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LATP, UMR 6632, Faculté des Sciences et Techniques
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Abstract. We investigate the Navier-Stokes equations in a suitable
functional setting, in a three-dimensional bounded Lipschitz domain Ω,
equipped with “free boundary” conditions. In this context, we employ
the Fujita-Kato method and prove the existence of a local mild solu-
tion. Our approach makes essential use of the properties of the Hodge-
Laplacian in Lipschitz domains.

1. Introduction

Let Ω ⊂ R3 be a bounded Lipschitz domain. That is, ∂Ω can be locally de-
scribed by means of graphs of real-valued Lipschitz functions in R2, suitably
rotated and translated. The Navier-Stokes system with Dirichlet boundary
conditions for an incompressible fluid occupying the domain Ω reads (in the
absence of body forces) as follows:

∂u
∂t −∆u+∇p+ (u · ∇)u = 0 in (0, T )× Ω

div u = 0 in (0, T )× Ω

u = 0 on (0, T )× ∂Ω

u(0, ·) = u0 in Ω,

(1.1)

where u denotes the velocity of the fluid, p stands for its pressure, and u0 is
the initial velocity (assumed to be divergence-free and with vanishing normal
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component on ∂Ω). We denote by A the Stokes operator (see Definition 2.4
in [23]).

The space D(A
1
4 ) is critical for the problem (1.1) in the Hilbert space

setting. For the initial value u0 ∈ D(A
1
4 ), it has been shown in [23] (see

also [22]) that (1.1) admits a solution u ∈ C(0, T ;D(A
1
4 )) (T depending

on the size of u0) in the case where Ω ⊂ R3 is any domain bounded or
unbounded, smooth or not smooth. In the Lp−space setting, the critical
space D(A

1
4 ) corresponds to L3(Ω; R3) by Sobolev embeddings. This case is

more subtle since nothing is known about the behavior of the Stokes operator
in Lp−spaces if the domain Ω is not smooth enough. Taylor conjectured in
[28] that the Stokes operator generates an analytic semi-group in Lp for
certain values of p, which is a key tool to prove existence of mild solutions,
but this remains unproved.

Besides Dirichlet, another natural set of boundary conditions which have
received a substantial amount of attention in the literature (cf. [1], [2], [3],
[4], [5], [6], [11], [12], [16], [17], [25], [27], [30], [31], and the references therein)
is provided by the following “free boundary” conditions (in the terminology
employed on page 503 of [30]):{

ν · u = 0 on (0, T )× ∂Ω

ν × curlu = 0 on (0, T )× ∂Ω,
(1.2)

where ν denotes the outward unit normal to Ω. The first equation above
is a “no-penetration” condition, whereas the second one indicates that the
vorticity is normal to the boundary. It is of interest to compare (1.2) with
the more traditionally used Navier’s slip boundary conditions to the effect
that {

ν · u = 0 on (0, T )× ∂Ω

[(∇u+∇u>)ν]tan = 0 on (0, T )× ∂Ω.
(1.3)

We do so in Section 2 where we show that, if ∂Ω ∈ C2, then (1.2) differs from
(1.3) only by a zero-order term (which actually vanishes on the flat portions
of ∂Ω). Incidentally, this clarifies a somewhat obscure point in the literature
(cf. page 341 in [29] where apparently the incorrect claim is made that (1.2)
and (1.3) are identical).

Granted that u is a sufficiently smooth vector field, we may write

(u · ∇)u = 1
2∇ |u|

2 + u× curlu.
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Therefore, replacing p in (1.1) with the so-called dynamical pressure (cf.,
e.g., [16])

π := 1
2 |u|

2 + p

and adopting (1.2) as boundary conditions, we arrive at the following initial
boundary-value problem

∂u
∂t −∆u+∇π + u× curlu = 0 in (0, T )× Ω

div u = 0 in (0, T )× Ω

ν · u = 0 on (0, T )× ∂Ω

ν × curlu = 0 on (0, T )× ∂Ω

u(0, ·) = u0 in Ω.

(1.4)

The boundary conditions (1.2) are natural for the Hodge-Laplacian (i.e.,
the Laplacian acting on vector fields), in which context they are known as
relative boundary conditions (cf. [27]). For this reason, we shall refer to
(1.4) as the Hodge-Navier-Stokes system.

The existence of mild solutions for (1.1) with initial data u0 ∈ L3(Ω; R3)
has been studied in [14] in the case where Ω = R3, and in [15] in the case when
Ω is a bounded domain with a (C∞) smooth boundary. In both instances,
the major tool in the proof of the existence of a mild solution was the fact
that

the Stokes semi-group is analytic in Lp (1.5)

for every 1 < p < ∞. Of course, for arbitrary bounded Lipschitz domains,
simple functional analysis gives that (1.5) is always valid when p = 2. On
the other hand, Deuring has proved in [8] that there exist three-dimensional,
bounded, cone-like domains (hence, in particular, Lipschitz) such that (1.5)
fails for certain values of p. This spectrum of results raises the issue of
determining the optimal range of p’s for which (1.5) holds. In [28], Taylor
has conjectured that, for bounded Lipschitz domains in R3, (1.5) holds for
all p’s in an open interval containing [3

2 , 3].
While, in its original formulation, this question remains open at the

present time, progress in a related direction has recently been registered in
[21], where the authors have proved that the Hodge-Stokes operator (more
on this below) generates an analytic semi-group in Lp for all p’s in a certain
open interval containing [3

2 , 3]. This is the natural analogue of Taylor’s con-
jecture for the system (1.1). In turn, this result suggests the consideration
of the nonlinear problem (1.4), a close relative of (1.1), from the perspective
of the classical Fujita-Kato approach.
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Concerning the linear part of (1.4), we summarize the results of [21] in
Theorem 1.1 below. Let A be the operator associated with the linear part of
(1.4), which we shall refer to as the Hodge-Stokes operator. In the context
of Lp−spaces (1 < p <∞), A = Ap is defined as follows:

D(Ap) := {u ∈ Lp(Ω; R3) : divu = 0 in Ω, curlu ∈ Lp(Ω; R3)

∆u ∈ Lp(Ω; R3) and ν · u = 0, ν × curlu = 0 on ∂Ω}
Apu := −∆u = curl curlu, ∀u ∈ D(Ap).

(1.6)

The operator Ap acts as an unbounded operator in

Xp := {u ∈ Lp(Ω; R3) : divu = 0 in Ω and ν · u = 0 on ∂Ω}.

The orthogonal projection P : L2(Ω; R3) → X2, known as the Helmholtz
projection extends to a bounded operator Pp : Lp(Ω; R3) → Xp whenever p
belongs to an interval (pΩ, qΩ) whose endpoints satisfy 1 ≤ pΩ < 3

2 < 3 <
qΩ ≤ ∞ and 1/pΩ + 1/qΩ = 1; in particular, (pΩ, qΩ) contains [3

2 , 3]. See
Theorem 11.1 of [13] where it has also been pointed out that if Ω is of class
C1 then one can take pΩ = 1 and qΩ = ∞. This implies, in particular, that
Xp is a closed subspace of Lp(Ω; R3) for p ∈ (pΩ, qΩ) and, when equipped
with the Lp norm, a Banach space. The following result is a combination of
Lemma 3.9, Theorem 6.1 and Theorem 7.3 of [21].

Theorem 1.1. For each p ∈ (pΩ, qΩ), the operator −Ap generates an an-
alytic semi-group (e−tAp)t≥0 in Xp, referred to in the sequel as the Hodge-
Stokes semi-group, satisfying

sup
t≥0

(
‖e−tAp‖Xp→Xp+‖

√
t curl e−tAp‖Xp→Lp+‖t curl curl e−tAp‖Xp→Lp

)
<∞.

The nonlinear problem (1.4) can be now rewritten in the following form:

u(t) ∈ D(Ap), t ∈ (0, T ]

u′(t) +Apu(t) + Pp
(
u(t)× curlu(t)

)
= 0, t ∈ (0, T ]

u(0) = u0 ∈ Xp,

(1.7)

by formally applying the projection Pp to the first equation listed in (1.4).
Our goal is to show the existence of a solution for the problem (1.7) with
small initial data u0 ∈ X3, when Ω is a bounded Lipschitz domain. See
Theorem 5.4 for a precise formulation.
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2. The relationship between free-surface and slip boundary
conditions

In the three-dimensional context, one has the readily verified identity(
ν × curlu

)
j

= ν · ∂ju− ∂νuj , 1 ≤ j ≤ 3. (2.1)

Consider now the case when Ω is a domain in Rn (where n ≥ 2) and u =
(u1, ..., un) is a vector field (as before, playing the role of the velocity field
of a fluid). In this context, the analogue of our boundary conditions (1.2) is

ν ·u = 0 and ν ·∂ju−∂νuj = 0 on (0, T )×∂Ω, for every j ∈ {1, .., n}. (2.2)

We wish to contrast these so-called free-boundary conditions with Navier’s
slip boundary conditions, which we now proceed to recall. To get started,
introduce the deformation tensor of u as

Def (u) := 1
2

(
∂juk + ∂kuj

)
1≤j,k≤n = 1

2(∇u+∇u>), (2.3)

and, with In×n denoting the n × n identity matrix, recall Cauchy’s stress
tensor

T (u, π) := 2Def (u)− πIn×n. (2.4)

Also, set

B(u) := [T (u, π)ν]tan = T (u, π)ν −
〈
T (u, π)ν, ν

〉
ν

= (∇u+∇u>)ν − 2
〈
(∇u)ν, ν

〉
ν. (2.5)

Then Navier’s slip boundary conditions read

ν · u = 0 and B(u) = 0 on (0, T )× ∂Ω. (2.6)

To compare the two sets of boundary conditions (2.2) and (2.6), we wish to
compare B(u) with the vector

(
ν · ∂ju− ∂νuj

)
1≤j≤n. We shall do so under

the assumption that the boundary of the underlying domain Ω ⊂ Rn is of
class C2. The reader is referred to the Appendix (Section 6) of this paper
for definitions and properties of a number of geometrical entities associated
with the C2 surface S := ∂Ω. Then, if U , ν are as in Proposition 6.1, for a
reasonably well-behaved vector field u in U we may write

B(u)
(1)
= (∇u+∇u>)ν − 2

〈
(∇u)ν, ν

〉
ν

(2)
=

(
ν · ∂ju+ ∂νuj − 2(ν · ∂νu)νj

)
1≤j≤n
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(3)
= −

(
ν · ∂ju− ∂νuj

)
1≤j≤n

+ 2
(
ν · ∂ju− (ν · ∂νu)νj

)
1≤j≤n

.

Above, the first equality is just the definition of B(u), the second is equality
obtained by expanding (∇u+∇u>)ν, while the third equality is a matter of
trivial algebra.

Let now j ∈ {1, ..., n} be fixed. By decomposing the vector ej into its
tangential part (ej)tan and its normal part (ej · ν)ν = νjν, the quantity
ν · ∂ju becomes

ν · ∂ju
(1)
= ν ·

(
(ej · ∇)u

)
(2)
= ν ·

(
([(ej)tan + νjν] · ∇)u

)
(3)
= ν ·

(
∇(ej)tanu+ νj∂νu

)
(4)
= ∇(ej)tan(ν · u)− [∇(ej)tanν] · u+ (ν · ∂νu)νj .

The first equality is a consequence of ∂j = ej · ∇, the second equality is due
to the decomposition of ej into its tangential and its normal parts, while the
third equality is based on the fact that ν · ∇ = ∂ν and (ej)tan · ∇ = ∇(ej)tan .
It is relevant to note that ∇(ej)tan is a tangential derivation operator along
∂Ω. Plugging this back into the expression of B(u) we obtain

B(u) = −
(
ν · ∂ju− ∂νuj

)
1≤j≤n

+ 2
(
ν · ∂ju− (ν · ∂νu)νj

)
1≤j≤n

= −
(
ν · ∂ju− ∂νuj

)
1≤j≤n

+ 2
(
∇(ej)tan(ν · u)− [∇(ej)tanν] · u

)
1≤j≤n

.

The last step is now to identify the quantity ∇(ej)tanν. One has

∇(ej)tanν =
(
∇ejνk −∇(νjν)νk

)
1≤k≤n

=
(
∂jνk − νj∂ννk

)
1≤k≤n

,

which shows that, in the neighborhood U of ∂Ω, we have

B(u) = −
(
ν ·∂ju−∂νuj

)
1≤j≤n

+2
(
∇(ej)tan(ν ·u)

)
1≤j≤n

−2Ru+2[(∂νν)·u]ν,

where R is the matrix defined by (6.7). Restricting both sides to ∂Ω yields,
thanks to Proposition 6.1(iii) and (6.8),

B(u) = −
(
ν · ∂ju− ∂νuj

)
1≤j≤n

− 2Ru+ 2
(
∇(ej)tan(ν · u)

)
1≤j≤n

. (2.7)

Since ∇(ej)tan is a tangential derivation operator along ∂Ω, the extra as-
sumption that ν · u = 0 on ∂Ω guarantees both that the last term in (2.7)
vanishes, and that u|∂Ω is a tangential field. Consequently, Ru = −Wu on
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∂Ω, whereW is the Weingarten map on ∂Ω (cf. Section 6). In summary, the
above shows that an equivalent way of expressing the boundary conditions
(2.6) is

ν · u = 0 and −
(
ν · ∂ju− ∂νuj

)
1≤j≤n

+ 2Wu = 0 on (0, T )× ∂Ω. (2.8)

In particular, if n = 3, then the above Navier’s slip boundary conditions
become

ν · u = 0 and − ν × curlu+ 2Wu = 0 on (0, T )× ∂Ω. (2.9)

A few comments are in order here. The quantity Wu appearing in (2.8) and
(2.9) is a zero-order term. It has a clear geometrical significance vis-a-vis
the surface ∂Ω (cf. Section 6 for a discussion) and it depends linearly on
the velocity field u. Furthermore, on the flat portions of ∂Ω we have that
W = 0 (since ν is constant). Hence, there is genuine agreement between
the boundary conditions (2.6) and (2.2) on the flat patches of ∂Ω. Finally,
we wish to point out that using the language of differential forms on Rn (so
that d denotes the exterior derivative operator, ∗ stands for the Hodge-star
operator, and ∧, ∨ are the exterior and interior product, respectively) and
canonically identifying vector fields with 1-forms, we have

−ν × curlu = ν ∨ du, (2.10)

in the three-dimensional setting. Indeed, for any 1-form u in Rn we have

ν ∨ du =
n∑
i=1

νi

( n∑
j,k=1

∂juk[dxi ∨ (dxj ∧ dxk)]
)

=
∑

1≤j<k≤n
νj(∂juk − ∂kuj)dxk −

∑
1≤j<k≤n

νk(∂juk − ∂kuj)dxj

=
n∑
j=1

( n∑
k=1

νk(∂kuj − ∂juk)
)
dxj =

n∑
j=1

(∂νuj − ν · ∂ju)dxj ,

so (2.10) follows from (2.1). Hence, the correct substitute for ν × curlu = 0
in the n-dimensional setting is ν ∨ du = 0. In particular, when n = 2 this
takes the simpler form du = 0, or ∂2u1 − ∂1u2 = 0. Indeed, in general we
have du = ν ∧ (ν ∨ du) + ν ∨ (ν ∧ du) and, in the two-dimensional setting,
the 3-form ν ∧ du necessarily vanishes.
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3. An inverse of the curl, modulo gradient vectors

Let Ω be a bounded Lipschitz domain in R3. The Bessel potential scale
Lps(Ω) is then defined, for s ∈ R and 1 < p <∞, by

Lps(Ω) := {f |Ω : f ∈ (I −∆)−s/2Lp(R3)}, (3.1)

equipped with the natural infimum norm, which we shall denote by ‖ · ‖s,p.
As is well known, if k is a nonnegative integer, then

Lpk(Ω) = {f ∈ Lp(Ω) :
∑
|α|≤k‖∂

αf‖Lp(Ω) <∞}, (3.2)

the classical Lp-based Sobolev space of order k in Ω.
Assume next that Ω ⊂ R3 is a bounded domain, star-shaped with respect

to a ball B ⊂ Ω. In particular, from the lemma on page 20 in [19], it
follows that Ω is a Lipschitz domain. In this setting, we proceed to review
an assortment of results from Section 4 of [20], phrased in the context and
terminology of the current paper. To set the stage, fix a function θ ∈ C∞c (B)
with the property that

∫
θ = 1. Then there exist three linear operators K1,

K2 and K3 such that

K` :
(
C∞c (Ω; Λ`)

)′
−→

(
C∞c (Ω; Λ`−1)

)′
, 1 ≤ ` ≤ 3,

where we have set Λ0 := R, Λ1 := R3, Λ2 := R3 and Λ3 := R. The operators
K` are regularizing of order one in the sense that

K` : Lp(Ω; Λ`) −→ Lp1(Ω; Λ`−1), p ∈ (1,∞), (3.3)

and
K` : Lp−1(Ω; Λ`) −→ Lp(Ω; Λ`−1), p ∈ (1,∞). (3.4)

Moreover, for u : Ω → Λ` sufficiently smooth, the following formulas are
valid:

u = K1(∇u) +
∫

Ω(θu) for ` = 0,

u = K2(curlu) +∇(K1u) for ` = 1,

u = K3(divu) + curl (K2u) for ` = 2,

u = div (K3u) for ` = 3.

(3.5)

When acting on a sufficiently smooth function u : Ω→ Λ`, the operators K`

take the following form:

K`u(x) =
∫
B

∫ 1

0
t`−1θ(y)(x−y)×` u(tx+(1− t)y) dtdy, x ∈ Ω, 1 ≤ ` ≤ 3,

(3.6)
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where ×` denotes, respectively, the scalar product between two vectors if
` = 1, the cross product between two vectors if ` = 2, and multiplication of
a scalar and a vector if ` = 3. Assume now that p ∈ (pΩ, qΩ). By the second
equality in (3.5), for u ∈ Xp such that curlu ∈ Lp(Ω; R3), we have

u = Ppu = Pp(K2 curlu). (3.7)

At this stage, (3.7) and Theorem 1.1 suggest the following.

Theorem 3.1. Let Ω ⊂ R3 be a bounded domain which is star-shaped with
respect to a ball, and let p ∈ (pΩ, qΩ). Fix q ∈ (p, qΩ) and assume that
α ∈ (0, 1) is such that 1

p −
α
3 = 1

q . Then the Hodge-Stokes semi-group
(e−tAp)t≥0, considered in Xp, satisfies the estimate

sup
t≥0
‖t

α
2 e−tAp‖Xp→Lq + sup

t≥0
‖t

1+α
2 curl e−tAp‖Xp→Lq <∞. (3.8)

Proof. For each u ∈ Xp ∩ Xq(= Xq), which is a dense subspace of Xp,
Theorem 1.1 gives that

‖e−tApu‖p ≤ c ‖u‖p, for t > 0 (3.9)

and
‖
√
t curl e−tApu‖p ≤ c ‖u‖p, for t > 0. (3.10)

From (3.4) and (3.9) we then obtain

‖K2 curl e−tApu‖p ≤ c ‖curl e−tApu‖−1,p

≤ c ‖e−tApu‖p ≤ c ‖u‖p, for t > 0. (3.11)

Going further, from (3.10) and (3.3), we also have

‖
√
tK2curl e−tApu‖1,p ≤ c ‖

√
t curl e−tApu‖p ≤ c ‖u‖p, for t > 0. (3.12)

If α is as in the statement of the theorem, (3.11), (3.12) plus standard
interpolation and embedding estimates give that

‖t
α
2 K2 curl e−tApu‖q ≤ c ‖t

α
2 K2 curl e−tApu‖α,p

≤ c ‖K2 curl e−tApu‖1−αp ‖
√
tK2 curl e−tApu‖α1,p

≤ c ‖u‖p, for t > 0. (3.13)

The fact that u ∈ Xq guarantees that e−tAu ∈ Xq. Also, as already dis-
cussed, the projection Pq is known to be bounded on Lq(Ω; R3). Using (3.7)
(with p replaced by q and u replaced by e−tAu) and (3.13) we may write

‖t
α
2 e−tApu‖q = ‖Pq(t

α
2 e−tApu)‖q = ‖Pq(t

α
2 K2 curl e−tApu)‖q
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≤ c ‖t
α
2 K2 curl e−tApu‖q ≤ c ‖u‖p, for t > 0. (3.14)

This accounts for the first part of (3.8). As for the second part of (3.8),
we use the semi-group property, Theorem 1.1, as well as (3.14), in order to
write

‖curl e−tApu‖q ≤ ‖curl e−
t
2
Aq‖Xq→Lq‖e−

t
2
Apu‖q

≤ c
( t

2

)− 1
2
( t

2

)−α
2 ‖u‖p, for t > 0. (3.15)

This completes the proof of the theorem. �

4. The case of arbitrary Lipschitz domains

Let Ω ⊂ R3 be an arbitrary bounded Lipschitz domain (not necessarily
star-shaped with respect to a ball, as assumed in most of Section 2). By
Lemmas 1-2 on page 22 and the lemma on page 25 of [19], there exist a
finite, open cover of Ω̄ by domains star-shaped with respect to a ball and a
smooth partition of unity subordinate to this cover. More specifically, there
exists a family of open sets Oj such that

Ω̄ ⊂
N⋃
j=1

Oj (4.1)

and, for j = 1, ..., N , the domain Ωj := Ω ∩ Oj is star-shaped with respect
to a ball Bj , along with a family of functions φj ∈ C∞c (Ωj), 1 ≤ j ≤ N , such
that

N∑
j=1

φ2
j (x) = 1, for all x ∈ Ω̄. (4.2)

For each j = 1, ..., N , select θj ∈ C∞(Ωj) with supp θj ⊂ Bj and
∫
Bj
θj = 1,

and then define Kj
` as in (3.6), relative to the domain Ωj . These operators

satisfy properties similar to (3.5), in each domain Ωj . Finally, for ` = 1, 2, 3,
we introduce

K` : (C∞c (Ω,Λ`))′ −→ (C∞c (Ω,Λ`−1))′

K`u :=
∑N

j=1 φjK
j
` (φju),

(4.3)

and note that the mapping properties (3.3)-(3.4) remain valid for K` defined
above, even if the bounded Lipschitz domain Ω is not necessarily star-shaped
with respect to a ball.
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Moreover, by (3.5), for each u ∈ (C∞c (Ω,R3))′ we may write

∇(K1u)
(1)
=

N∑
j=1

(∇φj)Kj
1(φju) +

N∑
j=1

φj∇(Kj
1(φju))

(2)
=

N∑
j=1

(∇φj)Kj
1(φju) +

N∑
j=1

φj

(
φju−Kj

2(curl (φju))
)

(3)
=

N∑
j=1

(∇φj)Kj
1(φju) + u−K2 curlu−

N∑
j=1

φjK
j
2(∇φj × u).

Equality (1) is routine algebra. Equality (2) is a consequence of (3.5) applied
to Kj

` . Finally, equality (3) follows from (4.1) and the identity curl (φju) =
φjcurlu+∇φj × u. Introducing

R : (C∞c (Ω,R3))′ −→ (C∞c (Ω,R3))′

Ru :=
∑N

j=1

(
φjK

j
2(∇φj × u)− (∇φj)Kj

1(φju)
)
,

(4.4)

allows us to rephrase the identity just derived in the form

u = ∇(K1u) +K2 curlu+Ru, ∀u ∈
(
C∞c (Ω,R3)

)′
. (4.5)

The following is an extension of Theorem 3.1 to arbitrary Lipschitz domains.

Theorem 4.1. Assume that Ω ⊂ R3 is an arbitrary bounded Lipschitz do-
main. Fix p ∈ (pΩ, qΩ) and q ∈ (p, qΩ) such that 1

p −
α
3 = 1

q for some
α ∈ (0, 1). Then the Hodge-Stokes semi-group (e−tAp)t≥0, considered in Xp,
satisfies the estimate

sup
t≥0
‖t

α
2 e−tAp‖Xp→Lq + sup

t≥0
‖t

1+α
2 curl e−tAp‖Xp→Lq <∞. (4.6)

Proof. Up to (and including) (3.13), we follow the same arguments as in
the proof of Theorem 3.1, with K2 defined as in (4.3). It is in (3.14) that
the operator R intervenes for the first time, when (4.5) is employed in place
of (3.7). To estimate its contribution, we first note that, from (4.4) and the
discussion in the first part of Section 2, we have

R : Lp(Ω,R3) −→ Lp1(Ω,R3) bounded, whenever 1 < p <∞. (4.7)

Thus, based on (4.7) and well-known properties of analytic semi-groups (cf.,
e.g., Theorem 6.13 on page 74 in [24]), we may estimate

‖t
α
2R(e−tApu)‖q ≤ c ‖t

α
2R(e−tApu)‖α,p
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≤ c ‖R(e−tApu)‖1−αp ‖
√
tR(e−tApu)‖α1,p

≤ c ‖t
α
2 e−tApu‖p = c ‖A−

α
2 (t

α
2A

α
2 e−tApu)‖p

≤ c ‖A−
α
2 ‖Xp→Xp‖t

α
2A

α
2 e−tAp‖Xp→Xp‖u‖p

= c ‖u‖p, for t > 0, (4.8)

which is of the right order. With this in hand, we may then conclude much
as in the endgame of the proof of Theorem 3.1. �

5. Mild solution to the Hodge-Navier-Stokes system

Throughout this section, Ω denotes a bounded Lipschitz domain in R3.
Let T > 0 be fixed and assume that ε > 0 is such that 3(1 + ε) < qΩ, where
qΩ was defined in Theorem 1.1. Introduce the following Banach space:

ET :=
{
u∈C([0, T ];X3) ∩ C((0, T ];L3(1+ε)(Ω; R3) : curlu∈C((0, T ];L3(Ω; R3)

with sup
0<s<T

(
‖u(s)‖3 + ‖s

ε
2(1+ε)u(s)‖3(1+ε) + ‖

√
s curlu(s)‖3

)
<∞

}
endowed with the norm

‖u‖ET := sup
0<s<T

‖u(s)‖3 + sup
0<s<T

‖s
ε

2(1+ε)u(s)‖3(1+ε) + sup
0<s<T

‖
√
s curlu(s)‖3.

Proposition 5.1. Let u0 ∈ X3 be arbitrary and set a(t) := e−tAu0, for all
t ≥ 0. Then a ∈ ET and ‖a‖ET ≤ c ‖u‖X3.

Proof. That a ∈ C([0, T ];X3) is a consequence of the fact that (e−tA)t≥0 is
a C0 semi-group in X3. Thanks to Theorem 1.1, we have

curl a ∈ C((0, T ];L3(Ω; R3))

with sup0<s<T ‖
√
s curl a(s)‖3 ≤ ‖u0‖3. By (3.8) with p = 3, we also get

that a ∈ Lq(Ω; R3) for all q ∈ (3, qΩ) and

sup
0<s<T

‖s
α
2 a(s)‖q ≤ ‖u0‖3

provided 1
q = 1

3 −
α
3 . In particular, the choice q = 3(1 + ε) entails α = ε

1+ε ∈
(0, 1). �

Lemma 5.2. Let u, v ∈ ET be arbitrary. Then

u× curl v ∈ C((0, T ];L
3(1+ε)
2+ε (Ω; R3))
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and
sup

0<s<T
‖s

1+2ε
2(1+ε) u(s)× curl v(s)‖ 3(1+ε)

2+ε

≤ ‖u‖ET ‖v‖ET . (5.1)

Proof. For u, v ∈ ET , it is clear that u × curl v ∈ C((0, T ];Lq(Ω,R3)) pro-
vided

1
q

=
1
3

+
1

3(1 + ε)
=

2 + ε

3(1 + ε)
.

For later use, let us point out here that

q :=
3(1 + ε)

2 + ε
∈ (pΩ, qΩ), (5.2)

since pΩ < (3(1 + ε))′ = 3(1+ε)
2+3ε < q < 3. Moreover, since ‖s

ε
1+ε u(s)‖3(1+ε) ≤

‖u‖ET for all s ∈ (0, T ) and ‖
√
s curlu(s)‖3 ≤ ‖v‖ET for all s ∈ (0, T ), we get

‖sβ u(s)× curl v(s)‖ 3(1+ε)
2+ε

≤ ‖u‖ET ‖v‖ET for all s ∈ (0, T ),

where β := 1
2 + ε

2(1+ε) = 1+2ε
2(1+ε) . This proves (5.1). �

Consider next the mapping Φ defined on ET × ET by

[0, T ] 3 t 7→ Φ(u, v)(t)

=
∫ t

0
e−(t−s)A(−1

2P 3(1+ε)
2+ε

)
(
u(s)× curl v(s) + v(s)× curlu(s)

)
ds.

Proposition 5.3. The mapping Φ is bilinear, symmetric, and continuous
from ET × ET into ET .

Proof. The fact that Φ is linear and symmetric is clear from its definition.
We shall focus on proving that Φ(u, v) belongs to ET whenever u, v ∈ ET .
The continuity of Φ follows a posteriori from the estimates implicit in the
justification of this membership. To get started, we note that from (5.1)-
(5.2) we have∥∥∥(−1

2P 3(1+ε)
2+ε

)
(
u(s)×curl v(s)+v(s)×curlu(s)

)∥∥∥
3(1+ε)
2+ε

≤ s−
1+2ε

2(1+ε) ‖u‖ET ‖v‖ET ,

for all s ∈ (0, T ]. The special case of (3.8) when p = 3(1+ε)
2+ε , q = 3 and

α = 1
1+ε , yields∥∥∥e−(t−s)A(−1

2P 3(1+ε)
2+ε

)
(
u(s)× curl v(s) + v(s)× curlu(s)

)∥∥∥
3

≤ c s−
1+2ε

2(1+ε) (t− s)−
1

2(1+ε) ‖u‖ET ‖v‖ET , (5.3)
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and ∥∥∥curl e−(t−s)A(−1
2P 3(1+ε)

2+ε

)
(
u(s)× curl v(s) + v(s)× curlu(s)

)∥∥∥
3

≤ c s−
1+2ε

2(1+ε) (t− s)−
2+ε

2(1+ε) ‖u‖ET ‖v‖ET , (5.4)

for all 0 < s ≤ t ≤ T . Applying now (3.8) with p = 3(1+ε)
2+ε , q = 3(1 + ε) and

α = 1, we obtain∥∥∥e−(t−s)A(−1
2P 3(1+ε)

2+ε

)
(
u(s)× curl v(s) + v(s)× curlu(s)

)∥∥∥
3(1+ε)

≤ c s−
1+2ε

2(1+ε) (t− s)−
1
2 ‖u‖ET ‖v‖ET . (5.5)

From the estimate (5.3) it follows that, for each t ∈ (0, T ],

‖Φ(u, v)(t)‖3
(1)

≤ c
(∫ t

0
s
− 1+2ε

2(1+ε) (t− s)−
1

2(1+ε) ds
)
‖u‖ET ‖v‖ET

(2)

≤ c
(∫ 1

0
σ
− 1+2ε

2(1+ε) (1− σ)−
1

2(1+ε) dσ
)
‖u‖ET ‖v‖ET .

(5.6)

The inequality (1) above is obtained by integrating (5.3) between 0 and t.
Passing from (1) to (2) is done by making the change of variables s = tσ in
the integral just alluded to.

By the same method, and relying on the estimate (5.4), we obtain that
for each t ∈ (0, T ]

‖curl Φ(u, v)(t)‖3 ≤ c
(∫ t

0
s
− 1+2ε

2(1+ε) (t− s)−
2+ε

2(1+ε) ds
)
‖u‖ET ‖v‖ET (5.7)

≤ c t−
1
2

(∫ 1

0
σ
− 1+2ε

2(1+ε) (1− σ)−
2+ε

2(1+ε) dσ
)
‖u‖ET ‖v‖ET .

Using now the estimate (5.5) and employing the same method, we see that
for all t ∈ (0, T ]

‖Φ(u, v)(t)‖3(1+ε) ≤ c
(∫ t

0
s
− 1+2ε

2(1+ε) (t− s)−
1
2 ds

)
‖u‖ET ‖v‖ET (5.8)

≤ c t−
ε

2(1+ε)

(∫ 1

0
σ
− 1+2ε

2(1+ε) (1− σ)−
1
2 dσ

)
‖u‖ET ‖v‖ET .

In concert, the estimates (5.6), (5.7) and (5.8) then imply that Φ(u, v) ∈
ET . �
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We are now ready to prove the existence of solutions for the functional
analytic equation

u = a+ Φ(u, u). (5.9)

We shall refer to these as mild solutions of the Hodge-Navier-Stokes system
(1.4).

Theorem 5.4. Let Ω ⊂ R3 be a bounded Lipschitz domain and fix T > 0.
Then there exists δ > 0 with the property that for each u0 ∈ X3 with ‖u0‖3 <
δ there exists a unique mild solution u of the Hodge-Navier-Stokes system
(1.4) (i.e., a function u ∈ ET satisfying (5.9) on [0, T ]).

Proof. Since Φ : ET × ET → ET is bilinear and continuous, the idea is to
implement Picard’s fixed-point theorem. As in [14], the sequence (vn)n∈N of
functions in ET defined by v0 := a, as the first term, and then, iteratively,

vn+1 := a+ Φ(vn, vn), n ∈ N

converges to the unique solution u ∈ ET of (5.9) provided ‖u0‖X3 is small
enough so that, say, ‖a‖ET < 1

4‖Φ‖L(ET×ET ;ET )
. That this can be ensured is

guaranteed by Proposition 5.1. �

6. Appendix

Let M be a C2 manifold, possibly with boundary, of (real) dimension n. As
usual, by TM and T ∗M we denote, respectively, the tangent and cotangent
bundle on M . We shall also denote by TM global (C1) sections in TM
(i.e., TM ≡ C1(M,TM)). Similarly, we identify T ∗M ≡ C1(M,T ∗M). We
shall assume that M is equipped with a C1 Riemannian metric tensor g =∑

j,k gjkdxj ⊗ dxk and denote by ∇ the associated Levi-Civita connection.
Among other things, the metric property

Z〈X,Y 〉 = ∇Z 〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉, ∀X,Y, Z ∈ TM, (6.1)

holds. Consider next S ↪→M , a C2, orientable sub-manifold of codimension
one in M , and fix some ν ∈ TM such that ν|S becomes the outward unit
normal to S. If ∇S is the induced Levi-Civita connection on S (from the
metric inherited from M) it is then well known that

∇SXY = π(∇XY ), ∀X,Y ∈ TS, (6.2)

where π : TM −→ TS is the canonical orthogonal projection onto TS,
the tangent bundle to S. In particular, the second fundamental form of S
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becomes

II(X,Y ) := ∇XY −∇SXY = π(∇XY ), ∀X,Y ∈ TS. (6.3)

In this setting, the Weingarten map

W : TS −→ TS, (6.4)

originally defined uniquely by the requirement that

〈WX,Y 〉 = 〈ν, II(X,Y )〉, ∀X,Y ∈ TS, (6.5)

reduces to
WX = −∇Xν on S, ∀X ∈ TS, (6.6)

known as the Weingarten formula. An excellent reference for the material in
this section is [27]. The following propositions, proved in [10], describes an
extension of the unit normal to a hypersurface enjoying a number of useful
properties.

Proposition 6.1. For a C2 surface S ⊆ Rn there exists a neighborhood U
of S along with a vector field ν ∈ C1(U) with the following properties:

(i) ‖ν‖ = 1 in U ;
(ii) ν|S coincides with the unit normal to S;

(iii) ∇νν = 0 on S; i.e., ∂ννj = 0 on S for j = 1, 2, ..., n;
(iv) dν = 0 on S; i.e., ∂kνj − ∂jνk = 0 on S, for k, j = 1, 2, . . . , n;

(v) divν
∣∣∣
S

= (n− 1)H, where H stands for the mean curvature of S.

Moreover, for the n× n matrix-valued function

R(x) := ∇ν(x) = (∂kνj(x))j,k, x ∈ U , (6.7)

the following are true:
(vi) Rν = 0 in U ;
(vii) Tr (R)|S = (n− 1)H.

In addition, when restricted to the hypersurface S, R has the following ad-
ditional properties:

(viii) R depends only on S and not on the choice of the extended unit ν;
(ix) R> = R on S;
(x) (Ru)|S is tangent to S for any vector field u : S → Rn. In fact,

R
∣∣∣
TS

= −W, (6.8)

the opposite of the Weingarten map of S. In particular, the eigenval-
ues {κj}1≤j≤n−1 of −R (at points on S) as an operator on TS are
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the principal curvatures of S, and its determinant is Gauss’s total
curvature of S.
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