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Abstract. The present paper works out the link between the Dore—Venni theorem and the
theory of analytic generators developped by I. ClIoRANESCU and L. Zsipé. The main result is an
inverse theorem: on an UMD - Banach space, analytic generators of Cg - groups and operators with
bounded imaginary powers are the same. The maximal regularity theorem of G. DORE and A. VENNI

appears as a corollary of this fact.

1. Introduction

In 1987, G. DoRE and A. VENNI [DV87] proved their famous theorem on maximal
regularity of the sum of two commuting operators A and B. J. PrUss and H. SOHR
[PS90] extended this theorem to the case where A and B are not necessarily invertible.
By now, it has become an important tool in PDE. Two sorts of hypotheses are essential
in these theorems.

1. A geometrical assumption on the Banach space: the continuity of the Hilbert
transform, or equivalently the UMD - property.

2. The operators A and B are assumed to be sectorial such that (‘4is)sem and
(B’s)SGIR are strongly continuous groups of types ws and wp smaller than 7, such
that wa +wp < w. Briefly:

A is in the class BIP(w4) and B is in the class BIP(wg) .

On the other hand, more than ten years earlier, I. CIORANESCU and L. Zs1D0 [CZ76]
had introduced the notion of the analytic generator of a group. Their motivation came
from the theory of operator algebras (and not PDE); moreover, the geometric property
UMD (Unconditional Martingale Difference property) was not well - known at that
time. In fact, a geometrical characterization of UMD -spaces X was discovered only
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in the early 1980s by D. L. BURKHOLDER [Bur81]; a little later, the boundedness of
the Hilbert transform on the reflexive Lebesgue —Bochner spaces LP(IR; X) for such
X was proved by D. L. BURKHOLDER and T. R. MCCONNELL (see [Bur83]); and still
later, J. BOURGAIN [Bou83] proved the converse (see also [McC84], [Bou86], [Bur86]).

The purpose of the present paper is to work out the link between the Dore - Venni
theorem and the theory of analytic generators. The main result is an inverse theorem:
on an UMD - Banach space, analytic generators of Cy - groups and operators of class
BIP are the same. More precisely, we show that the analytic generator C of a Cj -
group (U(s))sem of type less than # on a UMD - Banach space is sectorial and U(s) =
C% for all s € IR. This idea is due to ALAN McINTOSH, and the problem was also
studied by DAvID ALBRECHT [Alb94]. It is remarkable that the Dore - Venni theorem
is an immediate corollary of this result.

The paper is organized as follows. In Section 2, we recall some well—known facts
about operators which admit bounded imaginary powers. We mention also the defini-
tion of the Hilbert -- transform and UMD - Banach spaces. In Section 3, we describe the
analytic generator and the analytic continuation of a Cy - group on a Banach space.
Most of the results of this section were already proved by I. CIORANESCU and L.
Zs1p6 who considered only bounded groups, though. However, it turns out that the
results are valid for groups of type less than 7. For the convenience of the reader,
we include the proofs. It is shown, in particular, that the operators which form the
analytic continuation of a group are closed, densely defined, and verify a semigroup
property.

The main results are presented in Section 4, where we restrict our attention to UMD —
Banach spaces. It is proved that, in this case, the resolvent set of an analytic generator
of a group of type less than 7 is always non —empty. Moreover, this analytic generator
is sectorial. As a corollary of this fact, we also prove the theorem of Dore - Venni in
Section 5, we define the Hilbert—transform associated to a bounded Cy—group, as
well as the Hardy spaces associated to this group. Using these notions, we state a
decomposition theorem, which allows us to consider every bounded group on a UMD —
Banach space as boundary value of holomorphic semigroups.

In the following, for a linear operator 4 on a Banach space X, D(4), N(A), R(A),
p(A), o(A4) denote the domain, the kernel, the range, the resolvent set and the spec-
trum of A, respectively.

2. Prerequisites

In this section, we recall what is known on sectorial operators, on operators which
admit bounded imaginary powers, on the Hilbert transform and UMD —Banach spaces.
This will be called “the classical theory” for the Dore- Venni theorem. It was used by
G. DORE and A. VENNI themselves ([DV87], [DV90]), but also by J. PrUss and H.
Sour ([PS90], [Prii93]).

Definition 2.1. A (linear) operator A on a Banach space X is called sectorial if
it is closed, densely defined and verifies N(4) = 0, R(A) = X, (—00,0) C p(A4) and
My :=sup,5q Ht(t + A)~! || < 0.
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If A is sectorial on X, then there exists an angle ¢ such that p(—A) contains the
sector L, := {A € C \ {0} ; |arg(\)| < ¢}, and supyex, A+ A4)7H| < oo

Definition 2.2. The spectral angle ¢ 4 of a sectorial operator A is defined by
o4 = inf{p€0,7); Ty C p(—A) & Mr_, < 00}

where My :=sup {|[AX+ 4)7'||; A€ Ty}, I € (pa, 7]
If A4 is sectorial, then it is known that w4 < .

Assume now that A is sectorial. For all z € € such that |[R(z)| < 1, we define the
representation

. 1 o]
Arg = Szl e [ et Ay A dt+ [ TN+ A Ardt )
m z 14z o L

x e D(A)NR(A).

See for instance [Kom66], [Kre72], and [Prii93, pp. 212-214], [Ama95, pp. 157}. We
know that, in that case, for all z € D(A) N R(A), the map z — A*r ist holomorphic
on {z € C; -1 < R(z) < 1} (see [Prii93, pp. 213], [Ama95, pp. 154]). It can be
easily seen that D(4) N R(:) is dense in X and A* is closable. We can now define the
class BIP.

Definition 2.3. We say that an operator A admits bounded imaginary powers if it
is sectorial and if the closure of (4%, D(A) N R(A)) defines a bounded operator on X
for all s € R, and sup,¢_, 1 ||A"5H < 0.

Remark 2.4. If 4 admits bounded imaginary powers, then (A*) . forms a
strongly continuous group on X. Denote by w, be the type of this group, i.e.,

wg = inf{weR; 3IM : l|A%]] < Me?l®!) for all s € R} .

We will write A € BIP(w4).

Remark 2.5. Let 4 € BIP(wy) with spectral angle p4. It is known that wa > ¢4
(see [PS90, Th. 2], [Pri93, pp. 214], [Ama95, pp. 177]; see also [M095, Corollaire
4.4]).

The notion of UMD - Banach spaces will play a crucial role in this paper. For our
purpose the boundedness of the Hilbert transform is the essential property. Let X be
a Banach space. Let H. 1 be the following bounded operator defined on LP(R; X) for
alle € (0,1). T > 1:

(Horf)(t) = l/ Mds, for a.a. t€R,
T Je<|sl<T S

fED(RX), pe(1,00).
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Definition 2.6. If (H. 7):co0.1). admits a strong limit H as e goes to 0 and T goes
T>1

>
to +oo in all LP(IR; X), p € (1,00), then X is said to be of class (HT).
The operator H is then bounded on LP(IR; X) for all p € (1,00), and is called the
Hilbert transform on LP(IR; X ).

It is known that if H exists in LP°(IR; X') for one py € (1,00), then X is of class
(HT).

It is also known that the Banach space X is of class (H7) if and only if X has the
UMD —property.

D.L. BUurkHOLDER and T.R. McCONNELL (see (Bur83]) proved the implication
UMD = (HT), and J. BOURGAIN [Bou83] proved the converse. For these results, and
others, see also [Bur81], [McC84], [Bur86] and [Bou86].

3. Analytic generators of Cy—groups

This section starts with some definitions and more or less well —known facts. Most
of the results presented here are due to I. CIoRANESCU and L. Zsipé [CZ76], [Zsi83]
(who merely consider bounded groups, though). In the following (U(s))ser will denote
a strongly continuous group on X. Given an open set 2 in C, Hol(2) denotes the set
of holomorphic functions on 2, with values in X.

Definition 3.1. We say that a function f : ) = X is regular on an open set 2 C C
if f is holomorphic on Q and has a continuous extension to .

The following lemma can be easily proved by Schwarz’s reflection lemma.

Lemma 3.2. Let a,b € R, a < b. Let f be a regular function on the strip
B:={2€C ; a<R(z)<b}. If f equals 0 on R(z) = a or f equals 0 on N(z) = b,
then f =0 on B.

The lemma implies that the operators C, in the following definition are well — defined.
For a € € such that R(a) # 0, let

Qq {zeC; 0<R() <R(e)} if R(a) > 0, and
Qq {zeC; Rla) <R(z) <0} if Ra) < 0.

Definition 3.3. The analytic continuation of the group (U(s)sem is the family
(Ca)acc of unbounded operators defined by

D(Cy) = {z € X;3fs € Hol()NC(Qu) : fulis) = U(s)z, s € R},
{ Coz = fola), x€ D(Cq),
if R(ar) # 0. and
D(Ci) = X,
Cisz = U(s)x, for all z€ X, if a = is, s€R.
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The operator Cj, denoted also by C, is called the analytic generator of the group
(U(s))sem-

There is a case where the analytic generator is easy to determine. Assume for a
moment that (U(s))ser is the boundary of a holomorphic semigroup (T'(z))rez>0 in
the sense of [HP57, Theorems 17.9.1 and 17.9.2], i.e.,

U(s)z = lirgl+T(t+is)m, re€X, seR.
t—

We can easily see that, by definition, for all @ € € such that R(a) > 0, we have
Cy = T(a), which is a bounded operator. In particular, the analytic generator of such
a group is C' = T'(1) and therefore is bounded. As an illustration we give the following
concrete example.

Example 3.4. Consider the semigroup (Jp(z))s(z)>0 on L?(0, 1), p € (1, 00) defined
by Riemann - Liouville integrals; that is, for all z € C, R(z) > 0, f € L?(0,1),

1 t
(N0 = 75 /0 (t— sy f(s)ds, te(0.1).

From [HP57, Section 23.16] (for p = 2), and from [AEH95] (for 1 < p < o0), we
know that (J,(2)) res>o0 is holomorphic and admits a boundary (J,(is))ser which is
a Cy - group, for all p € (1,00). The analytic generator of this group is Cp, = Jp(1).

It is an important fact that the analytic continuation of a Cy - group consists in
closed, densely defined, injective operators. Moreover, the family of operators which
form the analytic continuation verifies a semigroup property. This was proved in
[CZ76, Theorem 2.4].

Proposition 3.5. Let o, 3 € C, and let C,Cpg be the operator defined on the
domain D(CoCg) = {z € D(Cp) ; Cax € D(Ca)}. Then the following holds:

(1) if R(@)R(B) >0, then CoCs = Cagp;

(i) if R(a)R(B) < 0, then the closure of CoCps is equal to Coqtg.

Moreover, (C3', R(Cq)) = (C—q, D(C_y)) forallae C.

a )

A corollary of this is the following result:

Corollary 3.6. Let C be the analytic generator of a strongly continuous group
(U(s))sem on a Banach space X. Then C is a bounded operator if and only if
(U(s))ser is the boundary of a holomorphic semigroup on X .

Proof. «: See the remark before Example 3.4.

=: Assume that C' is bounded. Forall N € IN, D(CV) = X. Therefore, D(C.) = X
forallz€ €, R(z) > 0. Let T(z) = C,, z € C, R(z) > 0. By the previous proposition,
(T(2))w(z)>0 is then a holomorphic semigroup whose boundary is (U(s))semr- O

The following example is very important. It shows the link between operators
which admit bounded imaginary powers and analytic generators of strongly continuous
groups.
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Example 3.7. Let A be a sectorial operator on X with bounded imaginary powers
A¥, s € R. For all s € IR, let U(s) = A**. Then (U(s))scr is a strongly continuous
group on X and its analytic generator is the operator A.

Proof. Let z € D(A) N R(A). Since A is sectorial, we know that z — A*z is a
regular function on {z € C ; —1 < R(z) < 1} (see [Prii93, pp. 213] or [Ama95, pp.
154]). Then Az = Cz. The operator (A, D(A)) is the closure of (4, D(A) N R(A))
and (C, D(C)) is closed; since A and C coincide on D(A) N R(A), we get (4, D(A)) C
(C, D(C)).

Conversely, let D be the set {z € X ; 3f, € Hol(C) : f,(is) = A®z, s € R}. Then
DN D(A) is a core for C. Let z € D(C') and for all n > 1, set

n Foo 2
Ty = n(n—l—A)fl\/j/ e " U )z dt .
T J -

Foralln > 1, z, € DN D(A) and limy 00 T, = z, limy, oo Cx,, = Cx, since C is
closed and commute (on D(C)) with n(n + 4)~! and with U(t) for all ¢ € IR.
So we get (C, D(C)) = (A, DN D(A)) = (4, D(A4)). 0

To conclude this section, we give some spectral properties of the analytic generator
C of a Cy ~-group (U(s))sem with type w less than 7. The following proposition is
a slightly different version from Theorem 3.6 of [CZ76] (where only bounded groups
were considered).

Proposition 3.8. The following assertions hold: _
(i) op(C):={AeC; Jz#0, € DIC) : Cz= Iz} CE,;

(i) Ores(C) = {/\ €C; (= 0O)D(C) # x} =0,(C") C To;
(iii) if p(C) # 0, then 6(C) C =,

For the proof of this result we need

Lemma 3.9. The operator 1 + C is injective,
{x € X;3f, € Hol(C) : f.(is) =U(s)z,s€ R} := DCR(1+C)

and for all x € D, v € (0,1), we have

1 [t dz 1 i dz
5 C. = 17— —

T =T = .
sin7wz 20 Joy_ico sin mz

(1+C) 2z =

¥ —100

Proof. First, for any v € (0,1), the integrals

Y+ico d Y+ioo d
z z
C. 12— and C,z —
5 —ico sinmz y—ioo sinmz

are convergent for all z € D. Indeed, let v € (0,1) be fixed. Let ¢ > 0 such that
w + € < m; there exists then a constant K. > 0 such that

UG < Kee@rlsl s eR.
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By Proposotion 3.5, we know that for all 2 = v +1s, s € IR, we have C,_1x =
U(s)Cy—1z and C;z = U(s)Cym.

Moreover, we have also the following estimates. For any v € (0,1) fixed, for all
z € R(C), z=v+1is, s € R,

Kse(w+gﬂsl ICy -1z}

< Kle(—ﬁ+w+5)|5t

IN

(3.1) [sinm(y +is)]

and for all z € D(C), in the same way,

1

sinwz

< Kyelmmretels]

where K; and K, are constants which do not depend on s € IR. Since we have
—7 4+ ¢ +w < 0, the previous integrals are absolutely convergent.
We now set,

1 Y 10C d
Ly = = Cooyt ——, zeD, 7€(0,1).
2i i sinmz
Since (' is closed we have for all z € D
1 y+ioc d 1 Y+ico d
1+ = = C.o1r — : Py Ciz — °
20 /i sinmz 21 /i sinmz
= LA+ O)z,

since by Proposition 3.5, CC._1z = C.x = C._1Cx.
Therefore,

1
(1+C),z = l 2im Res.—g <z — C.x — )
21 sinwz

by the residuum theorem.

Since Res.—o (2 = C.x gomz) = Lo wehave (1+C0) L,z =1L,(1+C)z =z, 2€D,
v € (0,1).

Therefore, 1+C is injective: Let € D(C) such that (1+C)z = 0; then C,a = el iy
for all z € € and z € D. By the previous identity, we get I,(1 + C)z = z; therefore
z = 0. Moreover, we obtain D C R(1+C) and for all z € D, we have (1+C) 'z = L,z

On the other hand, by the residuum theorem, we have

y+ico d Y+ico d
/ C, 1z ? +/ C.x — S 21z,
y ki

—ico sin7wz —iso

which shows the second formula. 0O

Remark 3.10. The integrals in the previous lemma do not depend on 7y € (0,1).

Proof. For any 7. 72 € (0,1) we have shown that (1+ C)I,,z =z = (1 + C)l,z
for all € D. Since 1 + C' is injective, I,z = I,7. o

We are now in the position to state the following proposition.
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Proposition 3.11. For all A € ©,_,, D(C) C R(A+ C) and R(C) C R(A + ().
Moreover, the following holds, for arbitrary v € (0,1):
For all z € D(C),

1 1 y+ico
AN+C)tz = 22— = AL .dz
A 2 0o sin Tz
and for all x € R(C),
1ot d
A+C)'z = — AECh 7
20 )i sinmz

The following notion will be useful.

Definition 3.12. The sequence (z,),>1, where x, = \/’;Tjjz e—nt’ Ut)z dt is
called the mollifier of x with respect to (U(s))seR-

Proof. Let )\ be fixed in £,_,. Let 8 € (w,7) such that A € ¥,_y. It is sufficient
to show the proposition in the case A = 1. The group U can be replaced by Uj,
Ua(s) = A™5U(s), s € R. The type of Uy is then less than or equal to 7 — 8 +w <7
and its analytic generator is %

For all # € R(C), we set

y+ioc dz
Iz = / C._1z = for any € (0,1) fixed.
Y

_ico sinmz
Due to the Equation (3.1), this integral is absolutely convergent. Let z € R(C) be
fixed. Let (2,)n>1 be its mollifier w.r.t. (U(s))sem- By the previous lemma, we get
for all n > 1, (1 + C)x, = I(1 + C)xy, = xy. Moreover, (Iz,}n>1 converges to Ir as
n goes to +00, since for all n > 1, we have

1 Yy4ioc d
I:I:IL = _/ C:Al-rn :
Y

21 Joico sinmz

1 -‘y—Hoo
e (T
=00 sin Tz
+00 y+ioo d
\/’/ e~nt’ Ut ( / C._1xz — i >dt.
21 sinwz
by Fubini’s theorem.

Since the operator 1+ (' is closed, we then obtain for all z € R(C) : Iz € D(C) and
(14 C)z = x, which gives the second formula of the proposition.

In the same way, we may show the first formula of the proposition. For all z € D(C),
we set

i

1 Y400 d
Jr = - = C.z — z . for any ~v€(0,1).
20 Jyico sinmz

v
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This integral is absolutely convergent. Let now o € D(C) be fixed. Let (2,)n>1 be its
mollifier w.r.t. (U(s))ser. By using Fubini’s theorem as before, we can show that the
sequence (Jz,),>1 converges to Jx as n goes to +oo. Since by the previous lemma
we have

1+C)Jz, = J1+C)zy, = z, for all n > 1,

we obtain the first formula of the proposition, as we obtained the second one. 0O

Proof of Proposition 3.8. Let 6 € (w, ) be fixed. By Proposition 3.11, we know
that for all A € ¥,_g, the operator A + C is injective and D C R(A 4+ C'). Therefore.
~Ag 0,(C) and =\ € 0,05(C). Then ,(C) C Ly and 7,.,(C) C Xy, forall ¥ € (w, 7),
which gives (i) and (ii).

Assume now that p(C) # §. Let —u be an element of p(C). For all x € D and for
all A € ¥,_g, we have

A+ = (p+O) e+ (p—NA+C) e+ C) e

By Proposition 3.11, the operator (A + C)~'(u+ C)~"' is bounded in X. Since D is
dense in X. the operator (A + C)~! is then bounded in X for all A € ¥,_, for all
§ € (w, 7). Then we obtain (iii). O

The following proposition gives some equivalent assertions to decide whether p(C) #
 or not.

Proposition 3.13. The following assertions are equivalent,
(i) p(C) # 0,

(it) D(C) + R(C) = X,

(ii1) lim, o+ (fs<\st<1 Ys)z ds> exists in X for all z € X,

s

(iv) Apz = lm._,g+ (fs<1s\<1 Lils)e ds) exists in X for allxz € X.

sinh s

In that case Ay is a bounded (linear) operator on X.

Proof. (i) = (ii). Assume that p(C) # 0. Let denote by —u an element in p(C). For
allz € X, weobtain z = p(p+C)'z+C(p+C) 'z, Then 2y = p(p+C) 'z € D(C)
and > = C(u + C)~'z € R(C). Therefore x = 21 + @2 € D(C) + R(C).

(i) = (iii). Tt is sufficient to show (iii) for € D(C) and then for z € R(C), and
apply (ii). Let € D(C'). We denote by ', the following contour

(s=-1Lte[0,hu(t=14se[-L1)u(s=11te [50])
and CF ={2€C; 2| =¢ & argz € [-%, 5]}, where C = {t +is; t,s € R}.
a.

By the Cauchy theorem, we obtain for all € € (O, %)

—/ Mdés—l—/ szdz:().
s<js|l<l F —cfury #

U(s)a
s

. C.x " C.x .
lim / —dz = ———dz —iTx.
0t ,C:'Up+ z I, z

Therefore, lim. o+ fr<|e\<1 ds exists in X and is equal to
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The case where z € R(C) can be deduced by the previous case if we consider the
group (U(=5))sem-

(iii) < (iv). The integral fl si<1 U(s)z (Eﬁlﬁr-s - 7—3;) ds is absolutely convergent for
all z € X.
Indeed, |gmhm - %| < ﬂsﬂ + 0(|s]) for |s| near 0 and sups<; [|U(s)|| < co. There-

fore, the integral [

U{s)x . : U(s)z
<1 Snhs ds converges in the same way as fISJ<1 S ds.

(iv) = (i). Assume that Ay : X — X is a bounded operator. For all x € D(C) and
for any ¢ € (0,1), we have

1 Yy+00
1+0) ' = o - = .4z

:l . b
20 Jyioo sin7wz

(by Proposmon 3.11),
- i U(s / Covioz 1sei"9dﬁ

2i Jjg>e mnh "rs sin reeid

(by the Cauchy theorem),

1 1 U(s)x 1
= - — ,() ds — — Ayz, as e — 07,
2 21 J|g>1 sinh s 2im
The integral j‘ >1 :nlflfb ds is absolutely convergent for all z € X, since we have

1smhm| < 4e~7s! for all s € IR, such that |s| > 1, and the type of (U(s))ser is
strictly less than 7 by assumption.

Since Ay is a bounded operator and D(C') is dense in X, we obtain the boundedness
of 1+ C)~' on X. Then —1 € p(C) # 0. This proves (i). ]

In the following, we will prove that (iii) is always true for all group (U(s)ser (of
type less than 7) in an UMD - Banach space.

4. The case of UMD —spaces

The aim of this section is to establish special properties on analytic generators if
the space has the UMD - property. In particular, we will show that the resolvent set
is never empty in that case, if the type of the group is less than 7.

In this whole section, (U'(s))ser denotes a strongly continuous group, on a Banach
space X with the UMD - property, of type w < 7, C its analytic generator and (Cy )ace
its analytic continuation.

In the following lemma, we show that (iii) of Proposition 3.13 is always true in our
special case here.

U(s)x d

Lemma 4.1. Let | <lsl< s S)EE(O.I)

U(s)l|. Then the net (fe

admits a strong limit in X as € goes to 07 for all z € X .
Moreover, Hff<|51<1 U(j)l ds” < c(Ha, M) ||x|| for all ¢ € (0,1), z € X, where
c(Ho, M) is a constant which depends only on Hy := supcewn). ||He 1|2 and on M.
T>1
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Proof. For all e € (0,1), for all t € [~1, 1], and all z € X we have

/E'SMS1 U(t) (% Uls — t)z) ds

= U(t)/]i>ers—/lhl+t_U£)_x_ds+/_l+t Uls)z ds

s s 1 s

N
IA
X
IN
.
» | @
2z
8
IS
@
i

where ¢, (1) = x{—1.1)(T)U(—7)z. By integrating this over [—1, %], we obtain for all
g€ (0,1):

Uls)z — : ex(t — ) X
[ e U(”</|s,zf—s ds)dt

1
2

LT L )

1
2

Since ¢, € L*(IR; X), lim,_,o+ (f‘sp{ ol —3) ds) exists in L?(IR; X) and is equal to

s
T Hy,, where H denotes the Hilbert transform.
Therefore, we obtain

. 1
e \Jeghsi<r F

1
2

S () )

And for all € € (0,1), for all x € X, we have

: U(s)x e pu(t — 5)
/5§|s<§1 s ) s /_%HU(L‘)H /lszs s
Ul N [ OF]]
N [2</1 o (ls)dt+[%<[% o ds)dt
< MHs llpellpzrx) + 2M ||z /1 3 ds
< (M. M) |le]. .

Corollary 4.2. Under the assumptions of the previous lemma,

Apyz = lim / U(s)r ds
==0+ \ J.<|sj<1 Sinh s

U
Jocioier ks ds| < e(Ha, M) for all e €

exists for all v € X. Moreover, we have
(0,1).
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Proof. This is simply the proof of (iii) < (iv) of Proposition 3.13. O

We can now prove our main result characterizing sectorial operators with BIP on
an UMD - Banach space as analytic generators of groups of type smaller than .

Theorem 4.3. Under the general assumptions in this section, C is a sectorial
operator and C* = U(s) for all s € IR.
Moreover, the spectral angle o of C is less than or equal to w.

Proof. By Proposition 3.13, p(C) # @ is equivalent to the existence of Ay for all
x € X. and then Ay € B(X). And this is exactly Corollary 4.2 .

Therefore, by Proposition 3.8, we know that ¢(C) C .. Moreover, following the
proof of (iv) = (i) of Proposition 3.13, we have, for all A € ¥, _j, for ¥ € (w, ),

; d: 1
AA+C) = l:E 2 ATHU(s)z = \u,x

2 20 fig>1 sinhms  2i

where Uy(s) = A"#¥U(s), s € R, and Ay, is defined in Proposition 3.13. Following
the estimate of Corollary 4.2, we obtain then H/\(/\ + C)'1|l < My, where My is a
constant which does not depend on A € ¥,_y. The operator C is then sectorial and
its spectral angle ¢ is less than or equal to ¢ for all 9 € (w, 7). Thus, pc < w.

Since C is sectorial, we can now define the quantity C*z (%(z) € (~1,1)) for all
x € D(C) N R(C), following Section 2. by

C*z =

. 1
STz (i _ ey +/ i+ o) e e dt
0

s z 1+z

+ / t:“‘(t+C‘)“Ca:dt> .
1

By Proposition 3.11, we have also, for v € (R(z), 1), since the following integrals are
absolutely convergent,

1
/ e+ Oy e e dt
0

1 -1, y+ioo
- / t:+l (Q 1 tiwilcw*12} dw )dt
0

t 2 s s sin Tw
1 N 10C 1
g 1 1 /7 . . dw
= / L Clpde - —,/ / prrliput dt) Cu 11 —
0 t 20 J i 0 sin Tw
1 1o dw
= _——C_lfL' s “‘_*—"Cw—lw - :
142 2 Jy_ie 2 w1 sin Tw

and

I

/ V(4 C) O dt
1

[e%9) 1 y+ioo d
/ tH(—,/ YT )dt
1 2t /oo sin Tw

v+io00 00 d
L (/ A dt) Coz —2_ —
1

2i Jy_ico sin Tw
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1 [t dw
- = Cwl‘ T .
2 J, z—w sin rw

— 100

Therefore, we obtain by the residuum theorem (as in the proof of Lemma 3.9)

N sinmz [z 1 1 [rri° Cuz d
Cfz = - — Clz+ Clz+ — woll - o
™ z 14z 1+2z 2 [y oo 2—w+1sinmw
1 [yt g dw
+ = Cu'x f >
20 oy W sin Tw
sinwz (& 1 . 1 1
= <— + — 2im Resy=0.w==: <Z — CuT = >>
T z 2 z—w sin Tw

= C.z.

We now have proved that C* coincide with C, on D(C)NR(C) for all z with [R(z)| < 1,
in particular for z = is, s € R. Since C;s = U(s) for all s € IR, we obtain that the
operator C' admits bounded imaginary powers and C** = U(s) for all s € IR on the
whole space X. |

Example 4.4. Let 1 < p < oo, let X be a UMD - Banach space. Define the operator

Cp on LP(0,1; X) by
D(C,) = {feW'P(0,1,X); f(0)=0},
{ Cof I
Example 3.4, combined with Proposition 3.5, says that C}, is the analytic generator
of (Jp(—1is))sem. By the previous theorem, we obtain then that C, is sectorial and

C;s = Jp(—is) for all s € R. An alternative way to show this is by using Fourier
multipliers (see [DV87]).

i

I

The following theorem will be used to show the maximal regularity result known as
the theorem of Dore - Venni, which will appear as a corollary.

Theorem 4.5. Let (U(s))ser and (V(s))semr be two Co —groups on a Banach space
X. Assume that they commute (i.e., V(1)U(s) = U(s)V(t), t,s € IR). Denote by A
the analytic generator of U and B the analytic generator of V. Assume that 0 € p(B).
Then the analytic generator of the group (W (s))seir, where W(s) = U(s)V(-s), s €
IR, is the operator AB~' with domain {x € X; B 'z € D(4)}.

Remark 4.6. In the following proof, we will also show that D(A) is a core for AB™*
and that B~z € D(A) holds for all z € D(A4), and therefore AB~'z = B! Az.

Proof. Since 0 € p(B), the group (V(~1))ier is the boundary of a holomorphic
semigroup, say (T(z))p(z)>0, and B~ = T'(1).

Since U and V are commuting, the infinitesimal generator of V and U commute as
well. Therefore, U and the semigroup T commute. We obtain then T'(z)x € D(A) for
all z € D(A) and AT (2)z = T(z)Az for all z € C, R(z) > 0.
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Let C' be the analytic generator of the group (W(s))sem where W(s) = U(s)V(~5s)
for all s € IR, and let (A.).ce be the analytic continuation of (U(s))ser.

Then D(A) € D(C) and Cx = AT(l)z = T(1)Az. Indeed, let z € D(A) : the
function z = T'(2)A .z isregularon @ = {2 € C; R(z) € (0,1)} and verifies T(1)4;z =
T(1)Az and T(is)A;sz = W(s)x.

It is also true that D(A) is a core for C. Let € D(C) and let (2,,),>1 its mollifier
w.r.t. U. Then z, € D(A) for all n > 1 and since C is a closed operator and commute
on D(C) with the operators U(¢) for all ¢ € R, we obtain lim,_,4 o Cz, = Cz.

The set D(A) is also a core for AB™!. Let  be an element of
D(AB™') = {z € X;T(1)z € D(4)}.

Let (2n)n>1 be the mollifier of z w.r.t U. We known then that x,, € D(A) foralln > 1
and T'(1)z, = (T(1)z), € D(A). Therefore, lim, 1+ Tn, = z and lim, , o AT(D)z, =
lim,, 400 A(T(1)2), = AT(1)x.

On the other hand, we know that (AB~' D(AB™')) is a closed operator. The
operator C is also closed. We have proved that D(A) is a core for C and for AB™!, they
are both closed and coincide on D(A4). Therefore, (C,D(C)) = (AB~!,D(AB™1)).

O

Corollary 4.7. We consider the analytic generators A and B of the Cy - groups
(U(s)ser and (V(s))sem on an UMD - Banach space X. Denote by wy the type of
U and by wp the type of V. Assume that U and V commute and assume also that
wa +wp < m. If B is invertible, then (A + B,D(A)N D(B)) is a closed, invertible
operator on X.

Remark 4.8. This corollary has been shown by G. DORE and A. VENNI [DV87]
in the case where also A is invertible. J. PRUss and H. SoHR [PS90] obtained the
present form. They proved, more generally, that there exists a constant ¢, such that

[|Az|| + ||Bz|| < c¢||Az+ Bz|| for all z e D(4)nD(B),

even if A and B are not invertible.

Proof of Corollary 4.7. By Theorem 4.5, we know that AB~! with domain
{z € X;B™'z € D(A)} is the analytic generator of the group (U(s)V(=5))ser.
Since w4 + wp < m, we know that this group is of type less than =, and therefore, by
Corollary 4.3, AB~! is sectorial.

In other words, (1 +AB‘1)—1 is a bounded operator. Therefore, B! (1+AB~')"
X — D(4) N D(B) is a bounded operator on X and for all z € X, we obtain
(A+ BB (1 +AB") ' = (1+ AB~')(1 + AB~')"'z = 2. The operator
(A + B,D(A) N D(B)) is then closed, invertible and its inverse is given by

1

B {1+ AB™1Y) . O

1
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5. A decomposition theorem for bounded groups

In this section, we consider a bounded Cy —group U on an UMD - Banach space X.
For e € (0,1) and T > 1, we set

HYrz = i/ U(S)Ids, zeX.
’ T Je<|s|<T S

We will show that, in that case HVz := lim ., o+ HgT T exists for all z € X, and this

T oo
limit defines a bounded operator on X, called the Hilbert transform associated with

U.

Remark 5.1. In the case where U is the translation group on LP(IR;Y'), 1 < p < oc,
Y an UMD -Banach space, HY is the usual Hilbert transform (see Section 2).

With help of the Hilbert transform HY, we will establish a decomposition of the
Banach space X which allows one to obtain the group U as a boundary of holomorphic
semigroups.

The Hilbert transform HY had been considered before by ZsiDo [Zsi83] for different
purposes (the existence of spectral subspaces); also he does not exploit the UMD -
property (which had not been well~known at that time).

Proposition 5.2. Under the assumptions of this section,

lim+ Hrz = HYz exists for all z€ X .
=0

7:—>+oo

BERKSON, GILLESPIE and MUHLY [BGMS86] mention such a result when they con-
sider spectral families. They use the transference method due to COIFMAN — WEISS
[CWT77]. Our methods are completely different.

Proof. Let 1" be a bounded group on X. By Lemma 4.1, Ayz :=lim. o+ HY |z
exists for all x € X, and Ay defines a bounded operator on X. For all € € (0,1), we
also know that

) < € (e sup v s
seR
where Ho is defined in Lemma 4.1.
Let M :=sup,eg [[U(s)||. The net (LSISISI
in X forall z € X ase — 0. Moreover, for all T > 1, we have M = sup, ||U(T's)|,

and for all z € X,
/ Ul(s)z ds
1<)s|<T 8

. Uls)e 5. U(Ts)e ;. ¢ -
since f1S|51§7"(TdS_f%§|st§1 UlTs)z gs for all z € X.

S
Let G be the infintesimal generator of the group U. Since X is reflexive,

N(G)& R(G) = X.

U(s)z

ds) admits a strong limit
s £€(0,1)

< C(Ha, M) ||zl
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1. Let x € N(G). Then U(s)z = z for all s € R, and so

0:/ E](S—)xd:s—>0, as T — +0.
1<fsigT 8

2. Let # € R(G), and let y € D(G) such that 2 = Gy. By integrating by parts, we

get
[ Ve [on] f o U,
\<|si<r 8 s ligsicr JiglsisT S

Therefore, imr 1 oc fl<|s|<T U—(:H ds exists and is equal to

' U(s)s
—U(l)y—U(-l)y+/ (Z)y ds .
lsj>1 8
Since f1<is\<T Uis) ds is uniformly bounded in T > 0, lim7_ 4o f1<13|<’1' U(:)I ds
exists for all @ € R(G).
Since X = N(G) & R(G), the proof is complete. O

The operator HY is then a bounded operator in our case. It verifies also the following
relation (see [Zsi83, Lemma 3.3)).

Proposition 5.3. (HU)3 = HY.

Proof. (Sketch of the proof).
1. For all f € LY(IR) such that f (the Fourier transform of f) belongs to C?*(IR)
with suppf compact in (0, 00), one can show that

+oc +o0o
/ fOUMHY s dt = / fU)zdt for all ze X.

—x —0o0

2. There exist functions ¢, € L'(IR) such that B € C*(IR), supp(@a) C [-3a, 3a],
$o =1 o0n [—a,q] for all a > 0, and

400
lim / en(UM)xdt = z for all ze€X.
n—oc o)

3. Consider, forallz € X,y = (HU)zx — . For all € € (0.1). we prove that

" 0C +oc
/ en(OU(t)ydt = / e (U (t)ydt for all n > 1.

—oG —oC

Making n tending to co, we obtain

+o00
y = / e (U )y dt for all e€(0,1).

-0
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4. Moreover, we can see that the functions ¢. admit analytic continuations on €

for all e € (0,1):
1 3a

0e2) = gr | Tel)ds.

Therefore, there exists an analytic continuation of is — U(s)y on € given by

+oc
fylz) = / pe(t +i2)U(t)ydt, for all z€ C and for all €€ (0,1).

J—oc

5. We can show that this analytic continuation for y is bounded on €, and therefore
is constant on €. This implies then C.y = f,(z) = fy,(0) = y forall z € C. In
particular, for z = it, t € R, we obtain U(¢)y = y. Therefore, for all ¢ € (0,1), for
all T > 1, we have H‘“Ty = 0. Then, by definition of HY, we have 0 = HYy =

HY ((H(’) T — L), which gives the result. m]

We need the following

Lemma 5.4. For all x € X, we have

; +30 17(6),
lim — v (S)Jf ds = 1
§—0+ 2m J o s+ 10 2

(1+HU1).

Proof. Let 6 € (0.1) be fixed. For all x € X, we have

/ t (Q)T ds = / L‘(S),ZI; ds + / ( ! T 1)U(s)x ds
s+ 10 1sj< S+ 0 s<|si<] \ S Fi0 s

+ / ( 1.~ - 1)U(s)ar:ds-}—/ Uls)e ds.
[s|>1 $§ + 10 S |s|>6 S

a) The fourth term is uniformly bounded w.r.t. 4 since it converges to = HYz as
§—0t.
b) The third term is bounded by M ||z|] 6fs‘>1 3 < oc since

1 _ 1
§+1id s

5
<=

c¢) Concerning the second term, we have

/ ( 1,,—£)U(s)zds
§<|s|<1 s+10 s

IA

MHTH/ ; |\/52___

2M’|]1‘H/§ < )
2M ||z|| In <———5>

2M ||z||

0.

IN

IN

JANRVAN
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d) For the first term, we have

U(s)z /5 1
—ds|| < M|z —ds
si<6 8+ 0 H - Il 5 V8?4 4?
< M|z
< 0.

Therefore, j+;: l:fl); ds is uniformly bounded in § € (0,1) for all z € X.

On the other hand, for z € D (see Lemma 3.9 for the definition), we have

~+0o0 ,
/ U(S){ ds = / Uls)e ds +/ ( ! — — l)U(s)f ds
Jooo S+10 lsj<1 8 +140 lsj>1L \s+16 s

7
+ / Uls)z L ds .
[si>1 8

a) The third term does not depend on ¢ € (0,1).
b) We write the second term as follows

" 1 1 1
-= U ds = —id — U ds.
/le (s +1d s> (s)zds ! s|>1 (s +16) (s)z ds
By the Lebesgue’s dominated convergence theorem, we have
i / L U(s)zd / L U(s)ed
im —=U(s)zds = —
§—07+ [s]>1 8(3+ 1(5) ls|>1 s2 vas

Therefore, lims_q+ [, -, (ﬁ - l)U(s)x ds = 0.

s

S

¢) It is more difficult to deal with the first term. Let f, be the regular extension
of is = U(s)z on C and let (Cy)acc be the analytical continuation of U. For all
s € R, we have U(s)z = Csf.(is —9). We choose ¢ € (0,4). Let I'. s be the
following contour (s € [~1,1],¢t = =§)U(t € [-4,0],s = 1)Ut =0,s € [1,¢]) U
{zEC;}zl:E. arg(z) € %, %}U(t-—o s € [—e,—1))U(t € [0,-4], s = —1) where
z =t+is,t,s € IR. Since z = f ) i holomorphic inside T'. 5 we have by the Cauchy’s
theorem

f(2)

Fs‘é( z

dz = 0.

In other words, for all ¢ € (0,4), we have

3

/ Mds = / felis) ds—/2 fo(ee')idv
lsj<1 s+l e<ls|<t S z

=19l 2

0“<fr<z_—it ) f;f;))dt
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As ¢ goes to 01, we obtain

/ Mds = lim / Uls)z ds | —inx
Jls|<1 s+ 10 =0t e<|s|<1 S

B /0'5 <U(—1)C4x . U(l)Cth) "

t+t 1—t

Therefore, as § — 01, we obtain

lim D(S),I ds = lim / Uls)z ds | —inz.
§—0+ [s|<1 s+ 19 e—0+ «<s|<1 S

Since D is dense in X, we obtain the result by the theorem of Banach — Steinhaus.
O

We can now state our decomposition theorem.
Let. for all z € X,

Pyx =2 — (HU)z;L', Pz = %((HU)Z.I+H(JLI}), P_x = %((HU)QCL‘—HU.’B).

It follows from Proposition 5.3 that these three operators are projections on X. More-
over, they commute and Fob Py = Py P_ = P_Py =0. We also have Py + P, + P_ = 1.
Let now Xg := Py X, X := P, X and X_ := P_X. These three spaces Xy, X and
X_ are invariant subspaces w.r.t. (U(s))ser and X = Xo & X4 @ X_. The group
acts trivially on Xo : U(s)z =z for all 2 € Xg, s € IR (see proof of Proposition 5.3).

We now describe the behaviour of (U(s))sem on Xy and X_ (which we call the
Hardy spaces associated with U).

Theorem 5.5. (i) For all x € X, the map is — U(s)x admits a regular extension
To( )z on Cy:={z € C;R(z) >0} given by

; T 17 (8
Ti(z)x = ! Uls)z ds.

2 J_ s+iz

Moreover, (T1(2))n(z)>0 i5 a holomorphic semigroup on X, .
(ii) For all z € X_, the map is — U(—=s)z admits a regular extension on € given

by
. +oc
; U(~s):
2 — — / ( S)I ds.
21 J_o SH+1z
Proof. (i) The map z = 5= f:: % ds is holomorphic on € ; since, forall r € X

(and thercfore for all 2 € X ), we have
OO T (e g () ' 9
/ A C . / Uz 4ot / G oeds
Jooe STz ls—3(z)|<1 § T 12 Jis=s(z)131 (5 = S(2))(s +iz)

+ / -gﬁ,s—l\)ids.
s-3(z)>1 8 — S(2)
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The integral jj:oc l;i_sl): ds is then uniformly convergent on all {z € C;R(z) > €},
e > 0. Therefore, the previous map is holomorphic on C . Moreover, we know from
Lemma 5.4 that

. i [T U(s)z
lim  — .
R(z)—0+ 2T J_ o S+ iz

ds = U(S(2)) (% (z + H%)) .

Since z € X4,  (x + HYz) = x by Proposition 5.3.
Therefore, the map

i +00 U(s)a ds if gR(Z) > 0"

2 v—oc  s+iz

U(3(z))x if R(z) =0

zEFE_Jr —

is regular and extends is — U(s)z on C .
(it) To prove the result for z € X_, we can just apply (i) for the group (V(s))ser
where V'(s) = U(—s), s € R. O

Remark 5.6. In the case where (U(s))ser is the translation group on LP(IR:1Y)
with ¥ a UMD Banach space, p € (1,00), we have Xo = {0} and X, X_ are the
usual Hardy spaces:

X, = H(R;X) and X_ = {feI’(R;X); s f(-s) € H/(IR; X)},
where

HP(R;Y) = {f € LP(R;Y"); f regular on {z € C;3(z) > 0},
t— flz+1) e LP(R;Y), forall z€ €, 3(2) >0
and supy.yso l1f(z + )l < o0}

Remark 5.7. The results of this section remain valid if .\ is any Banach space. but
the bounded group U is such that HY exists.
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