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A THEOREM OF THE DORE-VENNI TYPE FOR
NONCOMMUTING OPERATORS

SYLVIE MONNIAUX AND JAN PRUSS

ABSTRACT. A theorem of the Dore-Venni type for the sum of two closed linear
operators is proved, where the operators are noncommuting but instead satisfy
a certain commutator condition. This result is then applied to obtain optimal
regularity results for parabolic evolution equations u(t) + L(t)u(t) = f(t) and
evolutionary integral equations u(t) + fot a(t — s)L(s)u(s)ds = g(t) which are
nonautonomous. The domains of the involved operators L(t) may depend on ¢,
but L(t)~! is required to satisfy a certain smoothness property. The results are
then applied to parabolic partial differential and integro-differential equations.

1. INTRODUCTION

Let X be a Banach space with norm |-|, and let A be a closed linear operator in X
with dense domain D(A); as usual, N(A), R(A), p(A4), o(A) denote kernel, range,
spectrum, resolvent set of A, respectively. A is called sectorial if N(A) = {0}, R(A)
is dense in X, p(A) D (—00,0), and My := sup,-,7|(r + A)7'| < oo. The class
of sectorial operators will be denoted by S(X). If A is sectorial it follows easily
that p(—A) contains a nonempty open sector X, := {z € C: z # 0,|arg z| < ¢}.
Therefore, for such operators it makes sense to define the spectral angle ¢4 of A by
means of

(1.1) pa =1nf{d > 0:p(A) D =Xy, Mr_y < 0},
where My = sup{|A\(A + A)7!| : X\ € X, }. Obviously,
m > g > arg(o(A)) ;= sup{|arg\| : A £ 0, € o(A)}.

Now given two sectorial operators A and B which are commuting in the sense that
(1.2)

A+ A Y u+B) P =(p+B)*A+ A7, forall A€ p(—A), u€p(—B),
about 20 years ago, Da Prato and Grisvard [8] proved that the sum A + B with
(natural) domain D(A + B) := D(A) N D(B) is densely defined, closable, and

its closure L is again sectorial with ¢;, < max{¢a,¢p}, provided the parabolicity
assumption ¢4 + ¢p < 7 is satisfied.
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The natural question arising in this context is whether A + B is already closed,
i.e. L = A+ B. Da Prato and Grisvard [8] were able to show the latter in certain
special cases when X is a Hilbert space, but in general A+ B need not be closed, as
was pointed out by Baillon and Clément [3]. A positive answer was given by Dore
and Venni [9], even for non-Hilbert spaces.

To describe their result, observe that for the class of sectorial operators one can
define complex powers by means of the standard Dunford integral; these will be
closed linear and densely defined, but unbounded in general. A sectorial operator
A is said to admit bounded imaginary powers if the purely imaginary powers A%
of A are uniformly bounded for s € [—1,1]. It then can be shown that A% forms a
strongly continuous Cy-group of bounded linear operators. The class of such A will
be denoted by BIP(X). The type 04 of the Co-group A% is called the power angle
of A, i.e. 04 :=limy_ o0 |s| ' log|A*|. The inequality 64 > ¢4 has been proved
in Priiss and Sohr [17].

Assuming that the Banach space X is of class H7 (see Section 2), that A and B
are commuting and admit bounded imaginary powers, and that the strong parabol-
icity condition 04 + 0p < 7 is satisfied, the Dore-Venni theorem in the extended
version obtained by Priiss and Sohr [17] states that A+ B is closed, sectorial, admits
bounded imaginary powers, and 645 < max{64,05}.

Both, the Da Prato-Grisvard theorem and the Dore-Venni theorem have impor-
tant applications to evolution equations and to evolutionary integral equations, as
has been shown in many articles. By means of these results maximal regularity
properties of such problems can be proved, which are of interest not only in the
linear theory but in particular for nonlinear problems.

However, the commutativity assumption appears to be fairly restrictive. Con-
sider for example an evolution equation of the form

(1.3) at) + Lu(t) = f(t), >0,  u(0)=0,

in a Banach space X, where L(t) is a family of sectorial but generally unbounded
operators in X. The commutativity assumption then requires the family L(t) to
be independent of t. Therefore it is very desirable to weaken this condition. For
the Da Prato-Grisvard theorem it is well known how to do this. Already Da Prato
and Grisvard [8] themselves presented a condition on the commutator of B and
(A + A)~! such that their result still holds, and later their condition was replaced
by a different, more flexible one by Labbas and Terreni [14]; see also Fuhrmann
[13]. For the Dore-Venni theorem such extensions are still missing, at present.

It is the purpose of this paper to close this gap. Our main result shows that
the Dore-Venni theorem remains valid in case A and B do not commute but are
subject to a commutator condition of the Labbas and Terreni type. The proof is
based on the techniques developed by Dore and Venni [9] and by Priiss and Sohr
[17], combined with new estimates resulting from the Labbas-Terreni condition
involving the complex powers of A and B.

Our main result yields new maximal regularity results, for evolution equations
as well as for evolutionary integral equations of the form

(1.4) u(t) +/O a(t — s)(L(s)u(s) — f(s)) ds=0, ¢>0,

where a(t) is a scalar kernel and L(t) is as before. For the case of parabolic evolution
equations (1.3) this is a straightforward extension of the work of Acquistapace and
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Terreni [2]; therefore the presentation is kept concise at that point, here. On the
other hand, for the evolutionary integral equation (1.4) the application of the main
result is not obvious; it involves new L!-estimates for the solutions of linear scalar
Volterra equations depending on a parameter.

The plan for this paper is as follows. In Section 2 the main results about the
sum A+ B of two closed linear operators are stated and discussed, while the proofs
are given in Section 4. Section 3 is devoted to the application of Theorem 1 and its
corollaries to evolution equations (1.3) and evolutionary integral equations (1.4).
Here emphasis is put on the interpretation of the commutator condition. The
L'-estimates for the resolvent kernel associated with a(t) which are needed for
the commutator condition are derived in Section 5. The paper concludes with
applications to parabolic partial differential and integro-differential equations which
are presented in Section 6.

2. THE MAIN RESULTS

Recall that a Banach space X is said to belong to the class H7 if the Hilbert
transform H defined by

(2.1) (Hf)(t) = lim fit—ys) ﬁ, teR, feCR;X),
e—0+ |s|>e T8

extends to a bounded linear operator on LP(R; X) for some p € (1,00). It is well-
known that the class H7 coincides with the class of Banach spaces having the
uniform martingale difference property (UMD-spaces), and that for such spaces
the Hilbert transform is bounded on LP(R; X) for every p € (1,00). In particular,
Hilbert spaces belong to H7, and if Y € H7 and (Q, i) is a o-finite measure space,
then LP(S2, u;Y) belongs to HT for each p € (1,00). For a reference and further
discussions we recommend the paper by Dore and Venni [9], the survey article
Burkholder [6], and the monograph Priiss [16].

Consider now two closed linear densely defined operators A and B which are sec-
torial, admit bounded imaginary powers, and are subject to the strong parabolicity
assumption 04 + 0p < 7. Fix angles o4 > 04, o > 0p, with

(2.2) w4+ pp <.
Then there are constants K 4, Kg, such that
(2.3) |A®™| < Kyel®lva ) |B®| < Kpel®?2 for all s € R.

Moreover, there is a constant Mp such that
(2.4) 4+ B)~" < Mg/|ul, forall j1 € S

A similar estimate is also valid for the resolvent of A, but if we assume in addition
that A is invertible, we have the stronger estimate

(2.5) A+ A < Ma/(1+|N]), forallAe X, ,,,

for some constant M 4. The commutator condition which will be employed here
reads as follows. We assume that there are constants 0 < a < < 1land c> 0
such that

c
2.6) |[AN+A) A (u+B) T = (u+B)TTATY| < ,
( ) | ( ) [ (/J‘ ) (M ) ]| = (1+ |A|1_0‘)|ILL|1+5
forall \€ Yn_o,, €3 py-
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We are now in position to state our main result.

Theorem 1. Suppose X is a Banach space of class HT , A and B are closed, linear,
densely defined operators in X which are sectorial and admit bounded imaginary
powers, and let A be invertible. Assume the strong parabolicity condition 04 +0p <
w, and fix angles oo > 04, o > 0p, such that p4 + ¢p < m holds.

Then there is a constant cg > 0 such that the operator A + B with domain
D(A)ND(B) is closed and invertible in X, provided A and B satisfy the commutator
condition (2.6)and ¢ < cg.

The idea of the proof is based on the formulas

1 [ —ipa-1 02 1 -1 -1
S=o e A™"B W:%/FQH—A) (n—B) dpu,
and
Loy dz 1 -1 -1
T2 A_ioo B4 sin(mz) " 2mi /F(,u — BT e+ A dp,

where v € (0,1) is arbitrary, and the contour I' is chosen appropriately. One can
then prove the identities

ASx + SBx =z for all z € D(B),
and
TAx+ BTx =z for all x € D(A).

Therefore, AS and SB are bounded or unbounded simultaneously, and the same
is true for TA and BT. The commutator condition (2.6) implies that SB — BT
is bounded; hence the operators AS, SB, T A, BT are bounded or unbounded
simultaneously. By means of the boundedness of the Hilbert transform in L?(R; X)
and with the aid of (2.6) one then can show that all these quantities are bounded.
This is the crucial step of the proof. Once this is done, one can construct left and
right inverses L and R by means of the commutator condition (2.6) as

L:=A"YI+Q)'AS, R:=TA'(I+P) A",

where P and @ are small in operator norm; it is here where the smallness of ¢ comes
in. Finally, R = L is an inverse, and since by construction AL is bounded, BL is
bounded as well.

From the estimates derived in the proof in Section 4 it will become apparent
that in the situation of Theorem 1 A + B will again be sectorial. More precisely,
we have

Corollary 1. Let the assumptions of Theorem 1 be satisfied, in particular let A
and B satisfy the commutator condition (2.6) with ¢ < cg.
Then A+ B is sectorial and ¢pa+p < max{pa, ¢p}.

Since the basic estimates for the resolvents and the imaginary powers of A and
B are basically invariant under shifts v + A or v + B where v > 0 (cf. Priiss and
Sohr [17]), but the constant ¢ in (2.6) decreases to zero if v — oo after replacing
0 by a slightly smaller and a by a slightly larger number, it is possible to remove
the smallness assumption on ¢, at the price of adding a possibly large constant v
to A+ B. We state this observation as
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Corollary 2. Let the assumptions of Theorem 1 be satisfied, in particular let A
and B satisfy the commutator condition (2.6), however, without any restriction of
the size of ¢ > 0.

Then A+ B with domain D(A) N D(B) is closed, and there is a number vy > 0
such that v + A + B is invertible for every v > vy, and there is a constant C > 0
such that

(v +A+B) Y <C/lv  forallv> .
In particular, the operator vo + A+ B is sectorial.

Some remarks concerning the commutator condition (2.6) seem to be in order.
The natural expression to be considered should be the commutator of the resolvents
of A and B, i.e.

COp) =N+ A" (p+B)" = (u+B) (A +A4)7.
If A and B are subject to the estimates (2.5) and (2.4), then

MaMp
[CAp)| < ————, foral A€ X _,,, p €Xn -
(L4 [ADI o o
This estimate suggests that, instead of (2.6), we look at conditions of the form
MasMp
C\p)| < ——+—, forall X e _,,, p€Xr_op,
| ( ,U)| — (1 + |)\|p)|u|q YA :u ©YB

where p and ¢ are nonnegative numbers such that p 4+ ¢ > 2. So far it is not known
whether a condition of this type is sufficient to prove noncommutative versions of
the Da Prato-Grisvard or Dore-Venni theorems. Observe that

COu ) = AN+ A) A (a4 B) ™ — (u+ B) AT AN+ A)
hence (2.6) implies an estimate for C(A, u) of the above mentioned type, where
p=1—aand ¢g=1+ g3, in particular p+¢=2+ 0 —a > 2.
3. APPLICATIONS TO EVOLUTION AND EVOLUTIONARY INTEGRAL EQUATIONS

Let Y be a Banach space of class HT, let {L(t)};>0 be a family of closed linear
densely defined operators in X, probably with variable domains D(L(t)), and a €

L} .(Ry) a nontrivial scalar kernel of subexponential growth. The latter means

that

/ la(t)|e”'dt < 0o for each ¢ > 0.
0

Consider the following evolutionary integral equation:

(3.1) u(t) + /0 a(t — s)[vu(s) + L(s)u(s) — f(s)]ds =0, t>0,

where f : Ry — X is a given function, strongly measurable and locally integrable,
at least. Observe that evolution equations of the type

(3.2) a(t) + Lult) + vut) = ft), >0,  u(0) =0,

are special cases of (3.1) ; choose a(t) = 1 and differentiate (3.1) to see this.
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We want to study (3.1) in an LP-setting by means of the results from Section 2.
For this purpose let X = LP(R4;Y"), where p € (1,00), with norm | - |, and define
an operator A in the standard way by means of

{ (Au)(t) = L(t)u(t), for a.a.t>0,
D(A) ={ue X :u(t) € D(L(t)) for a.a. t >0, Au € X }.

Then A is a closed linear operator in X. To obtain A € BIP(X) we impose the
following condition on L(t).

(L) For each t > 0, L(t) € BIP(Y), and there are constants M, K4 > 0 and
pa € (0,7) such that

A+ L) < —24

_m fOTalltZO,)\GEﬂ-_(pA,

and
|L(t)"] < Kel®l94  for allt >0, s € R.
It is easily seen that
(A+ATHB =N+ L{) ' f(t) foraa t>0andall X € X, ,,,
and that
(A" f)(t) = L(t)* f(t) for a.a. t >0 and all s € R;

hence A € BIP(X) and estimates (2.3) and (2.5) are valid for A. Observe that A
is densely defined, since for a given f € X the functions f,, = n(n + A)~!f belong
to D(A), are bounded a.e. by the function M4|f(¢)| which belongs to LP(R..), and
converge to f(t) a.e. in Y, hence also in X, by Lebesgue’s theorem.

The construction of B is not so obvious, except for the case of the evolution
equation (3.2), i.e. a(t) = 1. In fact, in this case

(Bu)(t) = sru(t), +>0, D(B)=HIP(R.Y),

where H& "P(R4;Y) denotes the space of all functions u : Ry — Y which are locally
absolutely continuous, differentiable a.e., and such that @ € LP(R4;Y") and u(0) =
0. Obviously, B is a closed linear densely defined operator in X, and it is easy to
compute the resolvent of B:

(3.3) (W+E*ﬂ@=%e”“%@%%t2&

whenever Rep > 0. In particular, B is sectorial with spectral angle ¢p = m/2.
The vector-valued Marcinkiewicz multiplier theorem (cf. Zimmermann [22], Priiss
[16]) then implies B € BIP(X) and 0 = w/2 for the power angle of B. Thus
assumptions (2.3) for B and (2.4) are valid, provided g is chosen larger than 7 /2.

For the case of more general kernels a(t) we refer to Theorem 8.6 and Proposition
8.2 of the second author’s monograph [16]. The basic assumptions of these results
which are valid in spaces LP(R1;Y’), where Y belongs to the class H7, are the
following;:

(a) |arga(A)| <9p and |Xa'(N)/a(N)| < &, for all X € Xy )s.
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Here ¥ € (0,7) and > 0 are constants, and the hat indicates Laplace transform.
Following the terminology in Priiss [16], kernels satisfying an estimate of the form
|arga(A)| < ¥ on X,/ will be called 9-sectorial, while kernels which are subject
to |A\"a™(\)/a(\)| < k on Yr /2 for all n < k will be termed k-regular. Then the
operator B defined formally in terms of Laplace transforms according to
- u(A)

Bu)(A) ===, AeX

( u)( ) a()\)v € /2y
gives rise to a closed linear densely defined operator B in X, which is sectorial and
admits bounded imaginary powers, and satisfies ¢p < 0 < 9p. In particular,
assumptions (2.3) and (2.4) are valid for any ¢p > 9. The resolvent of B is given
by

(3.4) (B 00 = [ e =9fs =0

where 7, denotes the solution of the scalar Volterra equation

(3.5) ru(t) + M/o a(t —s)ru(s)ds = a(t), t>0.

In particular, for a(t) = 1, i.e. for the case of evolution equations, we have r,(t) =
e~ in accordance with (3.3).

Concerning the domain of B, we note the following proposition, which is implied
by Corollaries 8.1 and 8.2 of Priiss [16] by restriction to the halfline.

Proposition 1. Suppose the kernel a(t) is subject to condition (a). Let B be
defined as above and p > 0. Then

(i) limsup,_ . |a(r)|r? < oo implies D(B) — H{"(Ry;Y) ;
(ii) liminf, . [a(r)|r? > 0 and liminf, o4 [a(r)] > 0 imply HYP(R1;Y) —
(i) if imy_o4 t—° fot a(s)ds # 0,00 exists and in addition liminf, o4 [a(r)] > 0,
then D(B) = HIP(Ry:Y).

Here the spaces Hy'? (R4;Y") are defined as follows: v € H{""(R4;Y) if and only
if its extension by 0 to all of R belongs to H??(R;Y); see Priiss [16] for the latter.
In particular the traces at ¢ = 0 of the derivatives of u € Hf"’(R4;Y) which exist
are zero. Recall that p > o + 1/p implies H??(R;Y) — C?(R;Y).

Observe that the second condition in (i) and (i) holds if a(¢) is nonnegative
and nontrivial, as will be the case in all examples to be considered here. Let us show
that the first part of (%) in Proposition 1 is satisfied with pg = 29 /7, whenever
the kernel a(t) is subject to (a). For this purpose we take the analytic completion
of the Poisson formula for the harmonic function h(\) = arga()\), which reads

_ i [ [1—ipA] ., . dp
1 = —
0ga(}) K0+7r/_00[)\—ip]h(w)l+p27

where kg € R is a suitable constant. Considering only real A > 1 and estimating
the real part of this formula, we obtain

A2 +1

|Reloga(\)| < ko + v

logA < k+ polog A,
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for some constant k. But this implies

[a(\)] = eloglaNl > g—|Reloga(M)| > g—r—pologA — y—ro,
where ¢ = e™" > 0. Thus as a result we have the inequality
(3.6) [a(r)| > er=ro, forallr > 1.

Observe that po < 2 by the sector condition (a).

Returning to the abstract treatment of (3.1), with the definitions of A and B
given above, (3.1) can be rewritten in the form as vu + Au + Bu = f, and we are
in position to apply Theorem 1 as well as Corollaries 1 and 2, once we have verified
the commutator condition (2.6).

Let

ZA\ ) = AN+ A) A (u+B) ™ = (u+ B) T ATY;

with the representations of the resolvents of A and B described above we then have

(Z(Xw) () = /0 ru(t =)L+ L)L) ™" = L(s) "' f(s)ds, ¢ >0.

Therefore,

[(Z(A ) H(B)] < /O [ru(t = IILEOO + L)L) = L(s) I (s)lds, t >0,

and it appears that in order to establish (2.6) we need assumptions on the quantity
|L(t)(A + L(t))"L(t)™* — L(s)~']| and on the kernels |r,(¢)|. Let the following
conditions be satisfied in addition to (L) and (a).

(C) There exist constants « € [0,1), 6 € (0,1] and My > 0 such that
M1|t — S|6
14 A=«
(r) There exist constants 5 > 0 and Mz > 0 such that

L)X+ L)L) ™ — L(s)™']| < forallt,s >0, A€ Xq_o,.

M.
s 2
t7ruly < A Yr—pp-

Then we obtain the estimates
M, ‘
20l < sl [ = = sl las),
M

1 §
< — |t
= 1+ I/\Il“"| a7l

< M Mo
(At
and for each f € LP(R4;Y). Therefore the commutator condition (2.6) follows,
provided 3 > a.
In Section 5 we discuss the assumptions (a) and (r) on the kernel a(t) in detail.

For the moment we observe that for the case of evolution equations a(t) = 1 we
have r,,(t) = e #*; hence

0t ST +68)/(Re )"+, e Xrp, 6> -1,

where I means the gamma function. Therefore 8 = § in this case, and (2.6) is valid
if (C) holds with 0 < a < 6 <1.

5|f|z7v forall p € ¥r_ppyy M€ Er_0u,
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Conditions (L) and (C) on the family of operators {L(t)};>0 will be discussed
to some extent for the case of elliptic partial differential operators on Y = L%()
in Section 6. They have been used before for the case of evolution equations
by Acquistapace and Terreni [2]. Observe that in the case of constant domains
D(L(t)) = Dg for t > 0, condition (C) with o = 0 is implied by the resolvent
estimate in (L) and by the classical condition

(CO0) There exist constants 6 € (0,1] and Mz > 0 such that
L() — L)L ()| < Mylt — s°  for all 1,5 > 0,

which was introduced by Sobolevskii [19] and by Kato and Tanabe (see [20]).
Let us summarize our considerations in

Theorem 2. Let Y be a Banach space of class HT, {L(t)}i>0 a family of closed
linear densely defined operators in Y which is subject to (L) and (C), let a €
Li,.(Ry) be a kernel of subexponential growth which satisfies (a) and (r), and let
v>0andp € (1,00). Assume that (3.1) is parabolic in the sense that pa+¢p < T,
and assume 3 > a.

If either v > 0 is sufficiently large or M1 Ms is sufficiently small, then for every
f e LP(Ry;Y), (3.1) admits a unique solution u € LP(R1;Y) such that u(t) €
D(L(t)) for a.a. t > 0 and L(-)u € LP(R4+;Y). Moreover, if limsup,_, ., |a(r)|r” <
oo for some p > 0, then uw € HY'P(R4;Y).

In case (3.1) is considered on a finite interval J = [0,7], then no restrictions
on the size of M7 Ms or the magnitude of v are needed. In fact, multiplying (3.1)
by et and setting v(t) = e~*tu(t) and g(t) = e“tf(t), (3.1) is transformed into
an equation of the same type, with a(t) replaced by a,(t) = e “%a(t). This way
conditions (a) and (r) remain valid with the same constants. Taking the inverse
convolution of this new equation with 6y + (v — vy)a,,, where 6y denotes the Dirac
distribution and vy > 0 is large, there results an equation of the form (3.1) with v
replaced by vy and a,, by 7, ,—u,. Then given 1y > 0, choosing w sufficiently large,
(a) and (r) are still satisfied, probably with slightly larger constants. Thus as a
corollary to Theorem 2 we obtain

Corollary 3. Assume that the assumptions of Theorem 2 are satisfied, without
restrictions on the magnitudes of v € R or M1 Ms, and let J = [0,T].

Then for every f € LP(J;Y), (3.1) admits a unique solution uw € LP(J;Y)
such that u(t) € D(L(t)) for a.a. t € J and L(-)u € LP(J;Y). Moreover, if
limsup,_, o [a(r)|r? < oo for some p >0, then uw € H{P(J;Y).

4. PROOF OF THE MAIN RESULTS

In this section, we want to give the proof of Theorem 1 stated in Section 2. For
this purpose fix A, B, 04, 05, pa, o5, Ma, Mp, ¢, K4, Kp as in Section 2. We
begin with a general lemma.

Lemma 1. Let {F}}icr be a strongly measurable family of bounded linear operators
in X which is exponentially bounded in the sense that there are constants K > 0
and 0 < w such that

|Fz) < Ke®l|z|,  forallz e X, teR.
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Then, for each x € X and a > 0,

lim Ft_sdi

- exists a.e. on (—a,a),
e—0% J|s|>e sinh s

the function

1 ds
fx:t>—>lim—,/ Fi_go ——
e=0 20 J|g)>e sinh s

belongs to L?((—a,a); X) and
|fx|L2((—a,a);X) < C(aaK707H2)|‘T’|a

where c(a, K,0,Ha) denotes a constant which only depends on a, K, 6, and the
norm Ha of the Hilbert transform in L*(R, X).

Proof. The proof is based on the boundedness of the Hilbert transform in L?(R, X),
since X is of class H7 . Tt is basically due to Dore-Venni [9]. For each ¢ € (0, a),
we have

1 ds 1 I ds
5 —sT ———— = = —sT —
20 Jjs)>e ! sinhws 20 Jig>2q K sinh s
1 1 1 1 d
+—= Ft_S{E ( N — —) d8+ -0 Ft_sil' —S
20 Jo<|s)<2a sinh7s 7s 2T Jo<|s)<2a s
It is easy to deal with the first two terms since m < 4e~"lsl for all s € R, |s| >
1,and |£——-L| = # +0(|s]) for |s| near 0. The difficult term is the third one:
1 ds 1 1 [t ds
Py Fisx — = -(H f)(t) + 5= Fi_sz —
207 Jo<|s)<2a t=s® S 21( f)t) + 2 /_2a t=s® S
1 t+2a d
5 Fisx _s’
2im Joq S
where f(r) = X(—2q20)Frz, and (H.g)(t) = 1 ‘S|>€g(t —5) 5 denotes the trun-

cated Hilbert transform. Since f € L*(R, X), we know that (H.f)(t) converges for
a.e. t € R, and in L?(R, X) as e — 07. We restrict ourselves to the interval (—a, a)
to assure the convergence of the two other terms. The bound of |Fz[r2(—q,q):x) 18
now immediate, since |f|r2(g,x) < 2Ke???|z|. |

The next main idea is to approximate A and B by bounded invertible operators.
Since A is already invertible, it is sufficient to replace it by As = A(1 + 6A4)71,
5 € (0,1); B is approximated by Bs = (B + §)(1 +éB)~t, § € (0,1). For all
6 €(0,1), As and Bs are bounded and invertible operators, and we have

lim Asx = Az for all z € D(A)  and élim+ Bsx = Bz for all x € D(B).
—0

§—0+

Moreover, we know that As and Bs satisfy (2.3) with constants K/, and K in-
dependent of § € (0,1) ; to see this use A € BIP(X) <= A~! € BIP(X),
and apply Theorem 3 of Priiss-Sohr [17]. The operator By also satisfies (2.4) with
M independent of 6 € (0,1), and for As inequality (2.5) with M/, independent of
6 € (0,1) is valid.

Let us define the following bounded linear operators Ss and T for each 6 € (0,1):

1 y+ioco d 1 vy+ioco d
Sg = —/ 1 i and Tg B(S_ZAg_l i
29

y—ico sin(rmz) T2 y—ioo sin(7z)’
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where v € (0,1) is arbitrary; observe that the integrals are absolutely convergent,
thanks to (2.3). Since the functions z — A5 *Bf and z — By * A} are holomorphic
on C, the theorem of residues implies the identities

AsSsr + SsBsx =x  and TsAsx + BsTsx =x, forallze X, §€ (0,1).

We show next that As and Bjs satisfy the commutator condition (2.6) with a con-
stant ¢’ independent of 6 € (0,1).

Lemma 2. Let Zs(\, p) = As(A+ As) " [A5 ' (u+ Bs) ™ — (u+ Bs) "t A5 Y] for all
6 € (0,1). Then there exists a constant c(pa,@pr) which depends only on w4 and
wp such that

¢ c(pa, oB)
Zs(A, < s AEXr_ o WEXr_wp,
| 5( :u)| — (1+ |>\|1_0‘)|M|1+6 war ¥B

where « and B denote the same constants as in (2.6).

Proof. A simple calculation gives for all § € (0,1)

1- 62 A opu+s
Z - Z
‘A1) = T o <1+6,\’ 1+6u>’

forall A€ ¥r_,, and p € ¥r_,,, where
ZO\ ) = AN+ ATHAT (p+ B)T = (n+ BT AT,

Then the commutator condition (2.6) gives the expected bound, where

1
c(pa,oB) = SUP{|1+6)\|Q|1+5M|1_5 s A€ Xr_pa W EBr gy, 0 € (011)}

L a H_ n4p . N 1
bup{|/,b+(5| I ILLE T—YB» 66(07 )
sup {|1 46X 5 AEBay,, 6€(0,1)}.
O

Let us derive different representations of Ss and T, 6 € (0, 1). For this purpose
we fix 0 < pp, ¢ < @4 and & € (0, 1) such that

( U U(Bﬁ)uU(3)>czg and ( U a(Aﬁ)uU(A)> C 2,

0<6<éb0 0<86< 80
and 6 € (0,6p). Let Rs > sup{|u|; p € 0(Bs)} and 0 < rs < inf{|u| ; p € o(Bs)}.
We denote by I‘% the following contour:
[rs, Rsle ™" U Rse!l=% U [Rs, rs]e’? U rsel? =0l

'} is a positively directed contour which surrounds o(Bs). The functional calculus
of Dunford yields
1
B l= — WY — Bs)"'dp  for all z € C.
2w Jpe,
The same argument can be applied to Ags:

L% = [}, Rile " U R ™99 U [Rf, rhle™ U rjelle =),
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where R > sup{|A|; A € 0(A4s)} and 0 < r§ < inf{|\|; A € 0(As)}, and we obtain
—s 1

A — “E(\— As) ! for all .
5= 5 /\ (A s) d\x forall zeC

Hence, once « € (0, 1) has been chosen, Fubini’s theorem yields

/ / /Wm” =1 L) (4 (u— By)tand
56 = 2171' rs, Jrs, 2i B e o) T e K-

Since |arg A| + |arg u| < ¢ + 6 < 7, the inverse Mellin transform gives
_1 = l e A\~ z'uz 1 dz
A 20 ) sinwz’

and the functional calculus of Dunford implies that

1 1
- _ A 1 _ A —1
%07 Jrs X n (A= As) " dA = (u+ As)
Therefore
1
(4.1) Ss =5 (n+ As)~H(p — Bs) " tdp.
1T F%

Thanks to the estimates (2.4) and (2.5), by holomorphy we may deform the contour
I'% into T' = (00, 0]e®® U [0, 00)e~, which leads to

1
(4.2) S5 = 5 (u+A5) Yu— Bs)"tdu, for all § € (0,6).

In the same way, we can show that

1
(4.3) T5—2m (n— Bs) M+ As) " 'dp,  for all 6 € (0,6),

with the same contour I‘.

As § — 07 the integrands in these formulas converge strongly for every u € T,
and are uniformly bounded by a function which is integrable on I'. Therefore by
Lebesgue’s theorem

. _ 1 -1 -1 _.
(4.4) §E%+ng—%/F(u+A) (u—B) "z du=:Sz, z€lX,

and

1
4.5 lim Tsx = — - B)! A7 le dy =: Tz, €X.
(4.5) Jim Tz %F(u )T (wt+ AT wdp =Tz, =
We are now in position to state the following lemma, which is the main step in the

proof of invertibility of A + B.

Lemma 3. S maps X into D(A), AS € B(X) and ASx + SBx = z for all x €
D(B). Consequently SB admits a unique bounded extension to all of X.

Proof. (i) For all § € (0, 69) and for all z € D(B), 511161+ SsBsx = SBux since Ss — S

strongly as § — 0% and Bsz — Bz as § — 0% for x € D(B). Then AsSsx —
x — SBx as § — 07, since AsSsx + SsBsz = x for all § € (0,1).

On the other hand, AsSsx = A(1+6A)"'Ssx and (1+64)"tx — x forallx € X
as § — 0T; hence (1 +6A)"1Ssz — Sz as § — 0F. Therefore, since A is closed,
Sz € D(A) and ASx =z — SBuz for all z € D(B).
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(i1) For all z € X and all § € (0, &), we have

e dz
B — 1).
S§ 6 — / sm( )a Y€ (Oa )

To show that SsBs is bounded uniformly w.r.t. § € (0,1), write
Aszg _ Afit (Agt_ng _ BgA(ist_z) + Agithth_itA?_z.
Since z — BfA;* € B(X) is holomorphic in {z € C; 0 < Rez < 1} thanks to

Lemma 1 with Fz = g”Afstx, shifting the contour to the imaginary axis, we have
for a.a. t € (—3,3)

1 /WHOO A=it git gr—it git—z dz 1 x+ Ay "B (Fsx) (1)
L | ~it Bit ey e Bl s DsSs )

where Fsx corresponds to F as in Lemma 1. On the other hand, thanks to the
functional calculus of Dunford, we have

it—z Rz z Att—z
AUZBZ — B Al

—1 it—z , 2 _ _ B B
- i L L X A G BT BT A7 d
(2im)? /5 /5 N2 1E Zs (=X, —p) As (A — As) ™ dpd),
rs Jr

and therefore integration over t € [—3, ] yields

1 3 o
SsBsw = S @ + 1Ag”B§t(.7-'5x)(t) dt
1 5
+T </ A”Ag”dt) AZs(=X\, N As(\ — As)"'a d),
T _1
since
1 /Wﬂoo —. o, dz 4
— A = B
2 ; sinmz  p+ A

by the inverse Mellin transform, for any v € (0,1), A € Ty and p € 'y, and

1 1%

— L Bs) 'du = Bs(\+ Bs) !
5im F5A+u(u 5)” du = Bs(A+ Bs)

by the Dunford calculus. As in the derivation of (4.1) we may deform the contour
I into IV = (00, 0)e’ U (0, 00)e~*. Therefore we obtain the following estimate:

1
|SsBsa| < 5[] + Ky Kpe™?| Fsel a1 1.x)
671'
#l | [ INIZ-A N0 + Dl
™ T/
1
< g lol + KiKpe (KK, da+ 65, Ha)
4 e dr
/ MI 1 KI e_ /
+C( A+ ) A7T < 0 (1+T1+Q)Tﬂ |x|
< Clz|, forallze X,
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where C' > 0 denotes a constant which is independent of z € X and § € (0, o).
Since D(B) is dense in X and §lir(rJl+ SsBsx = SBux for all z € D(B), SB is bounded

and admits a unique bounded extension SB on X. Since A is closed, Sz € D(A)
and ASx + SBx = x for all z € X. Moreover, AS =1 — SB € B(X). O

We now construct the operator ) as announced in Section 2.

Lemma 4. Let Q = AS — A2SA™L. Then Q € B(X) and |Q| < 1, provided the
constant ¢ from (2.6) is small enough.

Proof. Let
Qs = AsSs— A;SsA;!
1 [rfiee dz
_ - A—z+2 A—le—l _ Bz—lA—l
20 Jyiso oA B 6 5) sinmz’
for v € (0,1) and ¢ € (0,6¢). As before we have
1
Bz—lz_ z—1 - B _ld .
5 i g p* = (p— Bs) ™ dp

Hence by Fubini’s theorem

1 1ot dz
_ - - z— A—Z+2 e
@ 2im Jpe, <2i / Uk é sin 7TZ>

y—ioco
(AgN(p— Bs)™t = (u— Bs) T AS ) dp.

The theorem of residues implies

1 [otice dz 1 A
1 A—l - z—lA—z+2 = _—— %271 R — 2 76 ) = As.
(14 pd; >2i A_ioo a 8 sinmz 2 o eSa= sinmz o
Therefore
1 11— _ _ 14—
Qs = g [, AUt pAT )T (A7 (u = Bo) ™! = (= B) A7) dp
B
1 -1 -1 -1 -1,-1
= 5= [ As(l—p(p+As)™") (A5 (n—Bs) ™" — (n— Bs) " A ") du
2im Jpe,
— Zs(u, —p1) d
= 5 F%u 51, —p) dp,
since/ (n— Bs) tdu = 1.
Ty

By means of the commutator condition (2.6) and Lebesgue’s theorem, deforming
first T into I as before, we arrive at

. 1
51351 Qsz = %/FuZ(u, —prdp=:Qz, z€X.

In particular, @ € B(X),

@l < [ g i<
— ——— dr < oo
= o (l4rt—o)rs ’

and

c [ 1
< = ——dr.
QI < 71'/0 (14 ri-o)ph "
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It is then possible to choose ¢; > 0 such that for all ¢ < ¢1, |Q| and |Qs| are smaller
than 1.

Finally, Qs — AsSsz — Qz — ASz and (14 6A4) 1 AsS5A5 ' — ASA™ 'z as
§ — 07, for all x € X, and therefore with AgSgAglx = A(1 + 6A)_1A555A6_1x,
closedness of A implies ASA='x € D(A) and Qr = ASx — A2AA 1z, for all
reX. |

We are now in position to obtain a left inverse of (A + B,D(A)ND(B)) : L €
B(X) and L(Az + Bz) = « for all z € D(A) N D(B).
Proposition 2. Let ¢ in (2.6) be small enough (as in Lemma 4) and define L =
A7Y1+ Q)" tAS. Then L € B(X) and L(Az + Bz) = x for all x € D(A) N D(B).
The range of L is contained in the domain of A.
Proof. Let Ls = Ay (14 Qs) 1 AsS;s for every & € (0,1). We have

Ls(Asx + Bsz) =« for all x € X

since AsSsx + SsBst = x. Next, 511%1+ A1+ Qs)te = A7 (1 + Q) 'w and the
relation §lir(rJl+ AsSsx = ASz, for all z € X, imply 5111%1+ Lsx = Lz for allz € X. The

operator L is obviously bounded, since A is invertible, |Q] < 1 and AS' is bounded
thanks to Lemma 3. Using the relation LsAsx + LsBsx = x for all x € X and all
6 € (0,1), since

lim Asx = Ax  and lim Bsx = Bz
5—0+ 5§—0+

for all z € D(A) N D(B), we obtain L(Ax + Bx) = « for all z € D(A) N D(B).
Obviously, R(L) C D(A), and AL = (1 + Q)~*AS is bounded. O

We know by now that L is a bounded operator on X and a left inverse of A+ B
with domain D(A) N D(B) and maps X into D(A). We next construct a right
inverse R of (A + B, D(A) N D(B)) using similar methods as for L.

Lemma 5. T'A defined on D(A) is bounded in X and admits a unique bounded
extension T A to all of X. Moreover, R(T) C D(B) and BT € B(X).

Proof. Formulas (4.2) and (4.3) imply

AgSg — T5A5
1 _ _ _ _
= 5 / pAs(p 4 As) ™t (0 = Bs) P Ayt — A5 (n = Bs) ™) As(u + As) ™ du
T
1
= 5 | B2l =) As(n + As) " dp.
T Jr

Passing to the limit as § — 0", Lebesgue’s theorem yields
1
AS = TA = o [ p2(n ) A+ 4)
2 r

Thanks to the commutator condition (2.6), the right hand side of the last equation
defines a bounded operator. Since AS is bounded, we have the expected result.
The remaining assertions follow from BsTs + T5As = 1, which implies with § — 0%
the identity BTz 4+ T Az = z, for all € D(A). |
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Before we construct the operator P of Section 2, observe that by virtue of the
moments inequality

M
(L+[AD=
where M > 0 denotes a constant independent of v € [0, 1].

[AYAN+ A7 < for all A€ 3,,, v €[0,1],

Lemma 6. There exists a constant v € (0,1) such that P = AY(TA — AT)AY
defines a bounded operator and |P| < 1, whenever the constant ¢ from (2.6) is small
enough.

Proof. For every 6 € (0,1), we have

1
Ty = — — Bs)™! Ags) Ldu.
5= g5 F%(u s)" (u+ As)”dp
Therefore
P§ = Ag’y(TgAg—Ang)Ag
1
= — Y\ = Ag) " (( — Bg) ™! As) LA
o Jo AT AT (e BT ok 407

—As(p— Bs) " Hp + As) ") A7 dud

1 - —
= @in2 /F(s /N AT Zs(— A, —p) As(p + As)TH A7 dpd
A B

1
- - - N\ A7 —1
@in)? // /F AN T uZs(—X, —p) A (1 + As) ™ dpdA,

where I and I” are as before, and since fF5 (u — Bs)~tdu = 1. The convergence
B

of both integrals is due to the commutator condition (2.6) and the remark before
Lemma 6, if we choose v € («, 3). Moreover, thanks to Lebesgue’s theorem, we
have

lim Psx = ;/ / AN TuZ(=N, =) A" (p+ A)~tw dud\ =: Pr, =€ X.
(27;77)2 rJr

§—0+

Furthermore, with r = || and s = |ul,

|Ps| < M/ d /OO r dr /OO Gl ds
01 =14 02 o l+rl-a o (A+s)t=7 7

c [ r7 * gh
Pl <My — —d —d
| |— A 71_2/0 1+ rl-a T/O (1+5)1—v §
It is then possible to choose co > 0 such that for all ¢ < cg, |P|,|Ps| < 1 for all
RS (0,(50) O

and

We are now in position to obtain a right inverse of the operator A + B with
domain D(A) N D(B): in other words, an operator R € B(X), such that R maps
X into D(A)N D(B) and (A+ B)Rz =z for all z € X.

Proposition 3. Let the constant ¢ in (2.6) be smaller than ¢ and ca, choose vy €
(o, B), and define R = TAAY"Y(1 — P)"YA™". Then R € B(X), R maps X into
D(A)N D(B), and (A + B)Rx = x for all x € X. Moreover R = L, and it is the
inverse of A+ B.
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Proof. Let Rs = TsA](1— Ps)"'A; 7. Then (As + Bs)Rsz = x for all x € X, since
TsAs+ BsTs = 1. The operator Ry is a right inverse of As + Bs; therefore, Rs = Ls
for every 6 € (0,6p), since L is the left inverse of As + Bs € B(X). Moreover,

Jim Rz = lim TsAJ(1 - Ps) 'A;72 =TAA" ' (1 - P)"'A™ "2 = Ra, z € X,
and hence
Rz = lim Rsx = lim Ls(As + Bs)Rs = lim Lsz = Lz, for all z € X.
6§—0+t 6§—0+t §—0+
Thus R = L and R € B(X). Since L maps X into D(A), R maps X into D(A) as
well. Since A is closed, we have

lim AsRsx = ARx for all = € X,

§—0*t

and we know moreover that (As + Bs)Rsx = x for all z € X. Since B is closed,
this implies Rz € D(B) and (A + B)Rx = « for all x € X. O

Let ¢co = min{¢y, c2}. The proof of Theorem 1 is now complete. O

5. L'-ESTIMATES FOR SCALAR RESOLVENT KERNELS

In this section we discuss the assumptions (a) and (r) concerning the kernel a(t)
for three special classes of kernels.
1) The first class of kernels consists of the functions

(5.1) a(t) =t""1/T(y), t>0, where v € (0,2).

The special case 7 = 1 has been treated already in Section 3 and therefore we shall
not pay particular attention to it here. The Laplace transform a(\) of a(t) is then
given by

(5.2) a(A) =", AeE Xq.
Thus one obtains a(\) # 0 and
larga(\)| <ym/2 <m, A€ Xg),
as well as
=Xa'(N)/a(\) =5, A€ X

This shows that assumption (a) is satisfied with 9 = vy /2.

The Laplace transform 7, of the resolvent kernel r, for 1 > 0 is given by
a1

14+ pa(N)  p+ A
The dilation property of the Laplace transform then implies

ru(t) = [P res (ufPt), ¢ >0,

(5.3) () AE S,

where ¢ = arg u and p = 1/~. Therefore, we obtain the estimate

| eatolde =1t [ s (upola:
0 0

i1 [ R(6,¢
= | / 0 lres (8)]dt = Wﬁw)w

|t§Tu|l
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where
R@@Z/th@W
0

Thus to prove (r) for the class of kernels under consideration we need to find
bounds for R(8,¢). For this purpose choose any angle ¢g < 7 — ¥p = 7 — 77y/2,
and let 1) > 7/2 be such that y¢) < 7 — ¢g. Let I denote the contour

I' = (co0,1/2]e"™ U (e”™/2,e7"™/2) U e /2,0]
U [0,e™ /2] U (e™/2,e™ /2) U [1/2, 00)e™;
then the function g(\) = e’®+ )7 is holomorphic to the right of I" and all its possible
zeros are to the left of this contour, for each |¢| < ¢g. Therefore we may deform
the integration path in the complex Laplace inversion formula for r.is to I'. Since
|g(N)] is nonzero and continuous on I' and behaves like |A|7 for large ||, by a simple

calculation which takes into account the cancellations on the parts of I' which are
contained in the negative real half-line, one obtains the following estimate for r,is:
/r’y

) —rt
o] <C [ e

where C' > 0 denotes a constant which only depends on v, ¢, and ¥. But this then
implies
o0 o0 Yy
R(6,¢) < C the 1 drdt = CT(1 5/ UL
(6:9) < /0 /0 C1em v (1+94) o l+r%

for all |¢| < ¢, provided § > —1 and |§| < 7.
Let us summarize these results as

dr, forallt >0, |¢| < ¢o,

0 Tv—ﬁ—l

dr < oo,

Proposition 4. Let v € (0,2), |6] < v, 6§ > —1, and consider the kernel a(t) =
t'=1/T(y), t > 0. Then (a) is satisfied with 95 = 7y/2, and (r) holds with
B=16/y, for any op > Up.

It is not difficult to see that for v ## 1 the restrictions on ¢ in Proposition 4 are
essential. In fact, contracting the contour I' from the above proof to the negative
real axis, one obtains the representation

ri(t) = sin(m7) /OO e " ~ dr
T 0 1+ 2r7 cos(my) + r27
This representation shows that r1(¢) > 0 for all ¢ > 0, and therefore by Fubini’s
theorem we have %7 (t) € L'(R,) if and only if || < 7.
For the case v € (1,2) the function g(\) = 1 + \? has zeros at A = e*™/7;
therefore, contracting the contour I'" to the negative real axis, we obtain by the
residue theorem

ri(t) = sin(m) /00 e "t i dr
T 0 1+ 217 cos(my) + r2v

—%et cos(m/7) cos|r /7y + tsin(w/7)].
In this case r1(t) is no longer nonnegative; however, the second term in this rep-
resentation has moments of all orders § > —1 in L'(Ry), and the first term is
negative for all £ > 0. Thus we see that for the case v € (1,2), t’r; € LY(Ry) if
and only if —1 < 6 < 7.
Therefore the estimates in Proposition 4 are optimal.
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2) Next we consider the case where a(t) is a completely positive function, or
equivalently ®(X) = 1/a()) is a Bernstein function, which means ®(A) > 0 for A >
0, and ®’()) is completely monotonic on (0, 00); cf. Priiss [16] for these concepts,
its properties, and implications for the evolutionary integral equation (3.1). For
this class of kernels we have the following result.

Proposition 5. Suppose a(t) is a completely positive function. Then |arga(N\)| <
/2 on Xy, i.e. Vg < /2, and the resolvent kernels v, are subject to the estimates

1

(5.4) Iruli < B+ Re 1 < Re 1’ for all p € Xr o,
and
(5.5) ltru |y < @ f}l{e o < (RS’L)Q, for all i € Sy,
where
Bo = B04+) = ——  and B, = & (04) = —01).
a(0+) a(0+4)2

In particular, if ®1 < oo, then (r) holds with = 8, for each pp > 7/2 and
6 €0,1].

Proof. Consider p > 0, first. It is well-known that the resolvent kernels r,(t) are
nonnegative. Therefore,

oo

7l :/ ru(t) dt = lim e~y (t) dt = lim 7,(e),
0

e—=0t Jo e—0t

and since 7, (A) = 1/(®(\) + 1), we obtain

[ruli = for all > 0.

1
Py + 1%
This proves the first statement for positive p.

In the same way we obtain

o0
[tr, |1 = lim / te”'r,(t) dt = — lim 7,(¢) =
e—0t 0
which implies the second statement for p > 0.
Now let p = pg + io0 be complex, po > 0. Here we employ the propagation
function w(t; T) associated with a(t), which is defined via the relation

R 1
D7) = 5e "7 forall A€ Bepp, 720,

It is well known that w(t; ) is nonnegative, and nondecreasing w.r.t. ¢; cf. Priiss
[16]. The identity

7?#()\)2/ e HT e ®NTgr
0
then implies

t+h %)
/ ru(s)ds = / e Pw(t+h;y7) —w(t;7)]dr, t,h>0,
¢ 0
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and hence

t+h
h_l/ ru(s) ds
¢

IN

h! /000 e MTw(t + hyT) —w(t;7)] dr

t+h
= h_l/t Tuo(s) ds,

for all t,h > 0. As h — 0T, the left hand side of this inequality converges to |r,| in
L} .(R;) while the right hand side approaches 7, in L'(R.); therefore Lebesgue’s
theorem yields r, € L*(Ry), and |r,|1 < |r,l1. Thus the first statement holds for
all 4 € ¥ /5. In the same way we obtain also [tr, |1 < |tr,,|1 provided ®; is finite,
and so the second claim follows as well.

The last statement is proved by Holder’s inequality. For this purpose let 6 € [0, 1],
and let p=1/6,1/p+1/q=1. Then

ol < eyl
< | ! 1/p[ 1 R
~ (Pg+Re p)? ®g+ Re p
o]
= W, for all € ¥, /5, 6 €[0,1].
This implies (r) with 5 = 4. O

Observe that condition (a) is not always satisfied when a(t) is completely pos-
itive, since such kernels need not be 1-regular, in general. However, it was shown
in Clément and Priiss [7] that the operator B as given in Section 3 is still well-
defined, and that it generates a Cp-semigroup of contractions in LP(Ri;Y) and
admits bounded imaginary powers with power angle 7/2. Therefore the results of
Section 3 still remain valid, provided ®; < oo. Completely monotonic kernels a(t),
in particular the kernels a(t) = 7=, v € (0,1], are completely positive. In partic-
ular, the considerations following Proposition 4 show that the condition ®; < oo
in Proposition 5 cannot be omitted.

3) The third class of kernels we want to consider here is motivated by the theory
of viscoelasticity; cf. Priiss [16]. These kernels are of the form

t
(5.6) a(t) = ap + acot —|—/ ay(s)ds, t >0,
0

where ag, as > 0, and a4 (t) is 3-monotone, i.e. nonnegative, nonincreasing, convex,
—a(t) convex, with lim;_, a1(t) = 0. Of course, we are only interested in the
nontrivial case a(t) Z 0.

For kernels of the form (5.6) it can be shown that their Laplace transforms extend
continuously to C \ {0} and that for the function

g(A\) = ag + aco /A + a1 (V)
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the following estimates hold; cf. Priiss [16], Appendix to Section 3.

(5.7) cia(1/p) < |g(ip)| < Cra(1/p), p > 0;
(5.8)
1/p 1/p
c2 a0+/ —tai(t)dt| < Re g(ip) < Cq |aop —|—/ —tai(t)dt|, p>0;
0 0
Uoo 1/p oo 1/p
(5.9) c3|—+ p/ tai(t)dt| < —Im g(ip) < C3 | — + p/ tai(t)dt| ;
P 0 P 0
oo 1/p
(5.10) 9™ (ip)] < Cy | —= +/ t"ay(t)dt|, p>0,n=0,1,2.
20"+ Jo

Here ¢; and C; are universal constants. These estimates are well-known as the Shea-
Wainger estimates. Replacing ao + a1(t) by (aco + a1(t))e™ 7%, o > 0, estimates
(5.8), (5.7) and (5.10) show that Re g(A) > 0 and

(5.11) IAg'(A)/g(N)| < Cs, for all Re A > 0.

In particular a(t) is 1-regular, and a(\) is never negative real nor zero, provided
a(t) £ asot. Thus (a) holds with ¥ < 7. More precisely, estimates (5.8) and (5.9)
yield ¥p < 7 if and only if

tase/2+ 71 [ d
(5.12) lim sup 2/ : Jo sai(s)ds
t—0,0c  ag+ [, —sai(s)ds

This condition implies ag > 0 or a;(0+) = oo (for the limit ¢ — 0), and ase =
0 (for the limit ¢ — oo). It is implied by as = 0 and a; € LY(R,), or by
(oo = 0 and liminf, o —ta1(¢)/a1(t) > 0 (for ¢ — o0), and by ag > 0, or by
liminf; o —tai(t)/ai(t) > 0 (for t — 0). a1(t) = 771/T(y) with v € (0,1) is a
typical example with these properties.

We are now in position to state our result on kernels of the form (5.6).

Proposition 6. Let a(t) be a kernel of the form (5.6) where ag > 0, as = 0, a1(t)
3-monotone with lim;_,. a1(t) =0, and assume (5.12).

Then (a) is satisfied for some 9p < w and the resolvent kernels r,, are subject to
the estimates

C
(5.13) Iruli < Tl forallpe Xy,

and with pg = 2V /7

C

(514) |tTN|1 < WT/PO’

forall p € 3r_oy,

where pp > Yp is arbitrary, and C denotes a constant depending only on vp.
Moreover,

(5.15) for all p € ¥r_oy,

s
|t rﬂ'l S |‘LL|1+6/p07
for each 6 € [0, 1].

Proof. The proof is based on Hardy’s inequality (cf. Duren [12]), which is stated as
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Lemma 7. Suppose f : Cy — C is a bounded holomorphic function on the right
half-plane such that f' belongs to the Hardy space H'(C).

Then there is a function b € L*(Ry) such that /b\(/\) = f(A) for all Re X\ > 0,
and [blpr e,y < 51F ey

For the Laplace transform of the resolvent kernel r,, we obtain

~ 1 g\

T A = — = y
w3 pt1/aN) A+ pg(N)
By assumption (5.12) we have ¥ < 7. Fix any ¢p € (9p,7); then there is a
constant C' > 0 such that

(5.16) A+ pugN)] = CTHA[+ [ullgV)]],  forall Re A >0, p€ Bryy.

Re A > 0.

This implies
~ lg(MI ¢

PN <C——"—+=<:—, forall Re A>0, p€Xr_,,
g AL+ ullg(] — |l -

which means that h, = 7, is bounded and holomorphic on the right half-plane. For
the derivative of h, we obtain

o M) — g
(A pg(V)?
Hence by (5.11) we obtain

lg(VI

1< G2+ C5) (e g OO

and therefore

Pl = JIGolde <Co | g

= a(1/p) o[ a)
< 07/0 (o ula(1/p))? d”‘07/0 @+ slula(z)? “

where we employed estimates (5.7). The function a(s) is nondecreasing, which
implies the inequality
d

- (sa(s) = als) +5i(s) 2 als), >0,

and therefore

IN

o a(s) .
07/0 T Slula( Me ¢

> d(sa(s))/ds
“
1+|ulsa (s))?

Cr
C 7d —_—.
/ A+ n? 7 Tl

By uniqueness of the Laplace transform, Lemma 7 then implies r,, € L'(R,) and
Iruly < C7/2|ul, for all p € B _,. This proves (5.13).

To prove the second estimate (5.14) we proceed similarly. It is easy to see
that h; is bounded on C,, and by uniqueness of the Laplace transform we have

|l )
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h,(A) = —tr,(\) on the open right half-plane. Therefore, by Lemma 7 it is sufficient
to estimate A/, in the Hardy space H'(C, ). We have

vy AGT) AN ] 9N + gV (D)
= e 2 e o
hence (5.11) and (5.16) yield

, MO+ 19’ O]+ 1/l
< O =R e

Therefore, with ¢(s) = [; ta1(t)dt and with (5.10) we obtain

1/]pl
g (ip)] < Cilol / Pay()dt < Co(1/o)).

This then implies

[l ey

Sy * 6(1/p) +1/|p]
/_OO [hia(ip)ldp < 09/0 o+ lufa(i/p)?”

> Y(s) [ 1
= 09|:/ ———— ds+ |y / ———— ds
o (1+]ulsa(s))? o (1+][ulsa(s))?
= Gyl + Io/|pl].
Hence it remains to obtain bounds for the integrals I; and Is.
(i) To estimate the first part of I, observe that ¥(s) < sa(s) < sd(sa(s))/ds;

therefore an integration by parts and a(s) > sa(s) yield, with some ¢ > 0 which
will be chosen later,

O © dsa(s)/ds
/0(1+|M|5a(5))2d = /0(1+|ﬂ|5a( »° I

(1 + Julsa(s) Iulsa
&

lul”
(ii) The remaining part of I; is estimated also via an integration by parts as
follows:

> P(s) < (s) ds
/s (14 |plsa(s))? o= /s (|M|a(5))2 5%

/ [ (1 + |ulsa(s)) Iulsa( D

/ P(s)als) — 20(s)a(s)
Iul2 s)%s

sw
B(e) sils)
TuPa(e >2+/5 Taato

B P(e) /e + ale) < 2

ul?a(e)*  ~ |ulPale)’

Combining (i) and (ii), we arrive at

€ 2
Ilg—[1+—], forall pe ¥, .
|l |uleale) e
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(iii) To obtain an appropriate bound for I we proceed as follows:

o 1 o0 1
b= / @+ Jlsa(s)? dsg”/e (alsa()E *

tmaer ) ¢ )

As s runs from 0 to oo, the function s — sa(s) is strictly increasing from 0 to
oo; therefore there is a unique value of s, say € > 0, such that ea(e) = 1/|u|. This
implies I; < 3¢/|u| and I < 2¢; hence

€
|hZ|H1((C+) < 5Cy m
To estimate € in terms of |u| we employ (5.7) and (3.6):
™ = eale) = ailg(i/e)le = cifali/e)]

> coa(l/e) > eze’;

hence € < ¢4|p|~1/?0. This completes the proof of (5.14). The last statement follows
from interpolation, as in the proof of Proposition 5. O

6. APPLICATION TO PARABOLIC PARTIAL DIFFERENTIAL AND
INTEGRO-DIFFERENTIAL EQUATIONS

In this section we want to apply Theorem 2 and Corollary 3 to parabolic partial
differential and integro-differential equations of second order in space. For this
purpose, let  C R™ be a bounded domain with boundary 9 of class C?. Consider
the problem

u(t, ) +/O a(t — s){vu(s,x) — div[b(s, z)Vu(s,z)] — f(s,x)}ds =0,

(6.1) t>0, r€Q,
n(z) - (b(t, 2)Vault,z) =0, £>0, z €Ty,
u(t,xz) =0, t>0, x €Ty,

where I'; C 0 are open and closed in 02, such that I'y NIy = 0, I'; UTy = 012, and
n(x) denotes the outer normal of 2 at x € 9. Denoting the space of symmetric
real n x n matrices by Sym(n), b : Ry x © — Sym(n) is assumed at least to be
continuous with bounded partial derivatives w.r.t. € 2, and to be uniformly
positive definite in the sense that there exists a constant by > 0 such that

(6.2) bol€)? < €-b(t,z)€ <byt|¢|? forallt >0, z€Q, £ €R™

Concerning the kernel a(t) we assume that it belongs to one of the three classes
studied in Section 5, in particular, a(t) = 1 arises as a special case; this case
corresponds to the boundary value problem

u(t, ) + vu(t, ) = div[b(t, x)Vu(t, z)] — f(t,z), t>0, z € Q,
(6.3) n(z) - (b(t,z)Vu(t,x)) =0, t>0, x €Ty,
u(t,x) =0, t>0, z €Ty, u(0,2) =0, xz€q.
The family {L(t)};>0 will be the Li-realizations of the underlying elliptic boundary
value problems; more precisely, we define
{ (L(t)u)(z) = =div[b(t,x)Vu(x)], t>0, z€Q,

(6.4) D(L(#)) = {u € H>9(Q) : ulp, = 0, n - b(t, )Vu|r, =0},
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where the boundary values of u and Vu are understood in the sense of traces. Thus
as the base space Y we choose Y = L9(Q) with 1 < ¢ < oo, which is well-known
to be of class H7. Then (6.1) and (6.3) written in abstract form become (3.1) and
(3.2), respectively. Observe that in case I'y # 0 and b is not constant in time, the
domains D(L(t)) are not constant. The norm in H*9(€2) will be denoted by |- |s,4,
and that of L1() by | - |-

It is well-known (see e.g. Lunardi [15], Chap. 3) that the operators L(t) are
sectorial with spectral angle ¢ ;) = 0, and for each w4 € (0, ) there is a constant
M 4 > 0 such that

_ My
6.5 A+ L)Y < , t>0, AETr_u,,
(65) O+ LO) < T 12 oa
and
(6.6) IL(t) " gla.q < Mhlglg, >0, g€ LUQ),

except for the case of the pure Neumann problem 'y = 0, where the kernels of L(t)
are nontrivial. For the sake of simplicity we exclude this case and assume from now
on that 'y # 0.

If ¢ = 2 it is also well-known that L(t) is selfadjoint and positive definite, hence
admits bounded imaginary powers and

(6.7) L)l =1, forallt>0,s¢cR;

cf. e.g. Priiss and Sohr [17], Example 1.

If ¢ # 2 but T'; = (), it has been shown in Priiss and Sohr [18] that L(¢) admits
bounded imaginary powers in L?(£2) and that for each ¢ 4 € (0, 7) there is a constant
K4 > 0 such that

(6.8) |L(t)*|, = Kae?2l5l forallt >0, s €R;

in particular 0, = 0.
If ¢ # 2 and T';y is arbitrary, Duong [10] obtained L(t) € BIP(L%())) and

(6.9) |L(t)*|, = KaelI™/2 forallt>0, s €R.

By interpolation with (6.7) this estimate can be improved to 1) < [1 —2/q|7/2,
and for each ¢4 > |1 — 2/q|w/2 there is a constant K4 > 0 such that (6.8) is
valid. More recently Duong and Robinson [11] claim (6.8) for each ¢4 > 0. This
completes the verification of (L) for the class of operator families {L(t)}¢>0 given
by (6.4).

To verify the commutator condition (C) we use an argument which is similar to
that employed by Acquistapace [1]. Let a function g € L%(2) be given, and define
F=O+L(s)L(s) tg,u=(A+L(t)"'f, and v = (A + L(s)) "1 f. Then with the
notation £(t) = —div[b(¢,-)V] and B(t) = n - [b(¢,-)V] we have

A+ L(u = f on Q A+ L(s)v=f on Q
Bt)u=0 only and B(s)y=0 onIy
u=20 on I'y v=20 on I’y

Therefore w = u — v solves the boundary value problem

Mo+ L(t)w = (L(s) — L(E)w  on
B(t)w () B(t))v on It

= (B
w on I,
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and hence can be written as
w = (A+ L(£)) 71 (L(s) = L(B)v + Sx()(B(s) — B(t))v,

where the so-called Dirichlet map S (t) is defined according to

Az 4+ L(t)z=0 on Q,
(6.10) S\e=2z < B(t)z=¢ onlfy,

z=0 on I'y.

Since v = (A + L(s)) "1 f = L(s)" g we finally obtain the following representation
for the commutator C(¢,s,\) = L(t)(\ + L(¢))~[L(t)~* — L(s)71]:
(6.11)

C(t,s,\)g = (A + L(t) 7 (L(s) — L) L(s) "' g + Sx(t)(B(s) — B(1))L(s)"'g,
forallt,s > 0, A € ¥r_,,. The first term in this representation is estimated easily.
In fact, suppose b(-, ) and by, (-, z) belong to C°(R;) uniformly w.r.t. z € Q, for
some 0 > 0. Then

I(L(s) — L(t))u|y < Cilt — s|°|ulag, t,8>0, ue€ H>(Q).
By (6.5) this implies
- _ My
(6.12) [(A+ L))" (L(s) = L) L(s) " glq < T Cuft — s|° Mlglq,
for all t,s > 0, and g € L9(Q2). Concerning the second term on the right hand side
of (6.11), we first refer to Triebel [21] for the following estimate of the Dirichlet
map:
|lq Vel
(L4 ADY2 - T+ [A]
where @ denotes any extension of ¢ to €2 in the sense that ¢ = ¢ on I'y ; Cy is

independent of ¢ > 0. Fix any extension 7 of the outer normal field n(x) to Q which
is of class C'!. Then by (6.13) we have

(6.13) 1Sx(t)elg < Cq

+

[SA(t)(B(s) = BW)L(s) " glq < Cl(1+ N)~V2|(B(s) = B) L(s) gl
+ (L A)THV(B(s) = B(£)L(s) " gldl,
where B(t) = () - (b(t,2)V). Then
(B(s) ~ BOIL(S) gly < [l supb(t. ) (s 2)|[VL(s) g,

IN

[7loo [bls|t = sI° Mgl
= Cot = s[’lgly,

where [b|s = sup{|b(t,z) — b(s,2)||t —s| 7% : t,5 > 0,t # s,z € Q}. Similarly, if b,
are also uniformly Holder-continuous in ¢, we obtain

[V(B(s) ~ BUDLE) gy < [loo sup b(t.2) — bls. )] L(s) "l

IN

+[7fo sup [V (b(t, ) = b(s,2))[[VL(s) ™ glq

+|V - 71|oo sup |b(t, x) — b(s, z)||VL(s) g,
zE

IN

03|t_5|6|g|q-
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Therefore
SA(B(B(s) — BO)L(s) Maly < Co |24 G| o
g Yo = "l aepp2 T T Ila
Cylt — s]°

(6.14) S T e

Combining estimates (6.12) and (6.14), we arrive at
|t sl
(14 AD27
which shows that the commutator condition (C) holds with o = 1/2, 94 > 0
arbitrary, and 6 > 0, provided b(-,z),bs, (,z) € C®(Ry) uniformly for z € €.
Observe that for the case of Dirichlet boundary conditions I'y = @), a can be chosen

as a = 0.
We are now in position to apply Theorem 2 and Corollary 3 and obtain the
following result.

Theorem 3. Let Q C R” be a bounded domain with boundary 0 of class C?,
I'; C 0 open and closed in OQ such that Ty NTy =0, Ty UTy = 09, and 'y # 0.
Assume that b : Ry x Q — Sym(n) satisfies the strong ellipticity condition (6.2) and
b,by, € C°(R4;C(Q)), for some § > 0. Let p,q € (1,00), J =[0,T], or J =Ry
but v > 0 sufficiently large.

Then for every f € LP(J; L9(Q)), problem (6.1) admits a unique solution u €
LP(J; H*4(Q))), provided the kernel a(t) satisfies one of the following conditions:

(i) a(t) =771 /T(y), v € (0,2), § > v/2.

(ii) a(t) is completely positive, —a’(0+)/a(0+)? < oo, § > 1/2.

(iii) a(t) is as in Proposition 6 and § > po/2.

In addition, if limsup,._, . |a(r)|r? < co, then the solution u of (3.1) belongs to
HYP(J: 19(9)).

It is clear from the derivations in this section that Theorem 3 can be general-
ized to other types of elliptic operators L£(t) if only the relevant estimates for the
resolvent, for the Dirichlet map, and for the imaginary powers of L(t) are valid,
and the parabolicity condition is satisfied. These subjects as well as applications
to quasilinear problems will be taken up in the near future.

(6.15) |C(t, s, A\)]q < Cs forallt,s >0, A€ Er_p,,
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