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A THEOREM OF THE DORE-VENNI TYPE FOR

NONCOMMUTING OPERATORS

SYLVIE MONNIAUX AND JAN PRÜSS

Abstract. A theorem of the Dore-Venni type for the sum of two closed linear
operators is proved, where the operators are noncommuting but instead satisfy
a certain commutator condition. This result is then applied to obtain optimal
regularity results for parabolic evolution equations u̇(t) + L(t)u(t) = f(t) and

evolutionary integral equations u(t) +
∫ t
0
a(t − s)L(s)u(s)ds = g(t) which are

nonautonomous. The domains of the involved operators L(t) may depend on t,
but L(t)−1 is required to satisfy a certain smoothness property. The results are

then applied to parabolic partial differential and integro-differential equations.

1. Introduction

Let X be a Banach space with norm |·|, and let A be a closed linear operator inX
with dense domain D(A); as usual, N(A), R(A), ρ(A), σ(A) denote kernel, range,
spectrum, resolvent set of A, respectively. A is called sectorial if N(A) = {0}, R(A)
is dense in X , ρ(A) ⊃ (−∞, 0), and M0 := supr>0 r|(r + A)−1| < ∞. The class
of sectorial operators will be denoted by S(X). If A is sectorial it follows easily
that ρ(−A) contains a nonempty open sector Σφ := {z ∈ C : z 6= 0, | arg z| < φ}.
Therefore, for such operators it makes sense to define the spectral angle φA of A by
means of

φA := inf{φ > 0 : ρ(A) ⊃ −Σπ−φ,Mπ−φ <∞},(1.1)

where Mφ := sup{|λ(λ+A)−1| : λ ∈ Σφ}. Obviously,

π > φA ≥ arg(σ(A)) := sup{| argλ| : λ 6= 0, λ ∈ σ(A)}.
Now given two sectorial operators A and B which are commuting in the sense that

(λ+A)−1(µ+B)−1 = (µ+B)−1(λ+A)−1, for all λ ∈ ρ(−A), µ ∈ ρ(−B),

(1.2)

about 20 years ago, Da Prato and Grisvard [8] proved that the sum A + B with
(natural) domain D(A + B) := D(A) ∩ D(B) is densely defined, closable, and
its closure L is again sectorial with φL ≤ max{φA, φB}, provided the parabolicity
assumption φA + φB < π is satisfied.
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The natural question arising in this context is whether A+B is already closed,
i.e. L = A+ B. Da Prato and Grisvard [8] were able to show the latter in certain
special cases when X is a Hilbert space, but in general A+B need not be closed, as
was pointed out by Baillon and Clément [3]. A positive answer was given by Dore
and Venni [9], even for non-Hilbert spaces.

To describe their result, observe that for the class of sectorial operators one can
define complex powers by means of the standard Dunford integral; these will be
closed linear and densely defined, but unbounded in general. A sectorial operator
A is said to admit bounded imaginary powers if the purely imaginary powers Ais

of A are uniformly bounded for s ∈ [−1, 1]. It then can be shown that Ais forms a
strongly continuous C0-group of bounded linear operators. The class of such A will
be denoted by BIP (X). The type θA of the C0-group Ais is called the power angle
of A, i.e. θA := lim|s|→∞ |s|−1 log |Ais|. The inequality θA ≥ φA has been proved
in Prüss and Sohr [17].

Assuming that the Banach space X is of class HT (see Section 2), that A and B
are commuting and admit bounded imaginary powers, and that the strong parabol-
icity condition θA + θB < π is satisfied, the Dore-Venni theorem in the extended
version obtained by Prüss and Sohr [17] states that A+B is closed, sectorial, admits
bounded imaginary powers, and θA+B ≤ max{θA, θB}.

Both, the Da Prato-Grisvard theorem and the Dore-Venni theorem have impor-
tant applications to evolution equations and to evolutionary integral equations, as
has been shown in many articles. By means of these results maximal regularity
properties of such problems can be proved, which are of interest not only in the
linear theory but in particular for nonlinear problems.

However, the commutativity assumption appears to be fairly restrictive. Con-
sider for example an evolution equation of the form

u̇(t) + L(t)u(t) = f(t), t ≥ 0, u(0) = 0,(1.3)

in a Banach space X , where L(t) is a family of sectorial but generally unbounded
operators in X . The commutativity assumption then requires the family L(t) to
be independent of t. Therefore it is very desirable to weaken this condition. For
the Da Prato-Grisvard theorem it is well known how to do this. Already Da Prato
and Grisvard [8] themselves presented a condition on the commutator of B and
(λ + A)−1 such that their result still holds, and later their condition was replaced
by a different, more flexible one by Labbas and Terreni [14]; see also Fuhrmann
[13]. For the Dore-Venni theorem such extensions are still missing, at present.

It is the purpose of this paper to close this gap. Our main result shows that
the Dore-Venni theorem remains valid in case A and B do not commute but are
subject to a commutator condition of the Labbas and Terreni type. The proof is
based on the techniques developed by Dore and Venni [9] and by Prüss and Sohr
[17], combined with new estimates resulting from the Labbas-Terreni condition
involving the complex powers of A and B.

Our main result yields new maximal regularity results, for evolution equations
as well as for evolutionary integral equations of the form

u(t) +

∫ t

0

a(t− s)(L(s)u(s)− f(s)) ds = 0, t ≥ 0,(1.4)

where a(t) is a scalar kernel and L(t) is as before. For the case of parabolic evolution
equations (1.3) this is a straightforward extension of the work of Acquistapace and
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Terreni [2]; therefore the presentation is kept concise at that point, here. On the
other hand, for the evolutionary integral equation (1.4) the application of the main
result is not obvious; it involves new L1-estimates for the solutions of linear scalar
Volterra equations depending on a parameter.

The plan for this paper is as follows. In Section 2 the main results about the
sum A+B of two closed linear operators are stated and discussed, while the proofs
are given in Section 4. Section 3 is devoted to the application of Theorem 1 and its
corollaries to evolution equations (1.3) and evolutionary integral equations (1.4).
Here emphasis is put on the interpretation of the commutator condition. The
L1-estimates for the resolvent kernel associated with a(t) which are needed for
the commutator condition are derived in Section 5. The paper concludes with
applications to parabolic partial differential and integro-differential equations which
are presented in Section 6.

2. The Main Results

Recall that a Banach space X is said to belong to the class HT if the Hilbert
transform H defined by

(Hf)(t) = lim
ε→0+

∫
|s|≥ε

f(t− s)
ds

πs
, t ∈ R, f ∈ C∞0 (R;X),(2.1)

extends to a bounded linear operator on Lp(R;X) for some p ∈ (1,∞). It is well-
known that the class HT coincides with the class of Banach spaces having the
uniform martingale difference property (UMD-spaces), and that for such spaces
the Hilbert transform is bounded on Lp(R;X) for every p ∈ (1,∞). In particular,
Hilbert spaces belong to HT , and if Y ∈ HT and (Ω, µ) is a σ-finite measure space,
then Lp(Ω, µ;Y ) belongs to HT for each p ∈ (1,∞). For a reference and further
discussions we recommend the paper by Dore and Venni [9], the survey article
Burkholder [6], and the monograph Prüss [16].

Consider now two closed linear densely defined operators A and B which are sec-
torial, admit bounded imaginary powers, and are subject to the strong parabolicity
assumption θA + θB < π. Fix angles ϕA > θA, ϕB > θB, with

ϕA + ϕB < π.(2.2)

Then there are constants KA, KB, such that

|Ais| ≤ KAe
|s|ϕA , |Bis| ≤ KBe

|s|ϕB , for all s ∈ R.(2.3)

Moreover, there is a constant MB such that

|(µ+B)−1| ≤MB/|µ|, for all µ ∈ Σπ−ϕB .(2.4)

A similar estimate is also valid for the resolvent of A, but if we assume in addition
that A is invertible, we have the stronger estimate

|(λ +A)−1| ≤MA/(1 + |λ|), for all λ ∈ Σπ−ϕA ,(2.5)

for some constant MA. The commutator condition which will be employed here
reads as follows. We assume that there are constants 0 ≤ α < β ≤ 1 and c ≥ 0
such that

|A(λ+A)−1[A−1(µ+B)−1 − (µ+B)−1A−1]| ≤ c

(1 + |λ|1−α)|µ|1+β ,(2.6)

for all λ ∈ Σπ−ϕA , µ ∈ Σπ−ϕB .
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We are now in position to state our main result.

Theorem 1. Suppose X is a Banach space of class HT , A and B are closed, linear,
densely defined operators in X which are sectorial and admit bounded imaginary
powers, and let A be invertible. Assume the strong parabolicity condition θA+θB <
π, and fix angles ϕA > θA, ϕB > θB, such that ϕA + ϕB < π holds.

Then there is a constant c0 > 0 such that the operator A + B with domain
D(A)∩D(B) is closed and invertible in X, provided A and B satisfy the commutator
condition (2.6)and c < c0.

The idea of the proof is based on the formulas

S :=
1

2i

∫ γ+i∞

γ−i∞
A−zBz−1 dz

sin(πz)
=

1

2πi

∫
Γ

(µ+A)−1(µ−B)−1dµ,

and

T :=
1

2i

∫ γ+i∞

γ−i∞
B−zAz−1 dz

sin(πz)
=

1

2πi

∫
Γ

(µ−B)−1(µ+A)−1dµ,

where γ ∈ (0, 1) is arbitrary, and the contour Γ is chosen appropriately. One can
then prove the identities

ASx+ SBx = x for all x ∈ D(B),

and

TAx+BTx = x for all x ∈ D(A).

Therefore, AS and SB are bounded or unbounded simultaneously, and the same
is true for TA and BT . The commutator condition (2.6) implies that SB − BT
is bounded; hence the operators AS, SB, TA, BT are bounded or unbounded
simultaneously. By means of the boundedness of the Hilbert transform in L2(R;X)
and with the aid of (2.6) one then can show that all these quantities are bounded.
This is the crucial step of the proof. Once this is done, one can construct left and
right inverses L and R by means of the commutator condition (2.6) as

L := A−1(I +Q)−1AS, R := TAγ(I + P )−1A−γ ,

where P and Q are small in operator norm; it is here where the smallness of c comes
in. Finally, R = L is an inverse, and since by construction AL is bounded, BL is
bounded as well.

From the estimates derived in the proof in Section 4 it will become apparent
that in the situation of Theorem 1 A + B will again be sectorial. More precisely,
we have

Corollary 1. Let the assumptions of Theorem 1 be satisfied, in particular let A
and B satisfy the commutator condition (2.6) with c < c0.

Then A+B is sectorial and φA+B ≤ max{ϕA, ϕB}.

Since the basic estimates for the resolvents and the imaginary powers of A and
B are basically invariant under shifts ν + A or ν + B where ν > 0 (cf. Prüss and
Sohr [17]), but the constant c in (2.6) decreases to zero if ν → ∞ after replacing
β by a slightly smaller and α by a slightly larger number, it is possible to remove
the smallness assumption on c, at the price of adding a possibly large constant ν
to A+B. We state this observation as
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Corollary 2. Let the assumptions of Theorem 1 be satisfied, in particular let A
and B satisfy the commutator condition (2.6), however, without any restriction of
the size of c > 0.

Then A+B with domain D(A) ∩D(B) is closed, and there is a number ν0 ≥ 0
such that ν + A + B is invertible for every ν > ν0, and there is a constant C > 0
such that

|(ν +A+B)−1| ≤ C/ν for all ν > ν0.

In particular, the operator ν0 +A+B is sectorial.

Some remarks concerning the commutator condition (2.6) seem to be in order.
The natural expression to be considered should be the commutator of the resolvents
of A and B, i.e.

C(λ, µ) := (λ+A)−1(µ+B)−1 − (µ+B)−1(λ+A)−1.

If A and B are subject to the estimates (2.5) and (2.4), then

|C(λ, µ)| ≤ MAMB

(1 + |λ|)|µ| , for all λ ∈ Σπ−ϕA , µ ∈ Σπ−ϕB .

This estimate suggests that, instead of (2.6), we look at conditions of the form

|C(λ, µ)| ≤ MAMB

(1 + |λ|p)|µ|q , for all λ ∈ Σπ−ϕA , µ ∈ Σπ−ϕB ,

where p and q are nonnegative numbers such that p+ q > 2. So far it is not known
whether a condition of this type is sufficient to prove noncommutative versions of
the Da Prato-Grisvard or Dore-Venni theorems. Observe that

C(λ, µ) = A(λ+A)−1[A−1(µ+B)−1 − (µ+B)−1A−1]A(λ+A)−1;

hence (2.6) implies an estimate for C(λ, µ) of the above mentioned type, where
p = 1− α and q = 1 + β, in particular p+ q = 2 + β − α > 2.

3. Applications to Evolution and Evolutionary Integral Equations

Let Y be a Banach space of class HT , let {L(t)}t≥0 be a family of closed linear
densely defined operators in X , probably with variable domains D(L(t)), and a ∈
L1
loc(R+) a nontrivial scalar kernel of subexponential growth. The latter means

that ∫ ∞

0

|a(t)|e−εtdt <∞ for each ε > 0.

Consider the following evolutionary integral equation:

u(t) +

∫ t

0

a(t− s)[νu(s) + L(s)u(s)− f(s)]ds = 0, t ≥ 0,(3.1)

where f : R+ → X is a given function, strongly measurable and locally integrable,
at least. Observe that evolution equations of the type

u̇(t) + L(t)u(t) + νu(t) = f(t), t ≥ 0, u(0) = 0,(3.2)

are special cases of (3.1) ; choose a(t) = 1 and differentiate (3.1) to see this.
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We want to study (3.1) in an Lp-setting by means of the results from Section 2.
For this purpose let X = Lp(R+;Y ), where p ∈ (1,∞), with norm | · |p, and define
an operator A in the standard way by means of{

(Au)(t) = L(t)u(t), for a.a. t ≥ 0,
D(A) = {u ∈ X : u(t) ∈ D(L(t)) for a.a. t ≥ 0, Au ∈ X}.

Then A is a closed linear operator in X . To obtain A ∈ BIP (X) we impose the
following condition on L(t).

(L) For each t ≥ 0, L(t) ∈ BIP (Y ), and there are constants MA, KA > 0 and
ϕA ∈ (0, π) such that

|(λ+ L(t))−1| ≤ MA

1 + |λ| for all t ≥ 0, λ ∈ Σπ−ϕA ,

and

|L(t)is| ≤ KAe
|s|ϕA for all t ≥ 0, s ∈ R.

It is easily seen that

((λ +A)−1f)(t) = (λ+ L(t))−1f(t) for a.a. t ≥ 0 and all λ ∈ Σπ−ϕA ,

and that

(Aisf)(t) = L(t)isf(t) for a.a. t ≥ 0 and all s ∈ R;

hence A ∈ BIP (X) and estimates (2.3) and (2.5) are valid for A. Observe that A
is densely defined, since for a given f ∈ X the functions fn = n(n+A)−1f belong
to D(A), are bounded a.e. by the function MA|f(t)| which belongs to Lp(R+), and
converge to f(t) a.e. in Y , hence also in X , by Lebesgue’s theorem.

The construction of B is not so obvious, except for the case of the evolution
equation (3.2), i.e. a(t) = 1. In fact, in this case

(Bu)(t) =
d

dt
u(t), t ≥ 0, D(B) = H1,p

0 (R+;Y ),

where H1,p
0 (R+;Y ) denotes the space of all functions u : R+ → Y which are locally

absolutely continuous, differentiable a.e., and such that u̇ ∈ Lp(R+;Y ) and u(0) =
0. Obviously, B is a closed linear densely defined operator in X , and it is easy to
compute the resolvent of B:

((µ+B)−1f)(t) =

∫ t

0

e−µ(t−s)f(s)ds, t ≥ 0,(3.3)

whenever Reµ > 0. In particular, B is sectorial with spectral angle φB = π/2.
The vector-valued Marcinkiewicz multiplier theorem (cf. Zimmermann [22], Prüss
[16]) then implies B ∈ BIP (X) and θB = π/2 for the power angle of B. Thus
assumptions (2.3) for B and (2.4) are valid, provided ϕB is chosen larger than π/2.

For the case of more general kernels a(t) we refer to Theorem 8.6 and Proposition
8.2 of the second author’s monograph [16]. The basic assumptions of these results
which are valid in spaces Lp(R+;Y ), where Y belongs to the class HT , are the
following:

(a) | arg â(λ)| ≤ ϑB and |λâ′(λ)/â(λ)| ≤ κ, for all λ ∈ Σπ/2.



NONCOMMUTATIVE DORE-VENNI THEOREM 4793

Here ϑB ∈ (0, π) and κ > 0 are constants, and the hat indicates Laplace transform.
Following the terminology in Prüss [16], kernels satisfying an estimate of the form
| arg â(λ)| ≤ ϑ on Σπ/2 will be called ϑ-sectorial, while kernels which are subject

to |λnâ(n)(λ)/â(λ)| ≤ κ on Σπ/2 for all n ≤ k will be termed k-regular. Then the
operator B defined formally in terms of Laplace transforms according to

(Bu)̂(λ) =
û(λ)

â(λ)
, λ ∈ Σπ/2,

gives rise to a closed linear densely defined operator B in X , which is sectorial and
admits bounded imaginary powers, and satisfies φB ≤ θB ≤ ϑB . In particular,
assumptions (2.3) and (2.4) are valid for any ϕB > ϑB . The resolvent of B is given
by

((µ+B)−1f)(t) =

∫ t

0

rµ(t− s)f(s)ds, t ≥ 0,(3.4)

where rµ denotes the solution of the scalar Volterra equation

rµ(t) + µ

∫ t

0

a(t− s)rµ(s)ds = a(t), t ≥ 0.(3.5)

In particular, for a(t) = 1, i.e. for the case of evolution equations, we have rµ(t) =
e−µt, in accordance with (3.3).

Concerning the domain of B, we note the following proposition, which is implied
by Corollaries 8.1 and 8.2 of Prüss [16] by restriction to the halfline.

Proposition 1. Suppose the kernel a(t) is subject to condition (a). Let B be
defined as above and ρ > 0. Then

(i) lim supr→∞ |â(r)|rρ <∞ implies D(B) ↪→ Hρ,p
0 (R+;Y ) ;

(ii) lim infr→∞ |â(r)|rρ > 0 and lim infr→0+ |â(r)| > 0 imply Hρ,p
0 (R+;Y ) ↪→

D(B) ;

(iii) if limt→0+ t
−ρ ∫ t

0
a(s)ds 6= 0,∞ exists and in addition lim infr→0+ |â(r)| > 0,

then D(B) = Hρ,p
0 (R+;Y ).

Here the spaces Hρ,p
0 (R+;Y ) are defined as follows: u ∈ Hρ,p

0 (R+;Y ) if and only
if its extension by 0 to all of R belongs to Hρ,p(R;Y ); see Prüss [16] for the latter.
In particular the traces at t = 0 of the derivatives of u ∈ Hρ,p

0 (R+;Y ) which exist
are zero. Recall that ρ > σ + 1/p implies Hρ,p(R;Y ) ↪→ Cσ(R;Y ).

Observe that the second condition in (ii) and (iii) holds if a(t) is nonnegative
and nontrivial, as will be the case in all examples to be considered here. Let us show
that the first part of (ii) in Proposition 1 is satisfied with ρ0 = 2ϑB/π, whenever
the kernel a(t) is subject to (a). For this purpose we take the analytic completion
of the Poisson formula for the harmonic function h(λ) = arg â(λ), which reads

log â(λ) = κ0 +
i

π

∫ ∞

−∞

[
1− iρλ

λ− iρ

]
h(iρ)

dρ

1 + ρ2
,

where κ0 ∈ R is a suitable constant. Considering only real λ > 1 and estimating
the real part of this formula, we obtain

|Re log â(λ)| ≤ κ0 + ρ0
λ2 + 1

λ2 − 1
logλ ≤ κ+ ρ0 logλ,
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for some constant κ. But this implies

|â(λ)| = elog |â(λ)| ≥ e−|Re log â(λ)| ≥ e−κ−ρ0 log λ = cλ−ρ0 ,

where c = e−κ > 0. Thus as a result we have the inequality

|â(r)| ≥ cr−ρ0 , for all r > 1.(3.6)

Observe that ρ0 < 2 by the sector condition (a).
Returning to the abstract treatment of (3.1), with the definitions of A and B

given above, (3.1) can be rewritten in the form as νu + Au + Bu = f , and we are
in position to apply Theorem 1 as well as Corollaries 1 and 2, once we have verified
the commutator condition (2.6).

Let

Z(λ, µ) = A(λ +A)−1[A−1(µ+B)−1 − (µ+B)−1A−1];

with the representations of the resolvents of A and B described above we then have

(Z(λ, µ)f)(t) =

∫ t

0

rµ(t− s)L(t)(λ+ L(t))−1[L(t)−1 − L(s)−1]f(s)ds, t ≥ 0.

Therefore,

|(Z(λ, µ)f)(t)| ≤
∫ t

0

|rµ(t− s)||L(t)(λ + L(t))−1[L(t)−1 − L(s)−1]||f(s)|ds, t ≥ 0,

and it appears that in order to establish (2.6) we need assumptions on the quantity
|L(t)(λ + L(t))−1[L(t)−1 − L(s)−1]| and on the kernels |rµ(t)|. Let the following
conditions be satisfied in addition to (L) and (a).

(C) There exist constants α ∈ [0, 1), δ ∈ (0, 1] and M1 > 0 such that

|L(t)(λ+ L(t))−1[L(t)−1 − L(s)−1]| ≤ M1|t− s|δ
1 + |λ|1−α for all t, s ≥ 0, λ ∈ Σπ−ϕA .

(r) There exist constants β > 0 and M2 > 0 such that

|tδrµ|1 ≤
M2

|µ|1+β , µ ∈ Σπ−ϕB .

Then we obtain the estimates

|Z(λ, µ)f |p ≤ M1

1 + |λ|1−α |
∫ t

0

|rµ(t− s)||t− s|δ|f(s)|ds|p

≤ M1

1 + |λ|1−α |t
δrµ|1|f |p

≤ M1M2

(1 + |λ|1−α)|µ|1+β |f |p, for all µ ∈ Σπ−ϕB , λ ∈ Σπ−ϕA ,

and for each f ∈ Lp(R+;Y ). Therefore the commutator condition (2.6) follows,
provided β > α.

In Section 5 we discuss the assumptions (a) and (r) on the kernel a(t) in detail.
For the moment we observe that for the case of evolution equations a(t) = 1 we
have rµ(t) = e−µt; hence

|tδrµ|1 ≤ Γ(1 + δ)/(Re µ)1+δ, µ ∈ Σπ/2, δ > −1,

where Γ means the gamma function. Therefore β = δ in this case, and (2.6) is valid
if (C) holds with 0 ≤ α < δ ≤ 1.
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Conditions (L) and (C) on the family of operators {L(t)}t≥0 will be discussed
to some extent for the case of elliptic partial differential operators on Y = Lq(Ω)
in Section 6. They have been used before for the case of evolution equations
by Acquistapace and Terreni [2]. Observe that in the case of constant domains
D(L(t)) = D0 for t ≥ 0, condition (C) with α = 0 is implied by the resolvent
estimate in (L) and by the classical condition

(C0) There exist constants δ ∈ (0, 1] and M3 > 0 such that

|[L(t)− L(s)]L−1(s)| ≤M3|t− s|δ for all t, s ≥ 0,

which was introduced by Sobolevskii [19] and by Kato and Tanabe (see [20]).
Let us summarize our considerations in

Theorem 2. Let Y be a Banach space of class HT , {L(t)}t≥0 a family of closed
linear densely defined operators in Y which is subject to (L) and (C), let a ∈
L1
loc(R+) be a kernel of subexponential growth which satisfies (a) and (r), and let

ν ≥ 0 and p ∈ (1,∞). Assume that (3.1) is parabolic in the sense that ϕA+ϕB < π,
and assume β > α.

If either ν ≥ 0 is sufficiently large or M1M2 is sufficiently small, then for every
f ∈ Lp(R+;Y ), (3.1) admits a unique solution u ∈ Lp(R+;Y ) such that u(t) ∈
D(L(t)) for a.a. t ≥ 0 and L(·)u ∈ Lp(R+;Y ). Moreover, if lim supr→∞ |â(r)|rρ <
∞ for some ρ ≥ 0, then u ∈ Hρ,p

0 (R+;Y ).

In case (3.1) is considered on a finite interval J = [0, T ], then no restrictions
on the size of M1M2 or the magnitude of ν are needed. In fact, multiplying (3.1)
by e−ωt and setting v(t) = e−ωtu(t) and g(t) = e−ωtf(t), (3.1) is transformed into
an equation of the same type, with a(t) replaced by aω(t) = e−ωta(t). This way
conditions (a) and (r) remain valid with the same constants. Taking the inverse
convolution of this new equation with δ0 + (ν − ν0)aω, where δ0 denotes the Dirac
distribution and ν0 > 0 is large, there results an equation of the form (3.1) with ν
replaced by ν0 and aω by rω,ν−ν0 . Then given ν0 > 0, choosing ω sufficiently large,
(a) and (r) are still satisfied, probably with slightly larger constants. Thus as a
corollary to Theorem 2 we obtain

Corollary 3. Assume that the assumptions of Theorem 2 are satisfied, without
restrictions on the magnitudes of ν ∈ R or M1M2, and let J = [0, T ].

Then for every f ∈ Lp(J ;Y ), (3.1) admits a unique solution u ∈ Lp(J ;Y )
such that u(t) ∈ D(L(t)) for a.a. t ∈ J and L(·)u ∈ Lp(J ;Y ). Moreover, if
lim supr→∞ |â(r)|rρ <∞ for some ρ ≥ 0, then u ∈ Hρ,p

0 (J ;Y ).

4. Proof of the Main Results

In this section, we want to give the proof of Theorem 1 stated in Section 2. For
this purpose fix A, B, θA, θB, ϕA, ϕB, MA, MB, c, KA, KB as in Section 2. We
begin with a general lemma.

Lemma 1. Let {Ft}t∈R be a strongly measurable family of bounded linear operators
in X which is exponentially bounded in the sense that there are constants K > 0
and θ < π such that

|Ftx| ≤ Keθ|t||x|, for all x ∈ X, t ∈ R.
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Then, for each x ∈ X and a > 0,

lim
ε→0+

∫
|s|≥ε

Ft−sx
ds

sinhπs
exists a.e. on (−a, a),

the function

Fx : t 7→ lim
ε→0

1

2i

∫
|s|≥ε

Ft−sx
ds

sinhπs

belongs to L2((−a, a);X) and

|Fx|L2((−a,a);X) ≤ c(a,K, θ,H2)|x|,
where c(a,K, θ,H2) denotes a constant which only depends on a, K, θ, and the
norm H2 of the Hilbert transform in L2(R, X).

Proof. The proof is based on the boundedness of the Hilbert transform in L2(R, X),
since X is of class HT . It is basically due to Dore-Venni [9]. For each ε ∈ (0, a),
we have

1

2i

∫
|s|≥ε

Ft−sx
ds

sinhπs
=

1

2i

∫
|s|≥2a

Ft−sx
ds

sinhπs

+
1

2i

∫
ε≤|s|≤2a

Ft−sx
(

1

sinhπs
− 1

πs

)
ds+

1

2iπ

∫
ε≤|s|≤2a

Ft−sx
ds

s
.

It is easy to deal with the first two terms since 1
| sinhπs| ≤ 4e−π|s| for all s ∈ R, |s| ≥

1, and | 1
sinhπs −

1
πs | =

π|s|
6 + o(|s|) for |s| near 0. The difficult term is the third one:

1

2iπ

∫
ε≤|s|≤2a

Ft−sx
ds

s
=

1

2i
(Hεf)(t) +

1

2iπ

∫ t−2a

−2a

Ft−sx
ds

s

− 1

2iπ

∫ t+2a

2a

Ft−sx
ds

s
,

where f(r) = χ(−2a,2a)Frx, and (Hεg)(t) = 1
π

∫
|s|≥ε g(t− s) ds

s denotes the trun-

cated Hilbert transform. Since f ∈ L2(R, X), we know that (Hεf)(t) converges for
a.e. t ∈ R, and in L2(R, X) as ε→ 0+. We restrict ourselves to the interval (−a, a)
to assure the convergence of the two other terms. The bound of |Fx|L2(−a,a);X) is

now immediate, since |f |L2(R,X) ≤ 2Ke2θa|x|.

The next main idea is to approximate A and B by bounded invertible operators.
Since A is already invertible, it is sufficient to replace it by Aδ = A(1 + δA)−1,
δ ∈ (0, 1); B is approximated by Bδ = (B + δ)(1 + δB)−1, δ ∈ (0, 1). For all
δ ∈ (0, 1), Aδ and Bδ are bounded and invertible operators, and we have

lim
δ→0+

Aδx = Ax for all x ∈ D(A) and lim
δ→0+

Bδx = Bx for all x ∈ D(B).

Moreover, we know that Aδ and Bδ satisfy (2.3) with constants K ′
A and K ′

B in-
dependent of δ ∈ (0, 1) ; to see this use A ∈ BIP (X) ⇐⇒ A−1 ∈ BIP (X),
and apply Theorem 3 of Prüss-Sohr [17]. The operator Bδ also satisfies (2.4) with
M ′
B independent of δ ∈ (0, 1), and for Aδ inequality (2.5) with M ′

A independent of
δ ∈ (0, 1) is valid.

Let us define the following bounded linear operators Sδ and Tδ for each δ ∈ (0, 1):

Sδ =
1

2i

∫ γ+i∞

γ−i∞
A−zδ Bz−1

δ

dz

sin(πz)
and Tδ =

1

2i

∫ γ+i∞

γ−i∞
B−zδ Az−1

δ

dz

sin(πz)
,
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where γ ∈ (0, 1) is arbitrary; observe that the integrals are absolutely convergent,
thanks to (2.3). Since the functions z 7→ A−zδ Bzδ and z 7→ B−zδ Azδ are holomorphic
on C, the theorem of residues implies the identities

AδSδx+ SδBδx = x and TδAδx+BδTδx = x, for all x ∈ X, δ ∈ (0, 1).

We show next that Aδ and Bδ satisfy the commutator condition (2.6) with a con-
stant c′ independent of δ ∈ (0, 1).

Lemma 2. Let Zδ(λ, µ) = Aδ(λ+Aδ)
−1[A−1

δ (µ+Bδ)
−1 − (µ+Bδ)

−1A−1
δ ] for all

δ ∈ (0, 1). Then there exists a constant c(ϕA, ϕB) which depends only on ϕA and
ϕB such that

|Zδ(λ, µ)| ≤ c · c(ϕA, ϕB)

(1 + |λ|1−α)|µ|1+β , λ ∈ Σπ−ϕA , µ ∈ Σπ−ϕB ,

where α and β denote the same constants as in (2.6).

Proof. A simple calculation gives for all δ ∈ (0, 1)

Zδ(λ, µ) =
1− δ2

(1 + δλ)(1 + δµ)2
Z

(
λ

1 + δλ
,
µ+ δ

1 + δµ

)
,

for all λ ∈ Σπ−ϕA and µ ∈ Σπ−ϕB , where

Z(λ, µ) = A(λ +A)−1[A−1(µ+B)−1 − (µ+B)−1A−1].

Then the commutator condition (2.6) gives the expected bound, where

c(ϕA, ϕB) = sup

{
1

|1 + δλ|α|1 + δµ|1−β ; λ ∈ Σπ−ϕA , µ ∈ Σπ−ϕB , δ ∈ (0, 1)

}
· sup

{
| µ

µ+ δ
|1+β ; µ ∈ Σπ−ϕB , δ ∈ (0, 1)

}
· sup

{
|1 + δλ|α−1 ; λ ∈ Σπ−ϕA , δ ∈ (0, 1)

}
.

Let us derive different representations of Sδ and Tδ, δ ∈ (0, 1). For this purpose
we fix θ < ϕB , ϕ < ϕA and δ0 ∈ (0, 1) such that( ⋃

0<δ<δ0

σ(Bδ) ∪ σ(B)

)
⊂ Σθ and

( ⋃
0<δ<δ0

σ(Aδ) ∪ σ(A)

)
⊂ Σϕ,

and δ ∈ (0, δ0). Let Rδ > sup{|µ| ; µ ∈ σ(Bδ)} and 0 < rδ < inf{|µ| ; µ ∈ σ(Bδ)}.
We denote by ΓδB the following contour:

[rδ, Rδ]e
−iθ ∪Rδei[−θ,θ] ∪ [Rδ, rδ]e

iθ ∪ rδei[θ,−θ];

ΓδB is a positively directed contour which surrounds σ(Bδ). The functional calculus
of Dunford yields

Bz−1
δ =

1

2iπ

∫
ΓδB

µz−1(µ−Bδ)
−1dµ for all z ∈ C.

The same argument can be applied to Aδ:

ΓδA = [r′δ, R
′
δ]e

−iϕ ∪R′δei[−ϕ,ϕ] ∪ [R′δ, r
′
δ]e

iϕ ∪ r′δei[ϕ,−ϕ],
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where R′δ > sup{|λ| ; λ ∈ σ(Aδ)} and 0 < r′δ < inf{|λ| ; λ ∈ σ(Aδ)}, and we obtain

A−zδ =
1

2iπ

∫
ΓδA

λ−z(λ−Aδ)
−1dλ for all z ∈ C.

Hence, once γ ∈ (0, 1) has been chosen, Fubini’s theorem yields

Sδ =
1

(2iπ)2

∫
ΓδB

∫
ΓδA

(
1

2i

∫ γ+i∞

γ−i∞
λ−zµz−1 dz

sinπz

)
(λ−Aδ)

−1(µ−Bδ)
−1dλdµ.

Since | arg λ|+ | argµ| ≤ ϕ+ θ < π, the inverse Mellin transform gives

1

λ+ µ
=

1

2i

∫ γ+i∞

γ−i∞
λ−zµz−1 dz

sinπz
,

and the functional calculus of Dunford implies that

1

2iπ

∫
ΓδA

1

λ+ µ
(λ −Aδ)

−1dλ = (µ+Aδ)
−1.

Therefore

Sδ =
1

2iπ

∫
ΓδB

(µ+Aδ)
−1(µ−Bδ)

−1dµ.(4.1)

Thanks to the estimates (2.4) and (2.5), by holomorphy we may deform the contour
ΓδB into Γ = (∞, 0]eiθ ∪ [0,∞)e−iθ, which leads to

Sδ =
1

2iπ

∫
Γ

(µ+Aδ)
−1(µ−Bδ)

−1dµ, for all δ ∈ (0, δ0).(4.2)

In the same way, we can show that

Tδ =
1

2iπ

∫
Γ

(µ−Bδ)
−1(µ+Aδ)

−1dµ, for all δ ∈ (0, δ0),(4.3)

with the same contour Γ.
As δ → 0+ the integrands in these formulas converge strongly for every µ ∈ Γ,

and are uniformly bounded by a function which is integrable on Γ. Therefore by
Lebesgue’s theorem

lim
δ→0+

Sδx =
1

2iπ

∫
Γ

(µ+A)−1(µ−B)−1x dµ =: Sx, x ∈ X,(4.4)

and

lim
δ→0+

Tδx =
1

2iπ

∫
Γ

(µ−B)−1(µ+A)−1x dµ =: Tx, x ∈ X.(4.5)

We are now in position to state the following lemma, which is the main step in the
proof of invertibility of A+B.

Lemma 3. S maps X into D(A), AS ∈ B(X) and ASx + SBx = x for all x ∈
D(B). Consequently SB admits a unique bounded extension to all of X.

Proof. (i) For all δ ∈ (0, δ0) and for all x ∈ D(B), lim
δ→0+

SδBδx = SBx since Sδ → S

strongly as δ → 0+ and Bδx → Bx as δ → 0+ for x ∈ D(B). Then AδSδx →
x− SBx as δ → 0+, since AδSδx+ SδBδx = x for all δ ∈ (0, 1).

On the other hand, AδSδx = A(1+δA)−1Sδx and (1+δA)−1x→ x for all x ∈ X
as δ → 0+; hence (1 + δA)−1Sδx → Sx as δ → 0+. Therefore, since A is closed,
Sx ∈ D(A) and ASx = x− SBx for all x ∈ D(B).
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(ii) For all x ∈ X and all δ ∈ (0, δ0), we have

SδBδ =
1

2i

∫ γ+i∞

γ−i∞
A−zδ Bzδ

dz

sin(πz)
, γ ∈ (0, 1).

To show that SδBδ is bounded uniformly w.r.t. δ ∈ (0, 1), write

A−zδ Bzδ = A−itδ (Ait−zδ Bzδ −BzδA
it−z
δ ) + A−itδ Bitδ B

z−it
δ Ait−zδ .

Since z 7→ BzδA
−z
δ ∈ B(X) is holomorphic in {z ∈ C ; 0 < Rez < 1} thanks to

Lemma 1 with F δt x = B−itδ Aitδ x, shifting the contour to the imaginary axis, we have
for a.a. t ∈ (− 1

2 ,
1
2 )

1

2i

∫ γ+i∞

γ−i∞
A−itδ Bitδ B

z−it
δ Ait−zδ

dz

sin(πz)
=

1

2
x+A−itδ Bitδ (Fδx)(t),

where Fδx corresponds to F δt as in Lemma 1. On the other hand, thanks to the
functional calculus of Dunford, we have

Ait−zδ Bzδ −BzδA
it−z
δ

=
1

(2iπ)2

∫
ΓδA

∫
ΓδB

λit−zµz[(λ −Aδ)
−1(µ− Bδ)

−1 − (µ−Bδ)
−1(λ −Aδ)

−1] dµdλ

=
−1

(2iπ)2

∫
ΓδA

∫
ΓδB

λit−zµzZδ(−λ,−µ)Aδ(λ−Aδ)
−1dµdλ,

and therefore integration over t ∈ [− 1
2 ,

1
2 ] yields

SδBδx =
1

2
x +

∫ 1
2

− 1
2

A−itδ Bitδ (Fδx)(t) dt

+
1

2iπ

∫
ΓδA

(∫ 1
2

− 1
2

λitA−itδ dt

)
λZδ(−λ, λ)Aδ(λ−Aδ)

−1x dλ,

since

1

2i

∫ γ+i∞

γ−i∞
λ−zµz

dz

sinπz
=

µ

µ+ λ

by the inverse Mellin transform, for any γ ∈ (0, 1), λ ∈ ΓδA and µ ∈ ΓδB, and

1

2iπ

∫
ΓδB

µ

λ+ µ
(µ−Bδ)

−1dµ = Bδ(λ+Bδ)
−1

by the Dunford calculus. As in the derivation of (4.1) we may deform the contour
ΓδA into Γ′ = (∞, 0)eiϕ ∪ (0,∞)e−iϕ. Therefore we obtain the following estimate:

|SδBδx| ≤ 1

2
|x| + K ′

AK
′
Be

π/2|Fδx|L2(− 1
2 ,

1
2 ;X)

+K ′
A

eπ

2π

∣∣∣∣∫
Γ′
|λ||Zδ(−λ, λ)|(M ′

A + 1)|x||dλ|
∣∣∣∣

≤ 1

2
|x| + K ′

AK
′
Be

π/2c(K ′
AK

′
B, φA + φB ,H2)

+c′(M ′
A + 1)K ′

A

eπ

π

(∫ ∞

0

dr

(1 + r1+α)rβ

)
|x|

≤ C|x|, for all x ∈ X,
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where C > 0 denotes a constant which is independent of x ∈ X and δ ∈ (0, δ0).
Since D(B) is dense in X and lim

δ→0+
SδBδx = SBx for all x ∈ D(B), SB is bounded

and admits a unique bounded extension SB on X . Since A is closed, Sx ∈ D(A)
and ASx+ SBx = x for all x ∈ X. Moreover, AS = 1− SB ∈ B(X).

We now construct the operator Q as announced in Section 2.

Lemma 4. Let Q = AS − A2SA−1. Then Q ∈ B(X) and |Q| < 1, provided the
constant c from (2.6) is small enough.

Proof. Let

Qδ = AδSδ −A2
δSδA

−1
δ

=
1

2i

∫ γ+i∞

γ−i∞
A−z+2
δ (A−1

δ Bz−1
δ −Bz−1

δ A−1
δ )

dz

sinπz
,

for γ ∈ (0, 1) and δ ∈ (0, δ0). As before we have

Bz−1
δ =

1

2iπ

∫
ΓδB

µz−1(µ−Bδ)
−1dµ.

Hence by Fubini’s theorem

Qδ =
1

2iπ

∫
ΓδB

(
1

2i

∫ γ+i∞

γ−i∞
µz−1A−z+2

δ

dz

sinπz

)
·
(
A−1
δ (µ−Bδ)

−1 − (µ−Bδ)
−1A−1

δ

)
dµ.

The theorem of residues implies

(1 + µA−1
δ )

1

2i

∫ γ+i∞

γ−i∞
µz−1A−z+2

δ

dz

sinπz
= − 1

2i
2iπ Resz=1

(
µz−1A−z+2

δ

sinπz

)
= Aδ.

Therefore

Qδ =
1

2iπ

∫
ΓδB

Aδ(1 + µA−1
δ )−1

(
A−1
δ (µ−Bδ)

−1 − (µ−Bδ)
−1A−1

δ

)
dµ

=
1

2iπ

∫
ΓδB

Aδ(1− µ(µ+Aδ)
−1)

(
A−1
δ (µ−Bδ)

−1 − (µ−Bδ)
−1A−1

δ

)
dµ

=
1

2iπ

∫
ΓδB

µZδ(µ,−µ) dµ,

since

∫
ΓδB

(µ−Bδ)
−1dµ = 1.

By means of the commutator condition (2.6) and Lebesgue’s theorem, deforming
first ΓδB into Γ as before, we arrive at

lim
δ→0+

Qδx =
1

2iπ

∫
Γ

µZ(µ,−µ)x dµ =: Qx, x ∈ X.

In particular, Q ∈ B(X),

|Qδ| ≤
c′

π

∫ ∞

0

1

(1 + r1−α)rβ
dr <∞,

and

|Q| ≤ c

π

∫ ∞

0

1

(1 + r1−α)rβ
dr.
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It is then possible to choose c1 > 0 such that for all c < c1, |Q| and |Qδ| are smaller
than 1.

Finally, Qδx−AδSδx −→ Qx−ASx and (1 + δA)−1AδSδA
−1
δ x −→ ASA−1x as

δ → 0+, for all x ∈ X , and therefore with A2
δSδA

−1
δ x = A(1 + δA)−1AδSδA

−1
δ x,

closedness of A implies ASA−1x ∈ D(A) and Qx = ASx − A2AA−1x, for all
x ∈ X .

We are now in position to obtain a left inverse of (A+B,D(A) ∩D(B)) : L ∈
B(X) and L(Ax+Bx) = x for all x ∈ D(A) ∩D(B).

Proposition 2. Let c in (2.6) be small enough (as in Lemma 4) and define L =
A−1(1 +Q)−1AS. Then L ∈ B(X) and L(Ax+Bx) = x for all x ∈ D(A) ∩D(B).
The range of L is contained in the domain of A.

Proof. Let Lδ = A−1
δ (1 +Qδ)

−1AδSδ for every δ ∈ (0, 1). We have

Lδ(Aδx+Bδx) = x for all x ∈ X,

since AδSδx + SδBδx = x. Next, lim
δ→0+

A−1
δ (1 +Qδ)

−1x = A−1(1 +Q)−1x and the

relation lim
δ→0+

AδSδx = ASx, for all x ∈ X, imply lim
δ→0+

Lδx = Lx for all x ∈ X . The

operator L is obviously bounded, since A is invertible, |Q| < 1 and AS is bounded
thanks to Lemma 3. Using the relation LδAδx+ LδBδx = x for all x ∈ X and all
δ ∈ (0, 1), since

lim
δ→0+

Aδx = Ax and lim
δ→0+

Bδx = Bx

for all x ∈ D(A) ∩ D(B), we obtain L(Ax + Bx) = x for all x ∈ D(A) ∩ D(B).
Obviously, R(L) ⊂ D(A), and AL = (1 +Q)−1AS is bounded.

We know by now that L is a bounded operator on X and a left inverse of A+B
with domain D(A) ∩ D(B) and maps X into D(A). We next construct a right
inverse R of (A+B,D(A) ∩D(B)) using similar methods as for L.

Lemma 5. TA defined on D(A) is bounded in X and admits a unique bounded
extension TA to all of X. Moreover, R(T ) ⊂ D(B) and BT ∈ B(X).

Proof. Formulas (4.2) and (4.3) imply

AδSδ − TδAδ

=
1

2iπ

∫
Γ

µAδ(µ+Aδ)
−1
(
(µ−Bδ)

−1A−1
δ −A−1

δ (µ−Bδ)
−1
)
Aδ(µ+Aδ)

−1dµ

=
1

2iπ

∫
Γ

µZδ(µ,−µ)Aδ(µ+Aδ)
−1dµ.

Passing to the limit as δ → 0+, Lebesgue’s theorem yields

AS − TA =
1

2iπ

∫
Γ

µZ(µ,−µ)A(µ+A)−1dµ.

Thanks to the commutator condition (2.6), the right hand side of the last equation
defines a bounded operator. Since AS is bounded, we have the expected result.
The remaining assertions follow from BδTδ +TδAδ = 1, which implies with δ → 0+

the identity BTx+ TAx = x, for all x ∈ D(A).
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Before we construct the operator P of Section 2, observe that by virtue of the
moments inequality

|Aγ(λ+A−1| ≤ M

(1 + |λ|)1−γ for all λ ∈ ΣφA , γ ∈ [0, 1],

where M > 0 denotes a constant independent of γ ∈ [0, 1].

Lemma 6. There exists a constant γ ∈ (0, 1) such that P = A−γ(TA − AT )Aγ

defines a bounded operator and |P | < 1, whenever the constant c from (2.6) is small
enough.

Proof. For every δ ∈ (0, 1), we have

Tδ =
1

2iπ

∫
ΓδB

(µ− Bδ)
−1(µ+Aδ)

−1dµ.

Therefore

Pδ = A−γδ (TδAδ −AδTδ)A
γ
δ

=
1

(2iπ)2

∫
ΓδA

∫
ΓδB

λ−γ(λ−Aδ)
−1
(
(µ−Bδ)

−1(µ+Aδ)
−1Aδ

−Aδ(µ−Bδ)
−1(µ+Aδ)

−1
)
Aγδ dµdλ

=
1

(2iπ)2

∫
ΓδA

∫
ΓδB

λ−γZδ(−λ,−µ)Aδ(µ+Aδ)
−1Aγδ dµdλ

=
1

(2iπ)2

∫
Γ′

∫
Γ

λ−γµZδ(−λ,−µ)Aγδ (µ+Aδ)
−1dµdλ,

where Γ and Γ′ are as before, and since
∫
ΓδB

(µ−Bδ)
−1dµ = 1. The convergence

of both integrals is due to the commutator condition (2.6) and the remark before
Lemma 6, if we choose γ ∈ (α, β). Moreover, thanks to Lebesgue’s theorem, we
have

lim
δ→0+

Pδx =
1

(2iπ)2

∫
Γ′

∫
Γ

λ−γµZ(−λ,−µ)Aγ(µ+A)−1x dµdλ =: Px, x ∈ X.

Furthermore, with r = |λ| and s = |µ|,

|Pδ| ≤M ′
A

c′

π2

∫ ∞

0

r−γ

1 + r1−α
dr

∫ ∞

0

s−β

(1 + s)1−γ
ds,

and

|P | ≤MA
c

π2

∫ ∞

0

r−γ

1 + r1−α
dr

∫ ∞

0

s−β

(1 + s)1−γ
ds.

It is then possible to choose c2 > 0 such that for all c ≤ c2, |P |, |Pδ| < 1 for all
δ ∈ (0, δ0).

We are now in position to obtain a right inverse of the operator A + B with
domain D(A) ∩D(B): in other words, an operator R ∈ B(X), such that R maps
X into D(A) ∩D(B) and (A+B)Rx = x for all x ∈ X.

Proposition 3. Let the constant c in (2.6) be smaller than c1 and c2, choose γ ∈
(α, β), and define R = TAAγ−1(1 − P )−1A−γ . Then R ∈ B(X), R maps X into
D(A) ∩ D(B), and (A + B)Rx = x for all x ∈ X. Moreover R = L, and it is the
inverse of A+B.
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Proof. Let Rδ = TδA
γ
δ (1− Pδ)−1A−γδ . Then (Aδ +Bδ)Rδx = x for all x ∈ X, since

TδAδ+BδTδ = 1. The operator Rδ is a right inverse of Aδ +Bδ; therefore, Rδ = Lδ
for every δ ∈ (0, δ0), since Lδ is the left inverse of Aδ +Bδ ∈ B(X). Moreover,

lim
δ→0+

Rδx = lim
δ→0+

TδA
γ
δ (1− Pδ)

−1A−γδ x = TAAγ−1(1− P )−1A−γx = Rx, x ∈ X,

and hence

Rx = lim
δ→0+

Rδx = lim
δ→0+

Lδ(Aδ +Bδ)Rδ = lim
δ→0+

Lδx = Lx, for all x ∈ X.

Thus R = L and R ∈ B(X). Since L maps X into D(A), R maps X into D(A) as
well. Since A is closed, we have

lim
δ→0+

AδRδx = ARx for all x ∈ X,

and we know moreover that (Aδ + Bδ)Rδx = x for all x ∈ X . Since B is closed,
this implies Rx ∈ D(B) and (A+B)Rx = x for all x ∈ X.

Let c0 = min{c1, c2}. The proof of Theorem 1 is now complete.

5. L1
-Estimates for Scalar Resolvent Kernels

In this section we discuss the assumptions (a) and (r) concerning the kernel a(t)
for three special classes of kernels.

1) The first class of kernels consists of the functions

a(t) = tγ−1/Γ(γ), t > 0, where γ ∈ (0, 2).(5.1)

The special case γ = 1 has been treated already in Section 3 and therefore we shall
not pay particular attention to it here. The Laplace transform â(λ) of a(t) is then
given by

â(λ) = λ−γ , λ ∈ Σπ/2.(5.2)

Thus one obtains â(λ) 6= 0 and

| arg â(λ)| ≤ γπ/2 < π, λ ∈ Σπ/2,

as well as

−λâ′(λ)/â(λ) = γ, λ ∈ Σπ/2.

This shows that assumption (a) is satisfied with ϑB = γπ/2.
The Laplace transform r̂µ of the resolvent kernel rµ for µ > 0 is given by

r̂µ(λ) =
â(λ)

1 + µâ(λ)
=

1

µ+ λγ
, λ ∈ Σπ/2.(5.3)

The dilation property of the Laplace transform then implies

rµ(t) = |µ|p−1reiφ(|µ|pt), t > 0,

where φ = argµ and p = 1/γ. Therefore, we obtain the estimate

|tδrµ|1 =

∫ ∞

0

tδ|rµ(t)|dt = |µ|p−1

∫ ∞

0

tδ|reiφ (|µ|pt)|dt

= |µ|−pδ−1

∫ ∞

0

tδ|reiφ (t)|dt =
R(δ, φ)

|µ|1+δ/γ ,
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where

R(δ, φ) =

∫ ∞

0

tδ|reiφ(t)|dt.

Thus to prove (r) for the class of kernels under consideration we need to find
bounds for R(δ, φ). For this purpose choose any angle φ0 < π − ϑB = π − πγ/2,
and let ψ > π/2 be such that γψ < π − φ0. Let Γ denote the contour

Γ = (∞, 1/2]e−iψ ∪ (e−iψ/2, e−iπ/2) ∪ [e−iπ/2, 0]

∪ [0, eiπ/2] ∪ (eiπ/2, eiψ/2) ∪ [1/2,∞)eiψ;

then the function g(λ) = eiφ+λγ is holomorphic to the right of Γ and all its possible
zeros are to the left of this contour, for each |φ| ≤ φ0. Therefore we may deform
the integration path in the complex Laplace inversion formula for reiφ to Γ. Since
|g(λ)| is nonzero and continuous on Γ and behaves like |λ|γ for large |λ|, by a simple
calculation which takes into account the cancellations on the parts of Γ which are
contained in the negative real half-line, one obtains the following estimate for reiφ :

|reiφ(t)| ≤ C

∫ ∞

0

e−rt
rγ

1 + r2γ
dr, for all t > 0, |φ| ≤ φ0,

where C > 0 denotes a constant which only depends on γ, φ0, and ψ. But this then
implies

R(δ, φ) ≤ C

∫ ∞

0

∫ ∞

0

tδe−rt
rγ

1 + r2γ
drdt = CΓ(1 + δ)

∫ ∞

0

rγ−δ−1

1 + r2γ
dr <∞,

for all |φ| ≤ φ0, provided δ > −1 and |δ| < γ.
Let us summarize these results as

Proposition 4. Let γ ∈ (0, 2), |δ| < γ, δ > −1, and consider the kernel a(t) =
tγ−1/Γ(γ), t > 0. Then (a) is satisfied with ϑB = πγ/2, and (r) holds with
β = δ/γ, for any ϕB > ϑB.

It is not difficult to see that for γ 6= 1 the restrictions on δ in Proposition 4 are
essential. In fact, contracting the contour Γ from the above proof to the negative
real axis, one obtains the representation

r1(t) =
sin(πγ)

π

∫ ∞

0

e−rt
rγ

1 + 2rγ cos(πγ) + r2γ
dr.

This representation shows that r1(t) > 0 for all t > 0, and therefore by Fubini’s
theorem we have tδr1(t) ∈ L1(R+) if and only if |δ| < γ.

For the case γ ∈ (1, 2) the function g(λ) = 1 + λγ has zeros at λ = e±iπ/γ ;
therefore, contracting the contour Γ to the negative real axis, we obtain by the
residue theorem

r1(t) =
sin(πγ)

π

∫ ∞

0

e−rt
rγ

1 + 2rγ cos(πγ) + r2γ
dr

− 2

γ
et cos(π/γ) cos[π/γ + t sin(π/γ)].

In this case r1(t) is no longer nonnegative; however, the second term in this rep-
resentation has moments of all orders δ > −1 in L1(R+), and the first term is
negative for all t > 0. Thus we see that for the case γ ∈ (1, 2), tδr1 ∈ L1(R+) if
and only if −1 < δ < γ.

Therefore the estimates in Proposition 4 are optimal.
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2) Next we consider the case where a(t) is a completely positive function, or
equivalently Φ(λ) = 1/â(λ) is a Bernstein function, which means Φ(λ) > 0 for λ >
0, and Φ′(λ) is completely monotonic on (0,∞); cf. Prüss [16] for these concepts,
its properties, and implications for the evolutionary integral equation (3.1). For
this class of kernels we have the following result.

Proposition 5. Suppose a(t) is a completely positive function. Then | arg â(λ)| ≤
π/2 on Σπ/2, i.e. ϑB ≤ π/2, and the resolvent kernels rµ are subject to the estimates

|rµ|1 ≤
1

Φ0 + Re µ
≤ 1

Re µ
, for all µ ∈ Σπ/2,(5.4)

and

|trµ|1 ≤
Φ1

(Φ0 + Re µ)2
≤ Φ1

(Re µ)2
, for all µ ∈ Σπ/2,(5.5)

where

Φ0 = Φ(0+) =
1

â(0+)
and Φ1 = Φ′(0+) =

−â′(0+)

â(0+)2
.

In particular, if Φ1 < ∞, then (r) holds with β = δ, for each ϕB > π/2 and
δ ∈ [0, 1].

Proof. Consider µ > 0, first. It is well-known that the resolvent kernels rµ(t) are
nonnegative. Therefore,

|rµ|1 =

∫ ∞

0

rµ(t) dt = lim
ε→0+

∫ ∞

0

e−εtrµ(t) dt = lim
ε→0+

r̂µ(ε),

and since r̂µ(λ) = 1/(Φ(λ) + µ), we obtain

|rµ|1 =
1

Φ0 + µ
for all µ > 0.

This proves the first statement for positive µ.
In the same way we obtain

|trµ|1 = lim
ε→0+

∫ ∞

0

te−εtrµ(t) dt = − lim
ε→0+

r̂′µ(ε) =
Φ1

(Φ0 + µ)2
,

which implies the second statement for µ > 0.
Now let µ = µ0 + iσ be complex, µ0 > 0. Here we employ the propagation

function w(t; τ) associated with a(t), which is defined via the relation

ŵ(λ; τ) =
1

λ
e−Φ(λ)τ , for all λ ∈ Σπ/2, τ ≥ 0.

It is well known that w(t; τ) is nonnegative, and nondecreasing w.r.t. t; cf. Prüss
[16]. The identity

r̂µ(λ) =

∫ ∞

0

e−µτe−Φ(λ)τdτ

then implies∫ t+h

t

rµ(s)ds =

∫ ∞

0

e−µτ [w(t+ h; τ)− w(t; τ)]dτ, t, h > 0,
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and hence∣∣∣∣∣h−1

∫ t+h

t

rµ(s) ds

∣∣∣∣∣ ≤ h−1

∫ ∞

0

e−µ0τ [w(t+ h; τ)− w(t; τ)] dτ

= h−1

∫ t+h

t

rµ0(s) ds,

for all t, h > 0. As h→ 0+, the left hand side of this inequality converges to |rµ| in
L1
loc(R+) while the right hand side approaches rµ0 in L1(R+); therefore Lebesgue’s

theorem yields rµ ∈ L1(R+), and |rµ|1 ≤ |rµ0 |1. Thus the first statement holds for
all µ ∈ Σπ/2. In the same way we obtain also |trµ|1 ≤ |trµ0 |1 provided Φ1 is finite,
and so the second claim follows as well.

The last statement is proved by Hölder’s inequality. For this purpose let δ ∈ [0, 1],
and let p = 1/δ, 1/p+ 1/q = 1. Then

|tδrµ|1 ≤ |trµ|1/p1 |rµ|1/q1

≤ [
Φ1

(Φ0 + Re µ)2
]1/p[

1

Φ0 + Re µ
]1/q

=
Φδ1

(Φ0 + Re µ)1+δ
, for all µ ∈ Σπ/2, δ ∈ [0, 1].

This implies (r) with β = δ.

Observe that condition (a) is not always satisfied when a(t) is completely pos-
itive, since such kernels need not be 1-regular, in general. However, it was shown
in Clément and Prüss [7] that the operator B as given in Section 3 is still well-
defined, and that it generates a C0-semigroup of contractions in Lp(R+;Y ) and
admits bounded imaginary powers with power angle π/2. Therefore the results of
Section 3 still remain valid, provided Φ1 <∞. Completely monotonic kernels a(t),
in particular the kernels a(t) = tγ−1, γ ∈ (0, 1], are completely positive. In partic-
ular, the considerations following Proposition 4 show that the condition Φ1 < ∞
in Proposition 5 cannot be omitted.

3) The third class of kernels we want to consider here is motivated by the theory
of viscoelasticity; cf. Prüss [16]. These kernels are of the form

a(t) = a0 + a∞t+

∫ t

0

a1(s)ds, t > 0,(5.6)

where a0, a∞ ≥ 0, and a1(t) is 3-monotone, i.e. nonnegative, nonincreasing, convex,
−ȧ(t) convex, with limt→∞ a1(t) = 0. Of course, we are only interested in the
nontrivial case a(t) 6≡ 0.

For kernels of the form (5.6) it can be shown that their Laplace transforms extend
continuously to C+ \ {0} and that for the function

g(λ) = a0 + a∞/λ+ â1(λ)
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the following estimates hold; cf. Prüss [16], Appendix to Section 3.

c1a(1/ρ) ≤ |g(iρ)| ≤ C1a(1/ρ), ρ > 0;(5.7)

c2

[
a0 +

∫ 1/ρ

0

−tȧ1(t)dt

]
≤ Re g(iρ) ≤ C2

[
a0 +

∫ 1/ρ

0

−tȧ1(t)dt

]
, ρ > 0;

(5.8)

c3

[
a∞
ρ

+ ρ

∫ 1/ρ

0

ta1(t)dt

]
≤ −Im g(iρ) ≤ C3

[
a∞
ρ

+ ρ

∫ 1/ρ

0

ta1(t)dt

]
;(5.9)

|g(n)(iρ)| ≤ C4

[
a∞

2ρn+1
+

∫ 1/ρ

0

tna1(t)dt

]
, ρ > 0, n = 0, 1, 2.(5.10)

Here ci and Ci are universal constants. These estimates are well-known as the Shea-
Wainger estimates. Replacing a∞ + a1(t) by (a∞ + a1(t))e

−σt, σ ≥ 0, estimates
(5.8), (5.7) and (5.10) show that Re g(λ) > 0 and

|λg′(λ)/g(λ)| ≤ C5, for all Re λ ≥ 0.(5.11)

In particular a(t) is 1-regular, and â(λ) is never negative real nor zero, provided
a(t) 6≡ a∞t. Thus (a) holds with ϑB ≤ π. More precisely, estimates (5.8) and (5.9)
yield ϑB < π if and only if

lim sup
t→0,∞

ta∞/2 + t−1
∫ t
0
sa1(s)ds

a0 +
∫ t
0
−sȧ1(s)ds

<∞.(5.12)

This condition implies a0 > 0 or a1(0+) = ∞ (for the limit t → 0), and a∞ =
0 (for the limit t → ∞). It is implied by a∞ = 0 and a1 ∈ L1(R+), or by
a∞ = 0 and lim inft→∞−tȧ1(t)/a1(t) > 0 (for t → ∞), and by a0 > 0, or by
lim inft→0−tȧ1(t)/a1(t) > 0 (for t → 0). a1(t) = tγ−1/Γ(γ) with γ ∈ (0, 1) is a
typical example with these properties.

We are now in position to state our result on kernels of the form (5.6).

Proposition 6. Let a(t) be a kernel of the form (5.6) where a0 ≥ 0, a∞ = 0, a1(t)
3-monotone with limt→∞ a1(t) = 0, and assume (5.12).

Then (a) is satisfied for some ϑB < π and the resolvent kernels rµ are subject to
the estimates

|rµ|1 ≤
C

|µ| , for all µ ∈ Σπ−ϕB ,(5.13)

and with ρ0 = 2ϑB/π

|trµ|1 ≤
C

|µ|1+1/ρ0
, for all µ ∈ Σπ−ϕB ,(5.14)

where ϕB > ϑB is arbitrary, and C denotes a constant depending only on ϕB .
Moreover,

|tδrµ|1 ≤
C

|µ|1+δ/ρ0 , for all µ ∈ Σπ−ϕB ,(5.15)

for each δ ∈ [0, 1].

Proof. The proof is based on Hardy’s inequality (cf. Duren [12]), which is stated as
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Lemma 7. Suppose f : C+ → C is a bounded holomorphic function on the right
half-plane such that f ′ belongs to the Hardy space H1(C+).

Then there is a function b ∈ L1(R+) such that b̂(λ) = f(λ) for all Re λ > 0,
and |b|L1(R+) ≤ 1

2 |f ′|H1(C+).

For the Laplace transform of the resolvent kernel rµ we obtain

r̂µ(λ) =
1

µ+ 1/â(λ)
=

g(λ)

λ+ µg(λ)
, Re λ > 0.

By assumption (5.12) we have ϑB < π. Fix any ϕB ∈ (ϑB, π); then there is a
constant C > 0 such that

|λ+ µg(λ)| ≥ C−1[|λ|+ |µ||g(λ)|], for all Re λ ≥ 0, µ ∈ Σπ−ϕB .(5.16)

This implies

|r̂µ(λ)| ≤ C
|g(λ)|

|λ|+ |µ||g(λ)| ≤
C

|µ| , for all Re λ ≥ 0, µ ∈ Σπ−ϕB ,

which means that hµ = r̂µ is bounded and holomorphic on the right half-plane. For
the derivative of hµ we obtain

h′µ =
λg′(λ) − g(λ)

(λ+ µg(λ))2
.

Hence by (5.11) we obtain

|h′µ(λ)| ≤ C2(1 + C5)
|g(λ)|

(|λ|+ |µ||g(λ)|)2 ,

and therefore

|h′µ|H1(C+) =

∫ ∞

−∞
|h′µ(iρ)|dρ ≤ C6

∫ ∞

−∞

|g(iρ)|
(|ρ|+ |µ||g(iρ)|)2 dρ

≤ C7

∫ ∞

0

a(1/ρ)

(ρ+ |µ|a(1/ρ))2 dρ = C7

∫ ∞

0

a(s)

(1 + s|µ|a(s))2 ds,

where we employed estimates (5.7). The function a(s) is nondecreasing, which
implies the inequality

d

ds
(sa(s)) = a(s) + sȧ(s) ≥ a(s), s > 0,

and therefore

|h′µ|H1(C+) ≤ C7

∫ ∞

0

a(s)

(1 + s|µ|a(s))2 ds

≤ C7

∫ ∞

0

d(sa(s))/ds

(1 + |µ|sa(s))2 ds

= C7

∫ ∞

0

1

(1 + |µ|r)2 dr =
C7

|µ| .

By uniqueness of the Laplace transform, Lemma 7 then implies rµ ∈ L1(R+) and
|rµ|1 ≤ C7/2|µ|, for all µ ∈ Σπ−ϕ. This proves (5.13).

To prove the second estimate (5.14) we proceed similarly. It is easy to see
that h′µ is bounded on C+, and by uniqueness of the Laplace transform we have
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h′µ(λ) = −t̂rµ(λ) on the open right half-plane. Therefore, by Lemma 7 it is sufficient

to estimate h′′µ in the Hardy space H1(C+). We have

h′′µ(λ) =
λg′′(λ)

(λ+ µg(λ))2
− 2

[
λg′(λ)
g(λ)

− 1

]
g(λ) + µg(λ)g′(λ)

(λ+ µg(λ)3
;

hence (5.11) and (5.16) yield

|h′′µ(λ)| ≤ C8
|λg′′(λ)| + |g′(λ)|+ 1/|µ|

(|λ|+ |µ||g(λ)|)2 .

Therefore, with ψ(s) =
∫ s
0
ta1(t)dt and with (5.10) we obtain

|ρg′′(iρ)| ≤ C4|ρ|
∫ 1/|ρ|

0

t2a1(t)dt ≤ C4ψ(1/|ρ|).

This then implies

|h′′µ|H1(C+) =

∫ ∞

−∞
|h′′µ(iρ)|dρ ≤ C9

∫ ∞

0

ψ(1/ρ) + 1/|µ|
(ρ+ |µ|a(1/ρ))2 dρ

= C9

[∫ ∞

0

ψ(s)

(1 + |µ|sa(s))2 ds+ |µ|−1

∫ ∞

0

1

(1 + |µ|sa(s))2 ds

]
= C9[I1 + I2/|µ|].

Hence it remains to obtain bounds for the integrals I1 and I2.
(i) To estimate the first part of I1, observe that ψ(s) ≤ sa(s) ≤ sd(sa(s))/ds;

therefore an integration by parts and a(s) ≥ sȧ(s) yield, with some ε > 0 which
will be chosen later,∫ ε

0

ψ(s)

(1 + |µ|sa(s))2 ds ≤
∫ ε

0

d(sa(s))/ds

(1 + |µ|sa(s))2 s ds

= − s

|µ|(1 + |µ|sa(s))

∣∣∣∣ε
0

+

∫ ε

0

1

|µ|(1 + |µ|sa(s)) ds

≤ ε

|µ| .

(ii) The remaining part of I1 is estimated also via an integration by parts as
follows:∫ ∞

ε

ψ(s)

(1 + |µ|sa(s))2 ds ≤
∫ ∞

ε

ψ(s)

(|µ|a(s))2
ds

s2

= − ψ(s)

s|µ|2a(s)2

∣∣∣∣∞
ε

+

∫ ∞

ε

ψ̇(s)a(s)− 2ψ(s)ȧ(s)

|µ|2a(s)3s ds

≤ ψ(ε)

ε|µ|2a(ε)2 +

∫ ∞

ε

sȧ(s)

s|µ|2a(s)2 ds

=
ψ(ε)/ε+ a(ε)

|µ|2a(ε)2 ≤ 2

|µ|2a(ε) .

Combining (i) and (ii), we arrive at

I1 ≤
ε

|µ|

[
1 +

2

|µ|εa(ε)

]
, for all µ ∈ Σπ−ϕB .
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(iii) To obtain an appropriate bound for I2 we proceed as follows:

I2 =

∫ ∞

0

1

(1 + |µ|sa(s))2 ds ≤ ε+

∫ ∞

ε

1

(|µ|sa(s))2 ds

≤ ε+
1

|µ|2a(ε)2
∫ ∞

ε

ds

s2
= ε

[
1 +

1

|µ|2(εa(ε))2

]
.

As s runs from 0 to ∞, the function s 7→ sa(s) is strictly increasing from 0 to
∞; therefore there is a unique value of s, say ε > 0, such that εa(ε) = 1/|µ|. This
implies I1 ≤ 3ε/|µ| and I2 ≤ 2ε; hence

|h′′µ|H1(C+) ≤ 5C9
ε

|µ| .

To estimate ε in terms of |µ| we employ (5.7) and (3.6):

|µ|−1 = εa(ε) ≥ c1|g(i/ε)|ε = c1|â(i/ε)|
≥ c2â(1/ε) ≥ c3ε

ρ0 ;

hence ε ≤ c4|µ|−1/ρ0 . This completes the proof of (5.14). The last statement follows
from interpolation, as in the proof of Proposition 5.

6. Application to Parabolic Partial Differential and

Integro-Differential Equations

In this section we want to apply Theorem 2 and Corollary 3 to parabolic partial
differential and integro-differential equations of second order in space. For this
purpose, let Ω ⊂ Rn be a bounded domain with boundary ∂Ω of class C2. Consider
the problem

u(t, x) +

∫ t

0

a(t− s){νu(s, x)− div[b(s, x)∇u(s, x)] − f(s, x)}ds = 0,

t ≥ 0, x ∈ Ω,
n(x) · (b(t, x)∇u(t, x)) = 0, t ≥ 0, x ∈ Γ1,

u(t, x) = 0, t ≥ 0, x ∈ Γ0,

(6.1)

where Γj ⊂ ∂Ω are open and closed in ∂Ω, such that Γ1∩Γ0 = ∅, Γ1∪Γ0 = ∂Ω, and
n(x) denotes the outer normal of Ω at x ∈ ∂Ω. Denoting the space of symmetric
real n × n matrices by Sym(n), b : R+ × Ω → Sym(n) is assumed at least to be
continuous with bounded partial derivatives w.r.t. x ∈ Ω, and to be uniformly
positive definite in the sense that there exists a constant b0 > 0 such that

b0|ξ|2 ≤ ξ · b(t, x)ξ ≤ b−1
0 |ξ|2 for all t ≥ 0, x ∈ Ω, ξ ∈ Rn.(6.2)

Concerning the kernel a(t) we assume that it belongs to one of the three classes
studied in Section 5, in particular, a(t) = 1 arises as a special case; this case
corresponds to the boundary value problem

ut(t, x) + νu(t, x) = div[b(t, x)∇u(t, x)]− f(t, x), t ≥ 0, x ∈ Ω,
n(x) · (b(t, x)∇u(t, x)) = 0, t ≥ 0, x ∈ Γ1,
u(t, x) = 0, t ≥ 0, x ∈ Γ0, u(0, x) = 0, x ∈ Ω.

(6.3)

The family {L(t)}t≥0 will be the Lq-realizations of the underlying elliptic boundary
value problems; more precisely, we define{

(L(t)u)(x) = −div[b(t, x)∇u(x)], t ≥ 0, x ∈ Ω,
D(L(t)) = {u ∈ H2,q(Ω) : u|Γ0 = 0, n · b(t, ·)∇u|Γ1 = 0},(6.4)
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where the boundary values of u and ∇u are understood in the sense of traces. Thus
as the base space Y we choose Y = Lq(Ω) with 1 < q < ∞, which is well-known
to be of class HT . Then (6.1) and (6.3) written in abstract form become (3.1) and
(3.2), respectively. Observe that in case Γ1 6= ∅ and b is not constant in time, the
domains D(L(t)) are not constant. The norm in Hs,q(Ω) will be denoted by | · |s,q,
and that of Lq(Ω) by | · |q.

It is well-known (see e.g. Lunardi [15], Chap. 3) that the operators L(t) are
sectorial with spectral angle φL(t) = 0, and for each ϕA ∈ (0, π) there is a constant
MA > 0 such that

|(λ+ L(t))−1| ≤ MA

1 + |λ| , t ≥ 0, λ ∈ Σπ−ϕA ,(6.5)

and

|L(t)−1g|2,q ≤M ′
A|g|q, t ≥ 0, g ∈ Lq(Ω),(6.6)

except for the case of the pure Neumann problem Γ0 = 0, where the kernels of L(t)
are nontrivial. For the sake of simplicity we exclude this case and assume from now
on that Γ0 6= ∅.

If q = 2 it is also well-known that L(t) is selfadjoint and positive definite, hence
admits bounded imaginary powers and

|L(t)is|2 = 1, for all t ≥ 0, s ∈ R;(6.7)

cf. e.g. Prüss and Sohr [17], Example 1.
If q 6= 2 but Γ1 = ∅, it has been shown in Prüss and Sohr [18] that L(t) admits

bounded imaginary powers in Lq(Ω) and that for each ϕA ∈ (0, π) there is a constant
KA > 0 such that

|L(t)is|q = KAe
ϕA|s|, for all t ≥ 0, s ∈ R;(6.8)

in particular θL(t) = 0.
If q 6= 2 and Γ1 is arbitrary, Duong [10] obtained L(t) ∈ BIP (Lq(Ω)) and

|L(t)is|q = KAe
|s|π/2, for all t ≥ 0, s ∈ R.(6.9)

By interpolation with (6.7) this estimate can be improved to θL(t) ≤ |1− 2/q|π/2,
and for each ϕA > |1 − 2/q|π/2 there is a constant KA > 0 such that (6.8) is
valid. More recently Duong and Robinson [11] claim (6.8) for each ϕA > 0. This
completes the verification of (L) for the class of operator families {L(t)}t≥0 given
by (6.4).

To verify the commutator condition (C) we use an argument which is similar to
that employed by Acquistapace [1]. Let a function g ∈ Lq(Ω) be given, and define
f = (λ+L(s))L(s)−1g, u = (λ+L(t))−1f , and v = (λ+ L(s))−1f . Then with the
notation L(t) = −div[b(t, ·)∇] and B(t) = n · [b(t, ·)∇] we have

λu + L(t)u = f on Ω
B(t)u = 0 on Γ1

u = 0 on Γ0

 and


λv + L(s)v = f on Ω
B(s)v = 0 on Γ1

v = 0 on Γ0

 .

Therefore w = u− v solves the boundary value problem λw + L(t)w = (L(s) − L(t))v on Ω,
B(t)w = (B(s)− B(t))v on Γ1,

w = 0 on Γ0,
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and hence can be written as

w = (λ + L(t))−1(L(s) − L(t))v + Sλ(t)(B(s)− B(t))v,

where the so-called Dirichlet map Sλ(t) is defined according to

Sλ(t)ϕ = z ⇔

 λz + L(t)z = 0 on Ω,
B(t)z = ϕ on Γ1,
z = 0 on Γ0.

(6.10)

Since v = (λ + L(s))−1f = L(s)−1g we finally obtain the following representation
for the commutator C(t, s, λ) = L(t)(λ+ L(t))−1[L(t)−1 − L(s)−1]:

C(t, s, λ)g = (λ+ L(t))−1(L(s)− L(t))L(s)−1g + Sλ(t)(B(s)− B(t))L(s)−1g,

(6.11)

for all t, s ≥ 0, λ ∈ Σπ−ϕA . The first term in this representation is estimated easily.
In fact, suppose b(·, x) and bxj(·, x) belong to Cδ(R+) uniformly w.r.t. x ∈ Ω, for
some δ > 0. Then

|(L(s) − L(t))u|q ≤ C1|t− s|δ|u|2,q, t, s ≥ 0, u ∈ H2,q(Ω).

By (6.5) this implies

|(λ+ L(t))−1(L(s)− L(t))L(s)−1g|q ≤
MA

1 + |λ| C1|t− s|δM ′
A|g|q,(6.12)

for all t, s ≥ 0, and g ∈ Lq(Ω). Concerning the second term on the right hand side
of (6.11), we first refer to Triebel [21] for the following estimate of the Dirichlet
map:

|Sλ(t)ϕ|q ≤ Cq

[
|ϕ̃|q

(1 + |λ|)1/2 +
|∇ϕ̃|q
1 + |λ|

]
,(6.13)

where ϕ̃ denotes any extension of ϕ to Ω in the sense that ϕ̃ = ϕ on Γ1 ; Cq is
independent of t ≥ 0. Fix any extension ñ of the outer normal field n(x) to Ω which
is of class C1. Then by (6.13) we have

|Sλ(t)(B(s)− B(t))L(s)−1g|q ≤ Cq[(1 + |λ|)−1/2|(B̃(s)− B̃(t))L(s)−1g|q
+ (1 + |λ|)−1|∇(B̃(s)− B̃(t))L(s)−1g|q],

where B̃(t) = ñ(x) · (b(t, x)∇). Then

|(B̃(s)− B̃(t))L(s)−1g|q ≤ |ñ|∞ sup
x∈Ω

|b(t, x)− b(s, x)||∇L(s)−1g|q

≤ |ñ|∞|b|δ|t− s|δM ′
A|g|q

= C2|t− s|δ|g|q,
where |b|δ = sup{|b(t, x)− b(s, x)||t− s|−δ : t, s ≥ 0, t 6= s, x ∈ Ω}. Similarly, if bxj
are also uniformly Hölder-continuous in t, we obtain

|∇(B̃(s)− B̃(t))L(s)−1g|q ≤ |ñ|∞ sup
x∈Ω

|b(t, x)− b(s, x)||∇2L(s)−1g|q

+|ñ|∞ sup
x∈Ω

|∇ · (b(t, x)− b(s, x))||∇L(s)−1g|q

+|∇ · ñ|∞ sup
x∈Ω

|b(t, x)− b(s, x)||∇L(s)−1g|q

≤ C3|t− s|δ|g|q.
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Therefore

|Sλ(t)(B(s)− B(t))L(s)−1g|q ≤ Cq

[
C2

(1 + |λ|)1/2 +
C3

1 + |λ|

]
|t− s|δ|g|q

≤ C4|t− s|δ
(1 + |λ|)1/2 |g|q.(6.14)

Combining estimates (6.12) and (6.14), we arrive at

|C(t, s, λ)|q ≤ C5
|t− s|δ

(1 + |λ|)1/2 , for all t, s ≥ 0, λ ∈ Σπ−ϕA ,(6.15)

which shows that the commutator condition (C) holds with α = 1/2, ϕA > 0
arbitrary, and δ > 0, provided b(·, x), bxj (·, x) ∈ Cδ(R+) uniformly for x ∈ Ω.
Observe that for the case of Dirichlet boundary conditions Γ1 = ∅, α can be chosen
as α = 0.

We are now in position to apply Theorem 2 and Corollary 3 and obtain the
following result.

Theorem 3. Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω of class C2,
Γj ⊂ ∂Ω open and closed in ∂Ω such that Γ1 ∩ Γ0 = ∅, Γ1 ∪ Γ0 = ∂Ω, and Γ0 6= ∅.
Assume that b : R+×Ω → Sym(n) satisfies the strong ellipticity condition (6.2) and
b, bxj ∈ Cδ(R+;C(Ω)), for some δ > 0. Let p, q ∈ (1,∞), J = [0, T ], or J = R+

but ν > 0 sufficiently large.
Then for every f ∈ Lp(J ;Lq(Ω)), problem (6.1) admits a unique solution u ∈

Lp(J ;H2,q(Ω)), provided the kernel a(t) satisfies one of the following conditions:
(i) a(t) = tγ−1/Γ(γ), γ ∈ (0, 2), δ > γ/2.
(ii) a(t) is completely positive, −â′(0+)/â(0+)2 <∞, δ > 1/2.
(iii) a(t) is as in Proposition 6 and δ > ρ0/2.
In addition, if lim supr→∞ |â(r)|rρ <∞, then the solution u of (3.1) belongs to

Hρ,p
0 (J ;Lq(Ω)).

It is clear from the derivations in this section that Theorem 3 can be general-
ized to other types of elliptic operators L(t) if only the relevant estimates for the
resolvent, for the Dirichlet map, and for the imaginary powers of L(t) are valid,
and the parabolicity condition is satisfied. These subjects as well as applications
to quasilinear problems will be taken up in the near future.
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