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Abstract

We consider a non-autonomous Cauchy problem
w(t) + A(t)u(t) = f(£), u(0) =wuo

where A(t) is associated with the form a(¢;.,.) : V x V — C, where V and H are
Hilbert spaces such that V is continuously and densely embedded in H. We prove
H-maximal regularity, i.e., the weak solution u is actually in H'(0,T; H) (if ug € V
and f € L%(0,7T; H)) under a new regularity condition on the form a with respect to
time; namely Holder continuity with values in an interpolation space. This result is
best suited to treat Robin boundary conditions. The maximal regularity allows one to
use fixed point arguments to some non linear parabolic problems with Robin boundary
conditions.

1 Introduction

In the background of this article is a longstanding problem by J.-L. Lions on non-autono-
mous forms. We give a solution of the problem in a special case which is most suitable for
treating non-autonomous Robin boundary conditions. To be more specific we consider a
non-autonomous form

a:[0,T]xVxV —=C

where V' is a Hilbert space continuously and densely embedded into another Hilbert space
H. We assume that

a(t;u,v)] < Mljullvolly (£ €[0,T],u,veV)
Re a(t;u,u) > 6||ull} (tel0,Tl,ueV)

for some constants M,é > 0, and that a(.;u,v) is measurable for all u,v € V. Denote by
A(t) : V= V' the operator given by

(A(t)u,v) = a(t;u,v), veV.

The space
MR(V,V'):= HY(0,T; V)N L*(0,T; V)
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is contained in €([0,T]; H) and one has the following well-posedness result for weak solu-
tions.

Theorem (Lions). For all f € L*(0,T;V’), ug € H, there exists a unique u € MR(V,V")
solution of

u(t) + A(t)u(t) = f(t), u(0) =ug

The letters M R are used to refer to “maximal regularity”; and indeed one has maximal
regularity in V’ in the sense that all three terms u, A(-)u(-) and f occuring in the equation
belong to L?(0,T;V’). However, considering boundary valued problems one is interested
in strong solutions, i.e., solutions u € H'(0,T; H) and not only in H'(0,T; V") (note that
H < V' by the natural embedding).

Problem. Given f € L?(0,T;H), ug € H good enough, under which regularity assump-
tions on the form a is u in H(0,T; H)?

This problem is explicitely formulated by Lions [13, p.98] if a(t;v,w) = a(t;w,v) for all
v,w € V. In general, the answer is “no” even for vy = 0. This has been shown recently by
Dier [9]. But several positive answers are given by Lions [13]. More recently it has been
shown that the answer is “yes” for any uy € V provided a(.;v,w) is Lipschitz continuous
and symmetric (see [4] where also a multiplicative perturbation is admitted) or if a(.;v,w)
is symmetric and of bounded variations (see Dier [9]). Moreover, for ug = 0 the answer
is “yes” if a(.;v,w) is Holder continuous of order o > % for all u,v € V, see Ouhabaz-
Spina [17]. This has been improved by Haak-Ouhabaz [10] where the authors remove the
symmetry condition and allow non-zero initial conditions. The purpose of this article is
to establish a different case. We consider 0 < v < 1 and the complex interpolation space

V, :=[H,V],. Then we assume that a is symmetric and
lat, v, w) — a(s; v, w)| < clt = s|%[|v]lv, [[w]lv,

for all v,w € V, t,5 € [0,T], where o > 3. Then we show that the solution v from Lions’
theorem is actually in H'(0, T’; H) whenever ug € V. In other words, for all f € L?(0,T, H),
ug € V there is a unique
u€ MR(V,H) :={ue H'(0,T; H)NL*(0,T;V) : A(-)u(-) € L*(0,T; H)}
satisfying
u(t) + A(t)u(t) = f(t) t—a.e.

Thus we have maximal regularity in H in the sense that all three terms @, A(-)u(-) and f
are in L?(0,T; H). Moreover, we show that M R,(V, H) C €([0,T]; V). Our result can be
applied to Robin boundary conditions. If €2 is a bounded Lipschitz domain and

B:[0,T] — ZL(L*(99))

is Hélder continuous of order o > I then given ug € H*(2), f € L*(0,T; L?(Q)) there exists
a unique v € HY(0,T; L*(Q)) N L?(0, T; H(Q)) such that Au € L?(0,T; L?(2)) and
u(t) — Au(t) = f(t)
dpu(t) + B(t)u(t),, =0

u(0) = up.

This in turn can be used to establish solutions of a non linear problem with non-autonomous
boundary conditions, see Section 5.



2 Forms, interpolation and square root property

Throughout this paper we consider separable complex Hilbert spaces V and H with the
property V <;> H, i.e., V is densely and continuously embedded in H. Then, as usual, we

have
H e Vv’

by associating to u € H the antilinear mapping v — (v|u) where (|-) is the scalar product
in H and V' the antidual of V.
Let a: V x V — C be a sesquilinear form which is continuous, i.e.,

la(u, v)] < Mlully[vllv, w,veV

and coercive, i.e.,
Rea(u,u) > 8|ul}, uecV,

where M > 0, 6 > 0. Then (Au,v) := a(u,v) defines an invertible operator A € .Z(V, V).
We denote by A the part of A in H, i.e.,

DA):={ueV:Aue H}, Au:=Au.
The operators A and A are sectorial. More precisely there exists a sector
Yy := {rew 7> 0,]p] <6}

with 0 < 6 < 7 such that o(A) C Xy, 0(A) C Eg and

|1 = A g < s A E S (2.1)
I = A) Y gy < e, A S (2.2)
1A = A) Y| vy < <1+w> A N (2.3)

1A — A) | 2y < Tw A % (2.4)
(A = A) | gy < (1+|)\|) A S (2.5)

| = A) oy < T A ¥ S (2.6)

The angle 0 and the constant ¢ merely depend on 4, M and the embedding constant cpy,
lollg < enllvllv, veV. (2.7)

For the proof of the estimates above, we refer to Tanabe [19, Chapter 2], or Ouhabaz [16,
Theorem 1.52 and Theorem 1.55] (see also Arendt, [2, Theorem 7.1.4 and Theorem 7.1.5])
We fix an angle § < ¥ < § and denote by I' the contour I' := {reiw,r > 0} oriented
upwards. The operator —A generates a holomorphic Cy-semigroup (e~*4);>0 on H given
by
eth = L / e M(A\d - A)"dA. (2.8)
r
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A property of holomorphic semigroups is that
[tAe || (py < ¢ for all t > 0. (2.9)

Moreover a theorem by De Simon [8, Lemma 3.1] asserts that for holomorphic semigroups
on Hilbert spaces there exists a constant ¢ > 0 such that for all f € L?(0,7T; H),

t
t— / Ae=)4f(s)ds € L*(0,T; H)
0

and Ht — /t Ae(t_s)Af(S)‘
0

< 2.10
L2(0.T5H) cllfllz2o.rm)- ( )
Moreover

||€_tAH$(H) <ce ', t>0,

for some € > 0, ¢ > 0. Similarly, —.A generates an exponentially stable holomorphic Cj-
semigroup (e~*);50 on V'. By a*(u,v) := a(v, u) (u v € V) we define the form a* which is
adjoint to a. Then the operator associated with a* on H coincides with the adjoint A* of
A. We define the operator A~z € Z(H) by

u= f/ t2e Ay dt, (2.11)

and we let D(Az) := A"2H. One has D((uld + A)2) = D(A2) for all u > 0 (see [3,
Proposition 3.8.2, p. 165]). The domain of A3 is of importance since it describes the initial
values ug for which the Cauchy problem

m\»—‘

i+ Au=0, u(0)=ug
has an H'-solution. In fact, u(t) := e~ *4

defined for all ug € H. One has

ug is the mild solution of this problem which is

we HY0,T; H) if and only if ug € D(A?). (2.12)

The space V is in general known, it is typically a Sobolev space as H(2) or H} ().

However, the right space D(A%) for the admissible initial values is in general different from
V. We introduce a name to describe the important property that both spaces coincide.

Definition 2.1. The form a has the square root property if D(A%) =V.
We give an abstract criterion for a particular case where the square root property holds.

Example 2.2. Assume that a can be written in the form a = a7 +as wherea; : VxV — C
is bounded and symmetric and ay : V x H — C is bounded. Then a has the square root
property. See Mclntosh [15].

Not each form has the square root property. The famous solution of the Kato square
root problem says that elliptic forms describing a second order differential operator with
measurable coefficients on bounded open sets of RV with Dirichlet of Neumann boundary
conditions have the square root property (see [5] for the case of Q = RY and [6] for the
case of strongly Lipschitz domains). We will need the following result by J.-L. Lions [14,
Théoréme 5.1].



Lemma 2.3. The form a has the square root property if and only if D(A%) Cc V and
D(A*z) C V.

In the following we will consider v € [0,1) and the complex interpolation space V5 :=
[H,V],. Thus
V—V,— H

Moreover Vo = H, Vi = V. Then V} := (V,)" = [V', H];—. In particular
H—V, <V

and Vj = H, V] = V'. Since V,, and VJ are interpolation spaces we obtain from (2.1)—(2.6)

the following estimates. Note that (AId — A)I;l = (AId — A)~! for A ¢ ¥y. Similarly,
et = et
H

Proposition 2.4. 1. There exists ¢ > 0 such that for X ¢ ¥g one has

AT — A) Y 2(mv,) < m, (2.13)
AT = A) ™ L vz < W (2.14)
I(Ad — A) Y| v, 1) < (1+|>\|) (2.15)
[(AId — A) ™|z vy < W, (2.16)
|0 = A ) < s (2.17)
2. There exists ¢ > 0 such that fort > 0,
|’6_tA“Z(V§,V) < tlif (2.18)
le™ N 2, vy < tl(; (2.19)
le™ Nz qv,my < t% (2.20)

We occasionally consider form perturbations which are continuous on V, x V,. They
preserve the square root property.

Proposition 2.5. Let aj,as : V x V. — C be two bounded, coercive forms. Assume that
there exists a constant ¢ > 0 such that

a1 (u, v) = az(u,v)| < cllullv, [lvllv,, w,veV,
where 0 < v < 1. Then, a1 has the square root property if, and only if, as has it.

In the following proof the constant ¢ > 0 will vary from one line to the other but does
not depend on the variables to be estimated. We keep this convention throughout the paper.



Proof. By hypothesis we have A, Y2 ¢ V. We show that (A 1/2 A;l/z)H C V. Let
u € H. Then

_ _ 1 e 1
Al 12 u— A, 2y e oAy — e7742y) do
= i h i 1/ e M (AId — A1) tu — (A\Id — Az) " u) dAdo
LT L o A A AN Ay
=75 Vo /Fe (AId — A1) (A1 — A2)(MId — A2) " udA do.
Since A1 — Az € Z(V,, V) and by (2.16) and (2.13)
|’(>‘Id_A1)71|’$(V4,V) < m
and forall A\ eI’

I\ = A2) Mgy, < Gpfr

we see that (AId — A;) 71 (A; — A2)(Ald — Ag)~lu € V and the integral converges in V. In
fact,

_ 1 1
||A 1/2u_ 1/2qu<C/ ‘/ —oRe A HU||Hd|/\| do
! o Vo 1+ AT @ +[AD—72
1 1
<c/ / “orest L drdo) uly
(1+7r)277
<l [ ([T eretan) —L—ar
- o Mo Vo (147)277

o o ) 1
§c||uHH/ (/ ﬁe—m%ds) S S
0 0o Vs r (147r)277

v
VI (14 7)27

< df|ullm dr < cflulln-

Thus the clalm is proved and D(AQ) C V. Applying this result to a} instead of ay we find
that D(A ) Cc V. It follows from Lemma 2.3 that as has the square root property. O

3 Non-autonomous forms

In this section, we consider a time-dependent form a. Let V, H be separable complex
Hilbert spaces. Let T' > 0 and let

a(t;-,+) : XV xV — C Dbe a sesquilinear form for all ¢ € [0, 7] and such that

la(t;u,v) < M||u|lv||v|lvy  (boundedness) (3.1)
Re a(t;u,u) > 6|jull>  (coercivity) (3.2)
a(-,;u,v) : [0,T] — C is measurable (3.3)



where u,v € V and the constants M > 0, § > 0 do not depend on u,v € V, t € [0,7]. Then
for each ¢ € [0,T] we consider the operator A(t) on V' which is associated with a(¢; -, ) and
we denote by A(t) the part of A(t) in H. A classical theorem of Lions (see [7, Théoreme 1
p.619, Théoreme 2 p. 620, Chap.XVIII §3], [18, Proposition 2.3, Chap. III.2]) establishes
well-posedness and maximal regularity in V’ of the Cauchy problem

{u(t)JrA(t)U(t) = f()

u(0) = wup. (3:4)

More precisely, we let
MR(V, V') := HY0,T;V')n L*(0,T;V).
Then MR(V, V') C €([0,T]; H) and the following holds.

Theorem 3.1 (Lions). Let f € L*(0,T; V'), uo € H. Then there exists a unique solution
u€ MR(V,V') of (3.4).

The operator A(t) is not the real object of interest if one considers boundary value
problems (see Section 5), it is rather its part in H which realizes the boundary conditions.
So the following question is of great importance.

Question 3.2. Assume that f € L2(0,T; H) and ug € V. Does it follow that the solution
u € MR(V,V') of (3.4) is actually in H'(0,T; H)?

In that case, since u is a solution, u(t) € D(A(t)) a.e. and u(t) + A(t)u(t) = f(t). We
have seen that we have to impose at least that a(0;-,-) has the square root property (since
otherwise, even for f = 0 and even for A(t) = A(0) there exists a counterexample). Our
aim is to give a positive answer to the question if a satisfies some further regularity in time.

Definition 3.3. The form a (or Problem (3.4)) satisfies mazimal regularity in H if for each
f € L?(0,T; H) and for each ug € V, the solution v € MR(V,V’) of (3.4) is actually in
HY0,T; H).

The problem (3.4) is invariant under shifting the operator by a scalar operator as the
following proposition shows.

Proposition 3.4. Let € R.
1. For each f € L*(0,T;V"') and ug € H there is a unique u € MR(V,V') such that

{u(t)—i—A(t)u(t)—i—,uu(t) = f(t) ae.,

u(0) = wp. (3:3)

2. If problem (3.4) has maximal regularity in H and if ug € V and f € L?(0,T; H), then
this solution u of (3.5) belongs to H'(0,T; H).

Proof. 1. Let v be the unique solution in M R(V, V") of

{b(t)+A(t)v(t) = e f(t) ae.
v(0) = wp
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and let u be defined by u(t) = e #uv(t), t € [0,T)]. It is immediate that u € M R(V, V"),
u(0) = up and

a(t) = —pe Mo (t) + e o(t)
= —pu(t) + e M (—At)v(t) + f(H)e™)
= —pu(t) — At)u(t) + f(t), ae. te0,T]

which proves that u satisfies (3.5). Assume now that (3.5) admits two solutions in
MR(V,V') uy and uy. Then vy(t) = e*uy(t) and va(t) = e*vy(t) define two solutions
of (3.4) in MR(V,V') with initial value ug and e* f(-) instead of f. Therefore they
coincide by Lions’ Theorem 3.1.

2. Assume now that u is a solution in MR(V,V’) of (3.5). Let v : t — efu(t); v
is the unique solution of (3.4) in MR(V, V') with g = e/ f(-) instead of f. Since
problem (3.4) has the maximal regularity property and g € L2(0,T; H), v(0) = ug €
V, the solution v belongs to H'(0,T; H) and t — A(t)v(t) € L*(0,T; H). This proves
that u : t — e #o(t) also belongs to H(0,T; H) (since u(t) = pe #tv(t) + e o (t))
and t — A(t)u(t) = e M A(t)v(t) € L?(0,T; H).

O

Finally, we want to establish a representation formula of the solution w € M R(V, V") of
(3.4).
Proposition 3.5. 1. Let f € L*(0,T; V"), uo € H. Let u € MR(V, V') be the solution
of (3.4). Then

u(t) = e_(t_tO)A(t)u(to) + /t 6_(t_8)“4(t)f(s) ds + /t e~ (1=5)A(t) (A(t) — .A(s))u(s) ds,

to to

for all to € [0,T) and all t € [ty,T). (3.6)

2. Moreover, there is only one w € MR(V,V') satisfying this identity if we assume in
addition that t — A(t) € ZL(V,V') is Dini-continuous, i.e., admits a modulus of
continuity w in the operator norm with the property that t — 1 w(t) € L'(0,T).

Proof. 1. This formula already appears in [1, formula (1.18), p. 57] for operators with dif-
ferent properties. Let 0 < ¢ < T. Consider the function v : [0,t] 3 s —» e~ (=) Ay (s).
Then v € €([0,t]; H) N H'(0,¢; V') and

i(s) = A(t)e 7940y (5) 4 e~ (7AW (5)
— o (t=5)A(1) (A(t)u(s) + (—A(s)u(s) + f(s)))
= e IAO(A(R) — A(s))u(s) + e IO (). (3.7)

t
Thus integrating between ¢y and ¢ gives v(t) = / 0(s) ds + v(tp) which is the claim.
to
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2. In order to prove uniqueness, assume that there are two functions uq and s in the
space M R(V, V') satisfying (3.6) and denote by w the difference u; — uy. Then w €
MR(V, V') and satisfies

w(t) = / e =40 (A1) — A(s))w(s) ds, (3.8)

to

for all to € [0,T) and t € [to,T]. Let J C [0,T] the set of points ¢ € [0,T] where
w(t) = 0. It is clear that 0 € J. Since MR(V, V') C € ([0, T]; H), J is a closed set of
[0,T]. Let now to € J and assume that top < 7. Using (3.8), the continuity properties
of A(-) and the estimate (2.18), we obtain by Young’s inequality for convolution

v < [ sl = sl v ds

and therefore

t—1to
ol <e ([ as) ol

Choosing ¢ small enough so that c( 5: w(:) ds) < 1, we proved that w(t) = 0 almost
everywhere on (to,to + €). And since w € €([0,T); H) this implies that w(¢) = 0
everywhere on [to,to + ¢]. To prove that there exists ¢ > 0 so that w(t) = 0 on
[to — €', to], the proof is similar: it suffices to exchange the roles of ¢y and ¢ in (3.8).
Therefore, J is an open set of [0,7]. Altogether, we proved that J is a nonempty
closed and open subset of [0,7] which is connected, so J = [0,7] and ultimately
w(t) =0 for all t € [0,T].

O]

4 Maximal regularity in H

Let V and H be two separable complex Hilbert spaces such that V' ‘7 H. Let a:[0,T] x

V x V. — C be a non-autonomous form satisfying (3.1)—(3.3). We denote by A(t) the
operator on V' associated with a(t;-,-) and by A(t) its part in H. The essential further
condition concerns continuity in time. We assume that there exist 0 < v < 1 and a modulus
of continuity w such that

la(t; uw,v) = als; u, v)] < w(|t = s])lullv, [v]v, (4.1)

for all t,s € [0,7T], u,v € V,. We suppose that w : [0,7] — [0,+00) is continuous and
satisfies

w(t)
sup —75 < 00 4.2
te[0,7] /2 (4.2)
T w(t)
and /0 T2 dt < oo. (4.3)

The main example of such a continuity modulus is the function w(t) = t* with o > 3. We
remark that conditions (4.2), (4.3) imply that

T t 2
/O “t’f +)7 dt < oo (4.4)




Finally, we impose that a(0;.,.) has the square root property. By Proposition 2.5 this
implies that a(¢;.,.) has the square root property for all t € [0,7]. Under the preceding
conditions we have the following result on mazimal regularity in H.

Theorem 4.1. Assume that a(0;.,.) has the square root property. Let ug € V, f €
L?(0,T; H). Then there exists a unique uw € HY(0,T; H) N L%(0,T; V) such that u(t) €
D(A(t)) a.e. and

{u(t)+A(t)U(t) = [f(t) ae (4.5)

u(0) = wp.

Thus the solution u is in the space
MRy = {ue H'(0,T; H) N L*(0,T;V) : u(0) € V, A(-)u(-) € L*(0,T; H) }.
We will see below that MR, C €([0,T]; V).
Remark 4.2. (a) The space M R, endowed with the norm
lullarr, = il gz oz + 1ACUO 20 7o) + 1u(0) v
is a Banach space.

(b) It follows from the Closed Graph Theorem that there exists a constant ¢ > 0 such
that

[l om0y + IAC w200 < € (luollv + 11fll L2 o,r;mm))
for each ug € V and f € L?(0,T; H), where u is the solution of (4.5).

Proof of Theorem /.1. By Lions’ Theorem 3.1 there exists a unique solution u € M R(V, V")
of the problem. We have to show that A(-)u(-) € L?(0,T; H). For that we use the decom-
position of Proposition 3.6 and show that A(-)u;(-) € L*(0,T; H) for j = 1,2,3 where

t
ui(t) = e_tA(t)uo, us(t) :/ e_(t_s)A(t)f(s) ds,
0

and wug(t) = /Ot e~ (=) A®) (A(t) — A(s))u(s) ds.

We divide the proof into three steps.
Step 1: Since a(0;-,-) has the square root property, t — A(0)e **Ouy € L2(0,T; H).
Thus it suffices to show that
¢t Alt)e Dy — A(0)e M Oyy € L2(0,T; H).
Using
(AId — A())™F — (AId — A(0)) ™! = (AId — A(t)) ' (A(t) — A(0))(A\Id — A(0))™  (4.6)

we see that

B(t) = 1 / e M(AId — A(t)"HA(t) — A(0))(AId — A(0)) tug dA.
T

2
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Using (2.14), (2.6) we estimate

—Re 1 _
l6®ll < c| /F Ae™ i w1 — A(0)) oy, d|

1 1
< cw(t)] [ [Ale=tReX Slluollv dlA]|
< ew)] [ N s ol diA

1

oo
< —trcosd
<cu®lwly [ s
o0 t1=/2 1 w(t)
< —pcosV - )
< cw®uly [T e s Ldp < oS ol

It follows from (4.2) that ¢ € L?(0,T; H).
Step 2: We show that ¢ — fg A(t)e= (=AW £(s) ds € L?(0,T; H). By (2.10) A(0) satisfies
maximal regularity and

s /0 tA(O)e_(t_S)A(O) f(s)ds € L*(0,T; H).
Thus it suffices to show that
¢t /0 tA(t)e_(t_s)A(t) f(s)ds — /0 tA(O)e_(t_S)A(O) f(s)ds € L*(0,T; H).
As before we have

o(t) = /O ‘L /F e DM ATd — A1) A(E) — A(0))(AId — A(0)) "' £(s) dAds.

21

Using (2.13) and (2.14) we obtain

t proo 1 1
—(t—s)rcos?
lo(®)llm < C/O /O re o W) g 1 (8)llm drds
t o0

= /0 ( /0 gmoeost L= fsdp)uﬂs)ans

p=7 t

=cwt)(h=||f()|lg)(t) foral0<t<T

0 fort <0
where h defined by h(t) =< t=7 for 0 <t <T isin L'(R). It follows that
0 fort>1T

T
/O l6(t)[13 dt < co.

Step 3: In order to show that A(-)us(-) € L?(0,T; H), we define for g € L*(0,T; H),
t
(@a)(0):= [ At (4(e) — A(5)) AGs)gls) ds
0

t
:/ A(t)e T A0
0

FAD(A®L) — A(s)) Als) g(s) ds

11



Let ¢ > 0. Replacing A(s) by A(s) + pld (see Proposition 3.4) we may assume that
||A(5)_1H$(H,Vw) < e (see (2.13)) for all s > 0. Thus by (2.14) and (2.9) we have the
following estimates

t _t=s _t=s
IIQg(t)IIHS/O 1A e = A gimlle™ 2 4O gvymy w(t — s) e llg(s) ] ds

tq 1
< +_ s (t— s\V/2 - .
<ee [ s gt - M@l

Since k(t) = M%/Q w(t) defines a function k € L1(0,T) it follows that Qg € L?(0,T; H) and
1QallL20,7;m) < cellgllLzo,m)-

Choosing € > 0 small enough we can arrange that ||Q| #(r2(0,1,m)) < % Thus Id — Q is
invertible. By Step 1 and Step 2 we know that

hi=A()(ur() + ua(-)) € L*(0,T; H).
Let w = A(-) "' (Id— Q) 'h. Then A(-)w(-) € L*(0,T; H). Since h = A(-)w(-) —Q(A(-)w(-))

one has

A(t)e—tA(t)uO + A(t) /t e—(t—S)A(t)f(s) ds + A(t) /te—(t—s)A(t) (A(t) — A(s))w(s) ds
0 0

= At)w(t).

Applying A(t)~! on both sides we see from Proposition 3.5 that w = u. Hence A(-)u(-)
A()w(:) € L*(0,T; H).

Ol

Remark 4.3. If we do not suppose the square root property, then the proof of Theorem 4.1
shows that for ug € D(A(O)%), f € L?(0,T; H), the solution u given by Lions’ Theorem is
in H1(0,T; H), i.e., we have the same conclusion as in Theorem 4.1 if we choose the right
trace space.

As announced above, we now show that
Theorem 4.4. The space M R, is continuously embedded into € ([0,T],V).
To prove this theorem, we need the following lemma.

Lemma 4.5. Let a be a non-autonomous form satisfying (3.1)—(3.3) and (4.1). Denote by
A(t) : V — V' the operator associated with a(t;.,.) and by A(t) its part in H. Then for all
A ¢ Xy, s€(0,T] and o > 0 the following mappings are continuous on (0,7

t— (A\Id — tA(0))"t € 2(V), (4.7)
t= A(t) — A(s) € Z(V,, V), (4.8)
t— (Ald—A(t) "' e 2(V],V), (4.9)
t (Ald—tA(t) e £(V], V), (4.10)
te e AW e 2V V). (4.11)
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Proof. To prove (1.7), we write for t,s € (0,7] and \ ¢ Xy

(AId — £A(0))" — (AId — sA(0)) " = (1 - %) LA(0)(ATd — 7514(0))—1(é —A)

S S

<ec

Thanks to (2.6) the estimates [[tA(0)(Ald—£A(0)) ||y < ¢ and H (é —A(O))
hold. Therefore

-1
|0

(AId — tA(0)) ™! — (\Id — sA4(0)) ™ — 0 in Z(V) as s — t.
The claim (4.8) follows immediately from (4.1) since the latter implies
[AE) = A(s)ll z(v, vy Sw(t—s]) — 0 ass— ¢ (4.12)
We now prove (4.9) as follows. Let t,s € (0,7] and A ¢ ¥y. We have
(Ad — A®) ™t = (AId — A(s)) ™" = (\Id — A1) (A() — A(s)) (AId — A(s)) L.

Therefore, by (2.16) and (2.17), using (4.12) we have

(AT — A) ™ = (Ad = A) | ) < : cwllt=s) o assot,

1+[A)z0=7)

which proves (4.9). The proof of (4.10) combines the ideas of the proofs of (4.7) and (4.9).
We write

(Ad — £A(1) " — (Ald — s.A(s))"" :(% - %) A(t) (% 1d-A@W) (2 1 As))
+ % (% Id - A(t))il(A(t) A(®s)) (% I — ,4(5))*1
which implies the following estimate thanks to (2.16), (2.6) and (4.12)
|(AId — tA(t)) ™" — (\Id — sA(s)) ! 2v)
c 1 17 1 cw(|t —s|)
Si(lJrl%')liTv ((C—i-l)’S—t —i—; (1+|;\)127(1+|;\|)1zw> —0 ass—t.

Finally, we show (4.11) using the representation (2.8) for the semigroup:

oA _ godis) _ L / (AT — A1) (A(t) — A(s))(ATd — A(s)) " dA
Iy

211

we obtain, using (2.16), (2.17) and (4.12)

o0
L(V1,V) < Cw(’t — 3)/0 e*UTCosﬁ

—0 ass—t forall o >0,

1

HefaA(t) - efaA(s) _ dr
(1+47)2077

which proves the claim. ]
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Proof of Theorem /... Assume that w € MR, C MR(V,V') C €([0,T]; H). Let f =u(-)+
A()u() and ug = u(0): f € L*(0,T;H), up € V and u satisfies (3.4). By Proposition 3.5,
we have u = uy 4+ ug + uz where

t
w(®) =M Ou, (e = [0 f(s)ds
0

and wus(t) = /Ot e~ (=) A®) (A(t) — A(s))u(s)ds.

We will show that each term u;, j = 1,2,3, belongs to € ([0,77; V).
Step 1: We claim that u; € €([0,7]; V). Indeed, uyp € V and since (e‘tA(O)‘V)tZO defines

a Go-semigroup one has t — e 4 0yy € €([0,T]; V). Let us first consider the case where
t > 0. We have

1AWy oA — 2L / e (ALd — A(#)) " (A() — A0))(AId — A(0)) " ug dA
T r

= o [ (M- am) @) - A0)(T1d - A0) uo %.

211 T

Estimates (2.6) and (2.16) imply

1 . y
|5 n(g Id—A(t) (A(t) - A®0)) (g 1d - A(0)) UOHV
C _Re 1 1
<< g Ren Wt .,
t (1+7 ) ()1+77H ollv
C 1 1
<Z p—InlcosV
“ (1+ ?)1%” w(t) 1+ g)l/2+'y/4 l[uollv

- _ 1
<ce |77\cos19t V/4w(t) W HUQHV

€7|n\cost9

SCW (E2w(t)) 74 o]y

Since r ﬁ;f is integrable on (0, c0) and
t e M (nId — tA(t)) T (A(t) — A(0))(nId — tA(0)) tug € V
is continuous on (0, 7] thanks to (4.7), (4.8) and (4.10) we may apply Lebesgue’s dominated

convergence theorem. Therefore we obtain the continuity of t — e tA®yy — e~ tAO0)yy € V
n (0,7]. It remains to prove the continuity at 0. Using the representation

e A0y — e Oy = / eI — A(£)) 1 (A(£) — A(0)) (A — A(0)) g dA
i Jp

thanks to (2.6) and (2.16) we obtain the following estimate
1

e~ AWy — e~ tAO) |1y < C’w(t)/ g dr
0o (14r) =

14



where we have used that [e ™| < 1 for all A € I'. Since w(t) — 0 as t — 0, this proves that
t s e tAM) —tAO)yy € V is continuous on [0, 7], and ultimately that u; is continuous
on [0, 7.

Step 2: We claim that ug € ([0, T]; V). The embedding

Uy — e

HY0,T; H) N L*(0,T; D(A(0))) — €([0,T]; V)

(recall that a(0; -, -) has the square root property so that V = D(A(O)%)), together with the
maximal regularity property in the autonomous case (2.10) imply that

m/ ~(t=940) £(5) ds € €([0, T]; V).

It suffices to prove now that

t t
Gt /o e*(t*s)A(t)f(s) ds — /0 e*(t*S)A(O)f(s) ds € €([0,T]; V).

For every t € [0,T] we have

t) = / i / ~E=NAId — A1) THA®L) — A(0))(AId — A(0)) " f(s) dAds.
This integral is convergent in V. Indeed, by (2.13) and (2.16),

e~ (=M (AId — A(2)) "1 (A() — A0))(AId — A(0) £ ()|,
Ce_(t—s)\)\|cosz9 1 w L

: ax = Vg

el

(1 + ‘)\’)3/2—7

1 ()l e

<c ef(tfs)\)\| cos ¥

I1f ()]l e

e—(t—s)rcos ¥

= || f(s)||z is integrable on [0,t] x [0,400). We can then
apply Fubini’s theorem and obtain the following representation for ¢

and the function (s,r) —

1
211

(1) = — /F (ALd = A($)) 7 (A(t) — A0)(A1d — A(0)) ™ /0 e (s)ds ) dA

The following two facts are the keys to prove the continuity of ¢:

-t fg e~ (=92 f(s)ds € €([0,T]; H) and for all A € T'\ {0},
! (t—s)A 1
e \'78 s)ds|| < ————1|f D
H/o f( ) HH > \)\]cosﬁ H HL2(0,T,H)

-t (AId — A())H(A(t) — A(0))(AId — A(0)) "t € €(]0,T); £ (H,V)) thanks to (4.8)
and (4.9) and for all A € T,

cw(t)

(1 — A(0) 7 (A(R) ~ AO)NA = AO) ) < Ty

15



Since r — W € LY(0,00) we can apply Lebesgue’s dominated convergence theorem
and we obtain that ¢ € €([0,7]; V) and

oy < ewtt)( | =i 4r) s

which proves the claim.
Step 3: t > us(t) € V is bounded on [0,T]. Indeed, for all t,s € [0,T7], t > s, the estimate
(2.18) gives

e~ E=AD (A(1) — Als))uls cwlt—s) cwlt —s)
| (A(t) — A(s)u(s)]],, < o [u(s)lv, < P lu(s)llv

which proves that for all ¢ € [0, T

T wl\o
sl < e | 8 lulszora
2

g

Step 4: We claim that uz € €([0,T]; V). Since u € H'(0,T; H), it is clear that u €
€ (]0,T); H).The previous three steps show that ¢ — ||u(t)||y is bounded on [0,7T]. There-
fore, for all ¢,s € [0,T], we have by the interpolation estimate

Jut) = )y, < 1t~ (o)l (2 s (V)" 0,

which proves that u € €([0,77], V;). Now, using the formula for u3 we have for all t € [0, 7]
t ¢
us(t) = / e~ =AWD (A(t) — A(s))uls) ds = / e~ AD(A(t) — At — o))ult — o) do.
0 0

We just showed that u € €([0,77,V,). Moreover, for all o € (0,7] (with the convention
A(1) = A(0) if 7 <0), recall (4.8) and (4.11):

t— A(t) — At — o) € €([0,T],£(V,,V.))

v Yy
and t— e A" € €((0,7],2(V],V)).
Using (2.18) we have also
At wlo) _  w(o)
|7 A® (A(t) — At — o)z, vy <c = C o Vo.
Since o +— UZJJ(F‘;}Q € L'(0,T), this proves the continuity of uz : [0,7] — V by Lebesgue’s
dominated convergence theorem. O

Corollary 4.6. Let a be a form satisfying (3.1)—(3.3) and (4.1). Let as be a form satisfying
(3.1)~(3.3) and

laa(t; u,v)| < cl|ullv||v||g, weV,ve Htel0,T]. (4.13)
Then for all ug € V and f € L*(0,T; H), there exists a unique solution v € H*(0,T; H) N
L?(0,T;V) of the problem

{u(t)+A(t)u(t)+A2(t)u(t) = f(t) ae.

) = 1 (4.14)
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where As(t) is the operator associated with the form as(t;.,.). Moreover, u satisfies t
A(t)u(t) € L*(0,T; H) and

lull om0y + 1A | L2070y + 1A2(DuC)l 20,757 < e(llwollv + I1fllz2(0,7,v)) (4.15)

where ¢ is a constant depending merely on T, §, M, cg, 7, w, ca (which are defined in
(3.2), (3.1), (2.7), (4.1) and (4.13)).

Remark 4.7. The operator As(t) is bounded from V' to H and
[(As(t)u, v)| = |az(t; u,v)| < cllullv||v||z, for allve H.

Proof of Corollary /.6. Let ug € V and f € L?(0,T;H). For v € MR,, we denote by
Sv =: w the solution of

w(0) = o,

Since v € MR, C €([0,7T]; V) by Theorem 4.4, t — Ay(t)v(t) € L?(0,T; H) and therefore,
by Theorem 4.1, w € M R,. We have defined a mapping S : MR, — M R,. Moreover, for
any 7 € [0, 7], we have by Remark 4.7

{ w(t) + AWw(t) = f(t) — Az(t)v(t)

[1Sv1 = SvallprRa(0,7) < cllA2(-)vr — A2 (vl L2(0,7,)
< cllvr —vall20mvy < VT lv1 = v2llg o)
< VT [lv1 = vallarRe(0,7)
where M R4(0,7) denotes the Banach space
MR4(0,7) := {u e HY0,7; H)NL*0,7;V) : u(0) € V, A(-)u(-) € L2(0,T;H)}
endowed with the norm

[ullarrato,r) = N1l 220,50 + 1AC) ) L200,7m) + [[w(0)]lv

Therefore, for 7 > 0 small enough, S is a strict contraction on M R,(0, 7). By the Banach
fixed point theorem, we deduce that there exists a unique v € M R4(0,7) such that Sv =wv
on [0,7], i.e., v is a solution of (4.14) on [0,7]. Let now 7Tmax be the maximal time of
existence of the solution u € M Ry(0, Timax) of (4.14). In particular, u(mmax) € V. Our goal
is to show that mnax = T'. Assume that 7. < T. Consider the solution v of the problem

{ 0(t) + A(Tmax +1)v(t) + Ao(Tmax + 1)v(t) = f(Tmax +1)
v(0) = u(Tmax)-

This solution exists in M Rq4(0, 71) for some 0 < 71 < min{7max, T —Tmax ;- Then the function
@ defined on [0, Tmax + 71] by

u(t) it 0 <t < Tax
U(t - 7—max) if Tmax < ¢ < Tmax + 71

is a solution of (4.14) in M R4(0, Tmax + 71), which contradicts the fact that 7. was the
maximal time of existence of a solution.

The proof of the independence of the constant ¢ in (4.15) can be shown by an abstract
argument (taking direct sums) as in [4, Theorem 4.2]. O
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5 Non-autonomous Robin boundary conditions

Let © c RY be a bounded open set with Lipschitz boundary. We denote by 99 the
boundary of 2 and take L?(9Q) with respect to the (IV —1)-dimensional Hausdorff measure.
There exists a unique bounded operator Tr : H*(Q) — L?*(99) such that Tr(u) = uy,, if
u € HY(Q)N%(€). We call Tr(u) the trace of u and also use the notation uj,,, for u € H'(2).
Let « >  and B : [0,T] — .Z(L*(0%)) be a mapping such that

1B(t) = B(s)ll (2200 < clt — s|® (5.1)
for all t,s € [0,T] and some ¢ > 0. We need some further definitions. If u € H'(Q) such
that Au € L?(Q) and if b € L?(09) then we write

Ou=> if /Auv+/Vu~W:/ bo, for all v € H'(Q).

Q Q B19)

This means that we define the normal derivative 0,u of u by the validity of Green’s formula.
Now we can formulate our main result on the heat equation with non-autonomous Robin
boundary conditions.

Theorem 5.1. Let H = L*(Q), f € L?(0,T; H), ug € H*(Q). Then there exists a unique
function w € H*(0,T; H) N L?(0,T; H(Q)) such that Au € L?(0,T; H) and

u(t) — Au(t) = f(t) t—a.e.

dyu(t) + B(t)u(t),, = 0 t—a.e.
u(0) = wup.
Proof. Given is o > i. Central for the proof is a result by Jerison and Kenig (see [11,

p. 165]; see also [12, Theorem 1, Ch. V.1, §1.1, p.103]) which says that for 0 < s < 1 there
is a unique bounded linear operator

Tr, : HSVY2(Q) — H*(0Q)

such that Trg(u) = uj,,, for all u € Ht1/2(Q) N €(Q). In particular, Try /5 = Tr. Moreover
HY?(0Q) = Tr(H'(£2)). Now choose 0 < s < % such that v := s —I—% < 2a. Then v < 1
and o > 7 as needed in Section 4 for w(t) = ct®. Moreover, for u € H'(2) we have

| B(t) — B( <c|t—

Ulan S)U|BQHL2(8Q) S‘(XHu\aQHH(BQ)

<clt- S‘Q“u\an HHS(BQ)
< clt = s[*[ull gor1/2(q)-
Thus the form
a(t;u,v) == / VU-W—}—/ B(t)u,, V),
Q 00
defined on [0,7] x H'(2) x H'(Q) satisfies condition (4.1).
We now choose 1 > || B(+)| Lo (0,7:.2(12(a0)) 80 that the form

[0,T] x HY(Q) x HY(Q) 3 (t,u,v) — a(t;u,v) +u/ uv
Q
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satisfies (3.1)—(3.3) in addition to (4.1). By Theorem 4.1 this perturbed form has maximal
regularity in H. It follows from Proposition 3.4 that also the form a has maximal regularity
in H. Denote by A(t) the operator associated with a(¢;-,-) in H = L?(Q). Then

D(A(t)) = {u e HYQ): Au e L*(Q),0,u + B(t)uy,, = 0}
A(t)u = —Au,

as is easy to see using the definition of d,u by Green’s formula. Thus maximal regularity
in H is exactly the statement of Theorem 5.1. O

Next we consider a non-linear problem. Keeping the assumptions and settings of this section
we consider bounded continuous functions 3; : R =+ R, 7 =0,1,..., N.

Theorem 5.2. Letug € HY(Q), f € L?(0,T; L*(Q). Then there existsu € H*(0,T; L*(Q))N
L?(0,T; HY(Q2)) such that Au € L*(0,T; L*(2)) and

N
a(t) — Au(t) + 3 B (u(®)dult) + Bo(u(t)ult) = f(t) ae onQ
j=1
u(0) = wup.

Proof. We let a(t;.,.) : V x V. — C be defined as before. Given w € L?(0,T; L?*()) we
define the form a¥ : [0,7] x HY(Q) x H(Q) — C by

N
@WWW§LZ@@®WM+A%W®WwuEFmMGﬁ@)
j=1

Then a¥ satisfies (4.13) with a constant cy which does not depend on w € L?(0,T; L%(Q)).
Thus by Corollary 4.6, there exists a unique solution u belonging to the space

E:=HY0,T; L*(Q)) N L*(0,T; H*(Q))

with Au € L?(0,T; L?*()) of the problem

N
() = Aut) + ) Bi(w(t)djult) + fo(w(t))u(t) = f(t) ae. on
J=1

dyu(t) + B(t)u(t),, = 0 a.e. on

oQ

u(0) = wup.

We define Tw := u. Then T : L?(0,T; L?(2)) — L2(0,T; L?(f2)) is a continuous mapping
(as is easy to see). Moreover, TL?(0,T;L?*(f2)) is a bounded subset of E. This follows
from Corollary 4.6. Since the embedding of H(Q) into L?(Q2) is compact (recall that
Q is bounded), it follows from the Lemma of Aubin-Lions that the embedding of F into
L%(0,T; L?(£2)) is compact as well. It follows from Schauder’s Fixed Point Theorem that T
has a fixed point u. This function u solves the problem. O
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