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Abstract. We extend the recent results concerning boundedness of the maximal regularity operator on tent
spaces. This leads us to develop a singular integral operator theory on tent spaces. Such operators have
operator-valued kernels. A seemingly appropriate condition on the kernel is time–space decay measured
by off-diagonal estimates with various exponents.

1. Introduction

Let −L be a densely defined closed linear operator acting on L2(Rn) and generat-
ing a bounded analytic semigroup (e−t L)t≥0. Consider the maximal regularity oper-
ator originally defined for f ∈ L2(R+, dt; D(L)), R+ = (0,+∞), by the Bochner
integral

ML f (t) =
∫ t

0
Le−(t−s)L f (s) ds. (1.1)

This is an example of a singular integral operator with operator-valued kernel. The
bounded extension of this operator to L2(R+, dt; L2(Rn))= L2(Rn+1+ , dtdx), R

n+1+ =
R+ ×R

n , was established by de Simon in [24]. The maximal regularity operator plays
a crucial role in evolution equations, where its boundedness is used to deduce a priori
estimates, which, in turn, can be used to solve non-autonomous and/or non linear prob-
lems (see the lecture notes [20]). It has thus been the source of intense study, especially
in the past 10 years, in L p, and in Besov spaces. As part of the recent development of
an evolution equation approach to boundary value problems on the upper half-space
with data in L2(Rn), based on the functional calculus of appropriate Dirac operators,
a weighted version of de Simon’s theorem is proven in [3] and [4, Theorem 1.3], but
can be essentially attributed to the earlier work [14] (see below).

THEOREM 1.1. With L as above, ML extends to a bounded operator on
L2(Rn+1+ , tβdtdx) for all β ∈ (−∞, 1).
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This was proven before in [23] for β ∈ [0, 1) and a more general class of operators
akin to the ones we introduce next, and then for β ∈ (−1, 1) in [14, Theorem 1.13]
when L has dense range. The range of β is shown in [3] to be optimal. Values such
as β = −1 and also an endpoint result for β = 1 were central for applications to the
boundary value problems in [3]. It should be noted, however, that while the statement
of [14, Theorem 1.13] does not include the case β = −1, its proof via their Proposition
1.14 actually gives Theorem 1.1.

The articles [14] and [23] actually prove weighted L p estimates for 1 < p < ∞ and
show that weighted maximal regularity is equivalent to the unweighted one. However,
the L p analogue of Theorem 1.1 needed in the applications we have in mind does
not involve weighted L p(Rn+1+ ) spaces for p �= 2, but more appropriate spaces of
functions on the upper half-space R

n+1+ . Let us explain this fact.
Traditionally, an evolution problem of the form ut + Lu = g, with initial value

u0 = f ∈ L p(Rn), is seen as an ordinary differential equation for L p(Rn)-valued
functions. One assumes that −L generates an analytic semigroup on L p(Rn) and looks
for maximal regularity in spaces such as L p(R+; L p(Rn)). However, if L = −divA∇
is a second-order, divergence form elliptic operator on R

n with bounded measurable
complex-valued coefficients, −L only generates an analytic semigroup on L p(Rn)

for p in an interval (p−(L), p+(L)) including 2, but not always equal to (1,∞) (see
[1]). In this range, maximal regularity results can be proven using the extrapolation
method pioneered by Blunck and Kunstmann in [11] and developed in [1]. Outside of
that range, however, maximal regularity in L p(Rn+1+ ) spaces, weighted or not, cannot
hold. In this paper, we prove maximal regularity results on the (unweighted) tent space
T p,2,2 for all p ∈ ( n

n+1 ,∞] (see Proposition 1.6 below), even though, for small p,
−L does not even generate a C0-semigroup on L p(Rn).

Moreover, even when L = −�, the free evolution (t, y) �→ et� f (y) does not
belong to L p(Rn+1+ ) when f ∈ L p(Rn). This can be compensated by assuming more
regularity on f , or by using a weighted L p(Rn+1+ ) space with an appropriate weight.
However, when dealing with L p initial data (in boundary value problems, or evolution
problems with rough data, for instance), it is desirable to use a norm of the heat exten-
sion (t, y) �→ et� f (y) that is equivalent to the L p norm of f for p ∈ (1,∞), and to
its H p norm for p ∈ (0, 1]. Weighted L p(Rn+1+ ) norms do not have this property, but
classical harmonic analysis gives many different norms that do.

The one that is of interest to us is given by the following area integral:

‖ f ‖p �

⎛
⎝

∫
Rn

( ∫∫
R

n+1+

1
B(x,t

1
2 )

(y)

t
n
2

∣∣�et� f (y)
∣∣2

tdtdy

) p
2

dx

⎞
⎠

1
p

.

Such a characterisation of the L p (or H p) norm of a function in terms of its heat
extension originates from the work of Fefferman–Stein [13]. In more recent termi-
nology, this says that �et� f belongs to a parabolic version of one of the tent spaces
introduced by Coifman–Meyer–Stein [12].
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Now, if one considers the “mild solution” u of ut − �u = g and u0 = 0, given
formally by the integral formula

∫ t
0 e(t−s)�g(s) ds, one is led to consider the bound-

edness of the maximal regularity operator M−� in the norm above. Having such a
priori estimates in the same space as the free evolution (t, y) �→ et� f (y) is a first
step towards solving, for example, nonlinear problems with L p data. Remark that this
solution space has, a priori, nothing to do with the space of continuous functions of t
with values in L p. We thus depart from the tradition of looking at evolution problems
for functions on R

n+1+ as Banach space-valued ODE, and work on spaces where the
time and space variables are intrinsically linked. We refer to [9], and the forthcoming
[8], for more on the PDE aspect of such questions via a tent space approach. We just
mention here that this idea goes back (at least) to Koch-Tataru’s work on Navier-Stokes
equations [19].

We introduce the alluded variants of the tent spaces as follows. For 0 < p < ∞,

m ∈ N
∗, β ∈ R, define the tent space T p,2,m(tβ dtdy) as the space of all locally

square integrable functions on R
n+1+ such that

‖g‖T p,2,m (tβdtdy) =
⎛
⎝

∫
Rn

( ∫∫
R

n+1+

1
B(x,t

1
m )

(y)

t
n
m

∣∣g(t, y)
∣∣2

tβ dtdy

) p
2

dx

⎞
⎠

1
p

< ∞.

The classical case is β = −1, m = 1, in which case, the space is simply denoted

by T p,2. Since ‖g‖T p,2,m (tβdtdy) = ‖g̃‖T p,2 , where g̃(s, y) = √
m g(sm, y)s

m(β+1)
2 ,

T p,2,m(tβdtdy) is isometric to T p,2. However, the parameter m is needed to handle
different homogeneities (corresponding to differential operators of different orders),
and the parameter β is used to handle different applications (e.g. different degree of
smoothness for initial data in evolution problems). We also remark that a simple use
of Fubini’s theorem shows that ‖g‖2

T 2,2,m (tβdtdy)
= bn‖g‖2

L2(Rn+1+ ,tβdtdy)
, whatever the

parameter m is, with bn being the volume of the Euclidean unit ball. Therefore, for
p = 2, tent spaces agree with weighted L2 spaces. But it is easy to show that it is not
true when p �= 2.

The nature of the norm (a quasi-norm when p < 1) makes local square integrability
a requirement. As already showed in [6] (and subsequently in [18]) for different types
of operators, a pertinent notion for boundedness of the maximal regularity operator
on tent spaces is a measure of decay of the semigroup called (L2 − L2) off-diagonal
estimates.

DEFINITION 1.2. A family of bounded linear operators (Tt )t≥0 ⊂ B(L2(Rn)) is
said to satisfy off-diagonal estimates of order M, with homogeneity m ∈ N

∗, if, for
all Borel sets E, F ⊂ R

n, all t > 0, and all f ∈ L2(Rn):

‖1F Tt 1E f ‖2 �
(

1 + dist(E, F)m

t

)−M

‖1E f ‖2.

Here, and in what follows, ‖ · ‖2 denotes the norm in L2(Rn).
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This property is a replacement for pointwise kernel estimates, which is satisfied, for
instance, by heat semigroups generated by elliptic operators with rough coefficients.
Note that we allow a polynomial decay.

With the definition above, the following result was proved in [7].

THEOREM 1.3. Let m ∈ N
∗, β ∈ (−∞, 1), p ∈ ( 2n

n+m(1−β)
,∞) ∩ (1,∞), and

τ = min(p, 2). If (t Le−t L)t≥0 satisfies off-diagonal estimates of order M > n
mτ

, with
homogeneity m, then ML extends to a bounded operator on T p,2,m(tβdtdy).

The surprise is to obtain results for p < 2. This is particularly true in applica-
tions to stochastic parabolic PDEs. Results in this context have been developed in
parallel to this article in [9], which contains lighter versions of some of the material
presented here. In the present paper, we concentrate more on the abstract theory and
try to weaken assumptions as much as possible. This is important even for maximal
regularity operators, see Sect. 5.

An end-point result, for p = ∞, was also obtained in [7]. In this context, the appro-
priate tent space consists of functions such that |g(t, y)|2 dtdy

t is a Carleson measure
and is defined as the space of all locally square integrable functions such that

‖g‖2
T ∞,2 = sup

(x,r)∈Rn×R+
r−n

∫
B(x,r)

∫ r

0
|g(t, y)|2 dtdy

t
< ∞.

The weighted version (defined through a change of variable as above) is given by

‖g‖2
T ∞,2,m (tβdtdy)

:= sup
(x,r)∈Rn×R+

r−n
∫

B(x,r)

∫ rm

0
|g(t, y)|2tβ dtdy.

THEOREM 1.4. Let m ∈ N
∗ and β ∈ (−∞, 1). If (t Le−t L)t≥0 satisfies off-diago-

nal estimates of order M > n
2m , with homogeneity m, then ML extends to a bounded

operator on T ∞,2,m(tβdtdy).

Note that the backward maximal regularity operator

M−
L f (t) =

∫ ∞

t
Le−(s−t)L f (s) ds,

can be studied on tent spaces, either by duality as M−
L = (ML∗)∗ or directly.

Here, we continue the development of such tent space boundedness results, and we
obtain threefold improvements. The main statements are in the core of the article. We
give here our motivation and extract sample new results as illustrations.

The first observation is that the conclusion of Theorem 1.3 is far from optimal in
concrete situations. For instance, for −� (heat semigroup), and its square root

√−�

(Poisson semigroup), or even −�+V with V ∈ L1
loc(R

n), V ≥ 0, and its square root,
or −div A∇ a second-order divergence form elliptic operator on R

n with bounded,
measurable, real-valued coefficients, and its square root, the range of p can be much
improved.
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PROPOSITION 1.5. (1) M−�+V and M−div A∇ (with real-valued coefficient
matrix A) extend to bounded operators on T p,2,2(dtdy) when n

n+1 < p ≤ ∞.
(2) M√−�+V and M√−div A∇ (with real-valued coefficient matrix A) extend to

bounded operators on T p,2,1(t−1dtdy) when n
n+1 < p ≤ ∞.

The range of p is a consequence of the pointwise decay of the corresponding heat
kernels. However, not all semigroups obey pointwise decay. In that case, one can
use intermediate conditions between pointwise decay and L2 − L2 off-diagonal esti-
mates such as Lq − Lr off-diagonal estimates with q ≤ r and q = 2 or r = 2 (see
Definition 2.4). This information can then be used to quantify the range of p for tent
space boundedness. This is the case for −div A∇ with complex-valued coefficients.
Here, the decay is Gaussian, but the range of q or r may be limited as dimension
increases.

PROPOSITION 1.6. For a complex-valued coefficient matrix A,M−div A∇ extends
to a bounded operator on T p,2,2(dtdy) when 1

2 < p ≤ ∞ if n = 1, 2
3 < p ≤ ∞ if

n = 2, 6
7 − ε < p ≤ ∞ if n = 3, and 2 − 4

n − ε < p ≤ ∞ if n ≥ 4. The ε > 0
depends on the operator but the lower bound is at least n

n+1 .

These two propositions (see Sect. 5 for their proofs) follow from general statements
(proved in Sects. 3 and 4) in which one requires a lower bound on the polynomial decay
exponent M of Definition 2.4. Note that this lower bound increases with dimension.
As the decay here is exponential, the exponent M can be as large as one wants, and
the results apply.

We now consider the case of polynomial decay. This is our second point. In this
case, the value of M is to be compared with the lower bound in our statements for
applicability. For example, one has M = 1 in the L2 − L2 off-diagonal estimates with
homogeneity m = 1 for

√−div A∇ (even for
√−�). Theorem 1.3 requires M > n/τ ,

but one can take advantage of the fact that the exponent M in the Lq − L2 off-diag-
onal estimates grows linearly in 1/q (see Proposition 5.3). However, the range of q
may be limited as well, which is the case for −div A∇ operators with complex-valued
coefficients, and again we may not have a large enough value of M .

On the other hand, with no decay at all, the p = 2 boundedness follows from The-
orem 1.1. So it seems reasonable to expect a range of p near 2 depending on q and M ,
when q ∼ 2 and M > 0 is small, by some kind of interpolation procedure. We will
obtain (see Sect. 5) a general result in this direction, which gives, for this particular
operator, the proposition below.

PROPOSITION 1.7. For a complex-valued coefficient matrix A,M√−div A∇
extends to a bounded operator on T p,2,1(t−1dtdy) when 1

2 < p ≤ ∞ if n = 1,
2
3 < p ≤ ∞ if n = 2, 6

7 − ε < p ≤ ∞ if n = 3, 1 − ε < p ≤ ∞ if n = 4 and
2 − 4

n − ε < p < 2n−4
n−4 + ε′ if n ≥ 5. The ε, ε′ > 0 depend on the operator but the

lower bound is at least n
n+1 .

To do this interpolation procedure, we view the maximal regularity operator within
a family of operators of the same nature. Thus, and this is the third point, it becomes
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interesting and convenient to develop an abstract formulation that is not restricted
to the maximal regularity operator. We introduce, in the next section, a class of sin-
gular integral operators in the context of tent spaces. Sufficient conditions for their
boundedness are given in Sects. 3 and 4. We remark that, in contrast to the usual L p

theory for Calderón–Zygmund operators, no regularity of the kernel is necessary. In
a sense, despite the fact that tent spaces, for 1 < p < ∞, can be seen as subspaces
of Hilbert-valued Lp spaces [17], Calderón–Zygmund theory does not seem to be an
appropriate machinery to study singular integral operators in this context.We depart
from the usual treatment of maximal regularity through a singular integral operator
acting on some Banach-valued functions. Here, we start from the “easy” Hilbert (L2)
space theory and then move on to tent spaces, using the notion of Lq − Lr off-diagonal
decay, which extends the notion of L2 − L2 off-diagonal decay defined above.

REMARK 1.8. Our results can, nevertheless, be extended to the context of tent
spaces of Banach space-valued functions (provided the Banach space X is UMD,
and 1 < p < ∞). This is done by adapting the arguments of [18] to take advantage
of Lq − L2 ( for q ≤ 2, resp. L2 − Lq for q ≥ 2), rather than L2 − L2, off-diagonal
estimates, in the same way it is done in this paper. However, the obvious adaptation
does not seem to produce optimal relationships between p, q, M, and the geometry
of X. We choose not to attempt to address this issue here.

2. Singular integral operators

2.1. Abstract setup

Consider a separable complex Hilbert space H . For β ∈ R, set Hβ =
L2(R+, tβdt; H). We consider the following classes of operators SI O± ⊂ B(H0).

DEFINITION 2.1. (1) We say T ∈ SI O+ if T ∈ B(H0) and there exist a
strongly measurable family of operators K (t, s) ∈ B(H), t, s ∈ R+ and a
constant C < ∞ such that ‖K (t, s)‖ ≤ C |t − s|−1 and

T f (t) =
∫ t

0
K (t, s) f (s) ds (2.1)

for all f ∈ H0 with bounded support in R+ and almost all t ∈ R+ not in the
support of f .

(2) We say T ∈ SI O− if T ∈ B(H0) and there exist a strongly measurable family
of operators K (t, s) ∈ B(H), st, s ∈ R+ and a constant C < ∞ such that
‖K (t, s)‖ ≤ C |t − s|−1 and T has the representation

T f (t) =
∫ ∞

t
K (t, s) f (s) ds (2.2)

for all f ∈ H0 with bounded support in R+ and almost all t ∈ R+ not in the
support of f .
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We remark that K (t, s) need only to be defined on s < t for T ∈ SI O+ and on
t < s for T ∈ SI O− and the value at t = s is irrelevant. With this precaution, we
say that T ∈ SI O± is associated to the operator-valued kernel K (t, s) and that such
kernels belong to the class SK ± of singular kernels.

Our terminology follows in part that of singular integrals (here with operator-valued
kernels), but we assume a sign condition on s − t .

Let us make a few remarks.
The representation (2.1) of T f above is a Bochner integral and the equality holds

in H . It is clearly equivalent to

〈T f, g〉 =
∫∫

s<t
〈K (t, s) f (s), g(t)〉dsdt (2.3)

for f, g ∈ H0 having bounded disjoint support. The inner product on the left is the
canonical one in H0, and on the right the canonical one in H .

It is clear that T ∈ SI O+ if and only if T ∗ ∈ SI O−, with associated kernel
K (s, t)∗. Hence, similar comments apply to (2.2).

The basic examples are of course ML ∈ SI O+ and M−
L ∈ SI O−. For ML the

boundedness on H0 is given by de Simon’s theorem. Then the formula (2.3) holds
for all f ∈ L2(R+, dt; D(L)) and all g ∈ H0 with continuous kernel K (t, s) =
Le−(t−s)L on s < t . If now, f, g have disjoints supports, one can argue by density of
D(L) in H . For M−

L , we simply use M−
L = (ML∗)∗.

There is a natural splitting of operators T ∈ SI O+ into an integral part plus a
singular part. Let K be the associated kernel. Using that t − s ∼ t when s < t/2 and
Hardy inequality, one has

∫ ∞

0

( ∫ t
2

0
‖K (t, s)‖‖ f (s)‖ ds

)2

dt �
∫ ∞

0

(
1

t

∫ t
2

0
‖ f (s)‖ ds

)2

dt � ‖ f ‖2
H0

.

Hence, the integral part of T is the operator defined for f ∈ H0 for almost all t > 0
by the Bochner integral

(T2 f )(t) =
∫ t

2

0
K (t, s) f (s) ds,

and T2 ∈ SI O+ as well. The singular part is T1 := T − T2 ∈ SI O+ and carries the
singularity at s = t . Its associated kernel is K (t, s)1t/2<s<t . Note that, for the integral
part, the integral representation is valid without restriction on f and t .

For T ∈ SI O−, one has the same splitting with T2 f (t) = ∫ ∞
2t K (t, s) f (s) ds as

the integral part, and T1 = T − T2 as the singular part.
Theorem 1.1 and its proof carry to this abstraction.

THEOREM 2.2. Let β ∈ (−∞, 1). Any operator in T ∈ SI O+ extends to a
bounded operator on Hβ which is denoted by T as well. Furthermore, for any ker-

nel K ∈ SK + and f ∈ Hβ,
∫ t

2
0 ‖K (t, s)‖‖ f (s)‖ ds is an element of L2(R+, tβdt),
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so that for almost all t > 0,
∫ t

2
0 K (t, s) f (s) ds is a Bochner integral in H. If, in

particular, K is the kernel of T then this integral agrees with (T2 f )(t).
The same statement holds for T ∈ SI O− and −β ∈ (−∞, 1).

We include a quick argument. For α = β/2 < 1/2, we have that

∫ ∞

0

( ∫ t

0
‖K (t, s)‖ |tα − sα| s−α‖sα f (s)‖ ds

)2

dt � ‖ f ‖2
Hβ

using the Schur test and the bound on K . Hence, the integral operator f �→ [t �→∫ t
0 K (t, s)(tα − sα) f (s) ds] is bounded from Hβ to H0. For f ∈ Hβ with compact

support in R+, it agrees with tα(T f )(t)−(T (sα f ))(t). Since T ∈ B(H0), this readily
gives the result by density.

The second part follows from the weighted Hardy inequalities [21] when β < 1

∫ ∞

0

(
1

t

∫ t
2

0
‖ f (s)‖ ds

)2

tβdt � ‖ f ‖2
Hβ

.

The proof for SI O− is left to the reader.

2.2. Concrete situation

Now, in order to get tent space results, we specialise to H = L2(Rn) and introduce
subclasses. First recall that Hβ can be identified with L2(Rn+1+ , tβdtdy). Hence, we
now write f (s) as f or f (s, ·) if we want to specialise the s variable. Using that we
have a spatial variable, we extend (2.1) as follows.

LEMMA 2.3. Let β < 1 and T ∈ SI O+. Let E, F be two Borel sets of R
n and I, J

two open intervals in R+. Assume that f �→ [(t, y) �→ ∫ t
0 |(K (t, s) f (s, ·))(y)| ds]

is bounded from the space of functions f ∈ L2(sβdsdx) with support in I × E into
L2(J × F, tβdtdy). Then the representation T f (t, y) = ∫ t

0 (K (t, s) f (s, ·))(y) ds
holds for all such f with equality in L2(J × F, tβdtdy).

The corresponding statement holds for T ∈ SI O− and −β < 1.

Remark that this lemma is only needed for singular parts. For regular parts, the
representation is valid without support conditions.

Proof. Both terms are defined in L2(J × F, tβdtdy) by assumption so that it suffices
to prove the following claim:

〈T f, g〉 =
∫∫

J×F

( ∫ t

0
(K (t, s) f (s, ·))(y) ds

)
g(t, y)dtdy

for all f ∈ C∞
0 (I ; L2(E)) and g ∈ C∞

0 (J ; L2(F)). We implicitly extend f (s, ·)
by 0 outside E and g(t, ·) by 0 outside F . Remark that, from the assumption,
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(s, t, y) �→ (K (t, s) f (s, ·))(y)g(t, y)1s<t is integrable with integral bounded by
‖ f ‖L2(sβdsdx)‖g‖L2(tβdtdy), hence, by Fubini’s theorem, we only have to show

〈T f, g〉 =
∫∫

s<t
〈K (t, s) f (s, ·), g(t, ·)〉 dsdt.

Choose orthonormal bases (e j ) of L2(E) and (εk) of L2(F). By a limiting argument
for each term, it is enough to assume that f (s, ·) and g(t, ·) take values in finite
dimensional linear spans of the respective bases. Indeed, use boundedness of T in the
left-hand side and the integrability assumption in the right-hand side. By linearity, it
is enough to assume that f (s, ·) = f j (s)e j and g(t, ·) = gk(t)εk for scalar test func-
tions f j , gk . In this case, there is a distribution S j,k ∈ D′(I × J ) such that 〈T f, g〉 =
(S j,k(t, s), f j (s)gk(t)). It follows from (2.3) and decomposing on the orthonormal
bases that 〈K (t, s)ek, ε j 〉 is the restriction to 0 < s < t < ∞, s ∈ I, t ∈ J of S j,k .
Thus, the desired equality holds for such f, g and we are done.

We skip the similar proof for T ∈ SI O−. �

In applications, it suffices to show (absolute) convergence of the integral∫ t
0 K (t, s) f (s, ·) ds in the norm L2(J × F, tβdtdy) to obtain an estimate of T f in that

norm, when f is supported in I × E . We shall use this when E and F are at positive
distance and K (t, s) satisfies certain decay estimates.

We thus introduce subclasses of SI O±, where the size estimate ‖K (t, s)‖ � |t −
s|−1 is complemented by the following time–space estimates.

DEFINITION 2.4. Let 1 ≤ q ≤ r ≤ ∞. An operator-valued kernel K =
(K (t, s))t,s>0 ⊂ B(L2(Rn)) is said to satisfy Lq − Lr decay of order M > 0,
with homogeneity m ∈ N

∗, if, for all Borel sets E, F ⊂ R
n, all t �= s, and all

f ∈ L2(Rn) ∩ Lq(Rn):

‖1F K (t, s)1E f ‖r � |t − s|−1− n
m ( 1

q − 1
r )

(
1 + dist(E, F)m

|t − s|
)−M

‖1E f ‖q .

Here, and in what follows ‖ · ‖q denotes the norm in Lq(Rn).

Note that, in the proofs, one only needs this property for sets of the form E = B(x, r)

and F = B(x, 2k+1r)\B(x, 2kr) (or vice versa). For this restricted property, Lq − Lr

decay implies Lq̃ − Lr̃ decay for q ≤ q̃ ≤ r̃ ≤ r (by Hölder’s inequality), but the
order of decay changes. See [7] for more on this issue. We do not, however, use this
fact in this paper.

We need only two specific cases: 1 ≤ q ≤ 2 and r = 2, and q = 2 and 2 ≤ r ≤ ∞.
In certain cases, the decay is actually exponential, so the polynomial decay defined
above holds for all M > 0, in which case we say that the order is ∞. In this paper,
we are particularly interested in obtaining results under minimal values of polynomial
decay.

DEFINITION 2.5. Let 1 ≤ q ≤ ∞ and M ∈ R+∪{∞}. We say that T ∈ SIO±
m,q,M

if T ∈ SI O± and the associated operator-valued kernel K (t, s) ∈ SK ± satisfies
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Lq − L2 (resp. L2 − Lq) decay of order M, with homogeneity m, when q ≤ 2 (resp.
q ≥ 2).

The value of m is dictated by the situation, and q and M are the most important
parameters. Let us point out that all calculations work with m being any positive real
number, rather than just integer. We mention this for potential development towards
fractal situations where fractional homogeneity can occur.

3. Role of Lq − L2 decay

The range of p below 2 for which T p,2 boundedness results hold can be quantified
by Lq − L2 decay. Some technical conditions are also required. In particular, the order
M should not be too small.

THEOREM 3.1. Let T ∈ SI O+
m,q,M with 1 ≤ q ≤ 2, M > n

2m and let pM < 1 be

defined by M = n
2m ( 2

pM
− 1). Let q ′ be the dual exponent to q and β < 1.

(1) If q ′ ≤ 2n
m(1−β)

or equivalently n
2m ≥ −β−1

2 + n
m ( 1

q − 1
2 ) then T extends to a

bounded operator on T p,2,m(tβdtdy) when 2 ≥ p > pc, where

pc =
2

(
n

2m − n
m

(
1
q − 1

2

))

n
2m − n

m

(
1
q − 1

2

)
+ 1−β

2

= 4n

2n + m(1 − β)q ′ ≥ 1.

(2) If q ′ > 2n
m(1−β)

or equivalently −β−1
2 + n

m ( 1
q − 1

2 ) > n
2m then T extends to a

bounded operator on T p,2,m(tβdtdy) when 2 ≥ p > sup(pM , p̃c), where

p̃c = 2n
2n
q + m(1 − β)

< 1.

Let us say a word on the exponents pc, p̃c. In the first case, pc ≥ 1. In the second
case, p̃c < 1. It is consistent as

p̃c = pc ⇐⇒ p̃c = 1 ⇐⇒ pc = 1 ⇐⇒ n

2m
= −β − 1

2
+ n

m

( 1

q
− 1

2

)
.

When q is small, we thus get results for p below 1 provided M is not too small (e.g.
in the case of exponential decay).

As a function of q, the exponents pc, p̃c are increasing. When q = 2, p̃c =
2n

n+m(1−β)
which is the exponent found in Theorem 1.3. Remark that we improve

over the lower bound: M > n
2m suffices here instead of M > n

pm when p ≤ 2.
In [7], Theorem 1.3 was proved using comparison of tent space norms under change

of apertures, i.e. B(x, t
1
m ) changed to B(x, ct

1
m ) for c > 1. The sharp behaviour of

these comparisons was obtained in [2] using atomic decompositions and interpola-
tion. It is thus natural to use atoms here as well to prove our results. Furthermore, it
simplifies the proofs greatly.
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Recall that for 0 < p ≤ 1, the tent space T p,2 has an atomic decomposition [12]:
A T p,2 atom is a function a(t, y) supported1 in a region (0, r ] × B where B is a

(closed) ball on R
n of radius r , satisfying

∫
B

∫ r
0 |a(t, y)|2 dtdy

t ≤ r−n( 2
p −1)

. Any T p,2

function g can be represented as a series g = ∑
λ j a j where a j is a T p,2 atom and∑ |λ j |p ∼ ‖g‖p

T p,2 . Here the series converges in the tent space quasi-norm, and,

in particular, in L2
loc(R

n+1+ ). Translating this to our setting, T p,2,m(tβdtdy) atoms
are functions A(t, y) with support in (0, rm] × B, where B is a (closed) ball in R

n

of radius r , satisfying
∫

B

∫ rm

0 |A(t, y)|2tβdtdy ≤ r−n( 2
p −1)

, and the decomposition
theorem holds in T p,2,m(tβdtdy). Remark that atoms are also special elements of
L2(Rn+1+ , tβdtdy) = T 2,2,m(tβdtdy) which is helpful for representation purposes of
SI O± operators acting on them.

REMARK 3.2. Recall that the map j: T p,2,m(tβdtdy) → T p,2,1(t−1dtdy) defined

by j ( f )(t, y) = √
mt

m(1+β)
2 f (tm, y) is an isometry; it also sends T p,2,m(tβdtdy)

atoms to T p,2,1(t−1dtdy) atoms.

LEMMA 3.3. Let p ≤ 1 and T a linear operator bounded on T 2,2,m(tβdtdy). Then
T has a bounded extension from T p,2,m(tβdtdy)∩T 2,2,m(tβdtdy) to T p,2,m(tβdtdy)

if it is uniformly bounded on T p,2,m(tβdtdy) atoms.

Proof. Adapt to p ≤ 1 the argument in Step 3 of the proof of Theorem 4.9 in [6] done
for T p,2,1(t−1dtdy) (without loss of generality, one can take m = 1, and β = −1 by
Remark 3.2). This argument also furnishes the extension procedure. �

Theorem 3.1 follows immediately from the two lemmas below applied to the decom-
position of T ∈ SI O+

m,q,M into its singular part T1 plus its integral part T2. Recall that
M > n

2m .

LEMMA 3.4. The operator T1 extends to T p,2,m(tβdtdy) for p > pM .

LEMMA 3.5. The statement of Theorem 3.1 holds for T2.

Proof of Lemma 3.4. By interpolation (see [12] for the case m = 1, β = −1, and
apply Remark 3.2 to deduce the general case) it suffices to consider pM < p ≤ 1. By
Lemma 3.3, it is enough to show that T1 A ∈ T p,2,m(tβdtdy) if A is a T p,2,m(tβdtdy)

atom, with a uniform bound. Since the proofs are scale invariant, we assume that A
is supported in (0, 1] × B(0, 1). Then we remark that if t > 2, T2 A(t, ·) = T A(t, ·)
because of the definition of T2 and the support of A. Hence (T1 A)(t, ·) = 0 for
t > 2. We let f j (t, y) = (T1 A)(t, y) if 2 j ≤ |y| < 2 j+1, 0 elsewhere, and
f0(t, y) = (T1 A)(t, y) if |y| ≤ 2, 0 elsewhere. We show that f j = λ j A j with
A j a T p,2,m(tβdtdy) atom and

∑ |λ j |p � 1.
For j = 0, this follows from the boundedness of T1 on T 2,2,m(tβdtdy) as β < 1.

For j ≥ 1, we argue as follows:

1The support is a relatively closed subset of R
n+1+ .
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∫
B(0,2 j+1)

∫ 2( j+1)m

0
| f j (t, y)|2tβ dtdy

=
∫ 2

0

∫
2 j ≤|y|<2 j+1

|(T1 A)(t, y)|2 dy tβ dt

=
∫ 2

0

∫
2 j ≤|y|<2 j+1

∣∣∣∣
∫ t

t
2

(
t − s

t − s

)ε− 1
2

(K (t, s)A(s, ·))(y) ds

∣∣∣∣
2

dy tβ dt

�
∫ 2

0

∫
2 j ≤|y|<2 j+1

∫ t

t
2

t2ε(t − s)1−2ε|(K (t, s)A(s, ·))(y)|2 dsdy tβ dt

�
∫ 2

0

∫ t

t
2

t2ε 1

(t − s)1+2ε+ 2n
m ( 1

q − 1
2 )

(
1 + 2 jm

t − s

)−2M‖A(s, .)‖2
q tβ ds dt

�
∫ 1

0
‖A(s, .)‖2

2sβs2ε

∫ 2s

s

1

(t − s)1+2ε+ 2n
m ( 1

q − 1
2 )

(
1 + 2 jm

t − s

)−2M
dtds

� 2−2 jm M
∫ 1

0
‖A(s, .)‖2

2 sβds.

We used Cauchy–Schwarz inequality in the fourth line and t2ε
�

∫ t
t
2
(t − s)2ε−1 ds

when ε > 0. In the next to last line, we impose ε < M − n
m ( 1

q − 1
2 ), which is pos-

sible as M > n
2m and q ≥ 1. The estimate ‖A(s, .)‖q � ‖A(s, .)‖2 uses the fact

that A(s, ·) is supported in B(0, 1). As γ = 2m M − n( 2
p − 1) > 0, we thus get the

desired estimate with λ j = C2− jγ /2. We also remark that we implicitly used Lemma
2.3, which is possible since the last four lines yield the required estimate to write
T1 A(t, y) = ∫ t

t
2
(K (t, s)A(s, ·))(y) ds on the support of f j . �

Proof of Lemma 3.5. We imbed T2 into an analytic family of integral operators Jα

defined for α ∈ C by

Jα f (t, y) =
∫ t

2

0

( s

t

)α

(K (t, s) f (s, ·))(y)ds.

Observe that∫∫
R

n+1+
|Jα f (t, y)|2tβdtdy

=
∫∫

R
n+1+

∣∣∣∣
∫ t

2

0

(
s

t

)α− β−1
2

(t K (t, s)(s
β+1

2 f (s, ·)))(y)
ds

s

∣∣∣∣
2 dtdy

t
.

An application of Schur’s lemma, using that t ∼ t − s and the uniform boundedness
of t K (t, s), shows that, provided �e α − β−1

2 > 0, the last integral is bounded by

C

(
�e α − β − 1

2

) ∫∫
R

n+1+
|s β+1

2 f (s, x)|2 dsdx

s

= C

(
�e α − β − 1

2

)∫∫
R

n+1+
| f (s, x)|2 sβdsdx .
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Hence, Jα is well defined for �e α >
β−1

2 and bounded on T 2,2,m(tβdtdy) for all m.
Notice that β < 1 implies that this domain contains α = 0 and J0 = T2.

Now we let A be a T p,2,m(tβdtdy) atom and estimate Jα A. Since the proof below
is scale invariant, we assume that A is supported in (0, 1] × B(0, 1). We let

f j (t, y) =

⎧⎪⎪⎨
⎪⎪⎩

(Jα A)(t, y) if 2 j ≤ |y| < 2 j+1 and t < 2 jm,

(Jα A)(t, y) if |y| < 2 j+1 and 2 jm ≤ t < 2( j+1)m,

0 otherwise,

for j �= 0 and f0(t, y) = (Jα A)(t, y) if |y| ≤ 2 and t < 2m , 0 elsewhere, so that
Jα A = f0 + f1 + · · ·

By the boundedness property of Jα , we get
∫

B(0,2)

∫ 2m

0
| f0(t, y)|2tβdtdy ≤ C

(
�e α − β − 1

2

)∫
B(0,1)

∫ 1

0
|A(s, x)|2sβdsdx

≤ C

(
�e α − β − 1

2

)
.

Next,
∫

B(0,2 j+1)

∫ 2( j+1)m

0
| f j (t, y)|2tβdtdy =

∫
2 j <|y|<2 j+1

∫ 2 jm

0
| f j (t, y)|2tβdtdy

+
∫

|y|<2 j+1

∫ 2( j+1)m

2 jm
| f j (t, y)|2tβdtdy.

Call I j and J j the square roots of the first and second integrals. For I j , we split the
integral in s defining Jα A(t, y) as

∑
k≥1

∫ 2−k t

2−k−1t

(
s

t

)α

(K (t, s)A(s, ·))(y) ds

so that by Minkowski inequality I j ≤ ∑
k≥1 I j,k with

I 2
j,k =

∫
2 j <|y|<2 j+1

∫ 2 jm

0

∣∣∣
∫ 2−k t

2−k−1t

(
s

t

)α

(K (t, s)A(s, ·))(y) ds
∣∣∣2

tβdtdy.

Using Cauchy–Schwarz inequality in the s integral and then the Lq − L2 decay with
t ∼ t − s, we get

I 2
j,k �

∫ 2 jm

0
2−k t

∫ 2−k t

2−k−1t

(
s

t

)2�e α 1

t2+ 2n
m ( 1

q−1
2 )

(
1+ 2 jm

t

)−2M ‖A(s, ·)‖2
q ds tβdt

� 2−2 jm M
∫ 2 jm

0
2−k t

∫ 2−k t

2−k−1t
2−2k�e α 1

t2+ 2n
m ( 1

q − 1
2 )−2M

‖A(s, ·)‖2
2 ds tβdt

� 2−2 jm M 2k(−2�e α+β−1)

∫ 2 jm−k

0
‖A(s, ·)‖2

2 sβ(2ks)2M− 2n
m ( 1

q − 1
2 ) ds.
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Recall that the support condition on A forces s ≤ 1. Also M > n
2m ≥ n

m ( 1
q − 1

2 ).
Using also the size requirement on A, we obtain

I 2
j,k � 2−2 jm M 2k(−2�e α+β−1)2inf(k, jm)(2M− 2n

m ( 1
q − 1

2 ))
.

Hence,
∑

k≥1 I j,k is controlled by 2− jm inf(M,v(α,q)) with v(α, q) = �e α − β−1
2 +

n
m ( 1

q − 1
2 ) if M �= v(α, q) and by jm2− jm M if M = v(α, q).

Next, for the second integral, we remark that the support of A forces s ≤ 1 while
t ∼ 2 jm ≥ 2. Hence

J 2
j ≤

∫
|y|<2 j

∫ 2( j+1)m

2 jm

∫ 1

0

(
s

t

)2�e α−(β−1)∣∣∣t (K (t, s)s
β+1

2 A(s, ·))(y)

∣∣∣2 ds

s

dt

t

�
∫ 2( j+1)m

2 jm

∫ 1

0

(
s

t

)2�e α−(β−1) t2

t
2n
m ( 1

q − 1
2 )+2

‖s
β+1

2 A(s, ·)‖2
q

ds

s

dt

t

� 2− j (2(�e α− β−1
2 )+ 2n

m ( 1
q − 1

2 ))m = 2−2 jmv(α,q).

We used Hölder’s inequality, the size requirement on A, and also s2�e α−(β−1) ≤ 1.
In all

( ∫
|x |<2 j+1

∫ 2( j+1)m

0
| f j (t, y)|2tβdtdy

) 1
2

� (1 + jm)2− jm inf(M,v(α,q)).

We now start the discussion. Case (2) corresponds to v(0, q) > n
2m . The exponent

p̃c is such that v(0, q) = n
2m ( 2

p̃c
− 1). By Lemma 3.3, J0 extends to a bounded map

on T p,2,m(tβdtdy) for any p ≤ 1 with n
2m ( 2

p − 1)≥ inf(M, v(0, q)), which means
1 ≥ p > sup(pM , p̃c). By interpolation with the p = 2 result, J0 extends to a
bounded map on T p,2,m(tβdtdy) for sup(pM , p̃c) < p ≤ 2.

Case (1) corresponds to v(0, q) ≤ n
2m . Let α1 > 0 be such that v(α1, q) = n

2m . As
in the preceding case, for any α with �e α > α1,Jα extends to a bounded map on
T 1,2,m(tβdtdy) and by checking the proof above, the bound does not depend on �m α.
By the p = 2 case, if α2 = β−1

2 < 0, then for any α with �e α > α2,Jα extends to a
bounded map on T 2,2,m(tβdtdy) and the bound does not depend on �m α. Hence, by
Stein’s interpolation theorem for analytic families extended to tent spaces (see [17]
for its extension to the tent spaces T p,2 with p ≥ 1),J0 extends to a bounded map
on T p,2,m(tβdtdy) for pc < p < 2 and pc is the exponent with 1

pc
= θ

1 + 1−θ
2

when 0 = θα1 + (1 − θ) alpha2. A calculation yields the explicit formula of the
statement. �

REMARK 3.6. Note that the most restrictive conditions on p come from the tail
operator T2, not the singular one T1, which is contrary to usual feeling for singular
integral operators. This can be understood by noticing that this tail operator contains
the terms where s is close to 0, and some decay is required to control the tent space
norms near this boundary.

We next give a result for operators in SI O−
m,q,M when q ≤ 2.
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PROPOSITION 3.7. Let β > −1, m ∈ N
∗, T ∈ SI O−

m,q,M with 1 ≤ q ≤ 2 and

M > n
2m . Let pM < 1 be such that M = n

2m ( 2
pM −1 ). Then T extends to a bounded

operator on T p,2,m(tβdtdx) for pM < p < 2.

Proof. By interpolation, it suffices to treat the case pM < p ≤ 1. Take such a p. Let
A be a T p,2,m(tβdtdy) atom, i.e. a function supported in some (0, rm] × B(x0, r),

and satisfying
∫∫

R
n+1+

|A(s, x)|2sβdsdx ≤ r−n( 2
p −1)

.

For j ∈ N, let B j = (0, (2 j r)m] × B(x0, 2 j r) ⊂ R
n+1+ and C j = B j\B j−1 (with

B−1 = ∅).For k, j ∈ N, and (k, j) �= (0, 0) we let

Tk, j A(t, y) = 1C j (t, y)

∫ 2k+1t

2k t
(K (t, s)A(s, ·))(y)ds

and

(T0,0 A)(t, y) = 1B0(t, y)(T1 A)(t, y)

where T1 is the singular part of T .
We claim that, for a sequence λk, j > 0, which is independent of A and satisfies∑∞
k, j=0 λk, j < ∞, we have

∫∫
B j

|Tk, j A(t, y)|2tβdtdy ≤ (2 j r)
−n( 2

p −1)
λ2

k, j ,

so λ−1
k, j Tk, j A is a T p,2,m(tβdtdy) atom. Note that

∑
k≥1, j≥0 Tk, j A = T2 A. Using

Lemma 2.3 a posteriori, we have T1 A = ∑
j≥0 T0, j A. Hence

∑
k≥0, j≥0 Tk, j A = T A

and thus ‖T A‖T p,2,m (tβdtdy) �
∑∞

k, j=0 λk, j . By Lemma 3.3, we are then able to con-
clude the proof. It remains to prove the claim.

The proof is scale and translation invariant, so we assume that x0 = 0 and r = 1.

For j ≥ 1, we have
∫∫

B j

∣∣Tk, j A(t, y)
∣∣2

tβdtdy

≤
∫∫

C j

(2k t)2ε

∫ 2k+1t

2k t
(s − t)1−2ε |(K (t, s)A(s, ·))(y)|2 ds tβdtdy.

Here we have used the Cauchy–Schwarz inequality as in the proof of Lemma 3.4,
and the parameter ε > 0 will be determined later. Write C j = (0, 2( j−1)m] ×[
B(0, 2 j )\B(0, 2 j−1)

] ∪ [2( j−1)m, 2 jm] × B(0, 2 j ) =: C (1)
j ∪ C (2)

j . If (t, y) ∈ C (2)
j ,

then t ≥ 2( j−1)m ≥ 1, and if s > 2k t ≥ 1, then A(s, ·) = 0. Thus, we can replace
C j by C (1)

j in the above multiple integral and impose t ≤ 1. Then we can apply
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the Lq − L2 decay with F = B(0, 2 j )\B(0, 2 j−1) and E = B(0, 1) to continue
estimating as follows

≤
∫ 1

0
(2k t)2ε

∫ 2k+1t

2k t

1

(s − t)1+2ε+ 2n
m ( 1

q − 1
2 )

(
1 + 2 jm

s − t

)−2M

‖A(s, ·)‖2
q ds tβdt

∼=
∫ 1

0
(2k t)2ε

∫ 2k+1t

2k t

1

(s − t)1+2ε+ 2n
m ( 1

q − 1
2 )

(
1 + 2 jm

s − t

)−2M

‖A(s, ·)‖2
2 ds tβdt

= 22kε

∫ 2k+1

0

∫ 2−k s

2−k−1s

tβ+2ε

(s − t)
2n
m ( 1

q − 1
2 )+1+2ε

(
1 + 2 jm

s − t

)−2M

dt ‖A(s, ·)‖2
2 ds

∼=22kε

∫ 1

0
(2−ks)β+2ε

∫ 2−k s

2−k−1s

1

(s−t)
2n
m ( 1

q − 1
2 )+1+2ε

(
2 jm

s − t

)−2M

dt ‖A(s, ·)‖2
2 ds.

We take ε ∈ (0, M − n
m ( 1

q − 1
2 )) so that the integral with respect to t converges.

Indeed, M > n
2m ≥ n

m ( 1
q − 1

2 ) and the calculation continues as follows:

∼= 22kε2−k(β+2ε)2−2Mmj 2−k
∫ 1

0
s2M− 2n

m ( 1
q − 1

2 )−2ε‖A(s, ·)‖2
2 sβ+2εds

� 2−k(β+1)2−2Mmj
∫ 1

0
‖A(s, ·)‖2

2 sβds

≤ 2− jn( 2
p −1)

λ2
k, j

with λk, j ∼= 2( n
2 ( 2

p −1)−Mm) j 2− k
2 (β+1), and we used M > n

2m ≥ n
m ( 1

q − 1
2 ).

If j = 0 and k ≥ 1, we do not use the decay but rather the fact that (t − s)K (t, s)
is uniformly bounded on L2(Rn). Then we can repeat the above calculation literally
taking q = 2 and M = 0.

If k = 0 and j = 0, using the boundedness of T1 since β > −1,

∫
B(0,2)

∫ 2m

0

∣∣(T0,0 A)(t, y)
∣∣2

tβdtdy ≤ C
∫

B(0,1)

∫ 1

0
|A(s, x)|2sβdsdx .

We conclude that λk, j ∼= 2( n
2 ( 2

p −1)−Mm) j 2− k
2 (β+1) is summable for β > −1 and

M > n
2m ( 2

p − 1). �

4. Role of L2 − Lq decay

When q ≥ 2, L2 − Lq decay can be used to quantify T p,2 results for p above 2.
Clearly the adjoint class to SI O±

m,q,M is SI O∓
m,q ′,M with respect to the inner product

〈 f, g〉 =
∫

Rn

∫ ∞

0
f (t, y)g(t, y)dtdy.
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It is easy to deduce from [12, Section 5] that for p ∈ (1,∞), m ∈ N
∗ and β ∈ R, we

have
[
T p,2,m(tβdtdy)

]′ = T p′,2,m(t−βdtdy), with duality given by 〈 f, g〉, i.e.

‖ f ‖T p,2,m (tβdtdy) ∼ sup
‖g‖

T p′,2,m (t−β dtdy)
≤1

|〈 f, g〉|.

Thus, we obtain results for 2 < p < ∞ by dualizing Theorem 3.1 and Proposition
3.7 in the classes SI O±

m,q,M with 2 ≤ q ≤ ∞ and M > n
2m . In addition, the results

for p = ∞ also hold.

THEOREM 4.1. Let T ∈ SI O−
m,q,M with 2 ≤ q ≤ ∞ and M > n

2m . Let β > −1.

(1) If q ≤ 2n
m(1−β)

or equivalently n
2m ≥ −β−1

2 + n
m ( 1

2 − 1
q ) then T extends to a

bounded operator on T p,2,m(tβdtdy) when 2 ≤ p < p′
c, where

pc =
2

(
n

2m − n
m

(
1
2 − 1

q

))

n
2m − n

m

(
1
2 − 1

q

)
+ 1−β

2

= 4n

2n + m(1 − β)q
.

(2) If q > 2n
m(1−β)

or equivalently −β−1
2 + n

m ( 1
2 − 1

q ) > n
2m then T extends to a

bounded operator on T p,2,m(tβdtdy) when 2 ≤ p ≤ ∞.

PROPOSITION 4.2. Let T ∈ SI O+
m,q,M with 2 ≤ q ≤ ∞ and M > n

2m . For all

β < 1, T extends to a bounded operator on T p,2,m(tβdtdy) for 2 ≤ p ≤ ∞.

It is enough to prove the result for p = ∞. The extension is done by taking
f ∈ T ∞,2,m(tβdtdy), truncating f on (0, km) × B(0, k) and letting k go to infinity.

Proof of Proposition 4.2. This is very similar to [7]. Pick a point x0 ∈ R
n and r > 0.

Let the sets B j and C j be defined as in the proof of Proposition 3.7. Set

I 2 =
∫

B(x0,r)

∫ rm

0
|(T f )(t, y)|2tβdtdy.

We want to show that I 2 � rn‖ f ‖2
T ∞,2,m (tβdtdy)

. We set

I 2
j =

∫
B(x0,r)

∫ rm

0
|(T f j )(t, y)|2tβdtdy

where f j (s, x) = f (s, x)1C j (s, x)1(0,rm ](s) for j ≥ 0. Thus by Minkowski inequal-
ity, I ≤ ∑

I j . Since the proofs are scale and translation invariant, we assume x0 = 0
and r = 1 for simplicity. For I0 we use again Theorem 2.2 which implies

I 2
0 �

∫
B(0,2)

∫ 2m

0
| f (s, x)|2sβdsdx � ‖ f ‖2

T ∞,2,m (tβdtdy)
.

Next, for j �= 0, we proceed as in the proof of Proposition 3.7 by representing T f j (t, y)

through a kernel (which is justified by the calculation below and Lemma 2.3 for the
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singular part) but using this time L2 − Lq decay (after using Hölder inequality for the
integral with respect to y on B(0, 2)) to obtain

I 2
j �

∞∑
k=1

∫ 1

0

∫ 2−k t

2−k−1t

2−k t

|t − s| 2n
m ( 1

2 − 1
q )+2

(
1 + 2 jm

t − s

)−2M‖ f j (s, .)‖2
2 ds tβdt

+
∫ 1

0

∫ t

t
2

tβ+2ε

|t − s| 2n
m ( 1

2 − 1
q )+1+2ε

(
1 + 2 jm

t − s

)−2M‖ f j (s, .)‖2
2 ds dt.

Exchanging the order of integration, and using the fact that t ∼ t − s in the first
part and that t ∼ s in the second, and M > n

m ( 1
2 − 1

q ) + ε for small enough ε, and
β < 1, we have the following.

I 2
j �

∞∑
k=1

2−k2−2 jm M
∫ 2−k

0

∫ 2k+1s

2k s
tβ−1+2M− 2n

m ( 1
2 − 1

q )‖ f j (s, .)‖2
2 dtds

+
∫ 1

0

∫ 2s

s

tβ+2ε

|t − s| 2n
m ( 1

2 − 1
q )+1+2ε

(
1 + 2 jm

t − s

)−2M‖ f j (s, .)‖2
2 sβdtds

�
∞∑

k=1

2−k2−2 jm M
∫ 2−k

0
(2ks)β‖ f j (s, .)‖2

2 ds + 2−2 jm M
∫ 1

0
‖ f j (s, .)‖2

L2 sβds

� 2−2 jm M
∫ 2 jm

0
‖ f j (s, .)‖2

2 sβds.

We thus have

I 2
j � 2−2 jm M 2 jn‖ f ‖2

T ∞,2,m (tβdtdy)
,

and the condition M > n
2m allows us to sum these estimates. �

Proof of Theorem 4.1. The proof is almost entirely similar to the above one. Set I j as
in the proof of Proposition 3.7. I0 is estimated as before. When j ≥ 1, the inner term
in I j can be expressed using the kernel representation from t to +∞, which is split
into I j,k on the dyadic intervals (2k t, 2k+1t) for k ∈ N, using Minkowski inequality.
The k = 0 term is estimated as was the term corresponding to (t/2, t). For k ≥ 1, the
kth term is controlled by

∫ 1

0

∫ 2k+1t

2k t

2k t

|t − s| 2n
m ( 1

2 − 1
q )+2

(
1 + 2 jm

t − s

)−2M‖ f j (s, .)‖2
2 ds tβdt.

Exchanging order, we obtain the bound

2−2 jm M 2k(1−β+2M− 2n
m ( 1

2 − 1
q ))

∫ 2k

0
‖ f j (s, .)‖2

2 sβds.

Note that the support of f j forces s ≤ 2( j+1)m in the integral, which is bounded by
C2 jn . The series for I j,k is summable in k under the condition in the statement and
summable in j if M > n

2m . �
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5. Maximal regularity operators

Let us come back to our original motivation that is to bound maximal regularity
operators on tent spaces.

DEFINITION 5.1. Let 1 ≤ q ≤ r ≤ ∞. A family of bounded linear operators
(Tt )t>0 ⊂ B(L2(Rn)) is said to satisfy Lq − Lr off-diagonal estimates of order
M, with homogeneity m, if, for all Borel sets E, F ⊂ R

n, all t > 0, and all f ∈
L2(Rn) ∩ Lq(Rn):

‖1F Tt 1E f ‖r � t−
n
m ( 1

q − 1
r )

(
1 + dist(E, F)m

t

)−M‖1E f ‖q .

With this definition, we have the following simple fact.

PROPOSITION 5.2. Let 1 ≤ q ≤ 2 (resp. 2 ≤ q ≤ ∞) and assume that
(t Le−t L)t≥0 satisfies Lq − L2 (resp. L2 − Lq) off-diagonal estimates (of order M),
with homogeneity m. Then ML ∈ SI O+

m,q,M and M−
L∗ ∈ SI O−

m,q ′,M .

Indeed, the operator-valued kernel Le−|t−s|L has Lq − L2 (resp. L2 − Lq ) decay
(of order M), with homogeneity m so that it suffices to apply Definition 2.5.

To illustrate our results so far, let us prove Proposition 1.5.

Proof of Proposition 1.5. Let L = −� + V or −div A∇ with real coefficients. Then,
the kernel of the semigroup (e−t L)t≥0 satisfies pointwise Gaussian estimate (see e.g.
[22, Theorem 6.10]), hence L1 − L2 and L2 − L∞ off-diagonal estimates with homo-
geneity m = 2 of order ∞. Therefore we have that ML ∈ SI O+

2,1,∞ ∩ SI O+
2,∞,∞.

We now apply the second case of Theorem 3.1 and Proposition 4.2 with β = 0 to
conclude that T p,2,m(dtdy) boundedness of ML holds for ∞ ≥ p > p̃c = n

n+1 .

Using the subordination formula, the Poisson semigroup associated with
√

L satis-
fies L1 − L2 and L2 − L∞ off-diagonal estimates with homogeneity m = 1 and order
n
2 + 1. Thus M√

L ∈ SI O+
1,1, n

2 +1 ∩ SI O+
1,∞, n

2 +1. From M = n
2 + 1 and m = 1, we

have pM = n
n+1 . As β = −1, m = 1 and q = 1, n

2 < −β−1
2 + n

m

(
1
q − 1

2

)
= 1 + n

2
and we are in the second case of Theorem 3.1. Applying this result and Proposition
4.2, we conclude that T p,2,m(t−1dtdy) boundedness of M√

L holds for ∞ ≥ p >

sup(pM , p̃c) = n
n+1 . �

As explained in the introduction, applications of our results require M to be suffi-
ciently large, namely M > n

2m , whatever the value of q. Of course, with exponential
decay, this is not a problem. Semigroups generated by elliptic operators of even order
m ≥ 2 have, in general, such an exponential off-diagonal decay. However, in the case
of Poisson type semigroups, small polynomial decay is to be expected. This applica-
tion suggests that the lower bound on M should be kept as low as possible. Looking
at the proof of Lemma 3.4, there seems to be unavoidable restrictions if we are only
given M without further information. However, the decay of the semigroup is usually
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computed from the decay of the resolvent and integration on a contour. This is the
point of view we shall take.

We consider the following conditions on resolvent estimates for fixed 1≤q ≤r ≤∞.

(1) There exists a bisectorial operator L̃ of angle ω ∈ [0, π
2 ) having a bounded H∞

functional calculus on L2(Rn) such that L = |L̃|(=
√

L̃2 = √
L2), and for any

K ∈ N and ω < ν < π/2,

‖1F (1−z L̃)−11E f ‖r ≤ c(K , ν)|z|− n
m ( 1

q−1
r )

(
1+ dist(E, F)m

|z|
)−K ‖1E f ‖q .

(H1)

for all f ∈ L2(Rn) ∩ Lq(Rn), E, F Borel subsets of R
n, z = e±iθ t, t > 0 and

|θ − π
2 | < π

2 − ν.
(2) The operator L2 is sectorial in L2(Rn) of angle 2ω < π and for any K ∈ N and

ω < ν < π/2,

‖1F (1 − zL2)−11E f ‖r

≤ c(K , ν)|z|− n
2m ( 1

q − 1
r )

(
1 + dist(E, F)2m

|z|
)−K ‖1E f ‖q (H2)

for all f ∈ L2(Rn) ∩ Lq(Rn), E, F Borel subsets of R
n, z = e±iθ t, t > 0 and

2ν < θ ≤ π .

Operators of Dirac type satisfying (H1) with m = 1 appear in [10, Proposition 5.2].
See also [6] and [18].

(H1) and (H2) are closely related and, in fact, (H1) implies (H2). Indeed, it follows
from the resolvent formula

(1 − z2 L̃2)−1 = 1

2
(1 − z L̃)−1 + 1

2
(1 + z L̃)−1

for z as in (H1). Remark that, in (H2), 2w may be greater than or equal to π/2, in
which case −L2 may not generate a semigroup.

PROPOSITION 5.3. Let L be a sectorial operator of angle ω < π/2 with an
H∞ functional calculus on L2(Rn). Assume that (H1) or (H2) is satisfied and fix
ω < ν < π/2. Then for any 0 < ε < R < ∞ and any α ∈ C with �e α ∈
[ε, R], ‖1F (t L)αe−t L1E f ‖r has bound

c(ε, R, q, r, ν)eν|�m α| · t−
n
m ( 1

q − 1
r )

(
1 + dist(E, F)m

t

)−�e α− n
m ( 1

q − 1
r )‖1E f ‖q .

A result in this spirit is in [15] for q = r = 2.

Proof. It is enough to assume (H2). In this case, fix ω < ν′ < θ < ν, and let

φt (λ) = (tλ
1
2 )αe−tλ

1
2
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which is holomorphic and bounded for | arg λ | < π − 2ν′. The Cauchy integral
formula for sectorial operators implies that

(t L)αe−t L = 1

2π i

∫
�

φt (λ)(1 − λ−1L2)−1 dλ

λ

holds with � the oriented contour {|s|eisign(s)2θ : s ∈ R}. We write cθ = �e (eiθ ) =
cos θ > 0. Fix f with ‖1E f ‖q = 1. In the following, we write a = �e α, d =
dist(E, F), γ = n

m ( 1
q − 1

r ). Then (H2) gives us

‖1F (t L)αe−t L1E f ‖r � c(K )

∫ ∞

0
tas

a
2 eθ�m αe−cθ ts

1
2 s

γ
2 (1 + d2ms)−K ds

s

∼= c(K , ν)eν|�m α|
∫ ∞

0
tasasγ e−cθ ts(1 + d2ms2)−K ds

s

� c(K , ν)eν|�m α|t−γ

∫ ∞

0
sasγ e−cθ s

(
1 + d2ms2

t2

)−K
ds

s

� c(ε, K , q, r, ν)eν|�m α|t−γ

(
1 + dm

t

)−a−γ

.

provided 2K > R + γ . We used the fact that 1 ≤ 2(1 + x)−1 when x ≤ 1, and
x−1 ≤ 2(1 + x)−1 when x ≥ 1. The parameter ε > 0 is only needed when q = r . �

It is clear that similar results hold for fractional powers of sectorial operators. We
shall not get into this here. Note also that an exponential decay in the resolvent esti-
mates would not yield a better conclusion in general.

DEFINITION 5.4. Let L be a sectorial operator of type ω < π/2 and having a
bounded holomorphic functional calculus on a Hilbert space H. For �e α > 0, we
define the operator Mα acting on L2(R+, dt; D(Lα)) by

Mα f (t) =
∫ t

0
(t − s)α−1Lαe−(t−s)L f (s) ds.

Clearly M1 = ML .

PROPOSITION 5.5. Let α ∈ {z ∈ C ; a ≤ �e z ≤ b} for some a, b ∈ R+. Then
Mα extends boundedly to L2(R+, dt; H), with a bound not exceeding ceν|�m α| for
any ω < ν < π/2, and some constant c dependent on a, b.

Proof. Using operational calculus as in [3], which is possible since L has bounded
holomorphic functional calculus on H , it is enough to prove the same thing for L = z I
on L2(R+, dt; C) for | arg z | < ν. In this case, we use Schur’s lemma for the com-
plex-valued kernel (t − s)α−1zαe−(t−s)z1s<t . For w = �e z, |z| ≤ w

cos ν
, hence

∫ t

0
|(t − s)α−1zαe−(t−s)z | ds ≤ eν|�m α|

(cos ν)�e α

∫ t

0
|(t − s)�e α−1w�e αe−(t−s)w| ds

≤ �(�e α)eν|�m α|

(cos ν)�e α
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and

∫ ∞

s
|(t−s)α−1zαe−(t−s)z | dt ≤ eν|�m α|

(cos ν)�e α

∫ ∞

s
|(t − s)�e α−1w�e αe−(t−s)w| dt

≤ �(�e α)eν|�m α|

(cos ν)�e α
,

with � being the Euler Gamma function. �

COROLLARY 5.6. Let H = L2(Rn). If 1 ≤ q ≤ ∞ and (H2) holds for (q, 2) if
q ≤ 2 or (2, q) if q ≥ 2 then Mα ∈ SI O+

m,q,Mq
with Mq = �e α + n

m | 1
q − 1

2 |.
Observe that the order of decay becomes a function of q, hence the notation Mq . Mq

increases as q moves away from 2: this is the interesting point for us. As mentioned
in the introduction, M2 = 1 is best possible for the Poisson semigroup of −�, so it
seems one cannot improve this conclusion.

Proof. The fact that Mα ∈ SI O+ is contained in Proposition 5.5. The decay of the
kernel (t − s)α−1Lαe−(t−s)L with s < t is clear from Proposition 5.3. �

COROLLARY 5.7. Let H = L2(Rn).

[A] Assume (H2) holds for (q, 2) with q ≤ 2. Then ML extends to a bounded
operator on T p,2,m(tβdtdy) for pL < p < 2 with pL calculated as follows:

(1) If n
mq ′ < 1 and β ≤ −1, pL = pMq .

(2) If n
mq ′ < 1 and −1 < β < 1, pL = inf( p̃c, pc).

(3) If n
mq ′ ≥ 1 then 1

pL
− 1

2 = mq ′
n ( 1

inf(pc,1)
− 1

2 ).
[B] Assume (H2) holds for (2, q) with q ≥ 2. Then ML extends to a bounded
operator on T p,2,m(tβdtdy) for 2 < p < pL with pL = 2n

n−mq if mq ≤ n and
for 2 < p ≤ ∞ if mq > n.

Note that the result for p ≥ 2 does not depend on β. The exponents pMq , p̃c, pc

are explicitely defined in Theorem 3.1. The last two depend on β.

Proof. [A] The condition n
mq ′ < 1 is equivalent to Mq = 1 + n

m ( 1
q − 1

2 ) > n
2m .

Cases (1) and (2) thus follow from Theorem 3.1. In the third case, Theorem 3.1
does not apply to ML but to Mα for any α with �e α > α1 and α1+ n

m ( 1
q − 1

2 ) =
n

2m which implies that Mα is bounded for inf(pc, 1) < p < 2. At the same
time, Mα is bounded for p = 2 when �e α > 0. The third case follows by
complex interpolation for the analytic family Mα (since the growth in �m α is
admissible) in tent spaces.
[B] The condition mq > n means Mq = 1 + n

m ( 1
2 − 1

q ) > n
2m . So we apply

Proposition 4.2 to ML . If mq ≤ n, then we apply this result not to ML but to
Mα for �e α > α1 and α1 + n

m ( 1
2 − 1

q ) = n
2m and the p = 2 result for �e α > 0

and conclude by interpolation for analytic families again.
�
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Proof of Propositions 1.6 and 1.7. Write L = −div A∇. We have that (e−t L)t≥0 sat-
isfies pointwise Gaussian estimates if n = 1, 2. Hence the conclusion of the first part
of Proposition 1.5 applies. For n ≥ 3, let 1 ≤ p−(L) < p+(L) ≤ ∞ be the numbers
introduced in [1] such that for p−(L) < q ≤ r < p+(L), (e−t L)t≥0 satisfies Lq − Lr

off-diagonal estimates with homogeneity m = 2. As the decay is Gaussian, the order
is ∞. Moreover, p−(L) < 2n

n+2 , p+(L) > 2n
n−2 and, by [16], this is sharp for this class

of complex operators. Taking q < 2n
n+2 , we use the second item in Corollary 5.7, [A]

when n = 3, 4 and the third one when n ≥ 5 to get the lower bound on p. For the
upper bound p = ∞ included, we use [B].

Now for the semigroup associated to
√

L . When n = 1 or 2, we have the point-
wise Poisson kernel estimate, hence L1 − L2 and L2 − L∞ off-diagonal estimates
with order n

2 + 1 and homogeneity m = 1. Hence the conclusion of the second part
in Proposition 1.5 applies since m = 1 and β = −1. For n ≥ 3, with the same
numbers p−(L), p+(L) as above, the resolvent estimate (H2) holds with m = 1 and
p−(L) < q ≤ r < p+(L). Taking q < 2n

n+2 , we use the first item in Corollary 5.7,
[A] when n = 3, 4 and the third one when n ≥ 5 to get the lower bound on p. For
the upper bound, we use [B] with q > 2n

n−2 and find ∞ included if n = 3, 4, and the
proposed value if n ≥ 5. �

COROLLARY 5.8. Let H = L2(Rn).

[A] Assume (H2) holds for (2, q) with 2 ≤ q. Then M−
L extends to a bounded

operator on T p,2,m(tβdtdy) for 2 < p < pL with pL calculated as follows:
(1) If n

mq < 1 and β ≥ 1, pL = ∞ (and boundedness holds at ∞).
(2) If n

mq < 1 and −1 < β < 1, pL = ∞ (and boundedness holds at

p = ∞) if pc < 1 and pL = p′
c if pc ≥ 1.

(3) If n
mq ≥ 1 then 1

pL
− 1

2 = mq
n (− 1

2 ) = −mq
2n .

[B] Assume (H2) holds for (q, 2) with q ≤ 2. Then M−
L extends to a bounded

operator on T p,2,m(tβdtdy) for pL < p < 2 with pL = 2n
n+mq ′ if mq ′ ≤ n and

pL = pMq if mq ′ > n.

This time, this follows from Proposition 3.7 and Theorem 4.1 where one finds the
value of pc, using the operators

M−
α f (t) =

∫ ∞

t
(s − t)α−1Lαe−(s−t)L f (s) ds

and the interpolation procedure of Corollary 5.7. Details are left to the reader.
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