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PSEUDO-DIFFERENTIAL OPERATORS
AND MAXIMAL REGULARITY RESULTS

FOR NON-AUTONOMOUS PARABOLIC EQUATIONS

MATTHIAS HIEBER AND SYLVIE MONNIAUX

(Communicated by Christopher D. Sogge)

Abstract. In this paper, we show that a pseudo-differential operator asso-

ciated to a symbol a ∈ L∞(R × R,L(H)) (H being a Hilbert space) which
admits a holomorphic extension to a suitable sector of C acts as a bounded

operator on L2(R,H). By showing that maximal Lp-regularity for the non-
autonomous parabolic equation u′(t)+A(t)u(t) = f(t),u(0) = 0 is independent

of p ∈ (1,∞), we obtain as a consequence a maximal Lp([0, T ],H)-regularity
result for solutions of the above equation.

1. Introduction

A classical result in the theory of pseudo-differential operators states that an
operator associated to a symbol belonging to the class S0 acts as a bounded operator
on L2(RN ) (see e.g. [12], Ch.VI). It was observed in recent years that pseudo-
differential operators with operator-valued symbols (i.e. symbols which take values
in the space of bounded linear operators on a Banach space X) are very useful
in proving so called maximal regularity results for autonomous parabolic evolution
equations. For details and more information in this direction we refer to [2], [8],
[4], [10], [3] and [7]. In this paper we examine maximal Lp-regularity results for
non-autonomous equations of the form

u′(t) +A(t)u(t) = f(t), t ∈ [0, T ],
u(0) = 0

via the technique of pseudo-differential operators with operator-valued symbols.
Since operators A(t) associated to specific boundary value problems arising in appli-
cations very often show non-smooth dependence on t, we are in particular interested
in symbols a(x, ξ) having non-smooth dependence on x.

It is one aim of this paper to show, roughly speaking, that a pseudo-differential
operator associated to a symbol a ∈ L∞(R×R,L(H)), where H is a Hilbert space,
which admits a bounded, holomorphic extension to a suitable sector of the complex
plane, acts as a bounded operator on L2(R, H). Considering in particular the
symbol a given by a(t, τ ) := A(t)(iτ+A(t))−1 we obtain as a consequence a maximal
L2([0, T ], H)-regularity result for (1.1) provided the familyA(t)t∈[0,T ] satisfies the so
called Acquistapace-Terreni condition. Note that our result generalizes in particular
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the result of de Simon [5] on L2(0, T ;H)-regularity for the autonomous case, i.e.
A(t) = A for all t ∈ [0, T ], to equations of the form (1.1).

Observe that we allow that the domainsD(A(t)) of A(t) may vary with t ∈ [0, T ].
Hence maximal regularity results for (1.1) cannot be obtained from those for the
autonomous equation by simple perturbation techniques.

We remark that the maximal L2([0, T ];H)-regularity result for (1.1) is the first
cornerstone in establishing mixed Lp([0, T ];Lq(Ω))-estimates (1 < p, q < ∞) for
equations of the form (1.1). The Calderón-Zygmund theory for operator-valued
kernels as developed for instance in [11] allows us to prove that, for arbitrary Banach
spaces X and p ∈ (1,∞), there is maximal Lp(0, T ;X)-regularity for (1.1) if and
only if there is maximal L2(0, T ;X)-regularity for (1.1). Hence we obtain maximal
Lp(0, T ;H)-regularity for (1.1).

In [6] we prove mixed Lp −Lq estimates for the solution of (1.1) (under suitable
assumptions on the heat kernels on the semigroups generated by A(t)), by inter-
polating between the L1 − L1

w result proved in [6] and the L2 − L2 result stated
as Theorem 2.1 below and by applying the fact that the property of maximal Lp-
regularity is independent of p . We finally remark that our maximal regularity
results may be used to prove existence and uniqueness results for semilinear prob-
lems of the form u′(t) + A(t)u(t) = f(t, u(t)), u(0) = 0. For details we refer to
[6].

Throughout this paper we denote by L(X, Y ) the space of all bounded linear
operators from X to Y , whenever X and Y are Banach spaces and by H a Hilbert
space. If A is a linear operator in X, we denote its domain by D(A), its resolvent
set by ρ(A) and its spectrum by σ(A). Furthermore, we denote by S(R;X) the
space of all rapidly decreasing smooth functions on R. The Fourier transform f̂ of
a function f ∈ S(R;X) is defined by

(Ff)(ξ) := f̂(ξ) :=
∫
R
e−ixξf(x)dx, ξ ∈ R.

Finally, we denote by C various constants which may differ from occurrence to
occurrence but are always independent of the free variable of a given formula.

2. Pseudo-differential operators

with non-smooth operator-valued symbols

For θ ∈ (0, π) set Σθ := {z ∈ C\{0}; | argz| < θ}. Let a ∈ L∞(R×R;L(H)) and
define the pseudo-differential operator

Op(a) : S(R, H)→ BC(R, H)

with operator-valued symbol a by

(Op(a)u)(x) :=
1

2π

∫
R

eixξa(x, ξ)û(ξ)dξ, x ∈ R,

where S(R, H) denotes the Schwartz space of rapidly decreasing smooth H-valued
functions on R.

2.1. Theorem. Let a ∈ L∞(R× R,L(H)) and assume that ξ 7→ a(x, ξ) admits a
holomorphic L(H)-valued extension z 7→ a(x, z) to Σθ and −Σθ for some θ ∈ (0, π2 )
such that supz∈Σθ,z∈−Σθ supx∈R ‖a(x, z)‖L(H) < ∞. Then the operator Op(a), ini-
tially defined on S(R, H), extends to a bounded operator on L2(R, H).
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Proof. Let α := sin θ
2 and set R := 1 + α

2 . Choose ϕ ∈ C∞c (R) with suppϕ ⊂
(R−1, R) such that ∫

R

ϕ2(τ )
|τ | dτ = 1.

For u ∈ S(R, H) we then have

(Op(a)u)(x) =
1

2π

∫
R

∫
R

eixξa(x, ξ)ϕ2(
ξ

τ
)û(ξ)dξ

1
|τ |dτ.(2.1)

Furthermore, let Γ := {z ∈ C; |z − 1| = α} be positively oriented. By Cauchy’s
theorem we have

a(x, ξ) =
1

2πi

∫
Γ

a(x, τz)
z − ξ/τ dz (x ∈ R)

for those (ξ, τ) ∈ R × R satisfying ϕ( ξτ ) 6= 0. Inserting this in (2.1) we obtain by
Fubini’s theorem

(Op(a)u)(x) =
1

2πi

∫
Γ

∫
R

∫
R

1
2π
eixξ

ϕ2( ξτ )

z − ξ
τ

a(x, τz)û(ξ)dξ
dτ

|τ |dz.

Setting gz,τ(ξ) := ϕ( ξτ )

z− ξ
τ

, hτ(ξ) := ϕ( ξτ ) and denoting the inner integral above by
Iτ,zu we obtain

(Iτ,zu)(x) = (F−1(gz,τ ) ∗ F−1(hτ) ∗ a(x, τz)u)(x), x ∈ R.

Since suppϕ ⊂ (R−1, R) it follows from Plancherel’s theorem that

(Iτ,zu, Iρ,zu)L2(R,H) = 0(2.2)

provided ρ
τ
∈ R\ {(R−2, R2)}. In order to estimate Op(a)u in L2(R, H) notice that

‖Op(a)u‖L2(R,H) ≤
1

2π

∫
Γ

‖Hzu‖L2(R,H)dz,(2.3)

where Hzu :=
∫
R

Iτ,zu
dτ

|τ | is understood as an inproper integral in L2(R, H). It

follows from (2.2) and the Cauchy-Schwarz inequality that

‖Hzu‖2L2(R,H) =
∫
R

∫
R

(Iτ,zu, Iρ,zu)L2(R,H)
dρ

|ρ|
dτ

|τ |

=

R2∫
R−2

∫
R

(Iτ,zu, Iτρ,zu)L2(R,H)
dτ

|τ |
dρ

|ρ|

≤
R2∫

R−2

∫
R

‖Iτ,zu‖2L2(R,H)

dτ

|τ |
dρ

|ρ|

= 4 logR
∫
R

‖Iτ,zu‖2L2(R,H)

dτ

|τ | .
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Observe that by Plancherel’s theorem we have

‖Iτ,zu‖L2(R,H) ≤ sup
x∈R
‖a(x, τz)‖L(H) sup

η∈R
| ϕ(η)
z − η |‖hτ û‖L

2(R,H).

Therefore there exists a constant C > 0 such that

‖Hzu‖2L2(R,H) ≤ C

∫
R

‖hτ û‖2L2(R,H)

dτ

|τ |

= C

∫
R

∫
R

|ϕ(
ξ

τ
)|2 dτ|τ |‖û(ξ)‖2Hdξ = C‖u‖2L2(R,H).

Combining this estimate with (2.3) it follows that

‖Op(a)u‖L2(R,H) ≤ C‖u‖L2(R,H)

for u ∈ S(R, H) and by density for all u ∈ L2(R, H).

3. Maximal regularity for non-autonomous parabolic equations

Let T > 0 and let (A(t))t∈[0,T ] be a family of densely defined linear operators in
X satisfying the following two assumptions:
A1) There exists θ ∈ (0, π/2) such that σ(A(t)) ⊂ Σθ for all t ∈ [0, T ] and for

ϕ ∈ (θ, π) there exists M > 0 such that

‖(λ− A(t))−1‖L(X) ≤
M

1 + |λ| , t ∈ [0, T ], λ ∈ C\Σϕ.

A2) There exist constants α, β ∈ [0, 1], α < β, ω ∈ (θ, π/2), c > 0 such that

‖A(t)(λ −A(t))−1(A(t)−1 −A(s)−1)‖L(X) ≤ c
|t− s|β

1 + |λ|1−α

for s, t ∈ [0, T ], λ ∈ C\Σω.
We remark that the above conditions A1), A2) on A(t) were introduced and investi-
gated by Acquistapace, Terreni [1] and Yagi [13] in order to construct the evolution
operator associated with A(t), t ∈ [0, T ].

Let 1 < p < ∞ and f : [0, T ] → X be a function. We consider the following
non-autonomous initial value problem:

u′(t) +A(t)u(t) = f(t), t ∈ [0, T ],(3.1)
u(0) = 0.

The family {A(t), t ∈ [0, T ]} is said to belong to the class MR(p,X) and we say
that there is maximal Lp regularity for (3.1) if for each f ∈ Lp(0, T ;X) there exists
a unique

u ∈W 1,p(0, T ;X) with t 7→ A(t)u(t) ∈ Lp(0, T ;X)

satisfying (3.1) in the Lp(0, T ;X)-sense.
The following two theorems are the main results of this section.

3.1. Theorem. Let X be a Banach space, T > 0, and assume that {A(t), t ∈
[0, T ]} satisfies A1) and A2). Suppose that there exists p ∈ (1,∞) such that the
family {A(t), t ∈ [0, T ]} belongs to the class MR(p,X). Then {A(t), t ∈ [0, T ]}
belongs to MR(q, X) for all q ∈ (1,∞).
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3.2. Theorem. Let H be a Hilbert space, 1 < p < ∞, T > 0 and assume
that {A(t), t ∈ [0, T ]} satisfies A1) and A2). Then {A(t), t ∈ [0, T ]} belongs to
MR(p,H).

We start the proof of the two theorems above with the following observation. It
follows from the results in [1], [9] that if u is a solution of (3.1), then u fulfills

A(t)u(t) =
∫ t

0

A(t)2e−(t−s)A(t)(A(t)−1 −A(s)−1)A(s)u(s)ds(3.2)

+
∫ t

0

A(t)e−(t−s)A(t)f(s)ds

for t ∈ [0, T ]. For the time being let q ∈ (1,∞) and define the operator Q ∈
L(Lq(0, T ;X)) by

(Qg)(t) :=
∫ t

0

A(t)2e−(t−s)A(t)(A(t)−1 −A(s)−1)g(s)ds, t ∈ [0, T ].

The results in [1] and [9] imply that ‖Q‖L(Lq(0,T ;X)) ≤ 1/2 provided the constant
c in A2) is sufficiently small. Observe, however, that the family {A(t), t ∈ [0, T ]}
belongs to the class MR(q;X) if and only if this holds true for {A(t)+K, t ∈ [0, T ]},
where K denotes an arbitrary constant. Hence, there is no loss of generality in
choosing c as small as we want. It follows that the operator Id−Q is invertible in
Lq(0, T ;X). Moreover, by (3.2) we know that

(Id−Q)A(·)u = Sf, where (Sf)(t) :=
∫ t

0

A(t)e−(t−s)A(t)f(s)ds

provided u is a solution of (3.1). Summarizing, we proved the following fact.

3.3. Proposition. The family {A(t), t ∈ [0, T ]} belongs to the class MR(q;X) if
and only if S acts a bounded operator on Lq(0, T ;X).

We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1. By assumption and Proposition 3.1 we know that S acts
boundedly on Lp(0, T ;X). In order to show that S is bounded on Lq(0, T ;X) for
q ∈ (1,∞), if suffices to verify (see [11], Theorems III.1.2, III.1.3) that

sup
s,s′∈(0,T )

∫
|s−s′|≤ |t−s|2

‖k(t, s)− k(t, s′)‖dt <∞,(3.3)

sup
s,s′∈(0,T )

∫
|s−s′|≤ |t−s|2

‖k(s, t)− k(s′, t)‖dt <∞(3.4)

where k(t, s) := A(t)e−(t−s)A(t)1(0,t)(s).
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To this end, note that for s, s′ ∈ (0, T ) we have∫
|s−s′|≤1

2 |t−s|

‖k(t, s) − k(t, s′)‖dt

=
∫

|s−s′|≤1
2 (t−s)

‖A(t)e−(t−s)A(t)1(0,t)(s) − A(t)e−(t−s′)A(t)1(0,t)(s′)‖dt

=
∫

|s−s′|≤1
2 (t−s)

‖
s′∫
s

A(t)2e−(t−σ)A(t)dσ‖dt

≤
∫

|s−s′|≤1
2 (t−s)

|
s′∫
s

M

(t− σ)2
dσ|dt = M

∫
|s−s′|≤ 1

2 (t−s)

| 1
t− s −

1
t− s′ |dt

< ∞.

Moreover, for s, s′ ∈ (0, T ), we have∫
|s−s′|≤ 1

2 |t−s|

‖k(s, t)− k(s′, t)‖dt

=
∫

|s−s′|≤ 1
2 |t−s|

‖A(s)e−(s−t)A(s)1s≥t −A(s′)e−(s′−t)A(s′)1s′≥t‖dt

≤
∫

|s−s′|≤ 1
2 |t−s|

‖A(s)e−(s−t)A(s) −A(s)e−(s′−t)A(s)‖dt

+
∫

|s−s′|≤ 1
2 |t−s|

‖A(s)e−(s′−t)A(s) −A(s′)e−(s′−t)A(s′)‖dt

≤
∫

|s−s′|≤ 1
2 |t−s|

‖
s′∫
s

A(s)2e−(σ−t)A(s)dσ‖dt

+
∫

|s−s′|≤ 1
2 |t−s|

‖ 1
2πi

∫
Γθ

λe−(s′−t)λ((λ− A(s))−1 − (λ −A(s′))−1)dλ‖dt

≤
∫

|s−s′|≤ 1
2 |t−s|

|
s′∫
s

M

|t− σ|2dσ|dt

+
∫

|s−s′|≤ 1
2 |t−s|

(
1
π

∞∫
0

re−(s′−t)r cos θ c(M + 1)|s− s′|β
(1 + r)1−α dr)dt

< ∞.

The proof is complete.
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Proof of Theorem 3.2. Observe that the symbol a defined by

a(t, τ ) :=


A(0)(iτ + A(0))−1, t < 0,
A(t)(iτ + A(t))−1, t ∈ [0, T ],
A(T )(iτ +A(T ))−1, t > T,

satisfies, thanks to A1), the assumptions of Theorem 2.1. Hence it follows from this
theorem and Proposition 3.3 that the family {A(t), t ∈ [0, T ]} belongs to the class
MR(2;H). Theorem 3.1 implies now the assertion.
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