PARCOURS PEIP - Introduction à l'analyse

Devoir surveillé nº 3

Mardi 18 décembre 2012

Vous répondrez directement aux questions de l'exercice 3 sur la feuille d'énoncé en cochant les bonnes réponses. N'oubliez pas de mettre votre nom sur cette feuille.

Exercice 1. (7 points)

Calculer une primitive de chacune des fonctions suivantes, sur un intervalle où le calcul est possible, intervalle que l'on précisera :

1.
$$f_1(x) = \frac{\ln x}{x^2}$$
;

3.
$$f_3(x) = \frac{2x+5}{x^2+6x+9}$$
;

2.
$$f_2(x) = \frac{e^x + 4}{e^{2x} + 4}$$
;

4.
$$f_4(x) = \frac{1}{(x^2+1)^{\frac{3}{2}}}$$

(on pourra effectuer le changement de variable $x = \sinh t$).

Exercice 2. (6 points)

Soit $a, b \in \mathbb{R}$ tels que |a| < 1. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par récurrence par $u_0 \in \mathbb{R}$ et $u_{n+1} = a \sin u_n + b$.

1. Rappeler la formule qui donne $\sin x - \sin y$ en fonction de $\sin(\frac{x-y}{2})$ et $\cos(\frac{x+y}{2})$. En déduire que

$$|\sin x - \sin y| \le |x - y|$$
, pour tout $x, y \in \mathbb{R}$.

2. Montrer que pour tout $n \in \mathbb{N}$, $n \ge 1$, on a : $|u_{n+1} - u_n| \le |a| |u_n - u_{n-1}|$.

En déduire que : $|u_{n+1} - u_n| \le |a|^n |u_1 - u_0|$ pour tout $n \in \mathbb{N}$.

Indication : on pourra faire un raisonnement par récurrence.

3. Soit $0 \le \alpha < 1$. Après avoir montré le fait que, pour $p,q \in \mathbb{N}$ avec $p \ge q$, on a

$$\alpha^q + \dots + \alpha^p = \alpha^q \frac{1 - \alpha^{p-q+1}}{1 - \alpha} \le \frac{\alpha^q}{1 - \alpha},$$

montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est de Cauchy.

4. En étudiant une fonction appropriée, montrer que l'équation $\ell = a \sin \ell + b$ admet une unique solution $\ell \in \mathbb{R}$ (on ne demande pas la valeur de ℓ). En déduire que $u_n \xrightarrow[n \to \infty]{} \ell$.

Exercice 3. (2 points) Que peut-on dire de la suite définie par $u_0 \in]0, \frac{\pi}{2}[$ et la relation de récurrence $u_{n+1} = \sin u_n, n \in \mathbb{N}$ (est-elle convergente, et pourquoi ? si oui, vers quoi ?) ?

Prénom:

Nom:

Groupe:

Exercice 4. (8 points)

Dans chacune des questions ci-dessous, seules deux réponses sont exactes. Une réponse juste est créditée de 0,5 point, deux réponses justes rapportent un point ; 0,3 ou 4 réponses ne rapportent aucun point, une réponse fausse vaut -0,25 point.

On considère trois suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ vérifiant $u_n\leq v_n\leq w_n$ pour tout $n\in\mathbb{N}$.

- 1. Si $(v_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$, alors
 - (a) $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée;
 - (b) $(w_n)_{n\in\mathbb{N}}$ n'est pas majorée;
 - (c) $(w_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$;
 - (d) $(v_n)_{n\in\mathbb{N}}$ n'est pas minorée.
- 2. Si, pour tout $n \in \mathbb{N}$, on a $u_n + v_n = w_n$ et si $(w_n)_{n \in \mathbb{N}}$ converge vers 0, alors
 - (a) $(u_n)_{n\in\mathbb{N}}$ converge;
 - (b) $(v_n)_{n\in\mathbb{N}}$ n'est pas minorée;
 - (c) $\exists n_0 \in \mathbb{N} \text{ tel que } \forall n \geq n_0 : u_n \leq \frac{1}{2}$;
 - (d) $\exists n \in \mathbb{N} \text{ tel que } u_n > \frac{1}{2} w_n$.
- 3. Si $(w_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$, alors
 - (a) $(v_n)_{n\in\mathbb{N}}$ n'est pas majorée;
 - (b) $(u_n + v_n)_{n \in \mathbb{N}}$ diverge vers $-\infty$;
 - (c) $(u_n)_{n\in\mathbb{N}}$ est majorée;
 - (d) $(v_n)_{n\in\mathbb{N}}$ est minorée.
- 4. Si $(v_n)_{n\in\mathbb{N}}$ est une suite croissante et si $(w_n)_{n\in\mathbb{N}}$ converge, alors
 - (a) $(w_n)_{n\in\mathbb{N}}$ est croissante;
 - (b) $(u_n)_{n\in\mathbb{N}}$ est croissante;
 - (c) $(v_n)_{n\in\mathbb{N}}$ converge;
 - (d) $(u_n)_{n\in\mathbb{N}}$ est majorée.

- 5. Soit A l'ensemble $\left\{\frac{1}{1+x^2}, x \in \mathbb{R}\right\}$.
 - (a) A est borné :
 - (b) $\inf A > 0$;
 - (c) $\sup A = 1$;
 - (d) le complémentaire de A est $[1, +\infty[$.
- 6. Soit B l'ensemble $\left\{1 + \frac{1}{n+1}, n \in \mathbb{N}\right\}$.
 - (a) $B \cap [0,1] = \emptyset$;
 - (b) B n'a pas de borne supérieure ;
 - (c) $\inf B \in B$;
 - (d) $\inf B \leq 1$.
- 7. Soit f l'application définie de \mathbb{R} dans \mathbb{R} par $f(x) = x + \frac{1}{1+x^2}$.
 - (a) f est injective;
 - (b) $\exists y \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}$, $f(x) \neq y$;
 - (c) $\forall a \in \mathbb{R}, f^{-1}(\{a\})$ a un élément et un seul ;
 - (d) f n'est pas bijective.
- 8. Soit $g:[0,\infty[\to\mathbb{R}$ définie par $g(x)=x+\frac{1}{1+x}$.
 - (a) g ne s'annule pas ;
 - (b) g est une bijection de $[0, +\infty[$ sur $[0, +\infty[$;
 - (c) g est surjective;
 - (d) g est injective.