Université Aix-Marseille Parcours PEIP 1

Introduction à l'analyse

Devoir maison nº3 à rendre le vendredi 22 novembre 2013 au plus tard

Soit $a \in \mathbb{R}$. Le but de ce problème est de résoudre l'équation différentielle

(E)
$$(1+t^2)x''(t) + tx'(t) + a^2x(t) = 0, \quad t \in \mathbb{R},$$

où $x : \mathbb{R} \to \mathbb{R}$ est une fonction deux fois dérivable.

- 1. Soit $\varphi : \mathbb{R} \to \mathbb{R}$ une bijection deux fois dérivable dont la dérivée ne s'annule nulle part sur \mathbb{R} . Soit $x : \mathbb{R} \to \mathbb{R}$ une fonction deux fois dérivable. On définit la fonction $y : \mathbb{R} \to \mathbb{R}$ par $y(s) = x(\varphi^{-1}(s))$.
 - (a) Montrer que ϕ^{-1} est deux fois dérivable sur $\mathbb R$ et donner $(\phi^{-1})'$ et $(\phi^{-1})''$ en fonction de ϕ' et ϕ'' .
 - (b) En déduire que y est deux fois dérivable sur \mathbb{R} .
 - (c) En écrivant $x(t) = y(\varphi(t))$, calculer la dérivée et la dérivée seconde de x en fonction des dérivées et dérivées secondes de y et φ .
- 2. On suppose maintenant que x est solution de l'équation différentielle (E).
 - (a) Déterminer, en fonction de φ et ses dérivées, l'équation qui lie $y \circ \varphi$, $y' \circ \varphi$ et $y'' \circ \varphi$.
 - (b) Montrer que la fonction φ définie par $\varphi(t) = \operatorname{argsh} t$ vérifie les hypothèses du problème.
 - (c) Montrer alors qu'avec ce choix de φ , y vérifie une équation différentielle linéaire du second ordre homogène à coefficients constants que l'on déterminera.
 - (d) Résoudre, selon les valeurs de a, cette équation différentielle.
- 3. Donner, selon les valeurs de a, toutes les solutions de (E).