similarly, given w € (¢ LI §/")o, there is a functor
(=) w: (pWi)" = (g1 ¢") W (Yo Y)"
which is uniquely defined by the mappings
u > ul(w)
Xuruy 7> Xuyus T (w)

for u € (¢ W ¢)y and Xy, 4, € (¢ LW ¢); and where T(-) is defined as above. The functors w-(—)
and (—)-w satisfy the following compatibility property:

Lemma 4.2.4.9. Let ¢,y € P; be 0-composable 2-cells, and ¢’, )" € P}, be 0-composable 2-cells such
that ¢, ¢’ and i, are 1-composable. Given w € (¢ LU )y, we have the following equalities in P}:

(D) [w(@W]ge g gy = [Wlgy o1 [ulg .y forue (¢ Wy,
(it) [w-(P) gy = [Wlpy o1 [plgry forp € (¢ Wwy’)y.
Similarly, given w € (¢’ L Y"),, we have:
(D) [(W)W]ge g gy = [Ulgy o1 [Wlg gy foru € (¢ L),
(i) [(P) Wlgogr oy = [Plgy o1 [Wlgy forp € (¢ W y);.
Proof. We only prove the first part, since the second part is similar. We start by (i). We have

[w-(@)]gorgr gy = [WT(“)];&’-llqscw-lw"

By a simple induction on w, we obtain

1,1 _ 1,1 . P11
[WT(u)]¢v-1¢’,1//-ﬂ//’ = [W]¢.1¢,’¢.l¢/ 1 [T(u)]¢,l¢r)l//,l¢/
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and, by other simple inductions on w and u, we get

(g gmyr = W5y = W)y @I = a1}, = [ulgy

so that (i) holds.
For (ii), by induction on p, it is sufficient to prove the equality for p = Xy, 4, € (¢ LU ¥);.
Let m = |¢|, n = |¢|, and
(€190 @10 f1) *1 -+ o1 (€m % Am %0 fm) (g1% Brsoh1) o1 1 (gm0 Pm %0 hm)

be the unique decomposition as sequences of rewriting steps of ¢ and ¢ respectively (c.f. Corol-
lary 4.1.2.5), for some e;, f;, g, h; € P] and ;, f; € P, fori € N and j € N;,. We then have

(W Xuyu) o gy = [Xoop ) 1) Igmi g pry
1,1 ki.k,
= [WT(ul)](}‘)q(ﬁ’,lﬁoll//' °1 (ei °0 Xai,fi-ogj,ﬁj °0 hj) °1 [T(uZ)]qsfléb',l//‘llV

where i, j are such that u;l;rju, € (¢’ W ') and
ki=1|pl+i+1 k,=ly|+j+1

By simple inductions, we obtain

11 _ 11 . 191,191
T = (W) gy st 101 g

= [W];’j/, * [ul];’,i//,
= [wlgy 1 [u1]g1;,f¢,

and
ki.kr _ i+1,j+1
[T(UZ)]¢,1¢r’¢.ll/,r - [u2]¢,’¢,
so that

_ i+1,j+1

[W.(Xul,uz)](ﬁ']lﬁ’,lﬁ']lp’ - [w]¢,l// .1 [ul];;lfwl .1 (ei .0 Xai,fi-ogj,ﬂj .0 h’j) .1 [u2]¢/’¢/
= [Wlpy o1 Xuyu,lgry- o
We can now conclude the last required properties on X_ _:

Lemma 4.2.4.10. Given 1-composable ¢, ¢’ € Ez, 1-composable ' € Py such that ¢,y are
0-composable, we have the following equalities in P3:

Xpogry = (P00 07 () 1 Xy y) o2 (Xg,y 01 (§” %0 91 (¥)))
and

Xpymy = Xpy o1 (97(P) 0 9")) o2 (31 (9) %0 ¥) &1 Xg.y)-

Proof. We only prove the first equality, since the second one is similar. By definition of X. 4y,
we have Xy, ¢y = [Xge, 4,y 14e1¢7,y- Moreover, by Proposition 4.2.4.8, we have

[Xgugrglgmary = [Plgegry
in Ps for all path p € ((¢ o ¢) LI ), parallel to X ¢,y In particular,

(X g gy = [(W-(Xgry)) 20 ((Xgy) W) ]ger
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where
w=| | w = [14
IR 1. dg

are the only 0-cells of ¢" LU idf’f( $) and ¢ LU idf?;,( ) respectively. Thus,

X g lgmgry = [(w-(Xgry)) 20 ((Xgy) W) perry
= [(w- Xgry D Iporgrp o2 [(Xgpp) W) I gergr.
(by functoriality of [~]g.,4.y)
= ([W]gs,idgl, ot Xylgy) o (Kpyloy o [W']qsf,idzaﬂw)
(by Lemma 4.2.4.9)

= ((¢ o0 3 (¥)) 1 Xy y) o2 (Xpy o1 (9 0 97 ()
(by definition of [—]- _ and X_ _).

Hence,

Xpogroy = (o9 07 () o1 Xpr ) o2 (X o1 (¢ % 91 (1)). m|

We now prove the compatibility between 3-cells and interchangers. We start by proving the
compatibility with 3-generators:

Lemma 4.2.4.11. Given A: ¢ = ¢': f = f' € Psandy:9 = g’ € Py such that A,y are
0-composable, we have, in Ps,

((Aegg)e1 (ffo ) e Xpry = Xpy %2 (fooy)er (A g)).

Similarly, given ¢: f = f' € Py and B: = y': g = ¢’ such that ¢, B are 0-composable, we have,
inP,
Xpy o2 ((gooB) o1 (Pog f) = (e g) o1 (feoB)) ez Xpyr-

Proof. We only prove the first part of the property, since the other one is symmetric, and we do
so by an induction on [{/|. If [{/| = 0, ¥ is an identity and the result follows. Otherwise, yy = we; ¢/
where w = (lega s r) with,r € Py, a: h = h’ € Py and ¢ € P, with || = [¢/| - 1. Let § = 97 (w).
By Lemma 4.2.4.10, we have
Xpy = Kpwer (F 20 9)) o2 ((f o0 w) o1 X, ) (4.6)
Xy = Koo (F o0 D) o2 (f 20 w) o1 X ). (47)

Also, by Lemma 4.2.4.4(iv), we have
Xgw=Xglga®0 T Xgw =Xg I T (4.8)
so that

((Aw g) o1 (f 00 w)) o2 Xgr,u

[((Aeglegh)er (f o Loga))er X toga| %07

[Xp0a o2 (Foolog@)er (Asglogh'))] s r (4.9)
(by interchange naturality generator)

=Xpwer ((foow)e (Aegg')).
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Thus,
((Asgg) o1 (f' o0 1h) o2 Xy
= ((Awg) et (f oo w) ot (f %)
2 Xgwor (f 00 ) 2 ((f 20 w) o1 X,y ) (by (4.7))
= [((Aw gy o (F 0 w) 2 Xp) 1 (7 )
2 ((f o w) o1 Xy )
= |G (Fow) s (A ) o (F )
o2 ((feow)e X, ;) (by (4.9))
= Xpwer (%0 9))
2 (foow)er (Ao g) o (f o)) 2 (Foow) o1 X 5)
= Xpwer (%0 ¥))
o |(Foow) e (A d)er (2090 2 Xy )|
= Xpwer (f %0 ¥))
o |[(Faw)on Ky ((Fo0 ) (A g))| (by induction)
= (Xgwer (o0 ¥)) o2 ((f 20 w) o1 (X, 1)
2 (Frow)er (fod) e (Ang)
=Xpy o2 (foy) e (Awg)) (by (4.6)). O
Next, we prove the compatibility between interchangers and rewriting steps:

Lemma 4.2.4.12. Given a rewriting stepR: ¢ = ¢': f = f" € P; withR=Ae; (legAeyr)e; p
forsomel,r € P{,A,p € P;,A: n = ' € P3s,and: g = g’ € P; such that R, are 0-composable,
we have, in 53,

(Regg) o1 (f 20 9)) o2 Xy =Xpy o2 (foo9h) o1 (Reog)). (4.10)
Similarly, given ¢ € P} and a rewriting step S: y = §': g = g’ € P; withS = Ae; (legBeyr) e p

forsome A, p € Py, I,r € P}, B: v= Vv’ € P3 such that ¢, S are 0-composable, we have, in P3,
Xpyo2 (fooB)er (9o g") = ((Peg)er (f e0B)) ez Xgy
Proof. By symmetry, we only prove the first part. Let
fi=legper h =097 (w) h = oy (i)
B=lop wr W= a1 () W =a} ().
We have
Regyg=(Asgg) e (legAsgreog)e(peog)
and, by Lemma 4.2.4.10,
Xpy = (((Ae1 1) %0 g) o1 Xy y)

o (Ao g) o1 Xy (peg))) (4.11)
o ((Xpye ((ierp)eg’)))
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and
Xpry = (((Ae1 [i') 20 g) &1 Xpy)
o (((Aegg) o1 Xy o1 (pe0g’))) (4.12)
1) ((XA,I// o1 (" e1p) 0 9g"))).

We start the calculation of the left-hand side of (4.10), using (4.12). We get
(Reogg) o1 (20 9)) o2 (o1 ) %0 9) 1 X)
= (A% g)
o [ (U A ragg)er (poog) ot (f i) o2 (0 g) w1 X |
= (A% 9)
[ @) 1 Xpg) o (U A r oo g)os (B oo ot (png))| by Lemma 4.2.42)
= ((Ae g) o1 (fie0 g) o1 X y)
2 (Ao g) o1 (IogAsgregg)er (h' s ) e (o g)).
Also, we do a step of calculation for the right-hand side of (4.10), using (4.11). We get
(g o1 (ot P ) (f 20 9) o1 (Reo g)

=((Aog) et (heg ) o1 (Lsg AT g)) s (P g))
2 (X/w o1 (A% g)e1(peg)).

Finally, we do the last step of calculation between the left-hand side and the right-hand side
of (4.10). Note that

((Log Awgregg)er (h s 1)) e Xy

=leg (((Aegregg)er (h egregi)))er Xyrury) (by Lemma 4.2.4.4(ii))
=log (((Aegregg)er (W egregi)))es Xy ruyy) (by Lemma 4.2.4.4(iii))
=log (X ey o2 (hegreg ) ey (Aegregg’))) (by Lemma 4.2.4.11)

=loy (Xyyry o2 (hegreg ) ey (Aegregg’))) (by Lemma 4.2.4.4(iii))
= Xjiy ((hog ) o1 (log Amgrong’)) (by Lemma 4.2.4.4(ii))

so that
(Ao g) o1 (Lo Asgrogg)er (R o) e (poog)) o2 (Ao 9) o1 Xy o1 (P g))
= (A g) 1 [((l wAsregg)e (h o)) e Xﬁ',w] 1 (pyg’)
= (Moo g) et [ Xy o2 (R ) o1 (Lo Ay rang))| o1 (P20 9)
=((Ae0g) a1 Xy o1 (pe0g))e2((Aegg)ei (heo ) o1 (LegAsgreng’)ei (peog)).

By combining the previous equations, we obtain

((Reo g) o1 (f' o0 9)) 2 Xpry
=((Aeog)e1 (legAsgregg)er(peog) e (f o0 ¥))
2 (((Ae1 ') %0 g) 1 Xpy)
o (Ao g) o1 Xy (pe0g’)))
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o2 (Xaye (Fe1p)0g)))
= (((Ae1 1) %0 9) 1 Xpy)

o (Ao g) o1 Xy (Pe0g)))

o2 (Xpy e ((ierp) %0 g)))

2 ((fooy)er(Aegg)er (legAsgregg) e (peg))
=Xgy o2 ((feo) o1 (Reog'))

which is what we wanted. |

We can deduce the complete compatibility between interchangers and 3-cells:

Lemma 4.2.4.13. Given F: ¢ = ¢': f = f' € Psand: g = ¢’ € P, such that F,{ are
0-composable, we have

(Foog)er (ffeoth) o2 Xy =Xp o2 (feo ) e (Fegg')).

Similarly, given ¢: f = f’ € Py andG: y = ': g = ¢’ € P3 such that ¢, G are 0-composable, we
have

Xpyo2 (fo0G)e1(do0g))=((Pe0g)er (f%G))e2Xpy

Proof. Remember that each 3-cell P can be written as a sequence of rewriting steps of P. By
induction on the length of such a sequence defining F or G as in the statement, we conclude using
Lemma 4.2.4.12. o

We can conclude the correctness of our definition of Gray presentations:

Theorem 4.2.4.14. Given a Gray presentation P, the presented precategory P is canonically a lax
Gray category.

Proof. The axioms of lax Gray category follow from Lemmas 4.2.4.2, 4.2.4.4, 4.2.4.10 and 4.2.4.13.

O
Moreover, when applying a localization operation, we obtain a (3, 2)-Gray category:
Corollary 4.2.4.15. Given a Gray presentation P, P is canonically a (3, 2)-Gray category.
Proof. By Theorem 4.2.4.14 and Proposition 4.2.2.4. O

4.3 Rewriting

In this section, we introduce rewriting techniques to show coherence results (“all diagrams com-
mute”) for presented Gray categories. These techniques are obtained as generalizations of the
ones from classical rewriting theory to the setting of free precategories, where we moreover have
arelation = on pairs of parallel rewriting paths which plays the role of a witness for confluence of
the branchings. The coherence of the Gray presentations will then be implied by the confluence
of the “critical branchings” from the rewriting systems associated to these presentations.

We first define the coherence property for Gray presentations (Section 4.3.1) and show how
it can be obtained from a property of confluence on 3-precategories. Then, we adapt the elemen-
tary notions of rewriting to the setting of 3-prepolygraphs (Section 4.3.2) together with classical
results: a criterion for termination based on reduction orders (Section 4.3.3), a critical pair lemma
(Section 4.3.4) together with a finiteness property on the number of critical branchings (Sec-
tion 4.3.5). From the critical pair lemma, we deduce a coherence theorem for Gray presentations
(Theorem 4.3.4.8) that will be our main tool for the treatment of the examples of the next section.
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4.3.1 Coherence in Gray categories

Recall that the aim of this chapter is to provide tools to study the coherence of presented Gray
categories. Below, we define this notion and give a first criterion to obtain the coherence of
(3, 2)-precategories obtained by the localization functor.

4.3.1.1 — Definition. A 3-precategory C is coherent when, for every pair of parallel 3-cells
Fi,Fy: ¢ =4 l// € C3

we have F; = F,. A Gray presentation P is then coherent when the underlying (3, 2)-preca-
tegory of the (3,2)-Gray category P _1Ts coherent (remember that P is a lax Gray category by
Theorem 4.2.4.14, which implies that P is a (3, 2)-Gray category by Proposition 4.2.2.4). Gray
presentations P with no other 4-generators than the independence generators and the interchange
naturality generators are usually not coherent. For example, in the Gray presentation P of pseu-
domonoids given in Example 4.2.3.3, we do not expect the following parallel 3-cells

= s
=5
to be equal in P'. For coherence, we need to add “tiles” in Py to fill the “holes” created by parallel
3-cells as the ones above. A trivial way to do this is to add a 4-generator R: F; S F, for every pair
of parallel 3-cells F; and F, of P*. However, this method gives quite big presentations, whereas
we aim at small ones, so that the number of axioms to verify in concrete instances is as little as

possible. We expose a better method in Section 4.3.4, in the form of Theorem 4.3.4.8: we will see
that it is enough to add a tile of the form

¢ 2 N\
Nt

for every critical branching (S, S;) of P for which we chose rewriting paths Fy, F, that make the
branching (Sy, S2) joinable (definitions are introduced below).

2

4.3.1.2 — Coherence from confluence. We now show how the coherence property can be
obtained starting from 3-precategory whose 3-cells satisfy a property of confluence, motivating
the adaptation of rewriting theory to 3-prepolygraphs in order to study the coherence of Gray
presentations. In fact, we can already prove an analogue of the Church-Rosser property coming
from rewriting theory in the context of confluent categories.

A 3-precategory C is confluent when, for 2-cells ¢, ¢1, ¢p» € C; and 3-cells
F1!¢5¢1 and F2!¢3¢2
of C, there exist a 2-cell € C; and 3-cells

G1I¢13¢€C3 and Gz!¢23¢€€3
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of C such that F; e, G; = F; s G5. The 3-cells of a (3, 2)-precategory associated to a confluent
3-precategory admits a simple form, as in:

Proposition 4.3.1.3. Given a confluent 3-precategory C, all F: ¢ = ¢’ € C; can be writ-
ten F=Gey H! forsomeyy € C;,G: p = y € C3 and H: ¢’ = ¢ € Cs.

The above property says that confluent categories satisfy a “Church-Rosser property” ([BN99,

Definition 2.1.3], for example), and is analogous to the classical result stating that confluent
rewriting systems are Church-Rosser ([BN99, Theorem 2.1.5], for example).

Proof. By the definition of CT, all 3-cell F: ¢ = ¢’ € C; can be written
F=Gi'eyHye - %Gl o Hy

for some k € Nand 3-cellsG;: y; = ¢;—1and H;: y; = ¢;of Cfori e N*k with ¢g = ¢ and @ = ¢/,
as in
G 1 H; Gy a .\Plk—l G% Xk Hj.
$1 o Pr Prc

We prove the property by induction on k. If k = 0, then F is an identity and the result follows.
Otherwise, since C is confluent, there exists x € C2, G| ¢x—1 = Y € C3and H; : ¢ = Y € G5
with

o

k H,
b1 = Prc -
k

¥

ko

By induction, the morphism
GyleyHyey -y Gty oy Hep o2 Gy o2 (Hi—1%2 Gy)
can be written G e, H™! for some 2-cell ¢ and 3-cells G: ¢y = y and H: ¢ = ¢ of C. Since
Gy %2 G = Hy. « H,
we have G,;l o Hy =G o Hlé‘l. Hence,
F=GeuH o H ' =G (H o H)
which is of the wanted form. |

Starting from a confluent 3-precategory, we have the following simple criterion to deduce the
coherence of the associated (3, 2)-precategory:

Proposition 4.3.1.4. Let C be a confluent 3-precategory which moreover satisfies that, for every
pair of parallel 3-cells F1,F,: ¢ = ¢’ of C, we have F; = F, in the localization CT. Then, CT
is coherent. In particular, if C is a confluent 3-precategory satisfying that, for all pair of parallel
3-cells Fi, Fy: ¢ = ¢’ of C, there exists G: ¢’ = ¢"' € C3 such that Fy ey G = F, ¢, G in C3, then CT
is coherent.
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Proof. Let Fi,F;: ¢ = ¢’ € C; . By Proposition 4.3.1.3, for i € {1,2}, we have F; = G; «, H; ' for
some 2-cell ; and 3-cells G;: ¢ = ); and H;: ¢’ = ¢); of C, as in

By confluence, there are a 2-cell i and a 3-cell K;: f; = ¢ of C for i € {1, 2}, such that, in C,
Gi K1 =Gy Ks.
By the hypothesis of the statement, we have H; e, K; = Hy »; K5 in C' so that

GioyH{' =Giep Ky oy (Hi e Kp)™!
=Gyey Ky oy (Hy 02 Kp) ™!
= Gz * H2_1

Hence, F; = F,. For the last part, given parallel 3-cells Fy, F; of C, note that if F{ ¢, G = F,9, Gin C
for some 3-cell G, then n(F;) = n(F;) (where 7 is the canonical 3-prefunctor C — CT). O

4.3.2 Rewriting on 3-prepolygraphs

As we have seen in the previous section, coherence can be deduced from a confluence property
on the 3-cells of 3-precategories. Since confluence of classical rewriting systems is usually shown
using rewriting theory, it motivates an adaptation of rewriting theory to the context of 3-prepo-
lygraphs for the purpose of studying the coherence of Gray presentations. Here, we translate the
elementary terminology and properties of rewriting theory to this context.

4.3.2.1— Paths. Given a 3-prepolygraph P, recall from Paragraph 4.1.2.1 that a rewriting step
of Pisacell S € P] of the form

S=Ae;(legAeyr)e p

for some I,r € P}, A,p € P; and A € P3;. For such S, we say that A is the inner 3-generator
of S. A rewriting path of P is a 3-cell F: ¢ = ¢’ in P;. Remember that, by Corollary 4.1.2.5,
such a rewriting path can be uniquely written as a composite of rewriting steps Sy o3 - - - o5 Sg.
Given ¢,y € P, we say that ¢ rewrites to y when there exists a rewriting path F: ¢ = .
A normal form is a 2-cell ¢ € P} such that for all y € P; and F: ¢ = 1/, we have F = idfb. The
3-prepolygraph P is said terminating when there does not exist an infinite sequence of rewriting
steps Fi: ¢; = ¢iyq fori e N;

4.3.2.2 — Branchings. Given a 3-prepolygraph P, a branching is a pair of rewriting paths
F12¢3¢1 and F2:¢3¢2

of P; the symmetric branching of (F;, F;) is (Fs, F;). The branching (Fy, F;) is local when both F,
and F, are rewriting steps; it is joinable when there exist a 2-cell / € P; and rewriting paths

Gi:p1=>¢ and Gy: > ¢
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of P; given a congruence = on P*, if we moreover have that F; ¢, G; E F, o3 G;, as in

7N
$1 P2
o L,
4

we say that the branching is confluent for =.

4.3.2.3 — Rewriting systems. A rewriting system (P,Z) is the data of a 3-prepolygraph P to-
gether with a congruence = on P*. (P, ) is (locally) confluent when every (local) branching is
confluent for S; it is convergent when it is locally confluent and P is terminating.

Given a 4-prepolygraph P, the rewriting system associated to P is (P <3, ~") (recall the definition
of ~P given in Section 4.1.3) where ~" intuitively witnesses that the “space” between two parallel
3-cells can be filled with elementary tiles that are the elements of P4. In the following, most of
the concrete rewriting systems that we study are of this form.

4.3.2.4 — Newman’s lemma. Our definition of rewriting system contrasts with the classical
definitions of abstract or term rewriting systems, in which all pairs of parallel paths are equal.
Nevertheless, the analogues of several well-known properties of abstract rewriting systems can
be proved in our context. In particular, the classical proof by well-founded induction of Newman’s
lemma ([BN99, Lemma 2.7.2], for example), can be directly adapted in order to show that:

Theorem 4.3.2.5. A convergent rewriting system is confluent.

Proof. Let (P, =) be a rewriting system which is convergent. Let =% C P} x P} be the partial order
suchthat ¢ =* i if there exists arewriting path F: ¢ = ¢ € P; with |[F| > 0. Since the underlying
rewriting system is terminating, =% is well-founded. Thus, we can prove the theorem by induction
on =*. So suppose given a branching Fi: ¢ = ¢ € P;and F,: ¢ = ¢, € P;. If |[F;| = 0or |F,| = 0,
then the branching is confluent. Otherwise, for i € {1,2}, F; = S; o, F] for some rewriting
step S;: ¢ = ¢/ and rewriting path F/: ¢! = ¢;. Since the rewriting system is locally confluent,
there are i/ € P, and rewriting paths G;: ¢ = ¢ for i € {1,2} such that S; &, G; £ S ; G,. Since
the rewriting system is terminating and £ is stable by composition, by composing the G;’s with a
path G: ¥ = " where ¢’ is a normal form, we can suppose that  is a normal form. By induction
on ¢; and ¢, there are rewriting paths H;: ¢; = ¢/ and F/": = i such that F/ ¢, H; = G; &, F/’
for i € {1,2}. Since ¢ is in normal form, F/" = id3¢ and we have H;: ¢; = ¢/ fori € {1,2} asin

h—— ) ——

Moreover,

Fi e H;

Si e (F{ e Hy)

S192 Gy

S20 G2

Sy e (F; e H)

= F, ., H,. 0
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Theorem 4.3.2.5 implies that, up to post-composition, all the parallel paths of a convergent rewrit-
ing system are equivalent. Later, this will allow us to apply Proposition 4.3.1.4 for showing the
coherence of Gray presentations.

Lemma 4.3.2.6. Given a convergent rewriting system (P,Z) and two rewriting paths

F],th gb = ¢’ (S P§

¢
Fl( >F2
¢/
there exists G: ¢’ = € P} such that Fi e GE F, ¢, G, ie,
N
¢I
N\
Y

Proof. Given Fy, F, as above, since the rewriting system is terminating, there is a rewriting
path G: ¢’ = ¢ where ¢ is a normal form. By Theorem 4.3.2.5, there exist G;: ¢ = ¥’
and Gy: ¥ = ¢’ such that F; ¢, G o3 G = F, ¢; G »; G,. Since ¢ is a normal form, we have

of P as in

¢’

Gy =G, =idj,
Hence, F1 oo GE F; o, G. m]

Note that, in Lemma 4.3.2.6, we do not necessarily have

F ( >F2

which explains why the method we develop in this section for showing coherence will only apply
to (3, 2)-precategories, but not to general 3-precategories.

-

’

-

4.3.3 Termination

In this section, we give a termination criterion 3-prepolygraphs (and thus, rewriting systems)
based on a generalization of the notion of reduction order from classical rewriting theory where
we require a compatibility between the order and the composition operations of cells. We more-
over consider the specific case of Gray presentations and show how to handle the interchange
generators.

4.3.3.1 — Reduction orders. A reduction order for a 3-prepolygraph P is a well-founded partial
order < on P such that:

- if ¢ > ¢’ for some ¢, ¢” € P}, then 97 (¢) = 97(¢’) for e € {—, +},

- given A: ¢ = ¢’ € P3, we have ¢ > ¢/,
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- given [,r € P] and ¢, ¢’ € P} such that [, ¢, r are 0-composable and ¢ > ¢’, we have
Legpogr>1Llegd’ s,

— given 1-composable A, §, p € P}, and ¢’ € P} such that ¢ > ¢’, we have
Aoy dpoip> Ao ¢ e p.

One has then the following criterion to show the termination of a 3-prepolygraph:

Proposition 4.3.3.2. Given a 3-prepolygraph P, if there exists a reduction order for P, then P is
terminating.

Proof. The definition of a reduction order implies that, given a rewriting step A e; (Ieg Aoy r) ¢; p
with [,r € P}, A,p € P; and A: ¢ = ¢’ € P suitably composable, we have

Aot (Logpogr)erp> Ao (Legd sgr)esp.
So, given a sequence of 2-composable rewriting steps (F;);en,, where k € NU {w} and
F;: ¢i =4 ¢i+1 € P;

for some ¢; € P; for i € Ny, we have ¢; > ¢4 for j € Ni. Since > is well-founded, it implies
that k € N. Hence, P is terminating. O

4.3.3.3 — The case of Gray presentations. In order to build a reduction order for a Gray presen-
tation P, we have to build in particular a reduction order for the subset of P; made of interchange
generators. We introduce below a sufficient criterion for the existence of such a reduction order.
The idea is to consider the lengths of the 1-cells of the whiskers in the decompositions of 2-cells
and show that they are decreasing in some way when an interchange generator is applied.

Let N<¢ be the set of finite sequences of elements of N. We order N<® by <, where

((11,...,61k> <o (bl,...,bl)

when k = [ and there exists i € N;; such that a; = b; for j € N;_, and a; < b;. Note that <, is well-
founded. Given a 2-prepolygraph P, there is a function Int: P; — N=“ such that, given ¢ € P;,
decomposed uniquely (using Corollary 4.1.2.5) as

¢= (Liog oy egry) e« oy (I e ap o 1)

for some k € N, [;,r; € P]and a; € Py fori € NZ, Int(¢) is defined by

Int(¢) = (Il -1l - - -, 11])-

Then, Int induces a partial order <, on P} by putting ¢ <in ¥ when 97 (¢) = 95 (¢) for € € {—, +}
and Int(¢) <., Int(y) for ¢,y € P;.

Given a Gray presentation P, we say that P is positive when |9} («r)| > 0 for all @ € P,. Under
positiveness, the order <j,; can be considered as a reduction order for the subset of 3-generators
of a Gray presentation made of interchangers:

Proposition 4.3.3.4. Let P be a positive Gray presentation. The partial order <iy: has the following
properties:
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(i) foreverya, € P, and f € P] such that a, f, f are 0-composable,
95 (Xaf.8) >int 9 (Xap.p),
(ii) for$,¢" € P; andl,r € P} such thatl, ,r are 0-composable, if § >in; ¢’, then
logoor >imtlegg o,
(iii) for ¢, ¢’ A, p € P; such that A, ¢, p are 1-composable, if ¢ >iy; ¢’, then
Aot orp >int Aoy ¢ p.
Proof. Given a, f € P, and f € P} with q, f, B are 0-composable, recall that X, f, is such that
Xapp: (oo foodr(B)) o1 (9] () %0 foo f) = (9 () % fo0 )1 (@ fo00](P)).
Thus, we have
Int(d; (X)) = (19 ()| +f,0)  and  Int(d;(X)) = (0,10 ()] + [f1).

Since P is positive, we have |9] ()| > 0 so that Int(9; (X)) >in Int(3] (X)). Now, (ii) and (iii) can
readily be obtained by considering the whisker representations of ¢ and ¢’ and observing the
action of [ ¢y — ¢y  and A e; — ¢; p on these representations and the definition of Int. m]

The positiveness condition is required to prevent 2-cells with “floating components”, since Gray
presentations with such 2-cells might not terminate. For example, given a Gray presentation P
where Py and P; have one element and P, has two 2-generators \U and (M), there are 2-cells of P*
with “floating bubbles” which induce infinite reduction sequence with interchange generators as
the following one:

89009@@900989

4.3.4 Critical branchings

In term rewriting systems, a classical result called the “critical pair lemma” states that local conflu-
ence is a consequence of the confluence of a subset of local branchings, called critical branchings.
The latter can be described as pairs of rewrite rules that are minimally overlapping (see [BN99,
Section 6.2] for details). Here, we show a similar result for rewriting on Gray presentations. For
this purpose, we first give a definition of critical branchings similar to the one of term rewrit-
ing systems, i.e., as minimally overlapping local branchings, where we moreover filter out some
branchings that involve interchange generators and that are readily confluent by our definition
of Gray presentation. We then use this adapted critical pair lemma to prove coherence results for
Gray presentations.

4.3.4.1 — Classification of branchings. Let P be a 3-prepolygraph. Given a local branching
(S1: 9 = $1.52: ¢ = ¢2)
of P, we say that the branching (i, S;) is

— trivial when S; = S5,
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- minimal when for all other local branching (7, S;) such that
Si=Ae (e 5{'0 r)eip
for i € {1,2} for some 1-cells [, r and 2-cells 4, p, we have that [, r, A, p are all identities,

- independent when

Si=((lisgArsgri) e yor (g dasorz))  Sz=((lieo preors) e x o1 (2% Az % 12))
for some [;,r; € P] and A;: ¢; = ¢/ € P fori € {1,2} and y € P}.
If moreover P = Q<3 where Q is a Gray presentation, we say that the branching (S;, Sy) is

— natural when either
Si=(Aeggegh)ey (f' e ge )
for some A: ¢ = ¢’: f = f' € P3,g € Py and f: h = h’ € P, and
Sy = [Xu,e]¢,g-0ﬁ with u=1;... ||¢|_1
or
Si=(aeg sh) e (f e0g «B)
forsome a: f = f' € P;,g’ € PlandB: Y = ¢': h = h’ € P3, and

Sy = [Xe,v]a,g’-0¢ with o=ry... My

— critical when it is minimal, and both its symmetrical branching and it are neither trivial
nor independent nor natural.

4.3.4.2 — Critical pair lemma. Let Q be a Gray presentation and write (P, Z) for the rewriting
system (Q<s, ~2). Our next goal is to show an adapted version of the classical critical pair lemma
to our context. We start by two technical lemmas:

Lemma 4.3.4.3. For all local branching (S1,S,) of P, there is a minimal branching (S;,S,) and
1-cells,r € P} and 2-cells A, p € P} such thatS; = Ae; (L) S/ ey 1) e p fori € {1,2}.

Proof. We show this by induction on N(S;) where N(S;) = |9 (S1)| + |9 (51)|. Suppose that the
property is true for all local branchings (S;,S;) with N(S7) < N(S1). If (S1,S2) is not minimal,
then there are rewriting steps S;,5; € P}, [,r € Py and A, p € P} such that S; = A e; (Lo S/ ey 1) ¢; p
for i € {1,2}, such that I, r, A, p are not all identities. Since

|97 (S)I =111+ oy (SDI +Ir] and |95 (S| = [A] + 95 (S + |pl,

we have N(S]) < N(S;) so there is a minimal branching (S{’,5;") and I’,r’ € P}, A’, p” € P} such
that S = A"e; (I'e)S;" eg1") ¢y p’ for i € {1, 2}. By composing with A, p, [, r, we obtain the conclusion
of the lemma. m]

Lemma 4.3.4.4. A local branching of P which is either trivial or independent or natural is confluent.

Proof. A trivial branching is, of course, confluent. Independent and natural branching are conflu-
ent thanks respectively to the independence generators and interchange naturality generators of
a Gray presentation. m|
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The critical pair lemma adapted to our context is then:

Theorem 4.3.4.5 (Adapted critical pair lemma). The rewriting system (P, E) is locally confluent if
and only if every critical branching is confluent.

Proof. The first implication is trivial. For the converse, note that, by Lemma 4.3.4.3, in order
to check that all local branchings are confluent, it is enough to check that all minimal local
branchings are confluent. Among them, by Lemma 4.3.4.4, it is enough to check the confluence
of the critical branchings. O

4.3.4.6 — Coherence results. We now state the main result of this section, namely a coherence
theorem for Gray presentations based on the analysis of the critical branchings:

Theorem 4.3.4.7 (Coherence). Let Q be a Gray presentation and (P,Z) = (Qxs, ~?) be the asso-
ciated rewriting system. If P is terminating and all the critical branchings of (P,Z) are confluent,
then Q is a coherent Gray presentation.

Proof. By Theorem 4.3.4.5, the rewriting system (P, £) is locally confluent, and by Theorem 4.3.2.5
it is confluent. Since Q = P* /S, it implies that Q is a confluent 3-precategory. To conclude, it is
sufficient to show that the criterion in the last part of Proposition 4.3.1.4 is satisfied. But the latter
is a consequence of Lemma 4.3.2.6. mi

Note that Theorem 4.3.4.7 requires the rewriting system (P,Z) to be confluent. If it is not the
case, one can still try to apply an analogue of the Knuth-Bendix completion algorithm ([BN99,
Section 7], for example) and add 3-generators together with 4-generators to obtain a confluent
Gray presentation, and then apply Theorem 4.3.4.7.

Our coherence theorem implies a coherence criterion similar to the ones shown by Squier et
al. [SOK94, Theorem 5.2] and Guiraud et al. [GM09, Proposition 4.3.4], which states that adding
a tile for each critical branching is enough to ensure coherence:

Theorem 4.3.4.8. Let Q be a Gray presentation and (P,Z) = (Qqs, ~Q) be the associated rewriting
system. Suppose that, for every critical branching (S1: ¢ = ¢1,52: ¢ = ¢2) of (P, E), there exist
cellsyy € P, and F;: ¢; = € P} fori € {1,2}, and a 4-generator G: Sy &, F1 = Sy o2 F, € Qu.
Then, Q is a coherent Gray presentation.

Proof. The definition of Q4 ensures that all the critical branchings are confluent, so that Theo-
rem 4.3.4.7 applies. o

Remark 4.3.4.9. In fact, for the conclusion of Theorem 4.3.4.8 to hold, for every critical branch-
ing (51, S2) of (P, ), it is enough to have a 4-generator G as in the statement for either (S, Sy) or
the symmetrical critical branching (S,, S1), so that a stronger statement holds.

4.3.5 Finiteness of critical branchings

In this section, we prove that Gray presentations, under some reasonable conditions, have a finite
number of critical branchings (Theorem 4.3.5.8). This property contrasts with the case of strict
categories, where finite presentations can have an infinite number of critical branchings [Laf03;
GMO09]. Our proof is moreover constructive, so that one can derive an algorithm to compute the
critical branchings of such Gray presentations.



308 CHAPIER 4. COHERENCE FOR GRAY CATEGORIES

4.3.5.1 — Interchange-interchange branchings. First, we aim at showing that there is no
critical branching (53, S;) of a Gray presentation P where both inner 3-generators of S; and S
are interchange generators. We begin with a technical lemma for minimal and independent
branchings:

Lemma 4.3.5.2. Given a minimal local branching (S1, S;) of a Gray presentation P, with
Si=Aie1 (Lieo Aiso i) o1 pi
andl;, r; € P}, A;, p; € P;, A; € Ps fori € {1,2}, the following hold:
(i) either Ay or A, is an identity,
(ii) either py or p, is an identity,
(iii) (S1,Sz) is independent if and only if

|9 (A + 19, (A2)| < [0 (S and | Aillps| = [ Azlp2] = 0.

If (51, S,) is moreover not independent:
(iv) eitherl; orl, is an identity,
(v) either ry orry is an identity.
Proof. Suppose that neither A; nor A; are identities. Then, since
Av et (Lo 05 (A1) o 11) o1 p1 = Az o1 (L2 % 95 (Az) % 72) *1 p2,

we have A; = we; A/ for some w € P} and A] € P; for i € {1, 2}, such that |[w| > 1, contradicting
the minimality of (S1,S2). So either A; or A; is an identity and similarly for p; and p,, which
concludes (i) and (ii).
By the definition of independent branching, the first implication of (iii) is trivial. For the
converse, suppose that (S, S;) is such that
105 (AD)| +10; (A2)| < 195 (S1)| and  [Ai]lp1] = |z[lp2| = 0.

We can suppose by symmetry that A; is a unit. Since |9, (S1)| = |A1]| + |9 (A1)| + |p1|, we have
that |9, (A2)| < |p1]. If [p1] = 0, then

Si=lLeAieqgr; and [9;(Az)|=0,
thus, since |A;]|p2| = 0, we have
either Sy =0,(S1) o1 (laez Azeyr2) or Sy = (lye Ayeyrs) e 95(5y).
In both cases, (S, S») is independent. Otherwise, |p;| > 0 and, by (ii), we have |p;| = 0 so that
Si=(LisgAregri)erpr and Sy =Aye ([0 Az e 132).
Since |9, (A2)| < |p1], we have

p1= )1 (Iz 9 95 (Az) & 12)
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for some y € P} and, since 9, (S1) = 9, (S2), we get
(L1909 05 (A1) g r1) o1 o1 (Iy 00 9, (A2) &g 72) = Az 01 (Io 09 9 (A2) o 12).

So A2 = (1 % 9, (A1) % r1) +1 y and hence (S;, S2) is an independent branching, which concludes
the proof of (iii).

Finally, suppose that (S, S2) is not independent. By (iii), it implies that
either 95 (A1)| +19; (A2)| > 9, (S| or |Aillp1] >0 or [A;][p2] > 0.
If |A1]|p1] > O, then |A;| = |p2| = 0 by (i) and (ii), so that
Aer(LisgAregri)er pr=1lreg Ao
thus there exists A7, p; € P} such that
M =1y /1{ o1, and P1= Iy o P; ® I'2,

and we have
Iy 00 f (A7) o0 12 = 3 (A1) =11 ¢ 97 (A1) o 1.

Thus, [; and I, have the same prefix [ of size k = min(|l;|, |lz|) and we can write
Sl=l-OS{ 52:l°os£

for some rewriting steps Sy, S, € P3. Since (Sy, Sz) is minimal, we have k = 0, so |[;||I;| = 0. We
show similarly that |r;||r;| = 0. The case where |A;||p2| > 0 is handled similarly. So suppose that

|Aillp1] =0 and  [Az]lpz[ =0 and |07 (A))| + 07 (A2)| > |5 (S1)l. (4.13)

In particular, we get that |9, (A;)| > 0 for i € {1,2}. Let u;,0; € P and a; € P, fori € N;
with r = |9 (S1)| such that

95 (S1) = (u1 % a1 % v1) o1 -+ - o1 (Ur % A o Vy).

The condition last part of (4.13) implies that there is iy € {1, 2} such that /; and I, are both prefix
of uj,. So, I; and I, have the same prefix [ of length k = min(|};|, |I]).

We now prove that A; = [ ¢y A] for some A] € P;. If [A;]| = 0, then
A =119 07 (S1) % 11,

so A = L & A] for some A" € P;. Otherwise, if [A;| > 0, since |A;]|p;| = 0, we have |p;| = 0 and,
by (i), [A2| = 0. Also, by the last part of (4.13), we have |4;| < |9} (A2)|. Thus,

A1 is a prefix of [; ¢y 9, (Az) « 12,
so Ay =l ey A] for some A; € P;. Similarly, there are p], A;, p; € P; such that
pr=1legp; and Ay =1leA; and p;=1eA,.

Hence S; =l ¢ S; and S, = [« S, for some rewriting steps S, S, € P;. Since (S;,S;) is minimal,
we have |l1||l;] = |I| = 0, which proves (iv). The proof of (v) is similar. |

We now have enough material to show that:
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Proposition 4.3.5.3. Given a Gray presentation P, there are no critical branching (S1,S2) of P such
that both the inner 3-generators of Sy and S, are interchange generators.

Proof. Let (S1,S;) be a local minimal branching such that, for i € {1, 2},

Si = Aier (lio0 Xaygipi 0 i) *1 Pi

for some ;, r;, g; € P}, Ai, pi € P, and a;, f; € Py, and let ¢ be 9; (S1). Since |9} (Xq, g,,5,)| = 2, we
have |@| > 2.

If |¢| = 2, then |4;] = |p;| = 0 for i € {1,2}. Thus, since 9, (S1) = 9, (S2), we get

(ly o 01 % g1 % 81_(/31) 7)o (l1 % 31+(011) * g1 % ﬁl °71)
= (ly %0 a2 % g2 %0 97 (B2) 0 12) 1 (L2 % If (2) % g2 % Pa 0 T2).

By the unique decomposition property given by Theorem 4.1.2.4 and corollary 4.1.2.5, we obtain
L=k rn=r o=a, /31 = ﬁ2 and g1 % 3f(ﬁ1) 0 =9gz2e 31_(ﬁ2) ® I'2.
So g1 ¢ 97 (B1) *0 11 = g2 % 9] (P1) = r1, which implies that g; = g,. Hence, (S5, S2) is trivial.
If || = 3, then |A;| + |p;| = 1 for i € {1, 2}, and, by Lemma 4.3.5.2,
cither |pi|=[Al=1 or |A]=lpsl=1.

By symmetry, we can suppose that |p;| = |12| = 1, which implies that |A;]| = |p,| = 0. By unique
decomposition of whiskers (Corollary 4.1.2.5), since 9, (S1) = 9, (S2), we have

Iy e a1 % g1 31_(/31) 7 =A
Iy « af(fll) * 91 % ,51 o7 =1le e g2 % 01 (ﬁz) 12

p1 =1l 37 (@2) % g2 % Paeo T2

and the second line implies that I ¢ 9] (a1)% g1 = Iz, p1 = az and r; = gz0 9] (fB2) 2. Since (S, S2)
is minimal, we have |l;| = |rz| = 0. So

S1 = (Xaygi,p %0 92 %0 95 (B2)) 1 (9] (Xayg1,81) %0 G2 % P2)
Sy = (1 %0 1% 95 (B1) %0 g2 %0 95 (B2)) *1 (3] (1) 0 g1 %0 Xp,.g,.5,)

thus (S, S2) is a natural branching, hence not a critical one.

Finally, if |@#| > 4, then, since |A;| +|p;| = |#| —2 = 2 for i € {1,2}, by Lemma 4.3.5.2, we have that
either [A| =|p2| =1¢l—2 or |p1] =]A2| =]¢] -2
In either case,

[Millp1l = [Azllp2l =0 and |95 (X g,,8)| + 105 (Xago,8.)| = 4 < 1]

s0, by Lemma 4.3.5.2(iii), (Si, S2) is independent, hence not critical. |
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4.3.5.4 — Other branchings. We now consider the branchings where not both inner generators
are interchange generators. The number of critical branchings among them will be finite given
some conditions on the Gray presentation. In the following, we denote by P a Gray presentation
such that P, and Ps are finite sets and |9, (A)| > 0 for every A € P3. The first result we prove is a
characterization of independent branchings among minimal ones:

Lemma 4.3.5.5. Given a minimal branching (S1, S;) of P with
Si=Aier (lieo Ai oo 1i) *1 pi
for somel;,r; € P}, Ai, pi € P; and A; € P3 fori € {1,2}, we have that (Si, Sz) is independent if and

only if
either |A1] 219, (Az)| or |p1] = |9, (A)]

(resp. either |Ay| > |9, (A1)| or |pa| = |9, (A1)]).
Proof. If (S1, S2) is independent, then, by Lemma 4.3.5.2(iii),
19, (A | + 195 (A2)| < || + 105 (A)] + |p1l = [A2] + 105 (A2)[ + | pal,

that is,
19y (AD] < [Ao] +|p2| - and 10, (A2)] < il + [pul-

By hypothesis, we have |9, (A;)| > 0, so that A3 + [p2| > 0. If [A3] > 0, then, by Lemma 4.3.5.2(i),
we have [A;] = 0 so that [9; (A2)| < |p1]. Similarly, if |p,| > 0, then |9, (A2)| < |A4], which proves
the first implication.

Conversely, if [;| > |9, (Az)], then, since 9, (A2) > 0 by our hypothesis on P, we have |4;| > 0.
By Lemma 4.3.5.2(i), we get that |1;| = 0. Also,

A1l + 105 (A + |p1] = 195 (A2)| + |p2| <[] + |2,
so |pz| = |9, (A1)| + |p1l, thus |p1| < |p2|. By Lemma 4.3.5.2(ii), we have |p;| = 0. Moreover,
|95 (A1) + 195 (Az)| < |05 (A + |A1] = 195 (S1)]
hence, by Lemma 4.3.5.2(iii), (S1, S2) is independent. |

Then, we prove that minimal non-independent branchings are uniquely characterized by a small
amount of information:

Lemma 4.3.5.6. Given a minimal non-independent branching (S1,S;) of P with
Si=Aie1 (lisg Aio i) *1 pi

forsomel;, r; € P}, Ai, pi € P, and A; € Ps fori € {1,2}, we have that (S, S,) is uniquely determined
by A, Az, || and |A,|.

Proof. By Corollary 4.1.2.5, let ky, k; € N*, u;,u},0;,0; € P} and ;, f; € P; be unique such that
9 (A1) = (ur s arso uy) o1 - -~ o1 (Ui, %0 A, *0 Uy

and
9, (Az2) = (v1 % Preovy) o1~ 1 (0k, % Br, %0 V)
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Leti; =1+ |/11| andip =1+ |/12| Since
Av o1 (l1 %9 95 (A1) o0 11) o1 p1 = Az %1 (I2 %0 95 (Az) % T2) *1 p2, (4.14)
and, by Lemma 4.3.5.5, 41| < |9; (A;)| and [A,] < |9} (A1), we get

’ ’/
Iy « Ui, 0 iy 0 Uy, %0 1 = I; « Ui, %0 ,51'1 *0 0 %072
so that

’ ’
ll L) uiz = lz L) Uil and uiz I = Uil oy I'o.

By Lemma 4.3.5.2(iv), either [; or [, is an identity. Thus, if |u;,| < |v;,|, then || > || so I, is a
unit and I, is the prefix of u;, of size |u;,| — |v;,|. Otherwise, if |u;,| < |v;,|, we obtain similarly
that /; is the prefix of v;, of size |v;,| — |u;,| and I, is a unit. In both cases, /; and I, are completely
determined by Ay, A,, |A1] and |A;|. A similar argument holds for ry and r;.

Now, if |A;| > 0, by Lemma 4.3.5.2(i), [A2| = 0. By (4.14) and since |A;| < |9; (A3)], 4 is the
prefix of I, ¢y 9, (Az) % ro of length |A;]. Otherwise, if [A;| = 0, then A; = idi_0 o (Ap)rs” In both
cases, Ay is completely determined by A;, Az, |1;]. A similar argument holds for 4,. Note that, if
we prove that |p;| and |p,| are completely determined by Ay, Az, |41]| and |A;], the above argument
also applies to p; and p; and the lemma is proved. But

A1l + 105 (AD)| + |p1l = |d2] + 195 (A2)| + | pal,
so that if [A;] + [0, (A1)| = |Az] + |9, (A2)|, then, by Lemma 4.3.5.2(ii), |p;| = 0 and
lp2| = [A1] + 105 (A1)| = |A2] — |95 (A2)].
Otherwise, if |A;] + |9, (A1)| < |A2] + [9; (A2)|, we get similarly that
lp1l = [A2] + 105 (A2)| = [41] = 195 (A1)

and |pz| = 0. In both cases, |p1| and |p,| are completely determined by A;, Az, |A1] and |A;|, which
concludes the proof. O

Given A € P3, we say that A € Ps is an operational generator if it is not an interchange generator.
We now prove that an operational generator can form a critical branching with a finite number
of interchange generators:

Lemma 4.3.5.7. Given an operational generator A; € Ps, there are a finite number interchange
generators A, € Ps such that there is a critical branching (S1, S2) of P with

Si=Aier (lisg Ajeg1;) o1 pi
for somel;,r; € P{ and A;, p; € P}, fori € {1,2}.

Proof. Let o, p € Py, u € P}, Ay = Xqup, lisri € P, Ai,pi € P; for i € {1,2}, so that (51,5;) is a
critical branching of P with
Si=Aier (lisgAiegri)e Pi

for i € {1,2}. By Corollary 4.1.2.5, let k € N with k > 2, v;,0] € P}, y; € Py fori € NZ be unique
such that

a2_(1‘\1) = (v1% ¥1% U{) o1 -+ o1 (Uk % Yk % U;/()
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By Lemma 4.3.5.5, since (S1, S2) is non-independent,

2 =10, (Xqup)| > max(|Ai, [p1]).

Note that we can not have |1;| = |p;| = 1. Indeed, otherwise, by Lemma 4.3.5.2, we would
have |A;| = |p2]| = 0, so that

2 =0y (Xaup)| = 1] + 195 (AD] + |pl
and thus |9; (A;)| = 0, contradicting our hypothesis on the 3-generators of P. That leaves three
cases to handle.

Suppose first that [A;| = |p1| = 0. Then,

L1 99 05 (A1) oo 11 = Az % (L2 %0 9 (Xoeui,p) *0 72) *1 P2

Thus,

11 %0 D112, %0 Yi+12,] %0 Vg4 13, %0 T1 = Laso areg usg 3y () % 12

1190 02412, %0 Y2+12,] *0 Uy 1,1 %0 T1 = L2 %0 97 (@) s usg foo 12
S0

Yitldo| = & Voula = Bilo = 1100 V142,72 = 05,3 %0 T

and u is the suffix of [ ¢ 02,5, | of length |l; 902, |2,|| = |l220 97 (@)|. In particular, X, ,, g is completely
determined by A; and |A;|. And since

|A2] =105 (A)| = 10, (Xaup)l — |p2l € {0,....10; (A1)| = 2},
there is a finite number of possible X, ,, s which induce a critical branching (S, Sz).

Suppose now that [A;| = 1 and |p;| = 0. Then, by Lemma 4.3.5.2, |1;| = 0. So
M=legaeyued (f)er,

and
’ +
Lisgviegy1 o001 %1 =19 97 () oo ey fegry.
In particular, we have f = y; and r, = v] ¢ 11, 50 |r1| < |r;|. By Lemma 4.3.5.2(v), we have |r;| = 0
and r; = o]. Note that we have |u| < |0;|. Indeed, otherwise u = u’ ¢ v; for some u’ and, since

L]+ Jo1] = [L] + 197 ()] + |ul,

we get that || < |l;]. By Lemma 4.3.5.2(iv), it implies that |I;| = 0 and I; = J](a) & u’, which
gives
S1= (aeu' %) (A1) e (9] () s u’ % A1)

and
Sz = (Xawepopyr %0 01) %0 (95 () oo u”) o (05 99 y2 % 03) o1 - - - o1 (Vk % Yk %0 V}.)))

so that (S, S») is a natural branching, contradicting the fact that (S, Sy) is a critical branching.
Hence, |u| < |vq| and u is a strict suffix of vy, thus there are |v;| such possible u. Moreover,
since P, is finite, there are a finite number of possible a € P,. Thus, there are a finite number of
possible X, g € P, that induces a critical branching (Sy, Sz) such that [4;| = 1 and |p;| = 0. The
case where |[A;| = 0 and |p;| = 1 is similarly handled, which concludes the proof. |
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With the above results, we can conclude the following finiteness property for critical branchings
of Gray presentations:

Theorem 4.3.5.8. Given a Gray presentation P where P, and Ps3 are finite and |9, (A)| > 0 for
every A € Ps, there is a finite number of critical branchings of P.

Proof. Let S; = A; o1 (I o9 Aj o 1) o p; with [;,r; € P}, Ai,p; € P; and A; € Psfori € {1,2}
such that (S, S,) is a critical branching of P. By Lemma 4.3.5.6, such a branching is uniquely
determined by A;, A, |A1] and |A;|. By Lemma 4.3.5.5,

A1l <107 (A2)| and |43 <95 (Ay)l.

Hence, for a given pair (Aj, A;), there are a finite number of tuples (Iy, ls, 1, 2, A1, A2, p1, p2)
such that (Si,S;) is a critical branching. Moreover, by Proposition 4.3.5.3, either A; or A; is an
operational generator. By symmetry, we can suppose that A; is operational. Since Ps is finite,
there is a finite number of such A;. Moreover, there are a finite number of pairs (A, A;) where A,
is operational too. If A, is an interchange generator, then, by Lemma 4.3.5.7, there are a finite
number of possible A, for a given A; such that (Sy, S;) is a critical branching, which concludes
the finiteness analysis. O

Remark 4.3.5.9. The proof of Theorem 4.3.5.8 happens to be constructive, so that we can extract
an algorithm to compute the critical branchings for such Gray presentations. An implementation
of this algorithm was used to compute the critical branchings of the examples of the next section.

4.4 Applications

We now illustrate the techniques of the previous section and show the coherence of Gray pre-
sentations related to several well-known algebraic structures. For each structure, we introduce a
Gray presentation and study the confluence of the critical branchings of the associated rewriting
system. Then, when the rewriting system is terminating, we can directly apply Theorem 4.3.4.8 to
deduce the coherence of the presentation. This will be the case for pseudomonoids (Section 4.4.1),
pseudoadjunctions (Section 4.4.2) and Frobenius pseudomonoids (Section 4.4.3) even though, in
the latter example, the termination of the rewriting system is assumed. We moreover study the
example of self-dualities, where the associated rewriting system is not terminating, for which we
use specific techniques in order to prove a weak coherence result.

4.4.1 Pseudomonoids

In Example 4.2.3.3, we introduced a Gray presentation P for the theory of pseudomonoids. The
set P4 of 4-generators contains only the required ones in a Gray presentation, so that we do not
expect P to be coherent. Below, we compute the critical branchings of the associated rewriting
system and show that the latter is terminating. Thus, by Theorem 4.3.4.8, adding a 4-generator
corresponding to each critical branching will turn the presentation into a coherent one. Our
method thus allows recovering a coherent definition for pseudomonoids in Gray categories, even
though in a less compact form than the existing ones [SD97; Mar97; Lac00].

4.4.1.1— Critical branchings. The critical branching of P can be computed by following the
proof of Theorem 4.3.5.8, which is constructive. We obtain, up to symmetrical branchings, five
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critical branchings:
v

=0 =9
| .

Y Q

We observe that each of these branchings is joinable, and we define five formal new 4-generators
that fill the holes:

<
l
<

We then define PMon as the Gray presentation obtained from P defined in Example 4.2.3.3 by
adding the 4-generators Ry, ..., Rs to Py.

4.4.1.2 — Termination. In order to use our coherence criterion on PMon, we need to show the
termination of the associated rewriting system. For this purpose, we use the tools of Section 4.3
and build a reduction order. We first define an order that handles the termination of the L, R, A
generators, and then combine it with the order from Paragraph 4.3.3.3 to obtain a reduction order.
For the first task, we use a similar technique than the one used in [Laf92]. Given n € N, we
write <3 for the partial order on N” such that, given x,y € N”, x <3 y whenx; < y; foralli € N},
and there exists j € N;, such that x; < y;. Let N-Fun be the 2-precategory

— which has only one 0-cell, denoted *,
— whose 1-cells * — * are the natural numbers n € N,

— whose 2-cells m = n for m,n € N are the strictly monotone functions

¢: (N™, <3) = (N, <3),

and whose structural operations are such that
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-idl =o,
- composition of 1-cells is given by addition,
- given m € N-Funy, id?, is the identity function on N™,
- given m,n, k,k’ € Nand y: k — k’ € N-Fun,, the 2-cell
me yson:m+k+n=m+k’+n

is the function y’: Nmktn _y \mk+n gy ch that, for x € N™H+ and j e N e

Xi lfl <m,
’ . .
X (x)l = X(xm+la .. -:xm+k)i—m Ifm <1 S m+ k,r
Xi—k'+k ifi >m+k’,

- given m,n,p € N, and 2-cells ¢: m = nand ¢: n = p of N-Fun, ¢ ¢; ¢ is defined as ¢ o ¢.
By checking the condition (E), one easily verifies that N-Fun is in fact a strict 2-category. Given
natural numbers m, m’,n,n’ € N, and 2-cells ¢: m = n,¢y: m’ = n’ of N-Fun, we write ¢ <3 ¢
when m =m’, n=n" and ¢(x) <3 ¥(x) for all x € N™. We then have that:
Proposition 4.4.1.3. <3 is well-founded on N-Fun,.
Proof. We define a function N: N-Fun, — N by
N(p)=¢(2)1+---+P(z), forp: m = n € N-Fun,,
where z is the n-tuple (0,...,0). Now, given a 2-cell : m = n of N-Fun, such that <3 ¢,
we have (z) <3 ¢(z) so that N(¢)) < N(¢). Thus, the partial order <3 on N-Funj, is well-
founded. O
We moreover observe that the partial order <3 is compatible with the structure of N-Fun:
Proposition 4.4.1.4. Givenm,n,m’,n’, k,k’ € N, and 2-cells
um'=m vin=n" ¢¢:k=>k
of N-Funy, such that ¢ >3 ¢’, we have
(i) megpegn>3mey P’ en,
(i) porperv>gpe @' e v.
Proof. Given x € N™,* we have ¢ (Xmit, - - -» Xmak) >3 ' (Xmats - - -» Ximak) SO

(mey pegn)(x) >3 (mey ¢ e n)(x).

Thus, (i) holds. Moreover, given y € N™  we have d(u(y)) >3 ¢’(p(y)). Since v is monotone, we
have V(¢ (4(y))) >3 v('(u(y))). Thus, (i) holds. 0
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We define a 2-prefunctor
F: PMon; — N-Fun

by the universal property of the 2-prepolygraph PMonc,: F is the unique 2-prefunctor such
that F(*) = %, F(1) = 1, F(n) = f; and F(p) = f,, where

f NP SN £ N S N

are defined by f,(()) = 1 and f,((x,y)) = 2x+y+1 for all x, y € N. The prefunctor F exhibits the
3-generators L, R and A of PMon as decreasing operations for N-Fun:

Proposition 4.4.1.5. The following hold:
(i) F(o; (L)) >3 F(9; (L)),
(i) F(9,(R)) >3 F(d;(R)),
(iii) F(9; (A)) >3 F(9; (A)),
(iv) F(3; Xamp)) = F(9F (Xamp)) for @, p € PMon, and m € N,
Proof. Let ¢ = F(d; (L)) and y = F((L)). We compute that
$(x) = (x+3) and Y(x) = (x)

for x € N, so ¢ >3 ¢ and (i) holds. By a similar computation, (ii) holds. Let § = F(9; (A))
and ¢ = F(9; (A)). We compute that

d(x,y,2) = (dx+2y+2z+3) and Y(xy,2)=2x+2y+z+1)

for x,y,z € N, so ¢(x,y,2z) >3 ¥(x,y,2) for all x,y,z € N, so (iii) holds. The point (iv) is a
consequence of the fact that N-Fun is a strict 2-category. O

Recall the definition of Int from Paragraph 4.3.3.3. We define a partial order < on PMon; by
putting, for ¢, € PMon;,

$ <y when F(¢)<3F(y) or [F(¢)=F(§) and Int(d) <, Int(y)].

We then have that:

Proposition 4.4.1.6. The partial order < on PMonj is a reduction order for PMon. In particular,
the rewriting system induced by PMon is terminating.

Proof. Let G € PMons. If G € {L, R, A}, then, by Proposition 4.4.1.5, 9, (G) > 9; (G). Otherwise,
ifG = Xoup for some a, f € PMon; and u € PMon], then, by Proposition 4.4.1.5(iv),

F(3,(G) = F(3;(G)  and  Int(3(G)) <, Int(d; (G)).

So 9, (G) > 9;(G). The other requirements for < to be a reduction order are consequences of

Proposition 4.4.1.4 and Proposition 4.3.3.4(ii)(iii). The rewriting system induced by PMon is then
terminating by Proposition 4.3.3.2. |
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4.4.1.7 — Coherence. Since the rewriting system is terminating, we can conclude using our
coherence criterion:

Theorem 4.4.1.8. PMon is a coherent Gray presentation.

Proof. By Proposition 4.4.1.6, the rewriting system induced by PMon is terminating. By Theo-
rem 4.3.4.8, since Ry, ..., Rs € PMong, PMon is a coherent Gray presentation. O

Remark 4.4.1.9. The original definition of pseudomonoids of [SD97] uses a smaller set of 4-gene-
rators for the presentation, namely {R;, R4}. Thus, the coherent presentations obtained using
Theorem 4.3.4.8 are not necessarily the smallest ones. The same situation happens in the setting
of strict categories [GM09], where the presentation of pseudomonoids obtained through rewriting
has five 4-generators, whereas the common definition of pseudomonoids in strict 3-categories
only requires two 4-generators: MacLane’s pentagon, which is an analogue of Ry in strict cat-
egories, and Ry (c.f. the definition of monoidal categories in Paragraph 1.5.1.1). Guiraud and
Malbos shows that the equalities on the 3-cells associated with Ry, Rs, Rs can be recovered from
the ones associated with R; and R,. Their proof relies on the invertibility of the 3-cells, which
suggests that Ry and R4 might not be sufficient for a coherent presentation of lax pseudomonoid
expressed in lax Gray categories, where the 3-cells L, R, A are not required to be invertible. In
this lax context, it would be interesting to know whether the 4-generators Ry, Ry, R, Ry, R5 still
provides sufficient equalities for a coherent presentation of lax pseudomonoids and, more gener-
ally, whether rewriting techniques can be used to find coherent presentations in the context of
lax Gray categories.

4.4.2 Pseudoadjunctions

We now show the coherence of the Gray presentation of pseudoadjunctions introduced below.
The way we do this is again by using Theorem 4.3.4.8. However, we need a specific argument to
show the termination of the interchange generators on the associated rewriting system. For this
purpose, we introduce a notion of “connected” diagrams and use a result of [DV18] saying that
interchange generators terminate on such connected diagrams.

4.4.2.1 — Gray presentation. We define the 3-prepolygraph for pseudoadjunctions as the 3-pre-
polygraph P such that

Po={xy} Pi={f:x—>y, g:y—=x} Py={n:idl =>feg e:gef= id;,}
where n and € are pictured as (M) and \U respectively, and Ps is defined by P3 = {N, 1}, where
N: (negf)e (fege) = id? and W: (gen)e(eegb) = idg

which can be represented by

N:m5| and I/I:m9|.

We then extend P to a Gray presentation by adding 3-generators corresponding to interchange
generators and 4-generators corresponding to independence generators and interchange natural-
ity generators like we did for pseudomonoids in Example 4.2.3.3, following the definition of Gray
presentation given in Paragraph 4.2.3.1. For coherence, we need to add other 4-generators to Py.
Provided that P is terminating, by Theorem 4.3.4.8, it is enough to add 4-generators corresponding
to the critical branchings.
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4.4.2.2 — Critical branchings. Using the constructive proof of Theorem 4.3.5.8, we compute all
the critical branchings of P. We then obtain, up to symmetrical branchings, two critical branchings

==V [Un==nJ]
N Ny ‘

Y M

and

We observe that each of these branchings is joinable, and we define formal new 4-generators that

oY o]

We then define PAdj as the Gray presentation obtained from P by adding R; and R; to Py.

4.4.2.3 — Connectedness. We now aim at showing that the associated rewriting system is
terminating. However, we can not build a reduction order using Proposition 4.3.3.4 to handle
interchange generators, like for the case of pseudomonoids, since P is not positive. Instead, we
invoke the result of [DV18] that states the termination of interchange generators on “connected di-
agrams”. Given a 2-prepolygraph Q, a 2-cell of Q; is connected when, intuitively, each 2-generator
on its graphical representation is accessible by a path starting from a top or bottom wire. For exam-
ple, given the 3-prepolygraph Q such that Qy = {*}, Q; = {1} and Q; = {M\: 0 = 2,\U: 2 = 0},
we can build the following two 2-cells of Q;

Nﬂ and Oﬂ

where the one on the left is connected whereas the one on the right is not, since the two 2-gene-
rators of the “bubble” can not be accessed from the top or bottom border.

A more formal definition of connectedness can be obtained by computing the “connected
components” of the diagram, together with a map between the top and bottom wires of the
diagram to the associated connected components. This is adequatly represented by cospans of Set.
Based on this idea, we define a 2-precategory that allows to compute the connected components
of the 2-cells of Q*, for a 2-prepolygraph Q.

We define the 2-precategory CoSpan as the 2-precategory
— which has a unique 0-cell, denoted *,
— whose 1-cells are the natural numbers, with 0 as identity and addition as composition,
- whose 2-cells m = n are the classes of equivalent cospans N}, i) S (i N7 in Set,

where two cospans A L) S (L Band A L} S’ (g— B are said equivalent when there
exists an isomorphism h: S — S’ € Set such that f" = ho f and g’ = h o g. Given m € CoSpan,,
the identity id%, € CoSpan, is the cospan
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and, given 2-cells ¢: m; = m;, and ¥: my = m3 of CoSpan, represented by the cospans

Ni sl and N, L sl

respectively, their composite is represented by the cospan

*
ms

7‘ ‘X f/r \9'
N}, N7, N
where the middle square is a pushout. Given ¢: m = n € CoSpan, represented by
N, Ly s &N

and p, g € CoSpan,, the 2-cell p ¢ ¢ ¢ g is represented by the cospan

N7, USUN
UN}‘,‘—'f‘—”Nf])O@p,m,q/( \“N}‘,‘—'g'—'lN’[l)OePﬂﬂ
* *
Npimiq Npinig

where 0),4: N, — Ny UNZ LN, for r € N, is the evident bijection. By checking the
condition (E), one easily verifies that CoSpan is in fact a strict 2-category.

Given a 2-prepolygraph Q, by the universal property of 2-prepolygraph, we define a 2-prefunctor
Con?: Q* — CoSpan
such that
~ the image of x € Qy by Con® is x,
~ the image of a € Q; by Con® is 1,
~ the image of a: f = g € Q, by Con? is represented by the unique cospan

Njp ——> () &= N,

We can now give a formal definition for connectedness: a cell ¢ € Q; is connected when Con?(¢)
is represented by a cospan

Ny, L sy
with m = |9] (¢)| and n = |97 (¢)| such that f, g are jointly epimorphic. Since the latter property
is invariant by equivalences of cospan, if ¢ is connected, then for all representant
» _f 9\
Ny, — S<—N;
of Con?(¢), f, g’ are jointly epimorphic.

Connectedness is not changed by 3-generators that are similar to interchange generators, as a
consequence of the following property:
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Lemma 4.4.2.4. Let P be a 2-prepolygraph, a, p € P, and g € P} such that a, g,  are 0-composable.
Then,

Con” ((a+0 g % 3; (B)) *1 (3 (@) 0 g+ B)) = Con® ((3; (@) % g0 ) &1 (@ % g0 37 (B))).
Proof. This is a direct consequence of the fact that CoSpan is a 2-category. O
Moreover, in the case of PAdj, the 3-generators N and W do not change connectedness:

Lemma 4.4.2.5. We have

Con™ (109 ) o (f e €)) = Con"A (id})
and
Con™((g e 1) #1 (€ g)) = Con™ I (id?).

Proof. By calculations, we verify that
{*}
Ny Ny

is a representant of both Con™4((7 s f) 1 (f e €)) and Con"4 (idf), so that

Con™( (109 ) o (f e €)) = Con" (id})
and similarly,
Con™((g e 1) o1 (€% g)) = Con™(id2). O

We now prove a technical lemma that we will use to show the connectedness of the 2-cells
in PAdj::

Lemma 4.4.2.6. Let P be a 2-prepolygraph and ¢, ¢" € P} and N, i) s N, be a representant
of Con®(¢) for some ny, ny € N such that ¢, ¢’ are 1-composable and f is surjective. Then, ¢ o1 ¢’ is
connected if and only if ¢’ is connected.

Proof. Let sz i) S’ @ N",;a be a representant of ConP(gS’) for some ny, n3 € N. Then, ConP(ng’)
is represented by

7"

w, L s £,

where S”, f”" and g”’ are defined by the pushout of g and f” as in

S//
f// \( )r’g//

v

RN
Nfll N;‘;z N

k
ns

Suppose that ¢’ is connected, i.e, f’ and g’ are jointly surjective. Since f is surjective by hy-
pothesis and f” and g’ are jointly surjective (by the universal property of pushout), we have
that f” o f, g’ o f" and ¢g”’ o g’ are jointly surjective. Moreover,

gl/ofl:f/log:f/lofoh
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where h is a factorization of g through f (that exists, since f is supposed surjective). Thus, we
conclude that f” o f and g’ o g are jointly surjective.

Conversely, suppose that ¢ ; ¢’ is connected, i.e., f”’ o f and g”’ o g are jointly surjective and
let y € S’. We have to show that y is in the image of f” or ¢g’. Recall that

S” =~ (S ]_[5')/~

where ~ is the equivalence relation induced by g(x) ~ f’(x) for x € N} so either y is in the image
of f’ or [y is the only preimage of g’ (y) by g’" and g"’(y) is not in the image of f”’]. In the former
case, we conclude directly, and in the latter, since f” o f and g’’ o g’ are jointly surjective, there
is x € N}, such that g” o g’(x) = g”(y), so that g’(x) = y, which is what we wanted. Thus, f”
and ¢’ are jointly surjective, i.e, ¢’ is connected. O

We can now prove our connectedness result for pseudoadjunctions:
Proposition 4.4.2.7. For every ¢ € PAdj,, ¢ is connected.

Proof. Suppose by contradiction that it is not true and let N € N be the smallest such that the
set S = {¢ € PAdj; | |#| = N and ¢ is not connected} is not empty. Given ¢ € S, let

(fl o ayehy) e e (fN % an % hn)

be a decomposition of ¢.
Note that there is at least one i € NY; such that a; = €. Indeed, given f, h € PAdj; such that f, 5, h
are 0-composable, a representant

N —3 T ¢ — N}

of Con?(f e 17 ¢ k) has the property that v is an epimorphism. Since epimorphisms are stable by
pushouts, given ¢” € PAdj, such that ¢” = (f{" e 17.¢0 h]) o1 - o1 (f; *0 17 %0 hy) with f, h] € PAdj]
forie N*k, a representant

L A (PR |
of Con™i($) has the property that v’ is an epimorphism (by induction on k), and in particular, ¢’
is connected. So let iy be minimal such that there is ¢ € S with a;, = €.

Suppose first that iy = 1. Then, given a representant

N, — T, <=—N&,

of ConPAd (fi %0 a1 % 1), we easily check that u; is an epimorphism. By Lemma 4.4.2.6, we deduce
that

(f2%0 2% h2) o1 -+ - &1 (fic %0 ak 0 i)
is not connected, contradicting the minimality of N.

Thus iy > 1. By the definition of iy, we have a;,—; = 1. There are then different cases depending

on |ﬁ0_1 |I

= if | fiy-1] < |fiy] = 2, then, since 97 (fi,—1 %0 Qi;-1 % hip—1) = 9] (fi, 0 @i, *0 hi,), We have

fio = fio-1% af(’?) g and hj_1=ge 91_(6) o hj,
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for some g € PAdj]. By Lemma 4.4.2.4, we have
Con™ (19 g o 97 (€)) o1 (37 (1) % g0 €)) = Con™ V(3] () 0 g €) +1 (20 g % 3} (€)))
thus, by functoriality of Con”"9, the morphism ¢’ defined by

¢/ = (fl * 71 % hl) 1 (fio—z *) Xiy—2 %0 hi0—2)

° (fio—l * g €% hio) °1 (fio—l %9 hio)
* (fi0+1 *0 Xiy+1 *0 hi0+1) 19 (fk * Q) % hi)

satisfies that Con™ ¥ (¢) = Con™(¢’). So ¢’ is not connected, and the (iy—1)-th 2-gene-
rator in the decomposition of ¢’ is €, contradicting the minimality of iy;

- if [fi,=1] = |fi,| + 2, then the case is similar to the previous one;
- if [fi,-1] = |fi,| — 1, then, since Con™Ai((7 e f) oy (feg€)) = ConPAdj(idg) by Lemma 4.4.2.5,
the 2-cell ¢’ defined by
¢, = (fl * 1 % hl) °1° (fio—z *) Xiy—2 *0 hio—z)
°1 (fi0+1 *0 Xig+1 *0 hio+1) °1° (fk * Ok *0 hk)

satisfies Con™di (¢) = Con™ 4 (¢’) (by functoriality of Con™%), so that ¢’ is not connected,
contradicting the minimality of N

— if |fi;-1] = |fi,| + 1, then the situation is similar to the previous one, since, by Lemma 4.4.2.5,

Con"™((g e 1) o1 (€% g)) = Con™(id2);

- finally, the case |fi,—1| = |f;,| is impossible since

fio=1%0 91 (Aiy-1) % his—1 = fiy %0 97 (@iy) 0 hi
and
O (ajg—1) =fepg# geof =037 (as)- O

4.4.2.8 — Termination. We are now able to prove the termination of the rewriting system:

Proposition 4.4.2.9. The rewriting system associated to PAdj is terminating.

Proof. Suppose by contradiction that there is a sequence S;: ¢; = ¢;41 for i € N with S; rewriting
step in PAdj;. Since

9, (N)| =19, (M) =2 and |95 (N)| = |9, (MN)] =0,
if the inner 3-generator of S; is N or W, for some i € N, then |¢;11| = |@;| — 2. Since

0y (Xa,f.p) = 05 (Xapp) = 2

for 0-composable @ € PAdj,, f € PAdj], p € PAdj,, it means that there is iy € N such thatfori e N
with i > iy, the inner generator of S; is an interchanger. By [DV18, Theorem 16], there is no
infinite sequence of rewriting steps made of interchangers. Thus, by Proposition 4.4.2.7, there
is no infinite sequence of rewriting steps whose inner 3-generator is an interchanger of PAdj,

contradicting the existence of (S;);en. Thus, PAdj is terminating. m]
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4.4.2.10 — Coherence. Finally, we can apply our coherence criterion and show that:
Theorem 4.4.2.11. PAdj is a coherent Gray presentation.

Proof. By Proposition 4.4.2.9, the rewriting system associated to PAdj is terminating. By Theo-
rem 4.3.4.8, since Ry, R, € PAdj,, the conclusion follows. O

4.4.3 Frobenius pseudomonoid

We now consider the example of Frobenius pseudomonoids [Str04] that categorify the classical
notion of Frobenius algebras. Sadly, our methods do not apply to show the coherence of the
full structure since the units induce non-joinable critical branchings, so that we only consider
non-unitary Frobenius pseudomonoids. Moreover, we were not able to show termination of the
associated rewriting system, so that our coherence result is assuming termination. We still present
this partial example, hoping it might motivate the developments of termination arguments as
future works. We refer to [DV16] for a more complete treatment of the coherence of Frobenius
pseudomonoids.

4.4.3.1 — Gray presentation. We define the 3-prepolygraph P of non-unitary Frobenius pseu-
domonoids as follows. We put

P():{*} Plz{i} Pzz{‘utéﬁi,Gliﬁé}

where we write 7 for the composite 1 - - - oy 1 of n copies of 1 for n € N. We picture y and €
by ¥ and A respectively, and we define P3 by P3 = {N, U, A, A®, M, M°} where

N A = X A AR wl §=&
n: A= X A = A w: 51=8

As before, we then extend P to a Gray presentation by adding 3-generators corresponding to inter-
change generators and 4-generators corresponding to independence generators and interchange
naturality generators.

4.4.3.2 — Critical branchings and coherence. Using the constructive proof of Theorem 4.3.5.8,
we find nineteen critical branchings for the above Gray presentation, which induce nineteen
associated formal 4-generators Ry, . . ., Rjo shown on Figure 4.1. We then define PFrob as the Gray
presentation obtained from P by adding to P, the above 4-generators Ry, ..., Ry9. Since we were
not able to show termination, we only conclude that:

Proposition 4.4.3.3. If the rewriting system associated to PFrob is terminating, then PFrob is a
coherent Gray presentation.

Proof. This is a consequence of Theorem 4.3.4.8. O

4.4.4 Self-dualities

We now consider the last example of self-dualities, which is an untyped variant of the one of
Section 4.4.2. This example requires a special treatment since the underlying rewriting system is
not terminating, and, more fundamentally, the induces (3, 2)-Gray category is not expected to be
fully coherent. We show instead a partial coherence result by adapting the general methods of
Section 4.3.
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4.4.4.1 — Gray presentation. We define the 3-prepolygraph of self-dualities as the 3-prepoly-
graph P such that

Po={x} Pi={l:x—>=x%} Py={n:id, = 2,¢: 2> 1id,}

where we write 7i for the composite 1 o) - - - ¢ 1 of n copies of 1 for n € N. The 2-generators 7
and e are pictured as (M) and \_ respectively, and P3 is defined by P3 = {N, N} where

N: (e 1) e (1e€) Eid? and W: (1eyn)e; (e9 1) Eid?

which are pictured by
N:m%| and W: m%|

As usual, we then extend P to a Gray presentation by adding 3-generators corresponding to inter-
change generators and 4-generators corresponding to independence generators and interchange
naturality generators. We also add the same 4-generators that we added for pseudoadjunctions

oY o]

to P and we denote SD the resulting Gray presentation. We would like to apply Theorem 4.3.4.8
to obtain a coherence result, but it is not possible here. Indeed, SD is not terminating, since we
have the reduction

5=Up=0o=-0pU-%

Moreover, this endomorphism 3-cell is not expected to be an identity, discarding hopes for the
presentation to be coherent. Following [DV16], we can still aim at showing a partial coherence
result by restricting to 2-cells which are connected (in the sense of Section 4.4.2). In this case,
termination can be shown by using the same arguments as for pseudoadjunctions. However, there
is still the problem that some critical branchings are not joinable since, for instance, we have

e lf - U

for which there is little hope that a Knuth-Bendix completion will provide a reasonably small
presentation. However, one can obtain a rewriting system, introduced below, which is terminating
on connected 2-cells and confluent by orienting the interchangers. Using this rewriting system,
we are able to show a partial coherence result.

4.4.4.2 — A better rewriting system. We define an alternate 3-prepolygraph Q such that
Q; =P; forie{0,1,2} and Q3= {N,U}uQ™

where Q™ contains, for n € N, the following 3-generators, called Q-interchange generators:

Yt A LN =2 N A e DU = A 1Y
Xar U N2 Yl A X YU Ul Y
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There is a 3-prefunctor T': Q* — P uniquely defined by I'(u) = u for i € {0,1,2} andu € Q;
and, for n € N, mapping the 3-generators as follows:

Ni— N N> U
’ -1 ’
Xn,ﬁ,n = Xn,ﬁ,n Xn,r’l,e = Xﬂﬁ,f
’ -1 ’
Xe,ﬁ,ry — Xe,ﬁ,e Xe,r’l,e = XE,ﬁ,e .

We get a rewriting system (Q, Z) by putting F = F’ if and only if I'(F) = T'(F’) for parallel
3-cells F, F’ € Q;. Note that, given F: ¢ = ¢’ € Q;, the 2-cell ¢ is connected if and only if ¢’ is
connected. Indeed, one easily checks that for every A € Qg, we have

Con?(3; (A)) = Con?(3; (A))
so that Con?(¢) = Con?(¢").

4.4.4.3 — Termination. We first show a weak termination property for Q, stating that it is
terminating on connected 2-cells:

Proposition 4.4.4.4. Given a connected 2-cell ¢ in Q;, there is no infinite sequence F;: ¢; = ¢irq
where ¢y = ¢ and F; is a rewriting step fori € N.

Proof. Since a rewriting step whose inner 3-generator is N or /1 decrease by two the number of
2-generators in a diagram, it is enough to show that there is no infinite sequence of composable
rewriting steps made of elements of Qént. Given a 2-cell ¢ = (11 o) a1 o9 7ig) o1 - - - o1 (Mg o A %) Tig)
of Q;, with ¢; € Q; and m;, n; € N for i € N, we define N;(§) € N by

Ni(¢) = {(i,j) € (N})? | i < jand a; = n and a; = €}|.

Moreover, if we write p,q € Ng and iy, ..., ip, j1,...,jq € Nz for the unique integers such that
i1 <.+ <lp J1 << g {il,...,ip,jl,...,jq}=Ni
and a;, =nand a;, = € forr € N} and s € N, we define N (¢) € NP and N5 (¢) € N4 by
Nzn(gb):(mip,...,m,-l) and N7 ($) = (nj,,....nj,).

Finally, we define N(¢§) € N*P*4 by
N(¢) = (Ni($), N (8), N5 (¢))

and we equip N?, N7 and N'*#*9 with the lexicographical ordering <.,. Now, keeping ¢ as above,
let

A'l (l‘oAOO r)Ol p: QZS = ¢/ € Q;
be a rewriting step for some L, € QJ, A, p, ¢’ € Q; and A € Q3 with

@' = (1] e ay o 7iy) o1 -+ - o1 (17 % ) % i)

or A = X/

for some ] € Q; and m/,n; € Nfori € NZ. IfA =X/ .

n.u.e
then N1(¢’) = Ny (¢§) — 1.

Otherwise, if A = X3, for some u € N, then we have N;(¢) = N;(¢’) and, writing r
for |A| + 1, we have mg = mg for s € N} \ {r,r + 1}. Moreover, we have m, ; < m;s; — 2, so
that N/ (¢") <iex N'(9).

Otherwise, A = X/, for some u € N. Then Ng(d)) = Nzn(gb’) and, by a similar argument as
before, N5 (¢’) <iex N; (4). In any case, we get that N(¢) <jex N(¢’). Since <jey is well-founded,
we conclude that there is no infinite sequence of rewriting steps R;: ¢; = ¢;41 for i € N with ¢,

connected. O

for some u € N,
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4.4.4.5 — Confluence. We now aim at showing the confluence of the branchings of Q. The idea
is to use a critical pair lemma (Theorem 4.3.4.5) and a Newman’s lemma (Theorem 4.3.2.5) adapted
to the specific setting of Q where the notion of critical branching is different and where we only
consider connected 2-cells as sources.

We say that a branching (S;,52) of Q is connected when 9, (S;) is connected. We say that
it is Q-critical when it is local, minimal, not trivial and not independent. We first state adapted
versions of the critical pair lemma and Newman’s lemma to the setting of Q:

Lemma 4.4.4.6. If all connected Q-critical branchings (S1,S2) of (Q,=) are confluent, then all
connected local branchings of (Q, E) are confluent.

Proof. By a direct adaptation of the proof of Theorem 4.3.4.5 to connected 2-cells and rewriting
steps between connected 2-cells. O

Lemma 4.4.4.7. If all connected local branchings of (Q, =) are confluent, then all connected branch-
ings of (Q, £) are confluent.

Proof. By a direct adaptation of Theorem 4.3.2.5 to connected 2-cells and rewriting steps between
connected 2-cells, using Proposition 4.4.4.4. O

By the above properties, in order to deduce the confluence of the branchings of Q, it is enough to
check that the critical branchings of Q are confluent, fact that we verify in the following property:

Lemma 4.4.4.8. The connected Q-critical branchings of (Q, ) are confluent.

Proof. We first consider the Q-critical branchings (S, Sy) that are structural-structural, i.e., such
that the inner 3-generators of S; and S; are Q-interchange generators. We classify them as
separated, half-separated and not separated. There are eight kinds of separated structural-structural
Q-critical branchings listed below:

o UIIEITU < Z{IOU = = ULY

onl] U =nYIIU=n] UL Y
o “[InllU=YnlU=UlnlY
o NUn U= nllnhu = Aln Y
o (1010 - U1U TN - ULl Ir
o NULIn=nllUlIN=allY]Ir
o U0 = Ullalln = VIl alr
O AN alinlT=nllalll
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Each one can be shown confluent for = by considering the confluence of a natural branching in
the rewriting system (SD <3, ~°P). For example, (5) is joinable as follows:

UITUTN="1IU[ln="11"1]] -
ULV ITN=Ul n=Y11"

Up to inverses, it corresponds to the following confluent natural branching of (SD, ~3P):

M

By the definition of =, (5) is then confluent for =. The other kinds of separated structural-structural
Q-critical branchings are confluent by similar arguments.

There are four kinds of half-separated structural-structural Q-critical branchings listed here
U .ee .ee
(1) < U fL =N
U .ee .ee
(2) & U f =
(3) ﬂ (\J = (L =
11 N
(4) ﬂ m S f =
(11 N
Each one can be shown confluent for = by considering the confluence of a natural branching
in (SD <3, ~°P). For example, (1) is joinable as follows

U\”NS“HN
U\ NE>U|||

S 25 2
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Up to inverses, it corresponds to the following confluent natural branching of (SD <3, ~°P):

i[RI
J[|V— v

By definition of , it implies that (1) is confluent for =.

There are two kinds of not separated structural-structural Q-critical branchings listed below:
U .ee .ee .ee
(1) 0 < U O = O
“ o= nll0=ql]°
They are not confluent but they are not connected branchings.
We now consider structural-operational Q-critical branchings, i.e., those Q-critical branch-
ings (51, S2) such that the inner 3-generator of S; is a Q-interchange generator and the inner

3-generator of S; is N or 1. We classify them as separated and half-separated. There are four
kinds of separated structural-operational Q-critical branchings listed below:

o (U[lne ndlIN =11
o N[lne [N =1rn
o (U[|Ue J[|U =110
o N[[Ve WU =110

Each one can be shown confluent by considering a natural branching of (SD<s3, ~°), like was
done above.

There are two kinds of half-separated structural-operational Q-critical branchings listed below:
(1) UU = UU > U
(2) M & M = N.

As above, each one of them can be proved confluent by considering the associated critical branch-
ing in (SD <3, ~°P).

Note that there are no operational-operational Q-critical branching, i.e., Q-critical branch-
ings (S, Sz) where the inner 3-generators of both S; and S; are in {N, U}. Hence, all connected
Q-critical branchings are confluent. O
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We can conclude the following weak confluence property:
Proposition 4.4.4.9. All the connected branchings of (Q, E) are confluent.
Proof. By Lemmas 4.4.4.6 to 4.4.4.8. O

4.4.4.10 — Coherence. In order to obtain a weak coherence property for SD, we first state several
adapted versions of the properties of Section 4.3.1 to the setting of connected 2-cells:

Lemma 4.4.4.11. Given F: ¢ = ¢’ € C_13T where either ¢ or ¢ is connected, we have F = G oy H™1
forsomeG: ¢ = Yy andH: ¢’ = .

Proof. By a direct adaptation of Proposition 4.3.1.3 involving connected 2-cells only, and using
Proposition 4.4.4.9. m|

Lemma 4.4.4.12. Given F|,F,: ¢ = ¢’ € C_13, if ¢ is connected, then F; = F; in C_13T

Proof. Since ¢ is connected, ¢’ is connected. By Proposition 4.4.4.4, there is G: ¢’ = / € Qs
such that 1 is a normal form for Q. By Proposition 4.4.4.9, there is Hy, Hy: / = ¢’ € Q3 such
that Fj e5 G &y HLT: F1 ¢, G o, H,. Since ¢ is a normal form, H; = H, = idw. So Fi e G = F, ¢ G,
thus F; = F,in Q5. ]

Lemma 4.4.4.13. Given F,F: ¢ = ¢’ € 6; if ¢ is connected, then F; = F, in 6;

Proof. By directly adapting the proof of Proposition 4.3.1.4, using Lemmas 4.4.4.11 and 4.4.4.12. O
We can now conclude with a weak coherence property for SD:

Theorem 4.4.4.14. Given Fi,F;: ¢ = ¢’ € S_D3T with ¢ or ¢’ connected, we have Fi = F,.

Proof. LetT": Q —SD be the 3-prefunctor Wthh is the factorization of I' through the canoni-
cal 3-prefunctor (Q<3)* — Q By definition of D' ,fori € {1,2}, we have

-1 -1
Fi=GigeoHiy o -0 Gig, o2 Hyy

for some k; € N, 2-cells ¢y, ..., Pix, Yits- - Vik, € Q; such that ¢;p = ¢ and ¢;x, = ¢’, and,
for j € N, 3-cells

Gij: ¢ij-1=> VYi; and Hij: di; = Vi
of SDs. Since either ¢ or ¢’ is connected, we have that all the ¢; ;’s and the ¢/; ;’s are connected.

Moreover, all the GU s and the Hj;’s are in the image of I". So, for i € {1,2}, F; = I'"(F/) for
some F/: ¢ = ¢’ € Q By Lemma 4.4.4.13, we have F| = F,, so that F; = F,. O
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recollement

Résumeé : Les catégories supérieures sont des structures
algébriques constituées de cellules de différentes dimen-
sions et équipées d’opérations de composition. Elles ont
trouvé plusieurs applications en mathématiques (en parti-
culier, dans le domaine de la topologie algébrique) et en
informatique théorique. Ce sont des structures notoirement
complexes, dont la manipulation est technique et sujette aux
erreurs. Le but de cette these est d’introduire plusieurs ou-
tils informatiques pour les variantes strictes et semi-strictes
des catégories supérieures qui facilitent I'étude de ces ob-
jets. Afin de répresenter les catégories supérieures par des
données finies, de sorte que ces derniéres puissent étre
transmises comme entrée a un programme, on utilise la
structure de polygraphe, initialement introduite par Street
et Burroni pour les catégories strictes, et généralisée par
Batanin a toute théorie algébrique de catégorie supérieure,
qui permet de présenter des catégories supérieures par des
systémes de générateurs. Le premier probleme abordé par
cette these est celui du probleme du mot sur les catégo-
ries strictes, qui consiste a déterminer si deux composées
formelles de cellules d’'une catégorie stricte représentent la
méme cellule. On donne une solution implémentable et rela-
tivement efficace pour ce probleme en améliorant la procé-
dure de décision initialement donnée par Makkai. Ensuite,
nous traitons les formalismes pour les diagrammes de re-
collement. Ces derniers permettent de représenter effica-

cement les cellules de catégories strictes en utilisant des
structures ensemblistes et pour lesquels une implémenta-
tion efficace est désirable. On étudie en particulier les trois
principaux formalismes qui ont été introduits jusqu’ici : les
complexes de parité de Street, les schémas de recollement
de Johnson et les complexes dirigés augmentés de Stei-
ner. Notre étude révéle que les axiomatiques des deux pre-
miers est défectueuse, ce qui motive l'introduction d’une
nouvelle structure, appelée complexe sans torsion, dont les
axiomes ont de bonnes propriétés et généralisent ceux des
autres formalismes. On montre que cette nouvelle structure
est adéquate pour représenter informatiquement les caté-
gories strictes en en donnant une implémentation. Pour fi-
nir, on considére le probléme des présentations cohérentes
de structures algébriques exprimées dans les catégories
faibles de dimension 3, ces derniéres étant connues pour
étre équivalentes aux catégories de Gray. En s’inspirant
d’'un résultat important de Squier dans le context des mo-
noides, on adapte les résultats classiques de la théorie de
la réécriture au contexte des catégories de Gray et relions
la cohérence de présentations de catégories de Gray a la
confluence de branchements critiques d’'un systeme de ré-
écriture associé. Avec ce résultat, nous déduisons une pro-
cédure semi-automatique pour produire des présentations
cohérentes de catégories de Gray, et nous I'appliquons sur
plusieurs exemples.

Title: Computational Descriptions of Higher Categories
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Abstract: Higher categories are algebraic structures con-
sisting of cells of various dimensions equipped with no-
tions of composition, which have found many applications in
mathematics (algebraic topology in particular) and theoreti-
cal computer science. They are notably complicated struc-
tures whose manipulation is technical and error-prone. The
purpose of this thesis is to introduce several computational
tools for strict and semi-strict variants of higher categories
that ease the study of these objects. In order to represent
higher categories as finite data, so that they can be given
as input to a program, we use the structure of polygraph,
initially introduced by Street and Burroni for strict categories
and then generalized by Batanin to any algebraic theory of
higher category, which allows presenting higher categories
by means of systems of generators. The first problem tack-
led by this thesis is then the one of the word problem on
strict categories, which consists in deciding whether two for-
mal composites of cells of strict categories represent the
same cell. We give an implementable and relatively effi-
cient solution for it by improving the decidability procedure
initially given by Makkai. Then, we turn to pasting diagram
formalisms for strict categories, that enable to efficiently

represent cells of strict categories using set-like structures
and for which a reliable implementation is desirable. We
consider the three main formalisms that have been intro-
duced until now, namely Street’s parity complexes, John-
son’s pasting schemes and Steiner’'s augmented directed
complexes. Our study reveals that the axiomatics of the first
two ones are defective, which motivates the introduction of a
new structure, called torsion-free complexes, whose axioms
have nice properties and generalize those of the three other
formalisms. We also show that they are amenable to con-
crete computation, by providing an implementation of those.
Finally, we consider the problem of coherence of presen-
tations of algebraic structures expressed in 3-dimensional
weak categories, the latter being known to be equivalent to
Gray categories. Taking inspiration from a celebrated result
given by Squier in the context of monoids, we adapt the clas-
sical tools from rewriting theory to the setting of Gray cate-
gories and relate the coherence of presentations of Gray
categories to the confluence of the critical branchings of an
associated rewriting system. From this result, we deduce
a semi-automated procedure to find coherent presentations
of Gray categories that we apply on several examples.
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