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(Communicated by Camil Muscalu)

Abstract. We formulate and solve the Poisson problem for the exterior de-
rivative operator with Dirichlet boundary condition in Lipschitz domains, of

arbitrary topology, for data in Besov and Triebel-Lizorkin spaces.

1. Introduction. In this paper we study the boundary value problem

du = f in Ω, Tru = g on ∂Ω, (1)

where Ω is a given Lipschitz subdomain of a manifold M , d is the exterior derivative
operator, and f , g are given differential forms in Ω and on ∂Ω, respectively. The
goal is to find a natural functional analytic framework where (1) has a solution
u whose regularity is consistent with that of the data f , g, and which satisfies
a natural estimate. As such, two scales inherently lend themselves for the task at
hand, namely, Bp,qs , the scale of Besov spaces, and F p,qs , the scale of Triebel-Lizorkin
spaces (cf. §2.2 for definitions). Since most of the time we shall work with both
these scales, we shall often write Ap,qs , A ∈ {B,F}, (with the obvious interpretation)
as a way of referring to them simultaneously.

There are two types of issues associated with the problem (1), i.e., of analytical
nature (such as those stemming from the low regularity assumptions on the domain
and the compatibility conditions the data must satisfy), and of topological nature
(since the fact that every closed form is exact entails that certain Betti numbers
vanish). Our main results with regard to the solvability of (1) fall under two cate-
gories. In the case when the smoothness of the datum f is low, we have the following
(precise definitions are given in §2; here we only want to point out that ‘wedge’ de-
notes the exterior product of forms, ν stands for the outward unit conormal to ∂Ω,
and d∂Ω is, essentially, the exterior derivative operator on ∂Ω, viewed as a Lipschitz
manifold):
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Theorem 1.1. Let Ω be a Lipschitz subdomain of the smooth, compact, bound-
aryless manifold M , and fix 1 < p, q < ∞, −1 + 1/p < s < 1/p. Then for each
0 ≤ ` ≤ n− 1 the following two statements are equivalent.

(i) The (n− `)-th Betti number of Ω vanishes, i.e. bn−`(Ω) = 0.

(ii) There exists a finite constant C > 0 with the following significance. For any
differential form f ∈ Ap,qs (Ω,Λ`) and any

g ∈

 Bp,q
s+1− 1

p

(∂Ω,Λ`−1) if A = B,

Bp,p
s+1− 1

p

(∂Ω,Λ`−1) if A = F,
(2)

subject to the (necessary) compatibility conditions{
df = 0 in Ω,

ν ∧ f = −d∂(ν ∧ g) on ∂Ω,
(3)

there exists u ∈ Ap,qs+1(Ω,Λ`−1) such that{
du = f in Ω,

Tru = g on ∂Ω,
(4)

and for which

‖u‖Ap,q
s+1(Ω,Λ`−1) ≤ C‖f‖Ap,q

s (Ω,Λ`) +


C‖g‖Bp,q

s+1− 1
p

(∂Ω,Λ`−1) if A = B,

C‖g‖Bp,p

s+1− 1
p

(∂Ω,Λ`−1) if A = F.
(5)

Finally, corresponding to ` = n, we have the following conclusion. There exists
a finite constant C > 0 such that for any f ∈ Ap,qs (Ω,Λn) and any g as in (2) with
` = n, subject to the compatibility conditions

〈f, χΩj
VM 〉 = 〈ν ∧ g, χ∂Ωj

VM 〉, for each 1 ≤ j ≤ b0(Ω), (6)

where χE is the characteristic function of a set E, VM stands for the volume el-
ement on M and {Ωj}1≤j≤b0(Ω) are the connected components of Ω, there exists
u ∈ Ap,qs+1(Ω,Λn−1) satisfying (4) and (5) with ` = n.

When the smoothness of the datum f (and, hence, that of the solution u) is larger
than what has been considered so far, the ordinary trace operator alone is no longer
adequate in describing the nature of u on ∂Ω. Hence, the very formulation of the
problem has to be changed in order to reflect this novel aspect. Specifically, we have
the following result (for simplicity, stated here for Euclidean Lipschitz domains):

Theorem 1.2. Let Ω be an arbitrary bounded Lipschitz domain in Rn and assume
that 1 < p, q < ∞, k ∈ N and −1 + 1/p < s− k < 1/p. Furthermore, suppose that
either A = B and p = q or A = F and q = 2. Then, for each ` ∈ {0, 1, ..., n − 1},
the following two statements are equivalent.

(i) The (n− `)-th Betti number of Ω vanishes, i.e. bn−`(Ω) = 0.

(ii) There exists a finite constant C > 0 with the following significance. The
boundary value problem

du = f ∈ Ap,qs (Ω,Λ`) in Ω,

u ∈ Ap,qs+1(Ω,Λ`−1),

Tr [∂αu] = gα ∈ Bp,ps+1−k−1/p(∂Ω,Λ`−1) on ∂Ω, ∀α : |α| ≤ k,
(7)
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is solvable if and only if the following compatibility conditions are satisfied (below,
{ej}1≤j≤n is the standard orthonormal basis in Rn and ν =

∑n
j=1 νjej):

df = 0 in Ω,

(νj∂i − νi∂j)gα = νjgα+ei
− νigα+ej

∀α : |α| ≤ k − 1, ∀ i, j ∈ {1, ..., n},
and

Tr [∂αf ] =
∑n
j=1 dxj ∧ gα+ej , ∀α : |α| ≤ k − 1.

(8)

Furthermore, granted (8), the solution u can be chosen to satisfy

‖u‖Ap,q
s+1(Ω,Λ`−1) ≤ C

(
‖f‖Ap,q

s (Ω,Λ`) +
∑
|α|≤k

‖gα‖Bp,p
s+1−k−1/p

(∂Ω,Λ`−1)

)
. (9)

Finally, in the case ` = n, the boundary problem (7) has a solution which, in
addition, satisfies (9) if and only if

(νj∂i − νi∂j)gα = νjgα+ei
− νigα+ej

, ∀α : |α| ≤ k − 1, ∀ i, j ∈ {1, ..., n},∫
Ωj
〈f, dx1 ∧ · · · ∧ dxn〉 dx

=
∫
∂Ωj
〈ν ∧ g(0,...,0), dx1 ∧ · · · ∧ dxn〉 dσ, 1 ≤ j ≤ b0(Ω),

(10)
where σ denotes the surface measure on ∂Ω.

Part of the subtlety in the formulation of this higher-order smoothness problem
is that while it can be easily checked that a necessary condition for the solvability
of (7), which is also more in tone with (3), is

df = 0 and ν ∧ Tr [∂αf ] = −d∂(ν ∧ gα), ∀α : |α| ≤ k, (11)

it turns out that this is, nonetheless, too weak to guarantee solvability when k ≥ 1.
Of course, when M is equipped with a (smooth) metric tensor and with δ and ∨

denoting the adjoint of d and the interior product of forms, respectively, there are
natural dual versions of the above theorems corresponding to a formal application
of the Hodge star isomorphism. In the case of Theorem 1.1, the dual statement
reads as follows.

Corollary 1.3. Let Ω be a Lipschitz domain and fix 2 ≤ ` ≤ n, 1 < p, q <∞ and
−1 + 1/p < s < 1/p. Then the following two statements are equivalent.

(i) The (`− 1)-th Betti number of Ω vanishes, i.e. b`−1(Ω) = 0.

(ii) For any differential form f ∈ Ap,qs (Ω,Λ`−1) and any differential form g
belonging to Bp,q

s+1− 1
p

(∂Ω,Λ`) if A = B, and to Bp,p
s+1− 1

p

(∂Ω,Λ`) if A = F , subject

to the (necessary) compatibility conditions{
δf = 0 in Ω,

ν ∨ f = −δ∂(ν ∨ g) on ∂Ω,
(12)

there exists u ∈ Ap,qs+1(Ω,Λ`) such that{
δu = f in Ω,

Tru = g on ∂Ω,
(13)

and such that the estimate naturally associated with (13) holds.
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Finally, corresponding to the case ` = 1, the following conclusion is valid. There
exists a finite constant C > 0 such that for any f ∈ Ap,qs (Ω) and any g belonging to
Bp,q
s+1− 1

p

(∂Ω,Λ1) if A = B, and to Bp,p
s+1− 1

p

(∂Ω,Λ1) if A = F , with

〈f, χΩj
〉 = 〈g, χ∂Ωj

ν〉, for each 1 ≤ j ≤ b0(Ω), (14)

there exists u ∈ Ap,qs+1(Ω,Λ1) which solves (13) and which satisfies the estimate
naturally associated with this problem.

As for the Hodge dual version of Theorem 1.2, below we restrict ourselves to the
case of vector fields (leaving the formulation of the full statement to the interested
reader).

Corollary 1.4. Assume that Ω is a bounded Lipschitz domain in Rn and assume
that 1 < p, q < ∞, k ∈ N and −1 + 1/p < s − k < 1/p. Also, suppose that either
A = B and p = q or A = F and q = 2. Then the boundary value problem

div u = f ∈ Ap,qs (Ω) in Ω,

u ∈ Ap,qs+1(Ω,Rn),

Tr [∂αu] = gα ∈ Bp,ps+1−k−1/p(∂Ω,Rn) on ∂Ω, ∀α : |α| ≤ k,
(15)

is solvable (in which case the solution obeys natural estimates) if and only if
(νj∂i − νi∂j)gα = νjgα+ei

− νigα+ej

∀α : |α| ≤ k − 1, ∀ i, j ∈ {1, ..., n},
and∫

Ωj
f dx =

∫
∂Ωj
〈ν, g(0,...,0)〉 dσ, 1 ≤ j ≤ b0(Ω).

(16)

The above results provide a fairly complete picture of the solvability of the Pois-
son problem, equipped with a Dirichlet boundary condition, for the exterior deriv-
ative operator (and its adjoint) in Lipschitz domains, when the smoothness of the
solution, as well as data, is measured on Besov and Triebel-Lizorkin spaces. As
regards the latter scale, of particular interest is the case when q = 2, corresponding
to Bessel potential spaces. This is a class which, in turn, contains the classical
Sobolev spaces

W k,p(Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω), |α| ≤ k}, (17)

(equipped with the natural norm), where p ∈ (1,∞) and k ∈ No, the collection of all
nonnegative integers. As is customary, we set W k,p

0 (Ω) for the closure of C∞c (Ω) in
W k,p(Ω). In this notation, the following remarkable consequence of Theorems 1.1-
1.2 (corresponding to the case when g = 0 and Ω is a domain with trivial topology)
holds.

Theorem 1.5. Assume that Ω is a bounded Lipschitz domain in Rn which is home-
omorphic to a ball. Also, fix p ∈ (1,∞), k ∈ No and ` ∈ {0, 1, ..., n − 1}. There
exists a finite constant C > 0 with the following significance. The boundary value
problem {

du = f ∈W k,p(Ω,Λ`) in Ω,

u ∈W k+1,p
0 (Ω,Λ`−1),

(18)
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is solvable if and only if the following compatibility conditions are satisfied:{
df = 0 in Ω,

f ∈W k,p
0 (Ω,Λ`),

if k ≥ 1, (19)

and {
df = 0 in Ω,

ν ∧ f = 0 on ∂Ω,
if k = 0. (20)

Furthermore, granted (19)-(20), the solution u can be chosen to satisfy

‖u‖Wk+1,p(Ω,Λ`−1) ≤ C‖f‖Wk,p(Ω,Λ`). (21)

Finally, in the case ` = n, the boundary problem (18) has a solution (which, in
addition, satisfies (21)) if and only if∫

Ω

f = 0. (22)

In the case when Ω has a smooth boundary, (1) can eventually be reduced to
an elliptic problem for which standard techniques apply; this approach is carried
out by G. Schwarz in §3.3 of his monograph [49]; cf. also [50]. Nonetheless, for a
number of applications, it is important to allow ∂Ω to only be minimally smooth,
in the sense of E. Stein (cf. [52]).

The particular case of Corollary 1.3 when ` = 1 and Ω is a connected, bounded,
Lipschitz domain in Rn, has received a lot of attention in the literature. This is
due, in part, to the fact that the Poisson boundary value problem for the divergence
equation, i.e.,

div u = f in Ω, Tru = g on ∂Ω, (23)

arises quite often in applications of physical interest. In this setting, u typically
models the displacement field in the equations of elasticity, or the velocity field in
the hydrodynamics. In fact, it was precisely its usefulness in the context of the
Navier-Stokes equations that gave us the impetus to undertake a systematic study
of the problem (23) and carry out a thorough study of the regularity properties of
solution on scales of Besov-Triebel-Lizorkin spaces in Lipschitz domains; cf. [43].

One of the earliest references in which (23) is treated in non-smooth domains is
J. Nečas’ book [45]. In Lemma 7.1 of Chapter 3 of that monograph, the case when
Ω is Lipschitz, p = 2 and s = 0 is treated via an approach which relies on duality
(i.e., by studying the mapping properties of the gradient operator).

A different approach, which makes extensive use of the mapping properties of sin-
gular integral operators of Calderón-Zygmund type, was devised by M.E. Bogovskĭı
in the late 70’s and early 80’s. In [6], [7], for a bounded, connected Lipschitz domain
in Rn, the author constructs an integral operator J , mapping scalar functions to
vector fields, and with the following additional properties:

div (J f) = f if f ∈ C∞c (Ω) satisfies
∫

Ω

f dx = 0, (24)

J : Lp(Ω) −→W 1,p(Ω) boundedly, whenever 1 < p <∞, (25)

and J [C∞c (Ω)] ⊂ C∞c (Ω,Rn). (26)

Of these, property (26) is particularly surprising since J belongs to the class of
integral operators which, generally speaking, fail to have a local character.
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The point of view we adopt in this paper is akin to that of Bogovskĭı. More
specifically, given a Lipschitz domain Ω (with trivial topology), we construct a
family of integral operators J`, 1 ≤ ` ≤ n, mapping `-forms to (` − 1)-forms, and
such that

J`

[
C∞c (Ω,Λ`)

]
⊆ C∞c (Ω,Λ`−1), (27)

and, for each u ∈ C∞c (Ω,Λ`),

u =


J1(du) if ` = 0,

d(J`u) + J`+1(du) if 1 ≤ ` ≤ n− 1,

d(Jnu) if ` = n, provided
∫

Ω
u = 0.

(28)

Furthermore, we prove (in a precise sense) that each J` is smoothing of order one
on Besov and Triebel-Lizorkin spaces. In this hierarchy, Bogovskĭı’s operator cor-
responds precisely to ∗Jn∗, where ∗ is the Hodge star-isomorphism.

One remarkable feature of the middle equality in (28) is that if the (` + 1)-
form f satisfies df = 0 (which, given that d2 = 0, is a necessary condition for
the solvability of (1)), then u := J`f has du = f . This is strongly reminiscent of
the classical Poincaré lemma and, indeed, our definition of the operators J` has,
as starting point, an elegant construction going back to the seminal work of E.
Cartan. Cartan’s solution of Poincaré’s lemma in an Euclidean domain Ω which is
star-like with respect to the origin, involves an explicit construction which requires
integrating over rays emerging from 0 ∈ Ω. Since in the present work we are
naturally led to considering differential forms with discontinuous coefficients, this
construction is no longer suitable in its original inception, but a certain averaged
version of it will do. Remarkably, while these averaged Cartan-like operators fail to
be local in the sense of (27), it is their adjoints which satisfy (27). Conjugating these
adjoints with the Hodge star-isomorphism finally yields a family of integral operators
which are smoothing of order one and which satisfy (27)-(28). This interpretation
helps put Bogovskĭı’s construction in the proper historical perspective while, at the
same time, de-mystifies some of its more unusual features.

The above discussion pertains to the local aspect of the work carried out in this
paper. Passing to global results is then done by invoking the powerful abstract
machinery of De Rham theory. As a result, a trade-mark feature which most of
our main results inherit is that certain topological characteristics of the underlying
domain (in our case, the vanishing of Betti numbers) can be described in purely
analytical terms (i.e., well-posedness of certain boundary value problems). It is this
combination of techniques from seemingly unrelated fields we consider to be our
main contribution to the problem at hand.

Let us now survey further work in connection with the problems studied here.
In [2], D.N. Arnold, L.R. Scott and M. Vogelius proved higher-order regularity re-
sults for (23) in the case when Ω is a polygonal domain in R2, and their main
results are covered by our Corollary 1.4. When Ω is a contractible, bounded,
three-dimensional, Euclidean Lipschitz domain, the problem (1) corresponding to
f ∈ L2(Ω,R3) (i.e., a differential form of degree one) and g = 0, has been solved by
Z. Lou and A. McIntosh in [34]. The approach employed by these authors consists
of reducing this PDE to a scalar problem and, as mentioned on page 1493 of [34],
cannot be adapted to case when the data are higher-degree differential forms. In
our Theorem 1.1 we have successfully dealt with this issue.
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That the problem (23) formulated in a bounded, Lipschitz domain Ω ⊂ Rn has
a solution u ∈ C0(Ω,Rn) ∩W 1,n(Ω,Rn) whenever g = 0 and f ∈ Ln(Ω) satisfies∫

Ω
f dx = 0, is a fairly recent, deep result due to J. Bourgain and H. Brezis [10]. A

peculiarity of the problem considered in this context is that the solution operator
cannot be chosen to be linear. Shortly thereafter, a new approach to (23) for
f ∈ Lp(Ω), 1 < p < ∞,

∫
Ω
f = 0, and g = 0 in bounded, Lipschitz subdomains

of Rn has been developed by J. Bourgain and H. Brezis in [11]. In the same paper,
these authors also study the limiting cases p = 1 and p =∞, for which they produce
intricate counterexamples to the solvability of (1) in W 1,p(Ω,Rn) even when Ω is
an n-dimensional torus (in which scenario, the boundary condition is void).

In relation to the negative result proved by J. Bourgain and H. Brezis for (23)
with data in L1, an interesting question is whether this problem can be solved for
f ∈ h1(Ω), the local Hardy space on Ω.

Other authors who have dealt with issues related to (1), (23), are W. Borchers
and H. Sohr [9], B. Dacorogna and J. Moser [13], B. Dacorogna [14], B. Dacorogna,
N. Fusco and L. Tartar [15], R. Dautray and J. Lions [16], L. Diening and M. Ružička
[17], R. Durán and M.A. Muschietti [18], G. Duvaut and J.-L. Lions [19], N. Filonov
[20], G. Galdi [22], V. Girault and P. Raviart [23], T. Iwaniec and A. Lutoborski [26],
L. Kapitanskĭı and K. Piletskas [30], O. Ladyzhenskaya and V. Solonnikov [32], [33],
E. Magenes and G. Stampacchia [35], L. Tartar [53], R. Temam [55], W. von Wahl
[59], as well as X. Wang [60].

The plan of the remainder of the paper is as follows:
2. Preliminaries

2.1 Geometrical preliminaries
2.2 Review of smoothness spaces
2.3 Differential forms with Besov and Triebel-Lizorkin coefficients
2.4 Singular homology and sheaf theory

3. Mapping properties of singular integral operators
4. Local theory: distinguished homotopy operators
5. Relative cohomology
6. The proofs of the main results
7. Further applications

2. Preliminaries.

2.1. Geometrical preliminaries. Let M be a smooth, compact, oriented mani-
fold of real dimension n, equipped with a smooth metric tensor,

∑
j,k gjkdxj ⊗ dxk.

Denote by TM and T ∗M the tangent and cotangent bundles to M , respectively.
Occasionally, we shall identify T ∗M ≡ Λ1 canonically, via the metric. Set Λ` for the
`-th exterior power of TM . Sections in this latter vector bundle are `-differential
forms. The Hermitian structure on TM extends naturally to T ∗M := Λ1 and, fur-
ther, to Λ`. We denote by 〈·, ·〉 the corresponding (pointwise) inner product. The
volume form on M , VM , is the unique unitary, positively oriented differential form of
maximal degree on M . In local coordinates, VM := [det (gjk)]1/2dx1∧dx2∧ ...∧dxn.
In the sequel, we denote by dλM the Borelian measure induced by the volume form
VM on M , i.e., dλM = [det (gjk)]1/2dx1dx2...dxn in local coordinates.

Going further, we introduce the Hodge star operator as the unique vector bundle
morphism ∗ : Λ` → Λn−` such that u∧(∗u) = |u|2 VM for each u ∈ Λ`. In particular,
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VM = ∗ 1 and
u ∧ (∗v) = 〈u, v〉 VM , ∀u ∈ Λ`, ∀ v ∈ Λ`. (29)

The interior product between a 1-form ν and a `-form u is then defined by

ν ∨ u := (−1)`(n+1) ∗ (ν ∧ ∗u). (30)

Let d stand for the (exterior) derivative operator and denote by δ its formal
adjoint (with respect to the metric introduced above). For further reference some
basic properties of these objects are summarized below.

Proposition 2.1. For arbitrary 1-form ν, `-forms u, ω, (n−`)-form v, and (`+1)-
form w, the following are true:

(1) 〈u, ∗v〉 = (−1)`(n−`)〈∗u, v〉 and 〈∗u, ∗ω〉 = 〈u, ω〉. Also, ∗ ∗ u = (−1)`(n−`) u;
(2) 〈ν ∧ u,w〉 = 〈u, ν ∨ w〉;
(3) ∗(ν ∧ u) = (−1)`ν ∨ (∗u) and ∗(ν ∨ u) = (−1)`+1ν ∧ (∗u);
(4) ∗δ = (−1)`d∗, δ∗ = (−1)`+1 ∗ d, and δ = (−1)n(`+1)+1 ∗ d∗ on `-forms.

Let Ω be a Lipschitz subdomain of M . That is, ∂Ω can be described in appro-
priate local coordinates by means of graphs of Lipschitz functions. Then the unit
conormal ν ∈ T ∗M is defined a.e., with respect to the surface measure dσ, on ∂Ω.
For any two sufficiently well-behaved differential forms (of compatible degrees) u,
w we then have the integration by parts formula∫

Ω

〈du,w〉 dλM =
∫

Ω

〈u, δw〉 dλM +
∫
∂Ω

〈ν ∧ u,w〉 dσ

=
∫

Ω

〈u, δw〉 dλM +
∫
∂Ω

〈u, ν ∨ w〉 dσ. (31)

We conclude with a brief discussion of a number of notational conventions used
throughout the paper. We denote by Z the ring of integers and by N = {1, 2, ...} the
subset of Z consisting of positive numbers. Also, we set No := N ∪ {0}. By Ck(Ω),
k ∈ No∪{∞}, we shall denote the space of functions of class Ck in Ω, and by C∞c (Ω)
the subspace of C∞(Ω) consisting of compactly supported functions. When viewed
as a topological space, the latter is equipped with the usual inductive limit topology

and its dual, i.e. the space of distributions in Ω, is denoted by D′(Ω) :=
(
C∞c (Ω)

)′
.

Also, we set Ck(Ω,Λ`) := Ck(Ω)⊗Λ`, etc. Finally, we would like to alert the reader
that, besides denoting the pointwise inner product of forms, 〈·, ·〉 is also used as a
duality bracket between a topological space and its dual (in each case, the spaces
in question should be clear from the context).

2.2. Review of smoothness spaces. We start by defining the Besov and Triebel-
Lizorkin scales in Rn. The classical Littlewood-Paley definition of Triebel-Lizorkin
and Besov spaces (see, for example, [47]) has the following form. Consider a family
of functions {ζj}∞j=0 in the Schwartz class with the following additional properties:

(i) there exist positive constants C1, C2, C3 such that{
supp (ζ0) ⊂ {x ∈ Rn : |x| ≤ C1},
supp (ζj) ⊂ {x ∈ Rn : C2 2j−1 ≤ |x| ≤ C3 2j+1} if j ∈ N;

(32)

(ii)
∑∞
j=0 ζj ≡ 1 in Rn and for every multi-index α

sup
x∈Rn

sup
j∈N

2j|α||∂αζj(x)| < +∞. (33)
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Then, with F denoting the Fourier transform in Rn, for s ∈ R and 0 < q ≤ ∞,
0 < p <∞ the Triebel-Lizorkin spaces are defined as

F p,qs (Rn) :=
{
f ∈ S′(Rn) : ‖f‖Fp,q

s (Rn) := (34)

∥∥∥( ∞∑
j=0

|2sjF−1(ζjFf)|q
)1/q∥∥∥

Lp(Rn)
<∞

}
where S′(Rn) stands for the space of tempered distributions in Rn. Also, for s ∈ Rn
and 0 < p, q ≤ ∞, the Besov spaces are defined as

Bp,qs (Rn) :=
{
f ∈ S′(Rn) : ‖f‖Bp,q

s (Rn) := (35)

( ∞∑
j=0

‖2sjF−1(ζjFf)‖qLp(Rn)

)1/q

<∞
}
.

As is well-known, the following embeddings hold

Ap,q1s (Rn) ↪→ Ap,q2s (Rn) if q1 < q2 and p, s are arbitrary, (36)

Ap,q1s1 (Rn) ↪→ Ap,q2s2 (Rn) if s1 > s2 and p, q1, q2 are arbitrary, (37)

and for each p, q, s,

f ∈ Ap,qs (Rn)⇐⇒ f ∈ Ap,qs−1(Rn) and ∂jf ∈ Ap,qs−1(Rn), 1 ≤ j ≤ n, (38)

with equivalence of norms.
Next, the class Ap,qs (M), 1 < p, q <∞, s ∈ R, is obtained by lifting the Euclidean

scale Ap,qs (Rn) to M via a C∞ partition of unity and pull-back. Given an arbitrary
open subset Ω of M , we denote by RΩf ∈ D′(Ω) the restriction of a distribution f
on M to Ω. For 0 < p, q ≤ ∞ and s ∈ R we then set

Ap,qs (Ω) := {f ∈ D′(Ω) : ∃ g ∈ Ap,qs (M) such that RΩg = f},

‖f‖Ap,q
s (Ω) := inf {‖g‖Ap,q

s (M) : g ∈ Ap,qs (M), RΩg = f}, f ∈ Ap,qs (Ω).
(39)

The convention we make in (39) is that either A = F and p < ∞ or A = B,
corresponding to, respectively, the definition of Triebel-Lizorkin and Besov spaces
in Ω.

Two other types of function spaces which will play an important role for us later
on are as follows. First, for 0 < p, q ≤ ∞, s ∈ R, we set

Ap,qs,0(Ω) := {f ∈ Ap,qs (M) : supp f ⊆ Ω},
‖f‖Ap,q

s,0(Ω) := ‖f‖Ap,q
s (M), f ∈ Ap,qs,0(Ω),

(40)

where, as usual, either A = F and p < ∞ or A = B. Thus, Bp,qs,0 (Ω), F p,qs,0 (Ω) are
closed subspaces of Bp,qs,0 (M) and F p,qs,0 (M), respectively. Second, for 0 < p, q ≤ ∞
and s ∈ R, we introduce

Ap,qs,z(Ω) := {f ∈ D′(Ω) : ∃ g ∈ Ap,qs,0(Ω) such that RΩg = f},
‖f‖Ap,q

s,z(Ω) := inf {‖g‖Ap,q
s (M) : g ∈ Ap,qs,0(Ω), RΩg = f}, f ∈ Ap,qs,z(Ω),

(41)

(where, as before, A = F and p < ∞ or A = B). For further reference, it is worth
singling out the scale of Sobolev (potential) spaces defined for 1 < p < ∞, s ∈ R,
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as

Lps(Ω) := F p,2s (Ω), (42)

Lps,0(Ω) := {f ∈ Lps(M) : supp f ⊆ Ω}, (43)

Lps,z(Ω) := F p,2s,z (Ω) = {f ∈ D′(Ω) : ∃ g ∈ Lps,0(Ω) with RΩg = f}, (44)

equipped with natural norms.
For the remainder of this subsection we assume that Ω is a Lipschitz subdomain of

M . In this case, according to [48], there exists a universal linear extension operator.
More specifically, we have:

Proposition 2.2. If Ω is a Lipschitz subdomain of M , then there exists a linear
operator E mapping C∞c (Ω) into distributions on M , and such that for any numbers
0 < p, q ≤ ∞ and s ∈ R,

E : Ap,qs (Ω) −→ Ap,qs (M) (45)

boundedly, and

RΩ ◦ E = I, the identity operator on Ap,qs (Ω). (46)

As a corollary, if W k,p(Ω), k ∈ No, 1 < p <∞, stands for classical Sobolev space of
functions whose derivatives of order ≤ k lie in Lp(Ω), then

Lpk(Ω) = W k,p(Ω) whenever k ∈ No, 1 < p <∞. (47)

Other properties of interest are summarized in the propositions below.

Proposition 2.3. For each 1 < p, q <∞ and s ∈ R,

Ap,qs (Ω) =
{
u ∈ D′(Ω) : ∃C > 0 such that

|〈u, φ〉| ≤ C‖φ̃‖
Ap′,q′
−s (M)

∀φ ∈ C∞c (Ω)
}
, (48)

where tilde denotes extension by zero outside Ω.

Proposition 2.4. If 1 < p, q <∞, 1/p+ 1/p′ = 1, 1/q + 1/q′ = 1, then(
Ap,qs,z(Ω)

)∗
= Ap

′,q′

−s (Ω) if s > −1 +
1
p
, (49)

(
Ap,qs (Ω)

)∗
= Ap

′,q′

−s,z(Ω), if s <
1
p
. (50)

Furthermore, for each s ∈ R and 1 < p, q <∞ the spaces Ap,qs (Ω) and Ap,qs,0(Ω) are
reflexive.

Proposition 2.5. Assume that 0 < pj , qj < ∞, sj ∈ R, j ∈ {1, 2}, θ ∈ (0, 1) and
that 1/p = (1− θ)/p1 + θ/p2, 1/q = (1− θ)/q1 + θ/q2, s = (1− θ)s1 + θs2. Then

[Ap1,q1s1 (Ω), Ap2,q2s2 (Ω)]θ = Ap,qs (Ω), (51)

[Ap1,q1s1,0
(Ω), Ap2,q2s2,0

(Ω)]θ = Ap,qs,0(Ω), (52)

where [· , ·]θ stands for the complex interpolation bracket.

Proposition 2.6. If 1 < p, q < ∞ and s ∈ R then RΩ, the operator of restriction
to Ω maps

RΩ : Ap,qs,0(Ω) −→ Ap,qs,z(Ω) (53)
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in a linear, bounded and onto fashion. Moreover, if −1 + 1/p < s then RΩ in (53)
is also one-to-one, hence an isomorphism. In this latter case, its inverse is the
operator of extension by zero outside Ω. In particular, this allows the identification

Ap,qs,0(Ω) ≡ Ap,qs,z(Ω), ∀ p, q ∈ (1,∞), ∀ s > −1 + 1/p. (54)

Another family of spaces which are going to play an important role in our work
is

◦
Ap,qs (Ω) := the closure of C∞c (Ω) in Ap,qs (Ω), 0 < p, q ≤ ∞, s ∈ R, (55)

where, as usual, A = F or A = B.

Proposition 2.7. For every 1 < p, q <∞ and s ∈ R,

Ap,qs,z(Ω) ↪→
◦

Ap,qs (Ω) ↪→ Ap,qs (Ω) (56)

continuously. Furthermore,

C∞c (Ω) ↪→ Ap,qs,z(Ω) densely, (57)

C∞(Ω) ↪→ Ap,qs (Ω) densely, (58)

C̃∞c (Ω) ↪→ Ap,qs,0(Ω) densely, (59)

C∞c (Ω) ↪→
(
Ap,qs (Ω)

)∗
densely, (60)

where, as before, tilde denotes the extension by zero outside Ω.

Proposition 2.8. Let 1 < p, q <∞ and s ∈ R. Then
◦

Ap,qs (Ω) = Ap,qs,z(Ω) if
1
p
− s /∈ Z, (61)

◦
Ap,qs (Ω) = Ap,qs (Ω) if s <

1
p
. (62)

In particular,
◦

Ap,qs (Ω) = Ap,qs (Ω) = Ap,qs,z(Ω) if s <
1
p

and
1
p
− s /∈ N. (63)

A consequence of (63) and Proposition 2.4 which deserves to be mentioned is the
following.

Corollary 2.9. If p, q ∈ (1,∞) and 1/p+ 1/p′ = 1, 1/q + 1/q′ = 1, then

(Ap,qs (Ω))∗ = Ap
′,q′

−s (Ω), ∀ s ∈ (−1 + 1/p, 1/p). (64)

Turning to spaces defined on Lipschitz boundaries, assume that 1 < p, q < ∞,
0 < s < 1, and that Ω is the unbounded region in Rn lying above the graph of a
Lipschitz function ϕ : Rn−1 → R. We then define Bp,qs (∂Ω) as the space of locally
integrable functions g for which the assignment Rn−1 3 x′ 7→ g(x′, ϕ(x′)) belongs
to Bp,qs (Rn−1). In particular, with dσ denoting the area element on ∂Ω, it can be
shown that

g ∈ Bp,ps (∂Ω)⇐⇒ ‖g‖Lp(∂Ω) +
(∫

∂Ω

∫
∂Ω

|g(x)− g(y)|p

|x− y|n−1+sp
dσxdσy

)1/p

<∞, (65)

whenever 1 < p, q <∞, 0 < s < 1.
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The above definition then readily adapts to the case of a Lipschitz subdomain of
the manifold M , via a standard partition of unity argument. Having defined Besov
spaces on ∂Ω with a positive, sub-unitary amount of smoothness, we then set

Bp,q−s (∂Ω) :=
(
Bp
′,q′

s (∂Ω)
)∗
, 1 < p, q <∞, 1/p+1/p′ = 1/q+1/q′ = 1, 0 < s < 1.

(66)
Next, recall (cf. [28]) that the trace operators

Tr : F p,qs (Ω) −→ Bp,p
s− 1

p

(∂Ω), Tr : Bp,qs (Ω) −→ Bp,q
s− 1

p

(∂Ω), (67)

are well-defined, bounded and onto if 1 < p, q < ∞ and 1
p < s < 1 + 1

p . They also
have a common bounded right-inverse

E : Bp,p
s− 1

p

(∂Ω) −→ F p,qs (Ω), E : Bp,q
s− 1

p

(∂Ω) −→ Bp,qs (Ω). (68)

The nature of some of the problems addressed in this paper requires that we
work with Besov spaces (defined on Lipschitz boundaries) which exhibit a higher
order of smoothness (than considered in (65)). Following [39], we now make the
following definition.

Definition 2.10. Let Ω be a bounded Lipschitz domain in Rn. For p ∈ (1,∞),
k ∈ N and s ∈ (0, 1), define the (higher order) Besov space Ḃp,pk−1+s(∂Ω) as the
collection of all families ġ = {gα}|α|≤k−1 of measurable functions defined on ∂Ω,
such that if

Rα(x, y) := gα(x)−
∑

|β|≤k−1−|α|

1
β!
gα+β(y) (x− y)β , x, y ∈ ∂Ω, (69)

for each multi-index α of length ≤ k − 1, then

‖ġ‖Ḃp,p
k−1+s(∂Ω) :=

∑
|α|≤k−1

‖gα‖Lp(∂Ω) (70)

+
∑

|α|≤k−1

(∫
∂Ω

∫
∂Ω

|Rα(x, y)|p

|x− y|p(k−1+s−|α|)+n−1
dσxdσy

)1/p

<∞.

Of course, when k = 1, condition (70) simply becomes (65). The trace theory
summarized in (67)-(68) has a natural analogue in the context of higher smoothness
spaces. More specifically, the following holds.

Proposition 2.11. Consider a bounded Lipschitz domain Ω in Rn, and let 1 <
p, q < ∞, 1/p < s < 1 + 1/p and k ∈ N. Furthermore, suppose that either A = B
and q = p or A = F and q = 2. In this context, define the higher order trace
operator

Trk−1 : Ap,qk−1+s(Ω) −→ Ḃp,pk−1+s−1/p(∂Ω) (71)

by setting

Trk−1 u :=
{

Tr [∂α u]
}
|α|≤k−1

, (72)

where the traces in the right-hand side are taken in the sense of (67). Then (71)-
(72) is a well-defined, linear, bounded operator, which is onto and whose kernel is
given by

Ker
[
Trk−1

]
= Ap,qk−1+s,z(Ω). (73)



POISSON PROBLEM FOR EXTERIOR DERIVATIVE 13

That is,

Ap,qk−1+s,z(Ω) = {u ∈ Ap,qk−1+s(Ω) : Tr [∂αu] = 0,

for all α ∈ Nno with |α| ≤ k − 1}. (74)

Moreover, the trace operator (71)-(72) has a bounded, linear right-inverse, i.e.,
there exists a linear, continuous operator

Ex : Ḃp,pk−1+s−1/p(∂Ω) −→ Ap,qk−1+s(Ω) (75)

such that

ġ = {gα}|α|≤k−1 ∈ Ḃp,pk−1+s−1/p(∂Ω)

=⇒ Tr [∂α(Ex ġ)] = gα, ∀α : |α| ≤ k − 1. (76)

This is a version of a result proved in [39]. Related results have been proved by
A. Jonsson and H. Wallin in [28] (where the authors have dealt with more general
sets than Lipschitz domains). We conclude our review with one more equivalent
characterization of the space Ḃp,pk−1+s(∂Ω), also proved in [39]. To state it, let {ej}j
denote the canonical orthonormal basis in Rn and set ν = (ν1, ..., νn) for the outward
unit normal to Ω ⊂ Rn.

Proposition 2.12. Let Ω be a bounded Lipschitz domain in Rn and assume that
1 < p <∞, 0 < s < 1 and k ∈ N. Then

{gα}|α|≤k−1 ∈ Ḃp,pk−1+s(∂Ω)⇐⇒



gα ∈ Bp,ps (∂Ω), ∀α : |α| ≤ k − 1

and

(νj∂k − νk∂j)gα = νjgα+ek
− νkgα+ej

∀α : |α| ≤ k − 2, ∀ j, k ∈ {1, ..., n}.

(77)

We refer the reader to [12], [27], [37], [39], [47], [58], for a more detailed expo-
sition of these and other related matters. Here we only want to alert the reader
that Ap,qs (Ω,Λ`) will stand for Ap,qs (Ω) ⊗ Λ`, i.e. the collection of `-forms with co-
efficients in Ap,qs (Ω). In a similar fashion, we set Bp,qs (∂Ω,Λ`) := Bp,qs (∂Ω) ⊗ Λ`

and Ḃp,pk−1+s(∂Ω,Λ`) := Ḃp,pk−1+s(∂Ω) ⊗ Λ`. Scalar operators, such as trace, exten-
sion, etc., then have natural extensions to operators in the differential form-valued
context (and we shall continue to employ the same notation as before).

2.3. Differential forms with Besov and Triebel-Lizorkin coefficients. In
this paper we shall work with certain nonstandard smoothness spaces which are
naturally adapted to the type of differential operators we intend to study. Specif-
ically, if Ω is an open subset of M and if X is a space of distributions in Ω, we
introduce

D`(d;X) := {u ∈ X ⊗ Λ` : du ∈ X ⊗ Λ`+1}, (78)

D`(δ;X) := {u ∈ X ⊗ Λ` : δu ∈ X ⊗ Λ`−1}, (79)

equipped with the natural graph norms. Throughout the paper, all derivatives are
taken in the sense of distributions.

Let us now assume (as we shall do for the remainder of this subsection) that Ω ⊆
M is an arbitrary Lipschitz domain with outward unit conormal ν ∈ T ∗M ≡ Λ1,
and that 1 < p, q < ∞, 1/p + 1/p′ = 1, 1/q + 1/q′ = 1, and −1 + 1/p < s < 1/p.
Also, let ` ∈ {0, 1, ..., n}.
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Next, inspired by (31), for each u ∈ D`(d;Ap,qs (Ω)) we can define ν ∧ u as a
functional on ∂Ω by setting

〈ν ∧ u, ψ〉 := 〈du,Ψ〉 − 〈u, δΨ〉 (80)

whenever Tr Ψ = ψ in one of the following two scenarios:

(i) A = B, the form ψ ∈ Bp
′,q′

1/p−s(∂Ω,Λ`+1) is arbitrary and Ψ ∈ Bp
′,q′

1−s (Ω,Λ`+1);

(ii) A = F , the form ψ ∈ Bp
′,p′

1/p−s(∂Ω,Λ`+1) is arbitrary and Ψ ∈ F p
′,q′

1−s (Ω,Λ`+1).

It follows (74) and (64), (66) that the operator

ν ∧ · : D`(d;Ap,qs (Ω)) −→

 Bp,q
s− 1

p

(∂Ω,Λ`+1) if A = B,

Bp,p
s− 1

p

(∂Ω,Λ`+1) if A = F,
(81)

is well-defined and bounded.
Similarly, if u ∈ D`(δ;Ap,qs (Ω)), we can then define ν∨u as a functional by setting

〈ν ∨ u, ϕ〉 := −〈δu,Φ〉+ 〈u, dΦ〉 (82)

whenever Tr Φ = ϕ in one of the following two scenarios:

(i) A = B, the form ϕ ∈ Bp
′,q′

1/p−s(∂Ω,Λ`−1) is arbitrary and Φ ∈ Bp
′,q′

1−s (Ω,Λ`−1);

(ii) A = F , the form ϕ ∈ Bp
′,p′

1/p−s(∂Ω,Λ`−1) is arbitrary and Φ ∈ F p
′,q′

1−s (Ω,Λ`−1).

Much as before, it follows that the operator

ν ∨ · : D`(δ;Ap,qs (Ω)) −→

 Bp,q
s− 1

p

(∂Ω,Λ`−1) if A = B,

Bp,p
s− 1

p

(∂Ω,Λ`−1) if A = F,
(83)

is well-defined, linear and bounded.
The ranges of the operators (81), (83) are denoted by

X s,p` (∂Ω;A) ↪→

 Bp,q
s− 1

p

(∂Ω,Λ`) if A = B,

Bp,p
s− 1

p

(∂Ω,Λ`) if A = F,
(84)

X s,p` (∂Ω;A) =
{
f : f = ν ∧ u for some u ∈ D`−1(d;Ap,qs (Ω))

}
,

and

Ys,p` (∂Ω;A) ↪→

 Bp,q
s− 1

p

(∂Ω,Λ`) if A = B,

Bp,p
s− 1

p

(∂Ω,Λ`) if A = F,
(85)

Ys,p` (∂Ω;A) =
{
g : g = ν ∨ w for some w ∈ D`+1(δ;Ap,qs (Ω))

}
,

respectively. These spaces are equipped with the natural “infimum” norms. It
follows that the operator

d∂ : X s,p` (∂Ω;A) −→ X s,p`+1(∂Ω;A), (86)

d∂f := −ν ∧ du, if f = ν ∧ u, u ∈ D`−1(d;Ap,qs (Ω)),

is well-defined, linear and bounded. Similarly, we define the operator

δ∂ : Ys,p` (∂Ω;A) −→ Ys,p`−1(∂Ω;A), (87)

δ∂g := −ν ∨ δw, if g = ν ∨ w, w ∈ D`+1(δ;Ap,qs (Ω)),

which, once again, is well-defined, linear and bounded.
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We conclude by discussing a useful approximation result.

Lemma 2.13. Let Ω be a Lipschitz subdomain of M and assume that 1 < p, q <∞.

(i) If s ∈ R and u ∈ D`(d;Ap,qs (Ω)), then there exists a sequence of differential
forms uε ∈ C∞(Ω,Λ`), indexed by ε > 0, such that

uε → u in Ap,qs (Ω,Λ`) and duε → du in Ap,qs (Ω,Λ`+1) as ε→ 0+. (88)

(ii) If −1 + 1/p < s < 1/p and u ∈ D`(d;Ap,qs (Ω)) is a differential form for which
ν ∧ u = 0, then there exists a sequence uε ∈ C∞c (Ω,Λ`), indexed by ε > 0,
such that

uε → u in Ap,qs (Ω,Λ`) and duε → du in Ap,qs (Ω,Λ`+1) as ε→ 0+. (89)

(iii) If s > 1/p and u ∈ D`(d;Ap,qs,z(Ω)), then there exists a sequence of differential
forms uε ∈ C∞c (Ω,Λ`), indexed by ε > 0, such that

uε → u in Ap,qs,z(Ω,Λ
`) and duε → du in Ap,qs,z(Ω,Λ

`+1) as ε→ 0+. (90)

Proof. Given a differential form u, we remark that all three approximation proper-
ties we seek to prove are both local in nature and stable under pull-back. Hence,
in all three cases, there is no loss of generality in assuming that Ω is a bounded
Lipschitz domain in Rn and that there exists an open, upright, truncated, circular
cone Γ, centered at the origin of Rn, such that

(∂Ω ∩ suppu)− Γ ⊆ Rn \ Ω, (91)

(∂Ω ∩ suppu) + Γ ⊆ Ω. (92)

Assuming that this is the case, we pick two scalar functions ϕ± ∈ C∞c (±Γ) with∫
ϕ± = 1 and set ϕ±ε := ε−nϕ±(· ε−1) for each ε > 0, sufficiently small.
After this preamble, we are ready to proceed with the proof of (i). Thus, assum-

ing that u is as above, we let w ∈ Ap,qs (Rn,Λ`) be compactly supported and such
that RΩ(w) = u. Then, so we claim, the sequence uε := RΩ(ϕ−ε ∗ w) ∈ C∞(Ω,Λ`),
ε > 0, does the job advertised in (88). Indeed, the first convergence in (88) is clear,
so we concentrate on proving the second one. To this end, if v ∈ Ap,qs (Rn,Λ`+1) is
a compactly supported extension of du to Rn, then dw− v ∈ Ap,qs,0(Rn \Ω,Λ`+1). In
particular, ϕ−ε ∗ (dw − v) vanishes on Ω and, hence,

duε = RΩ(ϕ−ε ∗dw) = RΩ(ϕ−ε ∗v)→ RΩ(v) = du in Ap,qs (Ω,Λ`+1) as ε→ 0+, (93)

concluding the proof of claim (i).
Next, if u is as in (ii), the fact that ν ∧ u = 0 on ∂Ω and Proposition 2.6 give

that ũ ∈ D`(d;Ap,qs,0(Ω)) and dũ = d̃u. Thus, in this case, the sequence of differential
forms uε := RΩ(ϕ+

ε ∗ w) ∈ C∞c (Ω,Λ`), ε > 0, satisfies (89). Finally, if u is as in
(iii), then the same type of reasoning applies though, this time, dũ = d̃u is justified
slightly differently. More specifically, matters are readily reduced to checking that

〈u, δ(RΩη)〉 = 〈du,RΩη〉, ∀ η ∈ C∞c (Rn,Λ`+1), (94)

(here δ is the formal adjoint of d with respect to the Euclidean metric). To see this,
we may invoke (i) and select uε ∈ Ap,qs (Ω,Λ`) such that uε → u in Ap,qs (Ω,Λ`) and
duε → du in Ap,qs (Ω,Λ`+1) as ε → 0+. Based on (31), for each η ∈ C∞c (Rn,Λ`+1)
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we may then write

〈u, δ(RΩη)〉 = lim
ε→0+

〈uε, δ(RΩη)〉 = lim
ε→0+

∫
Ω

〈uε, δη〉 dσ

= lim
ε→0+

∫
Ω

〈duε, η〉 dσ −
∫
∂Ω

〈Truε, ν ∨ η〉 dσ

= 〈du,RΩη〉,
since Truε → Tru = 0 in, say, Lp(∂Ω,Λ`) as ε→ 0+. This justifies (94) and finishes
the proof of the lemma.

2.4. Singular homology and sheaf theory. For a topological space X , we set
H`

sing(X ; R) for the `-th singular homology group of X over the reals, ` = 0, 1, ...
(cf., e.g., [36]). Then b`(X ), the `-th Betti number of X , is defined as the dimension
of H`

sing(X ; R). As is well known, b`(X ), ` = 0, 1, ..., are topological invariants of
X . In fact, b0(X ) is simply the number of connected components of X . The most
important case for us is when X is a Lipschitz subdomain Ω of the manifold M .

Next, we include a brief synopsis of some basic terminology together with some
fundamental results from sheaf theory. Recall that a sheaf F on a topological space
X is a double collection {F(U), ρUV }V⊆U⊆X , indexed by open subsets of X , such
that:

1. For each U open subset of X , F(U) is a vector space (over the reals) whose
elements are called sections of F over U ;

2. For each pair V ⊆ U of open subsets of X , we have that ρUV : F(U) → F(V )
is a vector space homomorphism, called the restriction map, subject to the
following two axioms. Firstly, ρUU is the identity homomorphism of F(U), for
any open set U . Secondly, for any triplet W ⊆ V ⊆ U of open sets in X ,

ρUW = ρUV ◦ ρVW . (95)

In order to lighten notation, for each ω ∈ F(U) and any V ⊆ U open, we
may write ω|V in place of ρUV (ω). By virtue of (95), this is without loss of
information.

3. For each U , open subset of X , any open covering {Ui}i∈I of U , and any family
{ωi}i∈I , ωi ∈ F(Ui), satisfying the compatibility condition

ωi|Ui∩Uj
= ωj |Ui∩Uj

, for any i, j ∈ I (96)

there exists a unique section ω ∈ F(U) such that ω|Ui
= ωi for any i ∈ I.

Given two sheaves F , G over X , a sheaf homomorphism ϑ : F → G is a collection
of vector space homomorphisms {ϑ(U) : F(U) → G(U)}U⊆X , indexed by open
subsets of X , which commute (in a natural way) with the restriction mappings.
We define supp (ϑ) as the smallest closed set outside of which ϑ is the null sheaf
homeomorphism.

A sheaf F over X is said to be fine if for each open, locally finite cover {Ui}i∈I
of X there exists a family of sheaf homomorphisms ϑi : F → F , i ∈ I, such that

supp (ϑi) ⊆ Ui, ∀ i ∈ I,
∑
i

ϑi = identityF . (97)

Next, assume that F0,F1, ... are sheaves over the topological space X and that,
for ` = 0, 1, ..., the mappings ϑ` : F` → F`+1 are sheaf homomorphisms. Then

0−−−→ F0
ϑ0
−−−→ F1

ϑ1
−−−→ F2

ϑ2
−−−→ · · · (98)
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is called an exact complex provided the following two conditions are true:
1. (the complex condition) ϑ`+1 ◦ ϑ` = 0 for ` = 0, 1, ...;
2. (the exactness condition) for each fixed index ` = 1, 2, ..., each point xo ∈
X , each open neighborhood U of xo and any section ω ∈ F`(U) such that
ϑ`(U)(ω) = 0, there exist V ⊆ U , open neighborhood of xo and a section
ω′ ∈ F`−1(V ) for which ϑ`−1(V )(ω′) = ω|V .

One particular sheaf which is going to play an important role in the sequel is as
follows. Let X be as above and, for each open set O ⊆ X , consider

RO := {f : O → R : locally constant function}. (99)

Then the sheaf of locally constant functions on X is given by

LCFX :=
{

RO
}
O open in X

. (100)

Recall that for any reasonable topological space X one associates H`
sing(X ; R),

the classical `-th singular homology group of X over the reals; see [36]. In this
connection, we shall make use of a deep theorem of De Rham which we present
below in an abstract form, well suited for our purposes.

Theorem 2.14. Let X be a Hausdorff, para-compact topological space, and let
L0,L1, .. be fine sheaves over X and, for ` = 0, 1, ..., let ϑ` : L` → L`+1 be sheaf
homomorphisms such that the following is an exact complex:

0−−−→ LCFX
ι
↪→ L0

ϑ0
−−−→ L1

ϑ1
−−−→ L2

ϑ2
−−−→ · · · (101)

(hereafter, ι denotes inclusion). Then

H`
sing(X ; R) ∼=

Ker (ϑ` : L`(X ) −→ L`+1(X ))
Im (ϑ`−1 : L`−1(X ) −→ L`(X ))

, ` = 1, 2, ... (102)

See [61], Theorem 5.25, p. 185 for a proof; cf. also [24].

3. Mapping properties of singular integral operators. For 0 ≤ δ, ρ ≤ 1 ,
m ∈ R, let Smρ,δ be the class of symbols consisting of all functions p ∈ C∞(Rn×Rn)
such that for each pair of multi-indices β, γ there exists a constant Cβ,γ such that

|∂βξ ∂
γ
xp(x, ξ)| ≤ Cβγ(1 + |ξ|)m−ρ|β|+δ|γ|, (103)

uniformly for (x, ξ) ∈ Rn × Rn. For p ∈ Smρ,δ we define the pseudodifferential
operator p(x,D) by

p(x,D)f(x) := (2π)−n
∫

Rn

ei〈x,ξ〉p(x, ξ)Ff(ξ) dξ, f ∈ S(Rn), (104)

and denote by OPSmρ,δ the class {p(x,D) : p ∈ Smρ,δ}.
The following is a consequence of Theorem 6.2.2 on p. 258 of [56] (cf. also Re-

mark. 3 on p. 257 of [56]).

Proposition 3.1. Let m ∈ R, 0 ≤ δ < 1 and fix s ∈ R, 1 < p, q < ∞, arbitrary.
Then any T ∈ OPSm1,δ induces a bounded, linear operator

T : Ap,qs (Rn) −→ Ap,qs−m(Rn). (105)

An immediate consequence of the above result, which is going to be useful for us
here is recorded separately.
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Corollary 3.2. Assume that m ∈ R, m > −n, and

Tf(x) := (2π)−n
∫

Rn

ei〈x,ξ〉b(ξ)Ff(ξ) dξ, f ∈ S(Rn), (106)

where, for each γ ∈ Nno ,

|(∂γb)(ξ)| ≤ Cγ |ξ|m−|γ|, ξ ∈ Rn \ {0}. (107)

Fix 1 < p, q ≤ ∞, s ∈ R and φ, ψ ∈ C∞c (Rn) (viewed below as multiplication
operators). Then

φTψ : Ap,qs (Rn) −→ Ap,qs−m(Rn) (108)
is a bounded operator.

We now turn our attention to mapping properties of operators given by singular
integrals. The result that suits our purposes reads as follows.

Theorem 3.3. Let 1 < p, q <∞ and s ∈ R be arbitrary and assume that

k(x, z) : Rn × (Rn \ {0})→ R (109)

is a function which satisfies:
(i) for some N = N(n, p, q, s) ∈ N sufficiently large,

sup
x∈Rn

sup
ω∈Sn−1

∣∣(∂βz ∂γxk)(x, ω)
∣∣ < +∞ (110)

for all multi-indices β, γ ∈ Nno such that |β| + |γ| ≤ N (where Sn−1 denotes
the unit sphere in Rn);

(ii) there exists an integer −n ≤ m ≤ 0 such that

k(x, λz) =
1

λn+m
k(x, z), ∀λ > 0, ∀x, z ∈ Rn, z 6= 0; (111)

(iii) if m = 0 in (ii), then it is also assumed that∫
Sn−1

k(x, ω) dω = 0 for all x ∈ Rn. (112)

Then, if T is defined as

Tf(x) :=
∫

Rn

k(x, x− y)f(y) dy for all x ∈ Rn, (113)

(with the integral taken in the principal value sense when m = 0), it follows that
for each φ, ψ ∈ C∞c (Rn) the operator

φTψ : Ap,qs (Rn) −→ Ap,qs−m(Rn) (114)

is bounded.

Prior to presenting the proof of the above theorem, we record a useful, well-known
result (cf., e.g., p. 73 in [52]).

Lemma 3.4. There exists a sequence {hj}j∈No , hj ∈ N and there exist homogeneous
polynomials {Yhj}j∈No, 1≤h≤hj

in Rn of degree j ∈ No which are harmonic in Rn and
whose restrictions to Sn−1 form an orthonormal basis for L2(Sn−1). In addition
for each j ∈ No there holds

∆Sn−1Yhj = −j(j + n− 2)Yhj if 1 ≤ h ≤ hj , (115)

where ∆Sn−1 is the Laplace-Beltrami operator on Sn−1.
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Finally, fix −n ≤ m ≤ 0. Then for each j ∈ No and 1 ≤ h ≤ hj,

Yhj(z)
|z|j+n+m

= F
(
bhj

)
(z), (116)

where, with Γ denoting the standard Gamma function,

bhj(z) := (−1)jγj,m
Yhj(z)
|z|j−m

and γj,m := (−1)j/2π
n
2 +m Γ( j2 −

m
2 )

Γ( j2 + n
2 + m

2 )
, (117)

provided either −n < m < 0 and j ∈ No, or m ∈ {0,−n} and j ≥ 1.

Proof of Theorem 3.3. We first consider the case when −n < m < 0. With k(x, z)
as in the statement of Theorem 3.3 we may write, making use of Lemma 3.4,

k(x, z) =
1

|z|n+m
k
(
x,

z

|z|

)
=
∞∑
j=0

hj∑
h=1

ahj(x)
Yhj(z)
|z|j+n+m

, (118)

where

ahj(x) :=
∫
Sn−1

Yhj(ω)k(x, ω) dω. (119)

In particular, it is standard to deduce from (115) and (110) that, for some sufficiently
large N ∈ N,

‖∂αahj‖L∞(Rn) ≤ CN j−N , |α| ≤ N. (120)

Thus,

Tf(x) =
∞∑
j=0

hj∑
h=1

ahj(x)Thjf(x), (121)

where, for each j ∈ No, 1 ≤ h ≤ hj ,

Thjf(x) :=
∫

Rn

F(bhj)(x− y)f(y) dy = (2π)−n
∫

Rn

ei〈x,ξ〉bhj(ξ)(Ff)(ξ) dξ. (122)

Thanks to (117), Corollary 3.2 applies and allows us to conclude that if 1 <
p, q ≤ ∞ and s ∈ R are arbitrary, and if φ, ψ ∈ C∞c (Rn), then

φThjψ : Ap,qs (Rn)→ Ap,qs−m(Rn) is bounded, with norm ≤ CjM (123)

for some C and M depending only on n, p, q, s. Now, the fact that the operator
(114) is bounded follows from this and (120).

When m = 0 we proceed in a similar fashion, the sole difference being that, in
this case,

ahj(x) =
∫
Sn−1

Yhj(ω)k(x, ω) dω = 0 when j = 0, (124)

by virtue of (112).
Finally, there remains to consider the case when m = −n. In this scenario, we

first notice that by (110), the fact that k(x, λz) = k(x, z), integrations by parts and
duality, it is relatively straightforward to show that, for each choice of the cutoff
functions φ, ψ ∈ C∞c (Rn),

φTψ : Lpk(Rn) −→ Lpk(Rn), boundedly, ∀ p ∈ (1,∞), (125)

for each k ∈ Z with |k| ≤M . Here, M is a constant which can be as large as desired
by ensuring that N (introduced in connection with (110)) is sufficiently large.
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By induction on θ (see below), we shall now show that, for any 1 < p, q <∞ and
s ∈ R, any operator T satisfying the current assumptions and any φ, ψ ∈ C∞c (Rn),

φTψ : F p,qs (Rn) −→ F p,qs+θ(R
n) boundedly, (126)

for each θ ∈ {0, 1, ..., n}, provided N is large enough. To prove (126) when θ = 0,
given 1 < p, q < ∞ and s ∈ R, pick k ∈ Z such that s ∈ (k, k + 1) and such that
(125) holds.

Since, by (37), F p,qs (Rn) ↪→ Lpk(Rn) ↪→ F p,qs−1(Rn), (125) allows us to conclude
that (φTψ)(f) ∈ F p,qs−1(Rn) for each f ∈ F p,qs (Rn). Moreover, for each j ∈ {1, ..., n},
we may write

∂j [(φTψ)(f)] = (∂jφ)T (ψf) + (φT 1
j ψ)(f) + (φT 2

j ψ)(f). (127)

In the above identity, T 1
j , T 2

j are integral operators with kernel k1
j (x, x − y) and

k2
j (x, x− y), respectively, where we have set k1

j (x, z) := (∂xj
k)(x, z) and k2

j (x, z) :=
(∂zj

k)(x, z). Thus, much as in the case of (φTψ)(f), it follows that (∂jφ)T (ψf),
(φT 1

j ψ)(f) ∈ F p,qs−1(Rn). Also, by the first part of the current proof,

φT 2
j ψ : F p,qs (Rn) −→ F p,qs+n−1(Rn) boundedly, (128)

since the kernel k2
j satisfies (110), as well as (111) with m := −n + 1, and −n <

−n + 1 < 0. In concert with (38), this analysis shows that (φTψ)(f) ∈ F p,qs (Rn)
plus a natural estimate, completing the proof of (126) when θ = 0.

Next, assuming that (126) holds for some 0 ≤ θ ≤ n − 1, we shall prove a
similar conclusion with θ + 1 in place of θ, essentially by running the same scheme
as before. More specifically, given f ∈ F p,qs (Rn), (126) ensures that (φTψ)(f) ∈
F p,qs+θ(Rn), whereas (128) and the decomposition (127) can be used to show that
∂j [(φTψ)(f)] ∈ F p,qs+θ(Rn) for each j = 1, ..., n. Thus, invoking (38) once again, we
may conclude that (φTψ)(f) belongs to F p,qs+θ+1(Rn), with appropriate control of
the norm, as desired.

Having proved (114) (when m = −n) for the F -scale, the corresponding state-
ment for the B-scale can be deduced from this and real interpolation. This concludes
the proof of Theorem 3.3.

Our next goal is to prove similar mapping properties for a local version of the
operator (113). This portion of our analysis only requires knowing that, for some
m ∈ R,

T : Ap,qs (Rn) −→ Ap,qs−m(Rn), p, q ∈ (1,∞), s ∈ R, (129)

is a bounded operator. We shall therefore assume that this is the case and, given a
bounded Lipschitz domain Ω in Rn, define

TΩf := RΩ(T f̃), f ∈ C∞c (Ω), (130)

where ·̃ and RΩ stand, respectively, for the extension by zero outside Ω, and the
restriction to Ω of distributions in Rn. Thus, TΩ maps C∞c (Ω) to (C∞c (Ω))′ and
we aim at establishing mapping properties for this operator on Besov and Triebel-
Lizorkin scales in Ω. A preliminary result in this regard is as follows.

Proposition 3.5. Let p, q ∈ (1,∞). Then the operator TΩ maps Ap,qs,z(Ω) linearly
and boundedly into Ap,qs−m(Ω), whenever s > 1

p − 1.
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Proof. For each p, q ∈ (1,∞), s > 1
p − 1, and any f ∈ C∞c (Ω), we may write

‖TΩf‖Ap,q
s−m(Ω)

(1)
== ‖RΩ(T f̃)‖Ap,q

s−m(Ω)

(2)

≤ ‖T f̃‖Ap,q
s−m(Rn)

(3)

≤ C‖f̃‖Ap,q
s (Rn)

(4)
== C‖f̃‖Ap,q

s,0(Ω)

(5)

≤ C‖f‖Ap,q
s,z(Ω).

(131)

Indeed, equality (1) is a consequence of the way TΩ has been defined. Inequality
(2) is due to the boundedness of the restriction operator RΩ, whereas inequality
(3) comes from the assumption (129). Going further, equality (4) is due to the fact
that the norm in Ap,qs,0(Ω) is inherited from the one in Ap,qs (Rn). Finally, inequality
(5) follows from Proposition 2.6, granted that s > 1

p − 1.
Having justified (131), the density result (57) allows us then to conclude that the

operator TΩ maps Ap,qs,z(Ω) boundedly into Ap,qs−m(Ω) if s > 1
p − 1, as desired.

Proposition 3.6. The operator T ∗Ω maps Ap,qs,z(Ω) boundedly into Ap,qs−m(Ω) if 1 <
p, q <∞ and s > 1

p − 1.

Proof. For f ∈ C∞c (Ω), we claim that

T ∗Ωf = RΩ(T ∗f̃), f ∈ C∞c (Ω). (132)

In order to justify this, for any g ∈ C∞c (Ω), we write

〈T ∗Ωf, g〉
(1)
== 〈f, TΩg〉

(2)
== 〈f,RΩ(T g̃)〉

(3)
== 〈f̃ , T g̃〉 (4)

== 〈T ∗f̃ , g̃〉
(5)
== 〈RΩ(T ∗f̃), g〉,

(133)

where all pairings are to be understood in the sense of distributions. Indeed, equality
(1) is a consequence of the definition of the adjoint of TΩ, whereas equality (2) is
based on the definition of TΩ. Next, equality (3) follows from the way RΩ acts on
distributions, while equality (4) is simply the definition of the adjoint of T . Finally,
equality (5) is once again based on the definition of RΩ.

Since, by duality, T ∗ satisfies the same properties as T , Proposition 3.5 applies
and the desired conclusion follows from the representation (132).

Theorem 3.7. Let p, q ∈ (1,∞), s ∈ R, and denote by p′, q′ the conjugate exponents
of p, q, i.e. 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1. Then the operator

TΩ : (Ap
′,q′

−s (Ω))∗ −→ Ap,qs−m(Ω) (134)

is bounded.

Proof. Dualizing the result proved for T ∗Ω in Proposition 3.6, we see that

TΩ : (Ap,qs (Ω))∗ −→ (Ap,qs+m,z(Ω))∗, s+m > 1
p − 1, (135)

boundedly. In concert with Proposition 2.4, this implies, after relabeling, that

TΩ : (Ap
′,q′

−s (Ω))∗ −→ Ap,qs−m(Ω), s < 1
p +m, (136)

is a bounded operator. Moreover, Proposition 3.5 gives

TΩ : (Ap
′,q′

−s (Ω))∗ −→ Ap,qs−m(Ω), s > 1
p − 1 (137)
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since, in this case, Ap,qs,z(Ω) = (Ap
′,q′

−s (Ω))∗. Now, (136) and (137) together imply the
claim in the theorem via interpolation.

Our last result in this section is deduced under the additional assumption that

TΩ(C∞c (Ω)) ⊆ C∞c (Ω). (138)

Theorem 3.8. Granted (129) and (138), the operator TΩ maps (Ap
′,q′

−s (Ω))∗ bound-

edly into
◦

Ap,qs−m (Ω), whenever p, q ∈ (1,∞) and s ∈ R.

Proof. From Theorem 3.7 we know that TΩ maps (Ap
′,q′

−s (Ω))∗ boundedly into
Ap,qs−m(Ω) for all p, q ∈ (1,∞) and s ∈ R. Thanks to (60) and (138), we then
obtain that TΩ maps (Ap

′,q′

−s (Ω))∗ into the closure of C∞c (Ω) in Ap,qs−m(Ω) and, by

definition, the latter space is precisely
◦

Ap,qs−m (Ω).

4. Local theory: distinguished homotopy operators. In this section we shall
construct a class of homotopy operators which allow us to prove some Poincaré type
results (pertaining to the fact that closed forms are locally exact) while keeping
precise track of the smoothness of the differential forms involved. Our main result
in this regard is the theorem below, whose proof occupies the bulk of this section.

Theorem 4.1. Let O ⊂ M be a coordinate patch and let Ω ⊂ O be a Lipschitz
domain which is starlike with respect to a ball (in the Euclidean geometry). Then
there exist two families of linear operators

J` : C∞c (Ω,Λ`) −→ C∞c (Ω,Λ`−1), 1 ≤ ` ≤ n, (139)

and

K` :
(
C∞c (Ω,Λ`)

)′
−→

(
C∞c (Ω,Λ`−1)

)′
, 1 ≤ ` ≤ n, (140)

and which have the following additional properties.
(1) For each 1 < p, p′ <∞, 1/p+ 1/p′ = 1, s ∈ R, the operators

J` :
(
Ap
′,q′

−s (Ω,Λ`)
)∗
−→

◦
Ap,qs+1(Ω,Λ`−1), (141)

K` :
( ◦
Ap
′,q′
−s (Ω,Λ`)

)∗
−→ Ap,qs+1(Ω,Λ`−1), (142)

are well-defined, linear and bounded, for each 1 ≤ ` ≤ n.
(2) There exists θ ∈ C∞c (Ω) such that for any `-form u with coefficients distribu-

tions in Ω, i.e. u ∈
(
C∞c (Ω,Λ`)

)′
, there holds

u =


K1(du) + 〈u, θ〉 if ` = 0,

d(K`u) +K`+1(du) if 1 ≤ ` ≤ n− 1,

d(Knu) if ` = n.

(143)

(3) There exists θ ∈ C∞c (Ω) such that if 1 < p, q <∞ and −1 + 1/p < s, then

u =


J1(du) if ` = 0,

d(J`u) + J`+1(du) if 1 ≤ ` ≤ n− 1,

d(Jnu) + 〈u,RΩ(VM )〉 θ VM if ` = n,

(144)
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provided either

s < 1/p and u ∈ D`(d;Ap,qs (Ω)) is such that ν ∧ u = 0 on ∂Ω, (145)

or
s > 1/p and u ∈ D`(d;Ap,qs,z(Ω)). (146)

Proof. Given the local nature of the results and their invariance under pull-back, it
suffices to work under the assumption that M = Rn (equipped with the standard
Euclidean metric) and that Ω is a bounded Lipschitz domain which is star-like with
respect to some (Euclidean) ball B ⊂ Ω. Assume that this is the case and bring
in the classical Cartan homotopy operator, which we now recall. Specifically, if
` ∈ {1, ..., n} and y ∈ B is fixed, define

K`,yu(x) :=
∑

j1<···<j`

∑̀
k=1

(−1)k−1
(∫ 1

0

t`−1uj1...j`(y + t(x− y)) dt
)
× (147)

×(xjk − yjk) dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxj`
for each `-differential form u =

∑
j1<···<j` uj1...j` dxj1 ∧ · · · ∧ dxj` (where, as cus-

tomary, ‘hat’ indicates that the symbol underneath is omitted). A straightforward
calculation then shows that

∀u ∈ C1(Ω,Λ`) =⇒


u = K1,y(du) + u(y) if ` = 0,

u = d(K`,yu) +K`+1,y(du) if 1 ≤ ` ≤ n− 1,

u = d(Kn,yu) if ` = n.

(148)

See, e.g., Theorem 4.11 in [51], or [54] for more details.
We intend to work with differential forms whose coefficients are not necessarily

continuous and, hence, need to alter the definition (147) as to avoid integrating over
thin sets. One way to achieve this is to average the definition (147) with respect to
y ∈ B. Concretely, for some fixed function θ ∈ C∞c (B) with

∫
θ = 1, we introduce

for each 1 ≤ ` ≤ n

K`u(x) :=
∫
B

θ(y) [K`,yu(x)] dy (149)

=
∫
B

∫ 1

0

t`−1θ(y)(x− y) ∨ u(y + t(x− y)) dtdy, x ∈ Ω,

where u ∈ C1(Ω,Λ`). Above, x − y is identified with
∑n
j=1(xj − yj)dxj and ∨

stands for the interior product of forms in Rn. Then the homotopy property (148)
is further inherited by the new family of operators. More specifically,

∀u ∈ C1(Ω,Λ`) =⇒


u = K1(du) +

∫
Ω
θu dx if ` = 0,

u = d(K`u) +K`+1(du) if 1 ≤ ` ≤ n− 1,

u = d(Knu) if ` = n.

(150)

For reasons which will become clear in a moment, we find it convenient to consider
Kt
` , the transpose (in the sense of distributions) of (149), meaning

〈K`u, v〉 = 〈u,Kt
`v〉, ∀u ∈ C∞c (Ω,Λ`), ∀ v ∈ C∞c (Ω,Λ`−1). (151)
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A straightforward calculation (based on a couple of changes of variables) shows that

Kt
`u(x) = −

∫
Ω

∫ ∞
1

(t−1)`−1tn−`θ(y+t(x−y))(x−y)∧u(y) dtdy, x ∈ Ω, (152)

whenever u ∈ C∞c (Ω,Λ`−1). One most notable feature of the operator (151) is that
supp (Kt

`u) is a subset of {λx + (1 − λ)y : x ∈ suppu, y ∈ B̄, 0 ≤ λ ≤ 1}. In
particular, since Ω is assumed to be starlike with respect to the ball B, we may
conclude that

Kt
` [C
∞
c (Ω,Λ`−1)] ⊆ C∞c (Ω,Λ`). (153)

Going further, we note that the dual of (150) then becomes

∀u ∈ C1
c (Ω,Λ`) =⇒


u = δ(Kt

1u) +
(∫

Ω
u dx

)
θ if ` = 0,

u = δ(Kt
`+1u) +Kt

`(δu) if 1 ≤ ` ≤ n− 1,

u = Kt
n(δu) if ` = n,

(154)

where, in the current context, δ denotes the formal transpose of d with respect to
the (flat) Euclidean metric in Rn. Let us point out that the case ` = 0 of (154) has
also been derived in [6].

With ‘star’ denoting the standard Hodge isomorphism in Rn, we now introduce
another operator of interest to us, i.e.

J` := (−1)n(`+1)+1 ∗Kt
n−`+1 ∗ on `-forms. (155)

Taking (4) in Proposition 2.1 into account, it easily follows from (155) and (154)
that if u ∈ C∞c (Ω,Λ`) then

J`u(x) =
∫

Ω

∫ ∞
1

(t− 1)n−`t`−1θ(y+ t(x− y))(x− y)∨u(y) dtdy, x ∈ Ω, (156)

and

∀u ∈ C1
c (Ω,Λ`) =⇒


u = J1(du) if ` = 0,

u = d(J`u) + J`+1(du) if 1 ≤ ` ≤ n− 1,

u = d(Jnu) +
(∫

Ω
u
)
θ dx1 ∧ ... ∧ dxn, if ` = n.

(157)

Our next goal is to study the mapping properties of the operators J`. To this
end, it clearly suffices to analyze scalar integral operators of the form

T`,jf(x) :=
∫

Ω

∫ ∞
1

(t−1)n−`t`−1(xj−yj)θ(y+t(x−y))f(y) dtdy, x ∈ Ω, (158)

where 1 ≤ j ≤ n, 1 ≤ ` ≤ n. To get started, let us first write T`,jf in the form

T`,jf(x) =
∫

Ω

k`,j(x, x− y)f(y) dy, x ∈ Ω, (159)

where

k`,j(x, z) := zj

∫ ∞
0

τn−`(1 + τ)`−1θ
(
x+ τz

)
dτ (160)

is the integral kernel of T`,j . Expanding (1 + τ)n−`−1 via the Binomial Theorem
and changing variables so that z re-scales to a unit vector eventually shows that
k`,j(x, z) can be written as a linear combination of terms of the form

kj,i(x, z) :=
zj
|z|n−i

∫ ∞
0

τn−1−iθ
(
x+ τ z

|z|
)
dτ, 0 ≤ i ≤ `− 1. (161)
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Next, observe that each such kernel satisfies the uniform estimate

sup
x

sup
|z|=1

|∂βz ∂γxkj,i(x, z)| < +∞ (162)

and the homogeneity condition kj,i(x, λz) = λ−n+i+1kj,i(x, z), for each λ > 0. In
particular, Theorem 3.8 guarantees that the integral operator with integral kernel

kj,i(x, x − y) maps (Ap
′,q′

−s (Ω))∗ boundedly into
◦

Ap,qs+i+1 (Ω) for each p, q ∈ (1,∞)
and each s ∈ R. Thus, all in all, the operator (141) is bounded. In fact, a similar
argument yields (142) is bounded as well.

Next, (140) is implied by (153), and (139) is a consequence of (153) and (155).
Furthermore, (143) follows directly from (150) and (140), whereas (144) is a corol-
lary of (163), (157) and Lemma 2.13. This finishes the proof of Theorem 4.1.

We conclude with a few remarks of independent interest.

Remark 1. As a corollary of (141)-(142) and Proposition 2.4, given any numbers
p, q ∈ (1,∞), the operators

J` : Ap,qs,z(Ω,Λ
`) −→

◦
Ap,qs+1(Ω,Λ`−1) if s > −1 +

1
p
, (163)

K` : Ap,qs (Ω,Λ`) −→ Ap,qs+1(Ω,Λ`−1) if s <
1
p
, (164)

are well-defined, linear and bounded for each 1 ≤ ` ≤ n. (In the case of (164), one
also relies on (61) and interpolation.) In fact, (163) self-improves to

J` : Ap,qs,z(Ω,Λ
`) −→ Ap,qs+1,z(Ω,Λ

`−1) if s > −1 +
1
p
, (165)

thanks to (61), (54), (51), (52) and interpolation.
As a consequence, if

W−k,p(Ω) :=
{
f =

∑
|α|≤k

∂αfα : fα ∈ Lp(Ω), |α| ≤ k
}
, k ∈ No, p ∈ (1,∞), (166)

equipped with the natural (infimum-type) norm, then the operators

J` : W k,p
0 (Ω,Λ`) −→W k+1,p

0 (Ω,Λ`−1), (167)

K` : W−k,p(Ω,Λ`) −→W 1−k,p(Ω,Λ`−1), (168)

are well-defined, linear and bounded for each 1 ≤ ` ≤ n, whenever k ∈ No and
1 < p <∞. In particular, if 1 < p <∞, then

J` : Lp(Ω,Λ`) −→W 1,p
0 (Ω,Λ`−1), (169)

K` : Lp(Ω,Λ`) −→W 1,p(Ω,Λ`−1), (170)

are well-defined, linear, bounded operators for each 1 ≤ ` ≤ n.

Remark 2. An inspection of the above proof shows the following. If D is an
open subset of Ω such that Ω \D is also star-like with respect to the ball B, then

supp (K`u) ⊂ D whenever u ∈
(
C∞c (Ω,Λ`)

)′
has suppu ⊂ D.

Remark 3. If Ω is a bounded, open subset of Rn which is star-like with respect to
a ball B ⊂ Ω then, necessarily, Ω is a Lipschitz domain. See p. 17 in [38].
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Remark 4. Incidentally, we note that our Theorem 4.1 contains the correct ver-
sions of Theorem 2.4(d) in [9] and Proposition 3.4 in [8] (whose statements appear
questionable, as they read).

5. Relative cohomology. In this section we compute the dimension of the so-
called relative cohomology groups of a Lipschitz domain Ω ⊂ M , for the exterior
derivative operator considered in the context of Besov-Triebel-Lizorkin spaces. Our
approach consists of two steps. In a first stage, we employ Theorem 2.14 for the
complex associated with d on the scale Ap,qs , in which scenario, no boundary condi-
tions are involved. In a subsequent step, boundary conditions are brought into play
in a natural fashion, by dualizing the results obtained in step one.

To set the stage, we first recall a simple, abstract result. For any Banach space
X, we denote by X∗ its dual. Also, if V ⊆ X is a closed subspace of X, we set

V ⊥ := {Φ ∈ X∗ : Φ(v) = 0, ∀ v ∈ V } (171)

for the annihilator of V (relative to X).

Lemma 5.1. Let X be a Banach space and let 0 ⊆W ⊆ V ⊆ X be closed subspaces
of X. Then ( V

W

)∗
' W⊥

V ⊥
. (172)

The proof is elementary and is left to the interested reader. The special cases
V = X and W = 0 are, in fact, well-known; cf., e.g., p. 86 in [46].

Consider next the family of unbounded operators

d` : Ap,qs (Ω,Λ`) −→ Ap,qs (Ω,Λ`+1), 0 ≤ ` ≤ n, (173)

with domains D`(d;Ap,qs (Ω)) and which act according to d`(u) := du for each dif-
ferential form u ∈ D`(d;Ap,qs (Ω)). The first order of business is to identify the dual
of (173), assuming that M is equipped with a (smooth) Riemannian metric.

Lemma 5.2. Let Ω be a Lipschitz domain, 1 < p < ∞, and fix s < 1
p with

s 6= −1 + 1
p . Also, let 1 < p′ < ∞ be such that 1/p + 1/p′ = 1. Then, for each

0 ≤ ` ≤ n, the adjoint of the operator (173) is

d∗` : Ap
′,q′

−s,z(Ω,Λ
`+1) −→ Ap

′,q′

−s,z(Ω,Λ
`) (174)

with domain

{u ∈ D`+1(δ;Ap
′,q′

−s (Ω)) : ν ∨ u = 0} if − 1 + 1
p < s < 1

p , (175)

and
D`+1(δ;Ap

′,q′

−s,z(Ω)) if s < −1 + 1
p , (176)

and which acts according to d∗`u = δu for each u in the domain of d∗` .

Proof. By definition, a differential form u ∈ Ap
′,q′

−s,z(Ω,Λ
`+1) belongs to the domain

of d∗` if and only if there exists w ∈ Ap
′,q′

−s,z(Ω,Λ
`) such that

〈u, dη〉 = 〈w, η〉, ∀ η ∈ D`(d;Ap,qs (Ω)). (177)

Now, if we assume that the identity (177) holds, taking η ∈ C∞c (Ω,Λ`) yields, in
view of (31), that δu = w ∈ Ap

′,q′

−s,z(Ω,Λ
`) and, hence, u ∈ D`+1(δ;Ap

′,q′

−s,z(Ω)). In
addition, when −1+ 1

p < s < 1
p , (80) and (i) in Lemma 2.13 also give that ν∨u = 0.
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Conversely, assume that −1+ 1
p < s < 1

p and that u ∈ D`+1(δ;Ap
′,q′

−s (Ω)) satisfies
ν ∨ u = 0. Based on (80) and (i) in Lemma 2.13, we may then deduce that
〈u, dη〉 = 〈δu, η〉 for each η ∈ D`(d;Ap,qs (Ω)). Thus, u belongs to the domain of d∗` .

Finally, in the case when s < −1 + 1
p and u ∈ D`+1(δ;Ap

′,q′

−s,z(Ω)), we may once
again deduce that 〈u, dη〉 = 〈δu, η〉 for each η ∈ D`(d;Ap,qs (Ω)), this time by in-
voking (iii) in Lemma 2.13 (written on the Hodge-dual side; cf. Proposition 2.1).
Consequently, u belongs to the domain of d∗` , finishing the proof of the lemma.

In the sequel, we find it convenient to also introduce

d−1 : Rb0(Ω) −→ Ap,qs (Ω), d−1

[
(λj)1≤j≤b0(Ω)

]
:=

b0(Ω)∑
j=1

λjχΩj
. (178)

Here, b0(Ω) = dimH0
sing(Ω; R) is the number of connected components of Ω, denoted

by Ωj , 1 ≤ j ≤ b0(Ω), and generally speaking, χE is the characteristic function of
the set E. It is then easy to check that, for 1 < p, p′ < ∞, 1/p + 1/p′ = 1,
−1 + 1/p < s < 1/p, the adjoint of (178) is

d∗−1 : Ap
′,q′

−s (Ω) −→ Rb0(Ω), d∗−1(f) =
(
〈f, χΩj

〉
)

1≤j≤b0(Ω)
. (179)

Proposition 5.3. Let Ω be a Lipschitz domain and fix 1 < p, q < ∞, s < 1/p.
Then, in the context of (173),

Ker(d`)
Im(d`−1)

=
{u ∈ D`(d;Ap,qs (Ω)) : du = 0}
{dv : v ∈ D`−1(d;Ap,qs (Ω))}

' H`
sing(Ω; R), (180)

for each 1 ≤ ` ≤ n. Corresponding to ` = 0 (cf. (178)), we have

Ker(d0)
Im(d−1)

= 0. (181)

Proof. Let us first deal with (180). For O open subset of M define Ap,qs,loc(O∩Ω,Λ`)
as the collection of distributions u in O ∩ Ω such that for each point x ∈ O ∩ Ω
there exists Wx open neighborhood of x and a differential form wx ∈ Ap,qs (Wx,Λ`)
with the property that

RO∩Ω∩Wx
(u) = RO∩Ω∩Wx

(wx), (182)

where, as usual RO∩Ω∩Wx denotes the operator of restriction (in the sense of dis-
tributions) to the open set O ∩ Ω ∩Wx, etc. Next, we set

L`(U) := {u ∈ Ap,qs,loc(U,Λ`) : du ∈ Ap,qs,loc(U,Λ`+1)} (183)

so that L` := (L`(U))U , indexed by open subsets (in the relative topology) of Ω,
becomes a sheaf on the compact topological space Ω when equipped with the family
of restriction operators

ρUV (u) := ROV ∩Ω(u) ∈ Ap,qs,loc(V,Λ`) if u ∈ Ap,qs,loc(U,Λ`), and if

OV , OU ⊂M are open sets such that V = OV ∩ Ω ⊆ U = OU ∩ Ω.
(184)

Note that (184) is meaningful in the sense that if OV ∩ Ω ⊆ OU ∩ Ω for two open
sets OV , OU ⊂M then, necessarily, OV ∩ Ω ⊆ OU ∩ Ω.

Furthermore, for each ` = 0, 1, ..., the exterior derivative operator induces a sheaf
morphism d` : L` → L`+1 in a natural fashion. More specifically, we view d` as
the collection of group homomorphisms {d`U : L`(U) → L`+1(U)}U , indexed once
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again by all open subsets (in the relative topology) of Ω, where we set d`U (u) := du
if 0 ≤ ` ≤ n− 1, and zero otherwise.

Going further, since d`+1 ◦ d` = 0, the family {d`}`≥0 yields the complex

0−−−→ LCFΩ̄

ι
−−−→ L0

d0

−−−→ L1
d1

−−−→ · · ·
dn−1

−−−→ Ln
dn

−−−→ 0
dn+1

−−−→ 0 · · · (185)

Here LCFΩ̄ stands for the sheaf of germs of locally constant functions on Ω, and
ι is the natural inclusion operator. Since each Ap,qs,loc(U,Λ`) is stable under multi-
plication by smooth, compactly supported functions, a partition of unity argument
shows that (185) provides a fine resolution of the sheaf LCFΩ̄.

Next, we claim that, in fact, the complex (185) is exact. As explained in §2.4,
checking this comes down to verifying the following property. Fix an index ` ∈
{1, ..., n}, a point xo ∈ Ω, an open neighborhood O of xo in M , and set U := O∩Ω.
Also, let u ∈ Ap,qs,loc(U,Λ`) be such that du = 0 in O ∩ Ω. What we need to show,
under these hypotheses, is that there exist W ⊆ O, open neighborhood of xo and,
if V := W ∩ Ω, a differential form v ∈ Ap,qs,loc(V,Λ`−1) for which RW∩Ω(u) = dv.

To this end, we note that the membership of u to Ap,qs,loc(U,Λ`) entails, by def-
inition, the existence of an open neighborhood W of xo with the property that
W ∩ Ω ⊂ U and such that RW∩Ω(u) ∈ Ap,qs (W ∩ Ω,Λ`). In addition, there is
no loss of generality in assuming that W ∩ Ω is small and, when viewed in ap-
propriate local coordinates, it becomes a Lipschitz domain which is starlike with
respect to a ball (in the Euclidean geometry). Assuming that this is the case, we
denote by K` the family of operators constructed as in Theorem 4.1 but in connec-
tion with the Lipschitz domain W ∩ Ω. In particular, since dRW∩Ω(u) = 0, the
representation (143) yields RW∩Ω(u) = dv where v := K`(RW∩Ω(u)). Moreover,
v ∈ Ap,qs+1(W ∩ Ω,Λ`−1) ↪→ Ap,qs (W ∩ Ω,Λ`−1) by (164), (37), and since there ex-
ists w ∈ Ap,qs (M,Λ`−1) such that v = RW∩Ω(w) we may ultimately conclude that
v ∈ Ap,qs,loc(W ∩Ω,Λ`−1), thus finishing the proof the fact that the complex (185) is
exact.

The analysis carried out so far shows that the De Rham theory (cf. Theorem 2.14)
applies, and it remains to identifying the cohomology groups associated with the
complex (185). Concretely, (180) follows as soon as we prove that

L`(Ω) = D`(d;Ap,qs (Ω)), 0 ≤ ` ≤ n. (186)

In turn, (186) is an easy consequence of

Ap,qs,loc(Ω,Λ`) = Ap,qs (Ω,Λ`), 0 ≤ ` ≤ n. (187)

Turning our attention to (187) we note that, in one direction, if u ∈ Ap,qs,loc(Ω,Λ`)
then, from the definition of this space, there exist a finite, open cover {Wi}i∈I of
Ω along with wi ∈ Ap,qs (Wi,Λ`) such that RWi∩Ω(u) = RWi∩Ω(wi) for each i ∈ I.
Hence, if {ξi}i∈I is a smooth partition of unity subordinate to this cover, it follows
that

∑
i∈I ξ̃iwi ∈ Ap,qs (M,Λ`) and u = RΩ

(∑
i∈I ξ̃iwi

)
∈ Ap,qs (Ω,Λ`), as desired.

Conversely, if u ∈ Ap,qs (Ω,Λ`) then, by definition, there exists w ∈ Ap,qs (M,Λ`) such
that u = RΩ(w). From this, we see that u ∈ Ap,qs,loc(Ω,Λ`), justifying (187). This
completes the proof of (180).

Finally, (181) is a direct consequence of definitions.

Returning to the unbounded operator (173), we can now formulate the following
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Corollary 5.4. Let Ω be a Lipschitz domain and recall the unbounded operators
d` introduced in (173) and (178) for −1 ≤ ` ≤ n. Then, if 1 < p, q < ∞ and
s < 1/p, these operators have closed ranges, and the same is true for their adjoints.
Consequently,

Ker(d`) = [Im(d∗` )]
⊥, Im(d`) = [Ker(d∗` )]

⊥ (188)

for each −1 ≤ ` ≤ n.

Proof. Assume 0 ≤ ` ≤ n. The first claim follows from (180), the fact the the sin-
gular homology groups of Ω have finite dimension and a general functional analytic
result to the effect that if T : X → Y is a closed, unbounded operator between two
Banach spaces, with the property that ImT , the image of T , has finite codimension
in Y , then ImT is a closed subspace of Y .

That the adjoint of the operator (173) has also a closed range is a consequence
of what we have proved so far and the version of Banach’s closed range theorem
corresponding to closed, densely defined, unbounded operators. See Theorem 5.13
on p. 234 Kato’s book. This theorem also gives (188). Finally, the case ` = −1 is
elementary and the proof of the corollary is complete.

Proposition 5.5. Assume that Ω is a Lipschitz domain and that 1 < p, q < ∞.
Then for each ` = 1, ..., n, we have that

dim
[
{u ∈ D`(δ;Ap,qs (Ω)) : δu = 0 and ν ∨ u = 0}
{δω : ω ∈ D`+1(δ;Ap,qs (Ω)) and ν ∨ ω = 0}

]
= b`(Ω) (189)

if − 1 +
1
p
< s <

1
p
,

and

dim
[{u ∈ D`(δ;Ap,qs,z(Ω)) : δu = 0}
{δw : w ∈ D`+1(δ;Ap,qs,z(Ω))}

]
= b`(Ω) if s >

1
p
. (190)

Furthermore, corresponding to the case ` = 0 we have

{u ∈ Ap,qs (Ω) : 〈u, χΩj 〉 = 0 for 1 ≤ j ≤ b0(Ω)}
{δω : ω ∈ D1(δ;Ap,qs (Ω)) and ν ∨ ω = 0}

= 0 if − 1 +
1
p
< s <

1
p
, (191)

and
{u ∈ Ap,qs,z(Ω) : 〈u, χΩj 〉 = 0 for 1 ≤ j ≤ b0(Ω)}

{δω : ω ∈ D1(δ;Ap,qs,z(Ω))}
= 0 if s >

1
p
. (192)

Proof. Assume first that 1 ≤ ` ≤ n. Based on Lemma 5.1, Corollary 5.4 and
Proposition 5.3, we may write[

Ker(d∗`−1)
Im(d∗` )

]∗
=

[Im(d∗` )]
⊥

[Ker(d∗`−1)]⊥
=

Ker(d`)
Im(d`−1)

' H`
sing(Ω; R) (193)

so that, in particular, all quotient spaces are finite dimensional. Hence

dim
[

Ker(d∗`−1)
Im(d∗` )

]
= dim

[
Ker(d∗`−1)

Im(d∗` )

]∗
= dim [H`

sing(Ω; R)] = b`(Ω) (194)

which, by virtue of Lemma 5.2, readily amounts to (189).
As for (191) and (192) we proceed analogously, this time relying on (181).
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Corollary 5.6. Consider a Lipschitz domain Ω and fix 1 < p, q < ∞. Then for
each ` = 0, ..., n− 1, we have

dim
[
{u ∈ D`(d;Ap,qs (Ω)) : du = 0 and ν ∧ u = 0}
{dw : w ∈ D`−1(d;Ap,qs (Ω)) and ν ∧ w = 0}

]
= bn−`(Ω), (195)

if − 1 +
1
p
< s <

1
p
,

and

dim
[{u ∈ D`(d;Ap,qs,z(Ω)) : du = 0}
{dw : w ∈ D`−1(d;Ap,qs,z(Ω))}

]
= bn−`(Ω) if s >

1
p
. (196)

Moreover, corresponding to the case ` = n we have
{u ∈ Ap,qs (Ω,Λn) : 〈u, χΩjVM 〉 = 0 for 1 ≤ j ≤ b0(Ω)}

{dv : v ∈ Dn−1(d;Ap,qs (Ω)) and ν ∧ v = 0}
= 0 if − 1 +

1
p
< s <

1
p
,

(197)
and

{u ∈ Ap,qs,z(Ω,Λn) : 〈u, χΩjVM 〉 = 0 for 1 ≤ j ≤ b0(Ω)}
{dv : v ∈ Dn−1(d;Ap,qs,z(Ω))}

= 0 if s >
1
p
. (198)

Proof. This is an immediate consequence of Proposition 5.5 and Hodge theory; cf.
Proposition 2.1.

Parenthetically, we record a related, useful result.

Proposition 5.7. Let Ω be an arbitrary open subdomain of M . Then for each
` = 1, ..., n, we have that

dim
[
{u ∈ (C∞c (Ω,Λ`))′ : du = 0}
{dw : w ∈ (C∞c (Ω,Λ`−1))′}

]
= b`(Ω). (199)

Proof. This is a consequence of results in §2.4, §3.

6. The proofs of the main results. We debut by stating and proving a weaker
version of Theorem 1.1.

Proposition 6.1. Let Ω be a Lipschitz domain and fix 1 < p, q < ∞, −1 + 1/p <
s < 1/p. Then, for each 0 ≤ ` ≤ n− 1, the following are equivalent:

(i) the (n− `)-th Betti number of Ω vanishes, i.e. bn−`(Ω) = 0;

(ii) there exists a finite constant C > 0 such that for any f ∈ Ap,qs (Ω,Λ`) with
df = 0 and ν ∧ f = 0, there exists u ∈ Ap,qs (Ω,Λ`−1) with du = f , ν ∧ u = 0, and
such that

‖u‖Ap,q
s (Ω,Λ`−1) ≤ C‖f‖Ap,q

s (Ω,Λ`). (200)
Corresponding to ` = n, we have the following statement. There exists a finite

constant C > 0 such that for any f ∈ Ap,qs (Ω,Λn) with 〈f, χΩjVM 〉 = 0, 1 ≤ j ≤
b0(Ω), there exists u ∈ Ap,qs (Ω,Λn−1) with du = f , ν ∧ u = 0, and such that

‖u‖Ap,q
s (Ω,Λn−1) ≤ C‖f‖Ap,q

s (Ω,Λn). (201)

Proof. That (ii) implies (i) is a direct consequence of Corollary 5.6. Conversely,
assume (i) so that, by (196), the linear operator

d : {w ∈ D`−1(d;Ap,qs (Ω)) : ν ∧ w = 0}

−→ {u ∈ D`(d;Ap,qs (Ω)) : du = 0 and ν ∧ u = 0} (202)
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is onto. When the space intervening in (202) are equipped with natural norms
(graph norm for the space on the left; the space on the right is simply viewed
as a closed subspace of Ap,qs (Ω,Λ`)), this operator becomes bounded also. Then
the desired conclusion (in particular, the estimate (200)) follows from the Open
Mapping Theorem.

The last part of the proposition is a consequence of (197).

We now turn to the

Proof of Theorem 1.1. Assume first that 0 ≤ ` ≤ n − 1. To get started, we note
that the set of conditions (3) is necessary for the solvability of (4). Indeed, assuming
that the conditions in (4) are satisfied, we compute

df = d(du) = 0 and ν ∧ f = ν ∧ du = −d∂(ν ∧ u) = −d∂(ν ∧ g), (203)

as wanted.
Next, suppose that (ii) in Theorem 1.1 holds. Then (ii) in Proposition 6.1 holds

as well and, consequently, bn−`(Ω) = 0. Thus, (i) in Theorem 1.1 holds, as desired.
Conversely, assume that bn−`(Ω) = 0. Our goal is to show that, granted (3), the

Poisson problem (4) is always solvable in such a way that (5) is valid. To this end,
fix two differential forms f ∈ Ap,qs (Ω,Λ`) and g as in (2) such that the conditions (3)
hold, and consider G := Ex(g) ∈ Ap,qs+1(Ω,Λ`−1). Then F := f − dG ∈ Ap,qs (Ω,Λ`)
satisfies

dF = 0 in Ω, and ν ∧ F = 0 on ∂Ω. (204)
Next, let C > 0 be the constant (depending exclusively on the domain Ω as well

as on p, q and s) which is described in (ii) of Proposition 6.1. Then, by virtue of
this result, one can find w ∈ Ap,qs (Ω,Λ`−1) such that

dw = F in Ω, ν ∧ w = 0 on ∂Ω, and ‖w‖Ap,q
s (Ω,Λ`−1) ≤ C‖F‖Ap,q

s (Ω,Λ`). (205)

Consider next a finite covering {Oj}1≤j≤N of Ω with open coordinate charts on M
such that, when viewed as a subset of the Euclidean space, each Oj ∩ Ω becomes
a bounded Lipschitz domain which is star-like with respect to a ball. Finally,
let {ϕj}j be a C∞ smooth partition of unity subordinate to this cover. Letting
Fj := ROj∩Ω(d(ϕjw)), we have

Fj ∈ Ap,qs (Oj ∩Ω,Λ`), dFj = 0 in Oj ∩Ω, and ν ∧Fj = 0 on ∂(Oj ∩Ω) (206)

for 1 ≤ j ≤ N .
By the local theory developed in §4, for each j there exits uj ∈ Ap,qs+1,z(Oj∩Ω,Λ`)

such that

duj = Fj in Oj ∩ Ω, and ‖uj‖Ap,q
s+1,z(Oj∩Ω,Λ`−1) ≤ C‖Fj‖Ap,q

s (Oj∩Ω,Λ`). (207)

Indeed, if the operators J` are as in Theorem 4.1 (with Ω replaced by Oj ∩ Ω), we
may take uj := J`Fj . Then the properties (207) follow from (144)-(145) and (163).

Going further, we recall that tilde denotes the extension by zero operator (cf.
§2.2) and note that ũj ∈ Ap,qs+1,0(Ω,Λ`−1) satisfies

dũj = d̃uj . (208)

Indeed, the distribution dũj − d̃uj belongs to Ap,qs (M,Λ`) and is supported on ∂Ω.
On the other hand, for any Lipschitz domain Ω there holds

{h ∈ Ap,qs (M) : supph ⊆ ∂Ω} = 0, 1 < p, q <∞, −1 +
1
p
< s. (209)
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When ∂Ω ∈ C∞ this is proved on pp. 45-46 of [57] but the proof carries over verbatim
to the Lipschitz case. Consequently,

v := RΩ

[ N∑
j=1

ũj

]
∈ Ap,qs+1,z(Ω,Λ

`−1) (210)

satisfies

dv = RΩ

[ N∑
j=1

F̃j

]
= F. (211)

Finally, u := v +G ∈ Ap,qs+1(Ω,Λ`−1), solves (4) and obeys (5).
To deal with the last part in the theorem, we note that there is no loss of

generality in assuming that Ω is connected and g = 0 (the latter reduction is ensured
by reasoning as before). Then Proposition 6.1 yields some v ∈ Ap,qs (Ω,Λn−1) such
that dv = f , ν ∧ v = 0 and ‖v‖Ap,q

s (Ω,Λn−1) ≤ C‖f‖Ap,q
s (Ω,Λn). Let {Oj}1≤j≤N be a

finite, open covering of Ω such that each Oj ∩Ω is contained in a coordinate patch
and becomes a Lipschitz domain which is star-like with respect to a ball, when
viewed as a subset of the Euclidean space. Also, fix {ϕj}j a smooth partition of
unity such that suppϕj ⊆ Oj for 1 ≤ j ≤ N . Finally, set fj := ROj∩Ω(d(ϕjv)) ∈
Ap,qs (Oj ∩Ω,Λn) and notice that ν ∧ fj = −d∂(ν ∧ (ϕjv)) = 0 on ∂(Oj ∩Ω). Next,
since δVM = δ(∗1) = − ∗ d1 = 0, formula (31) gives that, for each j,

〈fj , ROj∩Ω(VM )〉 = 〈dROj∩Ω(ϕjv), ROj∩Ω(VM )〉 = 0 (212)

as ν ∧ (ϕjv) = 0 on ∂(Oj ∩Ω). Having established (212), consider the operators J`
from Theorem 4.1 with Ω replaced by Oj ∩Ω. In view of (212), the last identity in
(144) then allows us to write fj = duj in Oj ∩ Ω, where uj := Jnfj ∈ Ap,qs+1,z(Oj ∩
Ω,Λn−1) for 1 ≤ j ≤ N . Moreover, ‖uj‖Ap,q

s (Oj∩Ω,Λn−1) ≤ C‖f‖Ap,q
s (Ω,Λn) for each

j. Consequently, the differential form u := RΩ

(∑
j ũj

)
belongs to Ap,qs+1,z(Ω,Λ

n−1)
satisfies du = f , as well as ‖u‖Ap,q

s (Oj∩Ω,Λn−1) ≤ C‖f‖Ap,q
s (Ω,Λn). This finishes the

proof of Theorem 1.1.

Finally, we are ready to present the

Proof of Theorem 1.2. Assume first that 0 ≤ ` ≤ n − 1, bn−`(Ω) = 0 and that
the conditions (8) are satisfied. In this case, thanks to Proposition 2.12, ġ :=
{gα}|α|≤k ∈ Ḃp,qs+1−1/p(∂Ω) so that if v := Ex (ġ) ∈ Ap,qs+1(Ω,Λ`−1) then Tr [∂αv] =
gα for each multi-index α of length at most k. In particular, the differential form

F := f − dv ∈ Ap,qs (Ω,Λ`) (213)

satisfies dF = 0 in Ω and, for each multi-index α with |α| ≤ k − 1,

Tr [∂αF ] = Tr [∂αf ]− Tr
[ n∑
j=1

dxj ∧ ∂j(∂αv)
]

= Tr [∂αf ]−
n∑
j=1

dxj ∧ gα+ej
= 0. (214)

Consequently, F ∈ Ap,qs,z(Ω,Λ`) by (74). Thus, (196) and the current assumptions
imply that there exists w ∈ Ap,qs+1,z(Ω,Λ

`) such that dw = F in Ω, plus a naturally
accompanying estimate. It follows that u := v + w solves (7) and, in addition, it
obeys (9).
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Conversely, assume that (ii) in the statement of the theorem holds. By taking
gα = 0 for every multi-index α of length ≤ k − 1, it follows that for any f ∈
Ap,qs,z(Ω,Λ

`) with df = 0 there exists u ∈ Ap,qs+1,z(Ω,Λ
`) with du = f . Thus, by

(196), bn−`(Ω) = 0, as desired.
To treat the last part in the statement of the theorem, corresponding to the case

when ` = n, we note that, on the one hand, it is straightforward to check that the
conditions in (10) are indeed necessary for the solvability of (7) when ` = n.

On the other hand, assuming that the compatibility conditions (10) are verified,
we can construct ġ, v, F , as before. Then, with VRn := dx1∧ · · · ∧dxn denoting the
Euclidean volume form, for each j = 1, ..., b0(Ω), we may write∫

Ωj

〈F,VRn〉 dx =
∫

Ωj

〈f,VRn〉 dx−
∫

Ωj

〈dv,VRn〉 dx

=
∫

Ωj

〈f,VRn〉 dx−
∫

Ωj

〈v, δVRn〉 dx−
∫

Ωj

〈ν ∧ Tr v,VRn〉 dσ

=
∫

Ωj

〈f,VRn〉 dx−
∫

Ωj

〈ν ∧ g(0,...0),VRn〉 dσ

= 0 (215)

thanks to the fact that δVRn = 0 and the second condition in (10). With this in
hand, (198) gives that there exists w ∈ Ap,qs+1,z(Ω,Λ

n−1) satisfying dw = F in Ω and
a natural estimate. Thus, u := v + w is the desired solution.

7. Further applications. We start by recording some useful particular cases of
Theorems 1.1-1.2.

Proposition 7.1. Assume that Ω is a Lipschitz subdomain and fix 1 < p, q < ∞,
k ∈ No, s ∈ (k − 1 + 1/p, k + 1/p) and ` ∈ {1, 2, ..., n − 1}. Then the condition
bn−`(Ω) = 0 is equivalent to

d
[
Ap,qs+1,z(Ω,Λ

`−1)
]

= {f ∈ Ap,qs (Ω,Λ`) : df = 0 in Ω, ν ∧ f = 0 on ∂Ω} (216)

when k = 0 and, when k ≥ 1, to

d
[
Ap,qs+1,z(Ω,Λ

`−1)
]

= {f ∈ Ap,qs,z(Ω,Λ`) : df = 0 in Ω}. (217)

Similarly, for 2 ≤ ` ≤ n, the condition b`−1(Ω) = 0 is equivalent to

δ
[
Ap,qs+1,z(Ω,Λ

`)
]

= {f ∈ Ap,qs (Ω,Λ`−1) : δf = 0 in Ω, ν ∨ f = 0 on ∂Ω}, (218)

when k = 0, and to

δ
[
Ap,qs+1,z(Ω,Λ

`)
]

= {f ∈ Ap,qs,z(Ω,Λ`−1) : δf = 0 in Ω} (219)

when k ≥ 1.

Proof. In the case when bn−`(Ω) = 0, (216)-(217) follow directly from the fact that
the boundary value problems dealt with in Theorems 1.1-1.2 are solvable (with zero
boundary data). Also, the converse implication is a consequence of Corollary 5.6.
Finally, the second part of the proposition follows from the first, after an application
of the Hodge star-isomorphism.
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Proposition 7.2. Assume that Ω is a Lipschitz subdomain and fix 1 < p, q < ∞,
k ∈ No, s ∈ (k−1+1/p, k+1/p) and ` ∈ {1, 2, ..., n−1}. Then, if bn−`(Ω) = 0, the
closure of d

[
C∞c (Ω,Λ`−1)

]
in Ap,qs (Ω,Λ`) is {f ∈ Ap,qs (Ω,Λ`) : df = 0 in Ω, ν∧f =

0 on ∂Ω} if k = 0, and {f ∈ Ap,qs,z(Ω,Λ`) : df = 0 in Ω} if k ≥ 1.

Similarly, if 2 ≤ ` ≤ n and b`−1(Ω) = 0 then the closure of δ
[
C∞c (Ω,Λ`)

]
in

Ap,qs (Ω,Λ`−1) is the space {f ∈ Ap,qs (Ω,Λ`−1) : δf = 0 in Ω, ν ∨ f = 0 on ∂Ω} if
k = 0, and the space {f ∈ Ap,qs,z(Ω,Λ`−1) : δf = 0 in Ω} if k ≥ 1.

Proof. This follows immediately from Proposition 7.1 and (57).

Proposition 7.3. Let Ω be a Lipschitz domain of the Riemannian manifold M
with the property that bn−`−1(Ω) = bn−`(Ω) = 0 for some ` ∈ {1, ..., n− 2}. Then,
for 1 < p, q <∞ and −1 + 1/p < s < 1/p, any `-differential form u satisfying

u ∈ Ap,qs (Ω,Λ`) with du ∈ Ap,qs (Ω,Λ`+1), δu ∈ Ap,qs (Ω,Λ`−1) and ν ∧ u = 0 on ∂Ω
(220)

can be written in the form

u = dv + w, where w ∈ Ap,qs+1,z(Ω,Λ
`), (221)

v ∈ Ap,qs+1,z(Ω,Λ
`−1), δdv ∈ Ap,qs (Ω,Λ`−1),

and such that, for some C > 0 depending exclusively on Ω, p, q, s,

‖v‖Ap,q
s+1(Ω,Λ`−1) + ‖δdv‖Ap,q

s (Ω,Λ`−1) + ‖w‖Ap,q
s+1,z(Ω,Λ`) (222)

≤ C
(
‖u‖Ap,q

s (Ω,Λ`) + ‖du‖Ap,q
s (Ω,Λ`+1) + ‖δu‖Ap,q

s (Ω,Λ`−1)

)
.

Proof. Since du ∈ Ap,qs (Ω,Λ`+1) satisfies d(du) = 0 and ν ∧ du = −δ∂(ν ∧ u) = 0,
Proposition 7.1 yields the existence of a form w ∈ Ap,qs+1,z(Ω,Λ

`) such that dw = du.
In particular, if ω := u−w ∈ Ap,qs (Ω,Λ`) then dω = 0 and ν∧ω = 0. By once again
invoking Proposition 7.1, we infer the existence of a form v ∈ Ap,qs+1,z(Ω,Λ

`−1) such
that dv = ω. Thus, u = dv + w and, in particular, δdv = δu− δw ∈ Ap,qs (Ω,Λ`−1).
Finally, (222) is implicit in the above construction.

Related regularity results, albeit of a different nature, have been recently obtained
in [44].

The particular case of Proposition 7.3 corresponding to A = F , q = 2, s = 0,
` = 1, n = 3 and when Ω is a bounded, Euclidean Lipschitz domain, answers a
question posed to us by M.S. Birman during his visit at UMC in April of 2000. More
specifically, upon recalling the definition (44), we have the following description of
the nature of singularities for the vector fields which naturally enter the formulation
of the Maxwell system.

Corollary 7.4. Assume that Ω is a bounded Lipschitz domain in R3 with the prop-
erty that b1(Ω) = b2(Ω) = 0. Then, for 1 < p < ∞, any vector field u ∈ Lp(Ω,R3)
satisfying curlu ∈ Lp(Ω,R3), div u ∈ Lp(Ω) and ν × u = 0 on ∂Ω can be written in
the form

u = ∇ϕ+ w, where ϕ ∈ Lp1,z(Ω), ∆ϕ ∈ Lp(Ω), and w ∈ Lp1,z(Ω,R3) (223)
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and, for some C > 0 depending exclusively on Ω and p,

‖ϕ‖Lp
1(Ω) + ‖∆ϕ‖Lp(Ω) + ‖w‖Lp

1(Ω,R3)

≤ C
(
‖u‖Lp(Ω,R3) + ‖curlu‖Lp(Ω,R3) + ‖div u‖Lp(Ω)

)
. (224)

The case p = 2 has been established in [3] via Hilbert space methods, and
subsequently played a key role in [4] and [5]. When more information about the
geometry of Ω is available then the above result can be further refined. Concretely,
we have:

Proposition 7.5. Let Ω be a bounded convex domain in R3 and assume that 1 <
p ≤ 2. Then any vector field u ∈ Lp(Ω,R3) satisfying curlu ∈ Lp(Ω,R3), div u ∈
Lp(Ω) and ν × u = 0 on ∂Ω, belongs to Lp1(Ω,R3) and, for some C > 0 depending
exclusively on Ω and p,

‖u‖Lp
1(Ω,R3) ≤ C

(
‖u‖Lp(Ω,R3) + ‖curlu‖Lp(Ω,R3) + ‖div u‖Lp(Ω)

)
. (225)

Proof. Start with the decomposition (223) and observe that, as a consequence of
the fact that Ω is convex, ϕ ∈ Lp1,z(Ω) and ∆ϕ ∈ Lp(Ω) imply ϕ ∈ Lp2(Ω); cf.
[1], [21]. Returning with this in (221) finally gives u ∈ Lp1(Ω,R3) plus a naturally
accompanying estimate.

Let us point out that, as far as the estimate (225) is concerned, the range 1 <
p ≤ 2 is sharp, and that a similar result holds in the class of Lipschitz domains
satisfying a uniform (exterior) sphere condition.

We next discuss a lifting result on Besov and Triebel-Lizorkin spaces on (Eu-
clidean) Lipschitz domains.

Proposition 7.6. Let 1 < p, q < ∞, k ∈ N and s ∈ R. Then for any distribution
u in the bounded Lipschitz domain Ω ⊂ Rn, the following implication holds:

∂αu ∈ Ap,qs−k(Ω), ∀α : |α| = k =⇒ u ∈ Ap,qs (Ω). (226)

Proof. By induction, it suffices to treat only the case when k = 1, which we shall
assume from now on. Let us first consider the case when s < 1 + 1/p. Note that
the problem is local in character and, hence, there is no loss of generality assuming
that Ω is starlike with respect to some ball.

In this context, it follows from the discussion in §4 that there exist a function

θ ∈ C∞c (Ω) and a linear, bounded operator J : (Ap,qs (Ω))∗ →
◦

Ap
′,q′
−s+1(Ω,Rn) such

that Jϕ ∈ C∞c (Ω,Rn) for any ϕ ∈ C∞c (Ω) and div (Jϕ) = ϕ − (
∫
ϕ)θ for any

ϕ ∈ C∞c (Ω). We now make the claim that

J : (Ap,qs (Ω))∗ −→ (Ap,qs−1(Ω,Rn))∗ boundedly, whenever s < 1 +
1
p
. (227)

To justify this, we observe that

J : (Ap,qs (Ω))∗ −→
◦

Ap
′,q′
−s+1(Ω,Rn)

(1)
== Ap

′,q′

−s+1,z(Ω,R
n)

(2)
== (Ap,qs−1(Ω,Rn))∗ (228)

where, thanks to (61), the equality (1) holds if s − 1/p /∈ Z, and (2) holds if
s < 1/p by virtue of (50). Hence, in a first stage, (227) holds under the additional
assumption that 1

p − s /∈ No, which may subsequently be removed by interpolation.
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Having established (227), for any ϕ ∈ C∞c (Ω), our current assumptions on p and
s allow us to estimate

|〈u, ϕ〉| ≤ |〈u,divJϕ〉|+ |〈u, θ〉| |〈ϕ, 1〉|

≤ |〈∇u,Jϕ〉|+ |〈u, θ〉| ‖ϕ‖(Ap,q
s (Ω))∗

≤ ‖∇u‖Ap,q
s−1(Ω,Rn)‖Jϕ‖(Ap,q

s−1(Ω,Rn))∗ + |〈u, θ〉| ‖ϕ‖(Ap,q
s (Ω))∗

≤ C
(
‖∇u‖Ap,q

s−1(Ω,Rn) + |〈u, θ〉|
)
‖ϕ‖(Ap,q

s (Ω))∗ . (229)

Since C∞c (Ω) is dense in (Ap,qs (Ω))∗ and Ap,qs (Ω) is reflexive, we may finally conclude
that u ∈ Ap,qs (Ω), as desired.

Next, consider the case when s > 1 (while still assuming that k = 1); in partic-
ular, Ap,qs−1(Ω) ↪→ Lp−1(Ω). Then the above reasoning shows that any distribution
as in the left-hand side of (226) belongs to Lp(Ω). With this extra piece of infor-
mation in hand, the implication (226) has been proved in Proposition 2.18 of [27]
when either A = B, or A = F and q = 2. However, as observed in [29], the latter
condition on q may be omitted, and this finishes the proof of the proposition.

Our last application concerns the regularity of the Hodge decomposition for dif-
ferential forms in Lipschitz domains.

Proposition 7.7. Let Ω ⊂ M be a Lipschitz domain and ` ∈ {1, 2, ..., n− 1} such
that b`(Ω) = 0. Then there exist 1 ≤ pΩ < 2 < qΩ ≤ ∞ with 1/pΩ + 1/qΩ = 1 with
the following significance. Any differential form u ∈ Lps(Ω,Λ`) can be decomposed
as

u = dv + δw where w ∈ Lps+1,z(Ω,Λ
`+1), (230)

v ∈ Lps(Ω,Λ`−1), dv ∈ Lps(Ω,Λ`),
with v, w satisfying natural estimates, provided pΩ < p < qΩ and

either n = dimM = 3 and − 1 + 1/p < s < 1/p, (231)

or n = dimM > 3 and s = 0. (232)

Proof. It has been proved in [42] and [41] that there exists pΩ, qΩ as in the statement
of the proposition such that, under the assumptions (231)-(232), any differential
form u ∈ Lps(Ω,Λ`) can be decomposed as u = dv + ω where v is as in (230) and
ω ∈ Lps(Ω,Λ

`) satisfies δω = 0, ν ∨ ω = 0. Hence, thanks to (218), there exists
w ∈ Lps+1,z(Ω,Λ

`+1) such that δw = ω, and this proves (230).

A few final remarks are as follows. First, when n = 3, it was shown in [42] that
one can take 1 ≤ pΩ < 3/2 < 3 < qΩ ≤ ∞. Furthermore, in the same context, one
can take pΩ = 1 and qΩ =∞ provided the outward unit conormal ν to ∂Ω belongs
to Sarason’s class of functions with vanishing mean oscillations (as is trivially the
case when, e.g., ∂Ω ∈ C1).

Second, when ` = 1, the scalar function v appearing in (230) actually belongs to
Lps+1(Ω), as a simple application of Proposition 7.6 shows.

Third, when Ω is a bounded, three-dimensional, Euclidean domain with a C2

boundary and when ` = 1, the above Hodge decomposition result has been proved
by R. Griesinger in [25]. On p. 245 of that paper the author asks whether the higher
dimensional version of (230) holds, an issue addressed by our proposition above.



POISSON PROBLEM FOR EXTERIOR DERIVATIVE 37

Acknowledgments. This work has been completed during successive visits at the
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Recherches Mathématiques, 21, Dunod, Paris, 1972.

[20] N. D. Filonov, On bounded solutions to the equation divu = f in a plane domain, in “Pro-

ceedings of the St. Petersburg Mathematical Society,” VI, Amer. Math. Soc. Transl. Ser. 2,
199, Amer. Math. Soc., Providence, RI, (2000), 199–207.

[21] S. Fromm, Potential space estimates for Green potentials in convex domains, Proc. Amer.
Math. Soc., 119 (1993), 225–233.



38 DORINA MITREA, MARIUS MITREA AND SYLVIE MONNIAUX

[22] G. P. Galdi, “An Introduction to the Mathematical Theory of the Navier-Stokes Equations,”
Springer-Verlag, New York, 1994.

[23] V. Girault and P.-A. Raviart, “Finite Element Approximation of the Navier-Stokes Equa-

tions,” Lecture Notes in Mathematics, 749, Springer-Verlag, Berlin-New York, 1979.
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