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1. INTRODUCTION

The purpose of this paper is to prove uniqueness of solutions of the
incompressible Navier—Stokes system in bounded Lipschitz domains
Q < R? with Dirichlet boundary conditions

@—AquV-(u@u)JrVn:O in (0,7) x Q,

ot
divu=0  in(0,T)xQ, (1.1)
u=0 on (0,T) x 09,
1/!(0, ) = U in Q’

where u represents the (normalized) velocity of the fluid, uy € L3(Q)? its
initial (divergence-free) velocity and = its pressure, 7 >0, A being the
Laplacian in the domain Q.

The first result in this direction is due to Furioli ez al. [6] for Q@ = R*. They
made use of Littlewood—Paley analysis which is more or less specific for R®
and not applicable to general non-smooth domains. This proof was
simplified in [12]. In those both papers, the authors took advantage of the
fact that the Helmoltz projector P (orthogonal projection on the space of
divergence-free functions) commutes with the heat semigroup. The use of
this projector removes the contribution of the pressure © which can be
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recovered with help of u. This is no more the fact in other domains. To get
rid of this difficulty in smooth domains (say %>-boundary at least), one can
work with the Stokes operator (formally-PA) which has regularity proper-
ties comparable to the Dirichlet—Laplacian (see [7,8]). Some results using
more or less this formulation are [5] for smooth exterior domains in R" for
N >4 and [11] for smooth bounded domains.

On Lipschitz domains, it is not even known whether the Stokes semigroup
in L2(Q)’ extends to a (analytic) semigroup in other spaces L”(Q2)*, and more
specially for p = 3. Therefore, we need to adopt a different strategy. In this
paper, we propose to keep the pressure and use the Laplacian in the analysis
of the problem. This idea has led us to the following result.

THEOREM 1.1. If there exists a mild solution (u,n) of (1.1) in the space
([0, T): L3(Q)*) x L>(0, T; L¥*(Q)), then it is unique.

For a more precise statement, see Theorem 4.3 below.

Our proof may be divided into three steps. The first step is to define mild
solutions of (1.1), and to deal with them. The strategy is to keep the pressure
in the formulation of solutions. The second step is to extend the problem in
the whole space, using the maximal L7-regularity of the heat semigroup,
such as that explained in [2]. The third step is to reformulate problem (1.1)
as a boundary value problem, as in [14]. Following the same structure of the
proof of [13] or [1], it is possible to prove uniqueness of mild solutions of the
incompressible Navier—Stokes system.

We want to point out that the proof proposed here is limited to bounded
Lipschitz domains in R®. Very recently, the author found an adaptation of
this proof to bounded Lipschitz domains in R? for all d>3.

The paper is organized as follows. In Section 2, we develop the tools we
will use in Section 3, such as maximal L”-regularity. In Section 3, we prove
an existence and uniqueness result for the Stokes system. We finally use this
result to state and give the proof of the uniqueness of mild solutions of the
incompressible Navier—Stokes system in Section 4.

2. THE TOOLS

Let d be any dimension (1, 2 or 3). Let G be any domain in RY. For k € Z
and 1<g<oo, we denote by W*4(G) the usual Sobolev spaces. The
fractional Sobolev spaces W*9(G) for 0<s<1 are the ones obtained by
complex interpolation (with interpolation parameter 9 = s) between L(G)
and W4(G). For 0<s<1, we denote by B*(G) the Besov space obtained
by real interpolation (with interpolation parameters 3 = s and ¢) between
LY(G) and W'(G). For 0<s<1 and 1<g¢<2, the space B*(G) is
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continuously embedded in W*(G). Therefore, by the Sobolev embedding,
we then have B*(G)< L'(G), where < 5 -5

Let now Q be a bounded Llpschltz domain in R’ Let 1<g<oo
and q<s< q—i—l Then, the trace operator is bounded from W*4(Q) to
B ~1/44(pQ) (see for instance Theorem 3.1 of [10]).

We next define the operator 4 on L2(R?*)? by

D(A4) = {ge W'A(R); 4g e LA(R’Y’},
Ag = —4g, g € D(A),

which we call the Laplacian in R*. It is known that —4 generates a bounded
analytic semigroup in L2(R*)® and that for all ¢ € (1, 00), 4 extends to an
operator defined on LY(R*)® (denoted also by (4, D(A))) such that —A
generates a bounded analytic semigroup {S(¢) = e~*4; >0} in LI(R*)>. It is
also classical, using Riesz transform, that 4~'/2 maps W~ 14(R*)? on L1(R?)
and L1(R*)® on W4(R*)®. Moreover, the following maximal L”-regularity
property holds true.

ProrosITION 2.1.  For all p,q e (1,00), for all ©>0, for all function
fe 12(0, t; LY(R®)), there exists a unique

g € L7(0,7; D(A)) n W'(0,7; LYRY))

verifying g(0) = 0 on R?, ¢ + Ag = f on (0,7) x R*, such that g'll o (1e) and
149l zp(ray are controlled, independently of <, by |[f|lipq). Moreover, the
function g is given by the convolution g = Sxf. We denote by .4 the operator
e Ag = AS=f.

Proof. This result can be found in [2, Theorem X.12]; see also the
references therein. For more general operators or more general domains
Q < RY, see for instance [9] or [4].

The following result that we will need concerns the extension of
distributions in W~14(Q)* to W~ 4(R%)*; it can be found in [15, Theorem
4.3.3].

PROPOSITION 2.2. Let 1<g<oco, meN, N=1. IfQ < RY is an open
set, then the dual space W"4(Q) = (W"”’ (Q)* (where L ; + = 1) consists of
all distributions T of the form T = Z\a\ _o (=D"D*, where v, € LUQ)N.

Therefore, a distribution in W~"4(Q) can be extended to a distribution in
WL4RNY by simply extending the v,’s by 0 outside Q, the norm being
conserved.
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The last result of this section is due to [14, Theorem 5.1.2]. The last
inequality of the version given here is proved in the appendix.

PROPOSITION 2.3. Let Q be a bounded Lipschitz domain in R>. There
exists a constant K > 0 such that for all T > 0, for all g € L*(0,1; L*(8Q)*) with
Ja09 - N =0 for almost all t € (0, 1), there exists a unique weak solution to the
initial-Dirichlet problem for the nonstationary Stokes equations:

0 .
a—Z—Av+Vq:O in (0,7) X Q,

dive=0 in (0,7) X Q,
v=yg on (0,7) x 09,
v(0,-) =0 in Q.

3
Moreover, ve L*(0,1; L3(Q)’) and N0l 220y < KNl 22000

3. THE STOKES PROBLEM

In this section, we are concerned with the following Stokes system:

%—Au—‘,—Vﬂ:f in (0,7) x Q,
divu=0 in (0,7) x Q, (3.1
u=20 on (0,7) x 092,
u0,)=0 i e,

where 7> 0 and Q is a bounded Lipschitz domain. The main result of this
section then reads

THEOREM 3.1. For all r e [%, 2[, for all functions f € L*(0,7; W~'"(Q)%),
there exists a unique weak solution u € L0, 7; L3(Q)%) of (3.1) with

||u||L2(O,‘E;L3(Q)3) <wr(r)”fHLZ(O,r;W*I-V(Q)B)’
where w,(t) = O(t'3/?),

To prove this theorem, we need the following lemma on solutions of the
Stokes system in the whole space R’.

LemMA 3.2. Let re[3,2[ and F € L*(0,7; W™ (R?)’). Let U = S=PF,
where P is the Helmoltz projector and S, defined in Proposition 2.1, is the 3D
heat semigroup on R>. Then, Tryq U exists a.e. and there exists a constant
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C >0 such that

IR Ul 120 21300y + 1Tro@ Ullr2o cr200y
<CT "N F || ooy (3.2)

where Rgq denotes the restriction from R} 10 Q and Trao denotes the trace
operator on 0Q.

Proof. Let re[3,2[ and Fe L*0,7; W~ (R%’). Since U= S*PF =
A28 % (A7 '/2PF), combining Proposition 2.1 and properties of the square
root of the Laplacian on L'(R*)’, U is the unique solution of (3.5):

Ue Wh(0,. W RY) 0 L20, 7 WY (RY))
and
WU, 0@y~ 2o mie@y) S o zm @)

where ¢, > 0 depends only on r. By complex interpolation (with interpola-
tion parameter 3 =1 — % € [0, 1]), we obtain

W1’2(0, T Wfl,r([R3)3) o~ L2(0,‘L'; Wl’r(R3)3)<—> W173/2r,2(0’ T W3/r71,r(R3)3).
The Sobolev embedding (in time) yields
W173/2r,2(0, T W3/r71,r([R3)3)(_)L2r/(37r)(0’ T W3/r71,r(R3)3).

On the one hand, by Sobolev embedding (in space), there exists a constant
¢, >0 such that

|If||L2r/(3—r)(0,T;L3(R3)3) < C;.|If‘”LZr/(}fr)(O’.[;W}/;-—I.;-(R3)3), (33)
for all f € L¥/G=1(0,t; W3/~17(R?)*). On the other hand, the trace operator
Trao: L2r/(37r)(0’ T W3/r71,r(R3)3) N L2r/(37r)(0’ T BZ/rfl,r(aQ)3)

is bounded. Since %<r<2, by the Sobolev embedding once more, the
operator

Trao : L¥/C-7(0,7; W3/ (R3)) > L¥/C0,1; L2(0Q)°)  (3.4)
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is bounded by a constant ¢/ > 0. Combining now (3.3) and (3.4), we have

IR Ull 20,0030y + ITr00 Ullpo 2 1200y7)
1-3/2
<t /2 (HRQ Ul|L2"/(3*")(0,1—;L3(Q)3) + [|Trae U||L2r/(37r)(0,1;L2(ag)3))

1-3/2
<1 /’c,(c;+C;./)||F||L2(0,T;W*‘v"(R3)3)’

which proves (3.2). |

Proof of Theorem 3.1. We have to link the result of Lemma 3.2 and
problem (3.1). By Proposition 2.2, we can extend f € L2(0,; W~ "(2)*) to a
distribution F on the whole space, F € L*(0,1; W~"(R?)*). Let U = SxPF
and II such that

%—AU—#VH:F in (0,7) x R?,
divU=0  in (0,7) x R, 3-5)
U@©,)=0 in R>.

Changing the unknowns (u,7) into (v,q) such that v =u— RoU and
q = n — Roll, we get the following equivalent problem to (3.1):

%—Av—i—Vq:O in (0,7) X Q,
diVU = O i]fl (09 T) X Qa (36)
v=—Trao U on (0,7) x 09,
v(0,)=0 in Q.

Since div U = 0 on R?, we have fasz Trag U - N =0, for almost all 7 € (0, 7).
We can then apply Proposition 2.3 to obtain a unique weak solution v of
(3.6) satisfying

0l 120 2:230p) S Kl Tra0 Ull 20 2:1200))- (3.7)

Therefore, there exists a unique solution u of (3.1) in Q given
by u=v+ RoU. By Lemma 3.2 and (3.7), u moreover satisfies the
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estimate

el 20200 < 1 = Re Ullpao sy + 1R Ul ey
< KlTrog Ullp2.z200y) + 1R Ullpo oy
<A+ K)CT N F o a0
<1+ K)C‘El_3/2r||/[||L2(0,T;W*1v'(9)3)‘

This proves Theorem 3.1, with w,(1) = (1 + K)Ct'=3/>. 1}

4. THE UNIQUENESS RESULT
By solutions of (1.1), following [1], we mean:

DEFINITION 4.1.  We call solution of (1.1) a pair (1, ) € ([0, T); L x
(Q)%) x L>™(0, T; L¥*(Q)) satisfying divu = 0 and

T
/0 @+ D, >+ (Vo u @ ub) di = —{o(0), uo

for all ¢ € 2([0, T) x Q)° with div ¢ = 0, and where ¢-,-> denotes the usual
L3- (or L*/?-) duality pairing.

Remark 4.2. 1In the case of regular domains Q (%°-boundary), the
solutions corresponding to Definition 4.1 coincide with the usual mild
solutions of (1.1) (see for instance [1]).

We are now in position to state the uniqueness theorem.

THEOREM 4.3. Let (uy,m) and (uz, m3) be two solutions of (1.1) in the
space 6v([0, T); L3(Q)%) x L0, T; L¥*(Q)). Then, uy = u> and Vr, = Vs
on [0, T).

Proof. We first choose p € (3,6). Let 7€ (0, T], which will be chosen
later. For ¢>0 to be determined later, let ug, € L”([RP)3 such that
lletg — woellp3qp <& Let u=ur —up and © = m; — mp. System (1.1) implies

%—AquVn:fV-(ul@quu@Hz) in (0,7) x Q,
divu=0 in (0,7) x Q, 4.1

u=0 on (0,7) x 09,
u0,)=20 in Q.
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Let f = -V -(uy ® u+u® uy) and decompose it into three terms:

fl = _V'(uO,s RQutu® UO,S)»

So==V (o —uoz) ® u+u® (up — to))

and
Si==V (1 —up) @ u+u® (uz — up)).
We have
IIf1 ||L2(0,7;W—mp/(pﬁ)(g)ﬂ < ||”0,s||U(R—‘)3 ||u||L2(0,T;L3(Q)3)9
W2l 20,0:3209) < €llll 20 2.0
and

Hf.’)HLZ((),T;L—‘/Z(Q)}) < (|fur — u0||Lm(0’f;L3(Q)3) + |z — “OHLN(OJ;LS(Q)?'))

* el 20,2:2500)-
By Theorem 3.1, we then have

letll 12 0,2:2300p%) < [@3p/p3) Olto el ooy + (& + ller — woll 02230
(0,1:L3(Q)) (R 0.:L(Q))

+ [lux — uO||LW(O’T;L3(Q)3))w3/2(r)]||u||L2(0,T;L3(Q)3)'

Since 1% € (%, 2), by Theorem 3.1 once more, we can find ¢ > 0 and 7 > 0 such
that

1
el 220.2:32) <3 202327

which implies that u = 0 on [0, 7). Arguing as in [13], by continuity of u on
[0, T), this implies that u =0 on [0, 7). 1

APPENDIX

We give here the complete proof of Proposition 2.3, using the result of
[14, Theorem 5.1.2].
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Let Q be a bounded Lipschitz domain in R®. Let us consider the following
boundary value problem:

ov
E—Av—&—Vq 0 in (0,7) x Q,

dive=0 in (0,7) X Q, (%)
v=yg on (0,7) x 09,
v(0,)=0 in Q,

where g € L*(0,7; L*(0Q)’) with [,,g- N =0 for almost all 7€ (0,7). By
Theorem 5.1.2 of [14], we know that there exists a unique weak solution
ve LX0,7; LX(Q)*) of (*) which can be represented in terms of a double-
layer potential as follows:

o6, x) = /0 / %(z—s,y—x)v(s,wda(y)ds
- / - |3 2t,) - NO) do(y),

for all x € @ and all 7 € (0,7). Here, K is a matrix-kernel given by

o0 a 3
Kij(t,x) = 1p:(x) + / D5 (vyds,
, Ox 8

where p(x) = (dnr) e /4 >0, xeR®, is the heat kernel in
R*. Moreover, Shen proved that the linear operator 7 : L*(0, 1; L2(0Q)) —
L*(0,1; Lz(GQ) ), g7y is bounded. To show our Proposition 2.3,
it remains to prove that the function v just given belongs to
LX0,1; L3(Q)%).

For that purpose, let ¢ € Z((0,7) x Q)* and compute

/of /Q”(” x) - o(t,x) dx d1.

We want to control this quantity by the norm of y in L*(0,7; L2(dQ)°)
times the norm of ¢ in L20,7;L¥*(Q)%), which will give the
result.
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It holds

/T / v(t, x) - o(t, x) dx dt
[ [own ([ [ S0 = onts oty as

/ b 2y(l »)-N©®) do(y))dxdl

/ / o(t,x) - ( / 0 z,/ajl\);(ys)(y—x)y(s,y)do@)ds

/ /ag aN(y) ( /, t aij (v —x) dV> (s, y) da(y) ds

| F (t.y) - NG) dG(V)) dx dr.

This gives by Fubini, identifying ¢ with its continuation by 0 on (0,7) x R,

/O /Q u(t, x) - (1, x) dx dt
Z/ / 2(s,9) - (N(¥) - V)
0 JoQ
T 2
U ( 5 aa SU) dr) o, )dz} () do(y) ds
_ / / (div A7 o1, )01, y) - N(») do(y) dt
0 Jo

- / / 25.) - (NG) - VAP * 9](s,7) do(y) dr
0 o0Q
- / / (div A o1, DO (1) - N do(y) dr,
0 0Q

where S is the semigroup defined in Section 2, P is the Helmoltz projector
and ./ * is the dual operator of the maximal regularity operator .# defined

in Proposition 2.1. Moreover, by properties of the operator A4 listed in
Section 2, it holds

-l
[|div A (PHLZ(O,r;W‘J/Z) <C ||(P||LZ(O,T;L3/2(Q)3)

and

||v[147l P+ ‘P]HLZ(O,r;WWZ) < C2||‘P||L2(0,1;L3/2(Q)3)~



UNIQUENESS FOR NAVIER-STOKES 11

By properties of the trace operator on 02 and Sobolev embeddings cited in
Section 2, we have

o
I Traeldiv A~ @il 20,:0200) < Cill@l 2020527

and

||TfaQ(N(') : V)[Ail P> (p]||L2(0,1;L2(0Q)) < C£||(P||L2(0’T;L3/Z(Q)3)'

This completes the proof.
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