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ABSTRACT. In this paper, we show that a pseudo-differential operator asso-
ciated to a symbol a € L®(R x R, £L(H)) (H being a Hilbert space) which
admits a holomorphic extension to a suitable sector of C acts as a bounded
operator on L2(R, H). By showing that maximal LP-regularity for the non-
autonomous parabolic equation v’ (¢t)+A(t)u(t) = f(t),u(0) = 0 is independent
of p € (1,00), we obtain as a consequence a maximal LP([0,T], H)-regularity
result for solutions of the above equation.

1. INTRODUCTION

A classical result in the theory of pseudo-differential operators states that an
operator associated to a symbol belonging to the class S° acts as a bounded operator
on L2(RY) (see e.g. [12], Ch.VI). It was observed in recent years that pseudo-
differential operators with operator-valued symbols (i.e. symbols which take values
in the space of bounded linear operators on a Banach space X) are very useful
in proving so called maximal regularity results for autonomous parabolic evolution
equations. For details and more information in this direction we refer to [2], [8],
[4], [10], [3] and [7]. In this paper we examine maximal LP-regularity results for
non-autonomous equations of the form

u'(t)+ A)u(t) = f(b), te[0,7T],
u(0) = 0

via the technique of pseudo-differential operators with operator-valued symbols.
Since operators A(t) associated to specific boundary value problems arising in appli-
cations very often show non-smooth dependence on ¢, we are in particular interested
in symbols a(z, §) having non-smooth dependence on x.

It is one aim of this paper to show, roughly speaking, that a pseudo-differential
operator associated to a symbol a € L (R x R, L(H)), where H is a Hilbert space,
which admits a bounded, holomorphic extension to a suitable sector of the complex
plane, acts as a bounded operator on L?*(R,H). Considering in particular the
symbol a given by a(t, 7) := A(t)(it+A(t)) ~! we obtain as a consequence a maximal
L?([0, T, H)-regularity result for (1.1) provided the family A(t);e[0,7] satisfies the so
called Acquistapace-Terreni condition. Note that our result generalizes in particular
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the result of de Simon [5] on L?(0,T; H)-regularity for the autonomous case, i.e.
A(t) = A for all ¢t € [0,T], to equations of the form (1.1).

Observe that we allow that the domains D(A(t)) of A(t) may vary with ¢ € [0, T7.
Hence maximal regularity results for (1.1) cannot be obtained from those for the
autonomous equation by simple perturbation techniques.

We remark that the maximal L?([0, T]; H)-regularity result for (1.1) is the first
cornerstone in establishing mixed LP([0,T]; LL(f2))-estimates (1 < p,q < oo) for
equations of the form (1.1). The Calder6n-Zygmund theory for operator-valued
kernels as developed for instance in [11] allows us to prove that, for arbitrary Banach
spaces X and p € (1,00), there is maximal LP(0,T; X)-regularity for (1.1) if and
only if there is maximal L?(0, T’; X)-regularity for (1.1). Hence we obtain maximal
LP(0,T; H)-regularity for (1.1).

In [6] we prove mixed LP — L? estimates for the solution of (1.1) (under suitable
assumptions on the heat kernels on the semigroups generated by A(t)), by inter-
polating between the L' — L! result proved in [6] and the L? — L? result stated
as Theorem 2.1 below and by applying the fact that the property of maximal LP-
regularity is independent of p . We finally remark that our maximal regularity
results may be used to prove existence and uniqueness results for semilinear prob-
lems of the form w'(t) + A(t)u(t) = f(t,u(t)),u(0) = 0. For details we refer to
[6].
Throughout this paper we denote by £(X,Y") the space of all bounded linear
operators from X to Y, whenever X and Y are Banach spaces and by H a Hilbert
space. If A is a linear operator in X, we denote its domain by D(A), its resolvent
set by p(A) and its spectrum by o(A). Furthermore, we denote by S(R; X) the
space of all rapidly decreasing smooth functions on R. The Fourier transform fof
a function f € S(R; X) is defined by

~

(FI)E) = @wzéf%%ﬂwMa feR.

Finally, we denote by C' various constants which may differ from occurrence to
occurrence but are always independent of the free variable of a given formula.

2. PSEUDO-DIFFERENTIAL OPERATORS
WITH NON-SMOOTH OPERATOR-VALUED SYMBOLS

For 6 € (0,7) set 3p := {z € C\{0}; |argz| < 0}. Let a € L®(R xR; L(H)) and
define the pseudo-differential operator
Op(a): S(R,H) — BC(R, H)
with operator-valued symbol a by
1 ; "
Opa@u)(a) = 5 [ oo, 9a@ds e R
R

where S(R, H) denotes the Schwartz space of rapidly decreasing smooth H-valued
functions on R.

2.1. Theorem. Let a € L®(R x R, L(H)) and assume that £ — a(x,£) admits a
holomorphic L(H)-valued extension z — a(x, z) to Xg and —Xg for some 0 € (0, §)
such that sup ey, »c—x, SUP4er |la(x, 2)||c() < 0o. Then the operator Op(a), ini-
tially defined on S(R, H), extends to a bounded operator on L*(R, H).
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Proof. Let a := 511219 and set R := 14 5. Choose ¢ € C*(R) with suppy C
(R7!, R) such that

For v € S(R, H) we then have

(21) (Opla)u)(a) = 5- / / (e, ¢ D)) de

Furthermore, let T' := {z € C;|z — 1| = a} be positively oriented. By Cauchy’s
theorem we have

a(z,§) = 31 / Z(f’g/zj dz (x € R)
r

for those (£,7) € R x R satisfying <p( ) # 0. Inserting this in (2.1) we obtain by
Fubini’s theorem

(Oplayu)(@) = 5 / / / Loty ae)de T

T

e(£)
-

Setting g, -(§) = , he(8) = @(%) and denoting the inner integral above by

I, .u we obtain

(I .u) () = (Fgsr) * FHhy) * a(z, 72)u)(z), x€R.

A

Since suppy C (R~ R) it follows from Plancherel’s theorem that
(2.2) (17-7211,, Ip7zu)L2(R7H) =0
provided £ € R\ {(R~2, R?)}. In order to estimate Op(a)u in L*(R, H) notice that

1
(23) ||Op(a)u||Lz(R7H) S — HHZU'HLQ(]R,H)dza
2
r

where H, u := / - Zu is understood as an inproper integral in L?(R, H). It
R

follows from (2.2) and the Cauchy Schwarz inequality that

dp dt
H.u 2 = // 7,2U, I ’U, L2(RH)T T
| H- HLQ(]R,H) z )z (R, )lpl 7]

dr dp
TZU' ITp,ZU' L2 (]R H) |T| |p|

R—2 R

R2
dr dp
/ / It

R—2 R
dr

= 4logR/|IT,zu|%2(R,H)m'
R

IN
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Observe that by Plancherel’s theorem we have
(ayi N
sl < sl 7)oy up | 22 el o
z€R neR 2 — 1]

Therefore there exists a constant C' > 0 such that

. dr
Bl < C / sl
R

d
¢ [ [P a© s = Clulle.
R R

Combining this estimate with (2.3) it follows that
10p(a)ull 2,1y < Cllull 2w, m)
for u € S(R, H) and by density for all u € L?(R, H). O

3. MAXIMAL REGULARITY FOR NON-AUTONOMOUS PARABOLIC EQUATIONS

Let T > 0 and let (A(t)):e[o,7) be a family of densely defined linear operators in
X satisfying the following two assumptions:
A1) There exists § € (0,7/2) such that o(A(t)) C Xy for all ¢t € [0,7T] and for
@ € (0, 7) there exists M > 0 such that

M
—A(t) ™ <——  te[0,T], e C\Z,.
[(A=A) " llex) < bk €0, T, e C\%,
A2) There exist constants a, 8 € [0,1],a < 3, w € (0, 7/2), ¢ > 0 such that
|t — s’

JA) A = A@®) AR ™ = A(s) ™l ox) < Trpp—e

for s,t € [0,T], A € C\X,.
We remark that the above conditions A1), A2) on A(t) were introduced and investi-
gated by Acquistapace, Terreni [1] and Yagi [13] in order to construct the evolution
operator associated with A(t),¢ € [0, 7).

Let 1 < p < ooand f:[0,7] — X be a function. We consider the following
non-autonomous initial value problem:

(3.1) u'(t) + Alu(t) = f(1), te[0,T],
u(0) = 0.
The family {A(t),t € [0,7T]} is said to belong to the class M R(p, X) and we say

that there is mazimal LP regularity for (3.1) if for each f € LP(0,T; X) there exists
a unique

uweWhP(0,T;X) with ¢~ A(t)u(t) € LP(0,T; X)
satisfying (3.1) in the L?(0,T; X)-sense.
The following two theorems are the main results of this section.

3.1. Theorem. Let X be a Banach space, T > 0, and assume that {A(t),t €
[0,T)} satisfies A1) and A2). Suppose that there exists p € (1,00) such that the
family {A(t),t € [0,T]} belongs to the class MR(p, X). Then {A(t),t € [0,T)}
belongs to M R(q, X) for all g € (1,00).
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3.2. Theorem. Let H be a Hilbert space, 1 < p < oo, T > 0 and assume
that {A(t),t € [0,T]} satisfies A1) and A2). Then {A(t),t € [0,T]} belongs to
MR(p, H).

We start the proof of the two theorems above with the following observation. It
follows from the results in [1], [9] that if w is a solution of (3.1), then w fulfills
¢
(3.2) A(t)u(t) = / A(t)2e= =940 A1)~ — A(s)"H) A(s)u(s)ds
0

+ /Ot A(t)e_(t_s)A(t)f(s)ds

for t € [0,7]. For the time being let ¢ € (1,00) and define the operator @ €
L(L9(0,T; X)) by

(Qg)(?) :=/0 A(t)?e TIAOA@G) T - A(s) Ng(s)ds, e [0,T].

The results in [1] and [9] imply that ||Q| z(ze0,7;x)) < 1/2 provided the constant
¢ in A2) is sufficiently small. Observe, however, that the family {A(t),t € [0,T]}
belongs to the class M R(g; X) if and only if this holds true for {A(¢)+ K,t € [0,T]},
where K denotes an arbitrary constant. Hence, there is no loss of generality in
choosing ¢ as small as we want. It follows that the operator Id — @ is invertible in
L%(0,T; X). Moreover, by (3.2) we know that

(Id — Q)A(-)u= Sf, where (Sf)(t):= /0 A(t)e =40 £(5)ds

provided u is a solution of (3.1). Summarizing, we proved the following fact.

3.3. Proposition. The family {A(t),t € [0,T]} belongs to the class MR(q; X) if
and only if S acts a bounded operator on L1(0,T; X).

We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1. By assumption and Proposition 3.1 we know that S acts
boundedly on LP(0,T; X). In order to show that S is bounded on L?(0,T; X) for
q € (1,00), if suffices to verify (see [11], Theorems III.1.2, IIT.1.3) that

(3.3) sup / k(¢ 5) = k(t, 8)|dt < o,
5,5'€(0,T) J|s—s|< 52l

(3.4) sup / 1k(s,t) = k(s', t)[|dt < oo
5,5'€(0,T) J|s—s|< 52l

where k(t,s) == A(t)e= 94016 1) 5.
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To this end, note that for s, s’ € (0,T) we have

IN

<

Moreover,

lk(t, s) — k(t,s")|dt

|s—s/|<|t—s|

||A(t)€_(t_s)A(t)1(0,t)(5) - A(t)e_(t_sl)A(t)1(0,t)(5I)||dt

|s—s/|<%(t—s)

/ I / At)2e= =D A0gg gt

|s—s/|<k(t—s) *

oM 1 1
_r - M _
/ |/(t_0)2da|dt / e

ls—s'|<3(t—s) * ls—s'|<3(t—s)
00.

for s,s" € (0,T), we have

|s—s/|< B ]t—s]
/ ||A(s)e_(s_t)A(s)1sZt — A(s')e_(sl_t)A(sl)1812t||dt

|s—s/|<3]t—s|

< 1 4(s)e™(m0AC) — A(s)e= =04 jar
ls—s/|<L|t—s|
+ / [A(s)e™ (&' =0AE) — A(s")em (DA | gt
ls—s'|<&|t—s|
SI
< I / A(s)2e=@DAG) g | gt
ls—s/|<%lt—s| &
1 (! _ —
b g [T A - (- W) i
ls—s/|<L|t—s| Lo
s’ M
< | | ———=zdoldt
t—ol?
|s—s'|<%|t—s| S
Ly (M + )]s - ')
- —(s'—t)rcosd € + §— S8 dr\dt
+ (W/re A1 r)
ls—s/|<ift—s| O
< 0.

The proof is complete.
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Proof of Theorem 3.2. Observe that the symbol a defined by

sat

A0)(iT + A0)™L,  t <o,
a(t,7):= ¢ A@t)(it + A(t))~, te[0,T],
AT (it + A(T))™Y, t>T,

isfies, thanks to A1), the assumptions of Theorem 2.1. Hence it follows from this

theorem and Proposition 3.3 that the family {A(t),t € [0, T]} belongs to the class
MR(2; H). Theorem 3.1 implies now the assertion. O

(1
(2]
(3]

(4]

5

(6]
7]
(8]
(9]
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