Université Aix-Marseille Parcours PEIP

Introduction à l'analyse

Devoir maison nº4

Dans ce problème, on va montrer par l'absurde que le nombre π est irrationnel. On suppose donc que π est rationnel, c'est-à-dire qu'il existe deux entiers p et q, $q \neq 0$, tels que $\pi = \frac{p}{q}$.

- 1. Question préliminaire : Montrer qu'une suite d'entiers qui converge est nécessairement constante à partir d'un certain rang.
- 2. Pour tout $n \in \mathbb{N}$, on note

$$I_n = \int_0^\pi (x(p - qx))^n \sin x \, dx.$$

- (i) Calculer I_0 et I_1 .
- (ii) Étudier le signe de $x \mapsto (x(p-qx)^n) \sin x$ sur l'intervalle $[0,\pi]$. En déduire que $I_n > 0$ pour tout $n \in \mathbb{N}$.
- (iii) En intégrant par parties (au moins deux fois), montrer que

$$I_n = 2nq(2n-1)I_{n-1} - n(n-1)p^2I_{n-2}$$
 pour tout $n \ge 2$.

(iv) En déduire que pour tout $n \in \mathbb{N}$, I_n est un multiple entier de n! (on pourra faire un raisonnement par récurrence).

On notera $I_n = n!k_n$, $n \in \mathbb{N}$.

- 3. (i) Montrer que pour tout $x \in [0, \pi]$, $0 \le x(p qx) \le \frac{p^2}{4q}$.
 - (ii) En déduire que

$$I_n \leq 2\left(\frac{p^2}{4q}\right)^n$$
 pour tout $n \in \mathbb{N}$.

- (iii) Montrer alors que la suite $(k_n)_{n\in\mathbb{N}}$ (où k_n a été défini au 2.(iv)) est convergente, de limite 0.
- (iv) Montrer que nécessairement $k_n = 0$ pour n assez grand (on se souviendra que $k_n \in \mathbb{N}$ pour tout $n \in \mathbb{N}$ et on pourra utiliser le résultat de la question préliminaire).
- 4. Montrer que 2.(ii) et 3.(iv) sont en contradiction. Que peut-on en conclure ?