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1. Introduction

We consider the following incompressible Navier–Stokes system in a (sufficiently smooth) bounded domain
Ω ⊂ R

3 on a time interval [0, τ ]{
∂tu − Δu + ∇p + (u · ∇)u = 0 in [0, τ ] × Ω

div u = 0 in [0, τ ] × Ω
(NS)

where S(u, p) := 1
2

(∇u + (∇u)�) − p Id is the Cauchy stress tensor applied to (u, p) supplemented with
the conditions on the boundary ∂Ω (ν denotes the outer unit normal):{

ν · u = 0 on [0, τ ] × ∂Ω[
S(u, p)ν

]
tan

+ Bu = 0 on [0, τ ] × ∂Ω
(Nbc)

and the initial condition

u(0) = u0 in Ω. (IC)

As usual [w]tan denotes the tangential part of w, that is [w]tan = w − (ν · w)ν. The conditions (Nbc)
are referred to in the literature as Navier’s boundary conditions and were introduced by Navier in his
lecture at the Académie royale des Sciences in 1822 [25]. They describe the fact that the fluid cannot
escape from the domain Ω (ν · u = 0) and that the fluid slips with a friction described by a matrix B on
∂Ω (

[
S(u, p)ν

]
tan

+ Bu = 0). Such conditions have been recently derived from homogenization of rough
boundaries; see, e.g., [4,6,11,13].
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First we transform the system (NS) with boundary conditions (Nbc) and initial condition (IC) into
the following “Robin–Navier–Stokes” problem⎧⎪⎪⎨

⎪⎪⎩
∂tu − Δu + ∇π − u × curlu = 0 in [0, τ ] × Ω
div u = 0 in [0, τ ] × Ω
ν · u = 0, ν × curlu = βu on [0, τ ] × ∂Ω
u(0) = u0 in Ω.

(RNS)

This is based on the identities

(u · ∇)u = −u × curl u +
1
2
∇|u|2

and [
S(u, p)ν

]
tan

= −ν × curl u + 2Wu

on the boundary ∂Ω (see, e.g., [20, Section 2]), so that β = 2W + B, and π = p + 1
2 |u|2. Here W is the

Weingarten map (for properties of W, see, e.g., [20, Section 6]; in particular, Wu = 0 on flat parts of the
boundary).

Our main objective in this paper is to prove existence and uniqueness of a solution of (RNS) in the
case of time-dependent Robin boundary condition. That is, we allow β to depend on both time and space
variables. We assume that β : [0, τ ] × ∂Ω → M3(R) is bounded measurable on [0, τ ] × ∂Ω such that

0 ≤ β(t, x)ξ · ξ ≤ M |ξ|2 for almost all (t, x) ∈ [0, τ ] × ∂Ω (1.1)

and all ξ ∈ R
3

β(t, x) is symmetric for almost all (t, x) ∈ [0, τ ] × ∂Ω, (1.2)

β(t, x)ν(x) = λ(t, x)ν(x) for almost all x ∈ ∂Ω, t > 0, (1.3)

where λ : [0, τ ] × ∂Ω → R, so that a normal vector field transformed by β = β� remains normal at the
boundary.
Note that the condition β ≥ 0 implies the geometric condition on the friction (symmetric) matrix B:
B ≥ −2W. In particular, if Ω is convex, W ≥ 0, so that we can treat any nonnegative friction matrix B.
Further, we assume that β is piecewise α-Hölder continuous for some α > 1/2 with respect to the time
variable. That is, there exist ti, 0 ≤ i ≤ n, such that [0, τ ] = ∪n

i=0[ti, ti+1] and constants Mi such that on
each interval (ti, ti+1), β is the restriction of some β̃ such that for almost every x ∈ ∂Ω

‖β̃(t, x) − β̃(s, x)‖M3 ≤ Mi|t − s|α for all t, s ∈ [ti, ti+1]. (1.4)

Here ‖·‖M3 denotes the operator norm in M3. Under these assumptions we prove the following regularity
result.

Theorem 1.1. Let Ω ⊂ R
3 be a bounded C 1,1 or convex domain and let τ > 0. There exists ε > 0 such that

for all initial condition u0 ∈ L2(Ω,R3) with div u0 = 0 in Ω, ν · u0 = 0 on ∂Ω and curlu0 ∈ L2(Ω,R3),
‖u0‖2+‖curl u0‖2 ≤ ε, there exists a unique (u, π) satisfying (RNS) for a.e. (t, x) ∈ [0, τ ]×Ω. In addition,
u ∈ H1(0, τ ;L2(Ω,R3)), Δu ∈ L2(0, τ, L2(Ω,R3)), π ∈ L2(0, τ ;H1(Ω)) and there exists a constant C
independent of u and π such that

‖u‖H1(0,τ,L2(Ω,R3)) + ‖ − Δu‖L2(0,τ ;L2(Ω,R3)) + ‖∇π‖L2(0,τ ;L2(Ω,R3)) ≤ Cε.

In the case where β(t, x) = 0 for all (t, x) ∈ [0, τ ] × ∂Ω, the system (RNS) has been studied in
[20], in the case of Lipschitz domains for initial conditions in L3. See also [22] for related result on the
Neumann type boundary conditions on smooth domains and [5] for the case β constant in C 2,1 domains.
For Dirichlet boundary conditions u = 0 on ∂Ω, which correspond to β = ∞, we refer to the classical
results by Fujita and Kato [10] (see also [19,23] for the case of less regular domains).

The method to prove Theorem 1.1 relies on the study of operators defined by forms and recent results
on maximal regularity for non-autonomous linear evolution equations. This latter property is the key
ingredient to treat the non linearity by appealing to classical fixed point arguments. We also prove an
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existence result for small initial conditions u0 less regular (i.e., in a critical space for the scaling properties
of the Navier–Stokes equations) than those considered in Theorem 1.1; see Theorem 5.3 below.

The paper is organized as follows. Section 2 is devoted to analytical tools necessary for our approach
of the problem. In Sect. 3, we define the (time dependent) Robin Stokes operator. We use recent results
on maximal regularity in Sect. 4 in order to obtain regularity properties of the solution of the linearized
(RNS) system. The proof of Theorem 1.1 is given in Sect. 5.

2. Background Material

Throughout this section, Ω ⊂ R
3 will be a bounded domain which is either convex or C 1,1. We denote

by ∂Ω its boundary. It is endowed with the surface measure dσ. It is a classical fact (see, e.g., [16,
Théorème 8.3] for smooth domains and [26, Ch. 2, Théorème 5.5] or [27, Ch. 2, Theorem 5.5] for Lipschitz
domains) that

Tr|∂Ω : H1(Ω) → H1/2(∂Ω) ↪→ L2(∂Ω,dσ),

the latter embedding being compact.
(i) For u ∈ L2(Ω,R3) such that div u ∈ L2(Ω), the normal component ν · u of u on ∂Ω is defined in a

weak sense in the negative Sobolev space H−1/2(∂Ω) by

H−1/2(∂Ω)〈ν · u, ϕ〉H1/2(∂Ω) = 〈div u, φ〉Ω + 〈u,∇φ〉Ω, (2.1)

for all ϕ ∈ H1/2(∂Ω), where φ belongs to the Sobolev space H1(Ω) with Tr|∂Ωφ = ϕ. Here, 〈·, ·〉Ω
denotes either the scalar or the vector-valued scalar product in L2 defined over Ω. The notation
V ′〈·, ·〉V means the duality between V ′ and V .

(ii) For u ∈ L2(Ω,R3) such that curlu ∈ L2(Ω,R3), the tangential component ν×u of u on ∂Ω is defined
in a weak sense in H−1/2(∂Ω,R3) by

H−1/2(∂Ω,R3)〈ν × u, ϕ〉H1/2(∂Ω,R3) = 〈curl u, φ〉Ω − 〈u, curl φ〉Ω, (2.2)

for all ϕ ∈ H1/2(∂Ω,R3) where φ ∈ H1(Ω,R3) with Tr|∂Ωφ = ϕ. As before, 〈·, ·〉Ω denotes the
vector-valued scalar product in L2 defined over Ω.

The following result, valid for Lipschitz domains, can be found in [7] (see also [24]).

Proposition 2.1. There exists a constant C > 0 such that for all u ∈ L2(Ω,R3) satisfying div u ∈ L2(Ω,R),
curlu ∈ L2(Ω,R3) and either ν · u ∈ L2(∂Ω) or ν × u ∈ L2(∂Ω,R3) we have Tr|∂Ωu ∈ L2(∂Ω,R3) with
the estimate

‖Tr|∂Ωu‖L2(∂Ω,R3) ≤C
(
‖u‖2 + ‖div u‖2 + ‖curl u‖2

+ min
{‖ν · u‖L2(∂Ω), ‖ν × u‖L2(∂Ω,R3)

})
.

Moreover, u ∈ H1/2(Ω,R3) and

‖u‖H1/2(Ω,R3) ≤C
(
‖u‖2 + ‖div u‖2 + ‖curl u‖2

+ min
{‖ν · u‖L2(∂Ω), ‖ν × u‖L2(∂Ω,R3)

})
. (2.3)

Moving on, let WT and WN be the spaces defined by

WT =
{
u ∈ L2(Ω,R3); div u ∈ L2(Ω), curl u ∈ L2(Ω,R3)

and ν · u = 0 on ∂Ω
}

(2.4)

and

WN =
{
u ∈ L2(Ω,R3); div u ∈ L2(Ω), curl u ∈ L2(Ω,R3)

and ν × u = 0 on ∂Ω
}

(2.5)
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both endowed with the norm

‖u‖W = ‖u‖L2(Ω,R3) + ‖div u‖L2(Ω) + ‖curl u‖L2(Ω,R3), u ∈ WT,N . (2.6)

It is easy to see that WT,N are Hilbert spaces. Note also that since Ω is either convex or C 1,1, the spaces
WT,N are contained in H1(Ω,R3) (with continuous embedding). See [1, Theorem 2.9, Theorem 2.12 and
Theorem 2.17]. Thus, there exists a constant C > 0 such that for all u ∈ WT,N

‖u‖H1(Ω) ≤ C(‖u‖L2(Ω,R3) + ‖div u‖L2(Ω) + ‖curl u‖L2(Ω,R3)). (2.7)

In particular, the trace operator

Tr|∂Ω : WT,N → H1/2(∂Ω,R3)

is continuous.
Next, we define the Hodge Laplacians with absolute and relative boundary conditions. Although these

operators do not appear explicitly in our main results they will be useful for the proof of the description
of the domain of Stokes operator with time dependent Robin boundary condition.

We define on L2(Ω,R3) the two bilinear symmetric forms

b0(u, v) = 〈div u,div v〉Ω + 〈curl u, curl v〉Ω, u, v ∈ WT (2.8)

and
b1(u, v) = 〈div u,div v〉Ω + 〈curl u, curl v〉Ω, u, v ∈ WN . (2.9)

Both forms b0 and b1 are closed. Therefore, there exist two operators

B0,0 : WT → W ′
T , B0,0u = −Δu

associated with b0 and

B1,0 : WN → W ′
N , B1,0u = −Δu

associated with b1 in the sense that

b0(u, v) = W ′
T
〈B0,0u, v〉WT

, u, v ∈ WT

and

b1(u, v) = W ′
N

〈B1,0u, v〉WN
, u, v ∈ WN .

The part B0 of B0,0 on L2(Ω,R3), i.e.,

D(B0) :=
{
u ∈ WT ,∃ v ∈ L2(Ω,R3) : b0(u, φ) = 〈v, φ〉Ω ∀φ ∈ WT

}
,

B0u := v, (2.10)

and the part B1 of B1,0 on L2(Ω,R3), i.e.,

D(B1) :=
{
u ∈ WN ,∃ v ∈ L2(Ω,R3) : b1(u, φ) = 〈v, φ〉Ω ∀φ ∈ WN

}
,

B1u := v, (2.11)

are self-adjoint operators on L2(Ω,R3).

Proposition 2.2. The domains of B0 and B1 have the following description

D(B0) =
{
u ∈ L2(Ω,R3); div u ∈ H1(Ω), curl u ∈ L2(Ω,R3), (2.12)

curl curlu ∈ L2(Ω,R3) and ν · u = 0, ν × curlu = 0 on ∂Ω
}

and

D(B1) =
{
u ∈ L2(Ω,R3); div u ∈ H1(Ω), curl u ∈ L2(Ω,R3), (2.13)

curl curlu ∈ L2(Ω,R3) and ν × u = 0,div u = 0 on ∂Ω
}
.

Moreover, for u ∈ L2(Ω,R3) such that curl u ∈ L2(Ω,R3), the following commutator property occurs for
all ε > 0

curl (1 + εB0)−1u = (1 + εB1)−1curlu. (2.14)
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Proof. The description of the domain of B0 can be found in [21, (3.17) & (3.18)]. We can describe
the domain of B1 in the same way (see also [18, Theorem 7.1 & Theorem 7.3]). To prove (2.14), let
u ∈ L2(Ω,R3) such that curlu ∈ L2(Ω,R3). Let uε = (1 + εB0)−1u and wε = (1 + εB1)−1curl u.

Step 1: We claim that curluε ∈ D(B1).
By (2.12) we have

curluε ∈ L2(Ω,R3), curl curluε ∈ L2(Ω,R3),div (curluε) = 0 ∈ H1(Ω),

ν × curl uε = 0 and div (curluε) = 0 on ∂Ω.

To prove that curluε ∈ D(B1), it remains to show, thanks to (2.13), that curl curl (curluε) ∈ L2(Ω,R3).
This is due to the fact that

curl curl (curluε) = curl (−Δuε) in H−1(Ω,R3).

Since

−Δuε = B0(1 + εB0)−1u =
1
ε

(
u − uε

)
and curluε, curl u ∈ L2(Ω,R3), the claim follows.

Step 2: We claim now that curl uε = wε.
By Step 1, we know that curluε ∈ D(B1). Moreover, we have in the sense of distributions

(1 + εB1)(curl uε) = curluε − εΔcurl uε = curl
(
uε − εΔuε

)
= curl u

since uε − εΔuε = (1 + εB0)(1 + εB0)−1u = u. Therefore,

curl uε = (1 + εB1)−1curl u = wε

which proves the claim. �

The following lemma is inspired by [18, Proof of Proposition 2.4 (iii)].

Lemma 2.3. 1. Let g ∈ L2(∂Ω,R3). Then there exists w ∈ L2(Ω,R3) with curlw ∈ L2(Ω,R3) such that
for all φ ∈ WT

〈g, φ〉∂Ω = 〈curl w, φ〉Ω − 〈w, curl φ〉Ω. (2.15)
Moreover, there exists C > 0 such that

‖w‖L2(Ω,R3) + ‖curl w‖L2(Ω,R3) ≤ C‖g‖L2(∂Ω,R3). (2.16)

2. If in addition g ∈ L2
tan(∂Ω,R3) (which means that g ∈ L2(∂Ω,R3) and ν · g = 0 on ∂Ω), then there

exists w ∈ L2(Ω,R3) such that curl w ∈ L2(Ω,R3) and (2.15) holds for all φ ∈ H1(Ω). And in that
case g = ν × w in H−1/2(∂Ω,R3).

Proof. 1. We define the space X := {(φ, curl φ);φ ∈ WT }. It is a closed subspace of L2(Ω,R3)×L2(Ω,R3).
By classical trace theorems (see, e.g., [16, Théorème 8.3], [26, Ch. 2, Théorème 5.5] or [27, Ch. 2, Theo-
rem 5.5 with k = 1 and p = 2]), we have that ν × φ ∈ L2(∂Ω,R3) for all φ ∈ WT ⊂ H1(Ω,R3). Since
g ∈ L2(∂Ω,R3), it is immediate that ν × g ∈ L2(∂Ω,R3) =

(
L2(∂Ω,R3)

)′. Thus, ν × g acts as a linear
functional on X as follows:

(ν × g)(φ, curl φ) := 〈ν × g, ν × φ〉∂Ω for all φ ∈ WT .

By the Hahn–Banach theorem, there exist (v1, v2) ∈ L2(Ω,R3) × L2(Ω,R3) such that

(ν × g)(φ, curl φ) = 〈v1, curl φ〉Ω + 〈v2, φ〉Ω for all φ ∈ WT ,

where we have identified
(
L2(Ω,R3) × L2(Ω,R3)

)′ with L2(Ω,R3) × L2(Ω,R3). We can choose φ ∈
H1

0 (Ω,R3) ⊂ WT and obtain that

0 = H−1〈curl v1 + v2, φ〉H1
0
.
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This gives that curl v1 + v2 = 0 in H−1(Ω,R3). We set w := −v1 ∈ L2(Ω,R3), we have curlw = v2 ∈
L2(Ω,R3) and

〈ν × g, ν × φ〉∂Ω = −〈w, curl φ〉Ω + 〈curl w, φ〉Ω for all φ ∈ WT . (2.17)

Since φ ∈ WT , Tr|∂Ωφ ∈ L2
tan(∂Ω,R3) it is clear1that φ = (ν × φ) × ν, so that the left-hand side of (2.17)

coincides with
〈g, φ〉∂Ω for all φ ∈ WT , (2.18)

which proves (2.15).
The existence of C > 0 such that (2.16) holds follows from the Closed Graph Theorem since {u ∈

L2(Ω,R3); curl u ∈ L2(Ω,R3)} is complete for the norm ‖u‖2 + ‖curl u‖2.
2. Assume now that g ∈ L2

tan(∂Ω,R3). Let w ∈ L2(Ω,R3) such that curlw ∈ L2(Ω,R3) and (2.15)
holds. Since ν × g ∈ L2(∂Ω,R3), we can approach it in L2(∂Ω,R3) by a sequence (ϕn)n∈N of vector fields
ϕn ∈ H1/2(∂Ω,R3). In particular,

ϕn × ν −→ (ν × g) × ν = g in L2(∂Ω,R3) as n → ∞.

By assertion 2.3, for each n ∈ N there exists wn ∈ L2(Ω,R3) such that curlwn ∈ L2(Ω,R3) satisfying

〈ϕn × ν, φ〉∂Ω = 〈curl wn, φ〉Ω − 〈wn, curl φ〉Ω for all φ ∈ WT .

Thanks to the estimate (2.16), it is immediate that

wn −→ w and curlwn −→ curlw in L2(Ω,R3) as n → ∞.

Let now φ ∈ H1(Ω,R3). For ε > 0, let φε = (1 + εB0)−1φ with B0 as in Proposition 2.2. Then φε ∈ WT

and thanks to (2.14)

φε −→ φ and curlφε = (1 + εB1)−1curl φ −→ curlφ in L2(Ω,R3) as ε → 0.

This implies also that

ν × φε −→ ν × φ in H−1/2(∂Ω,R3) as ε → 0.

Therefore, we have for all ε > 0 and n ∈ N

〈ν × φε, ϕn〉∂Ω = 〈ϕn × ν, φε〉∂Ω = 〈curl wn, φε〉Ω − 〈wn, curl φε〉Ω.

We first take the limit as ε goes to 0 and obtain (recall that ϕn belongs to H1/2(∂Ω,R3))

H−1/2〈ν × φ, ϕn〉H1/2 = 〈curl wn, φ〉Ω − 〈wn, curl φ〉Ω.

Since φ ∈ H1(Ω,R3), the first term of the latter equation is also equal to 〈ϕn × ν, φ〉∂Ω. Taking the limit
as n goes to ∞ yields

〈g, φ〉∂Ω = 〈curl w, φ〉Ω − 〈w, curl φ〉Ω
which proves the claim made in 2.3. �

Lemma 2.4. Let ϕ ∈ H1/2(∂Ω,R3) ∩ L2
tan(∂Ω,R3). Then there exists v ∈ H1(Ω,R3) such that div v = 0

on Ω and v|∂Ω = ϕ.

Proof. Let ϕ ∈ H1/2(∂Ω,R3)∩L2
tan(∂Ω,R3). Since the trace operator Tr|∂Ω : H1(Ω,R3) → H1/2(∂Ω,R3)

is onto there exists w ∈ H1(Ω,R3) such that w|∂Ω = ϕ. By [8, Theorem 4.6], there exist three operators
R : L2(Ω,R3) → H1

0 (Ω,R3), S : L2(Ω) → H1
0 (Ω,R3) and T : L2(Ω,R3) → H1

0 (Ω,R3) such that

curl Tu + Sdiv u = u − Ru for all u ∈ H1(Ω,R3) with ν · u = 0 on ∂Ω

1 Recall that for a, b, c ∈ R
3, the following identities hold:

(a × b) · c = (b × c) · a, a × b = −b × a, |a|2b = (a × b) × a + (a · b)a.
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(choose n = 3, T = T2, S = T3 and R = L2 in [8, Theorem 4.6]). We apply this result to u = w and we
define

v := curl Tw = w − Sdiv w − Rw;

v satisfies div v = 0, v ∈ H1(Ω,R3) and v|∂Ω = w|∂Ω = ϕ. �

The classical Hodge-Helmholtz decomposition asserts that the space L2(Ω,R3) is the orthogonal direct

sum H
⊥⊕ G where

H :=
{
u ∈ L2(Ω,R3); div u = 0 in Ω, ν · u = 0 on ∂Ω

}
(2.19)

and G := ∇H1(Ω,R).

Remark 2.5. The space H coincides with the closure in L2(Ω,R3) of the space of vector fields u ∈
C∞

c (Ω,R3) with div u = 0 in Ω which we denote by D(Ω). See, e.g., [30, Theorem 1.4].

We denote by J : H ↪→ L2(Ω;R3) the canonical embedding and P : L2(Ω;R3) → H the orthogonal
projection. Recall that for u ∈ L2(Ω,R3), there exists p ∈ H1(Ω) so that Pu = u − ∇p. It is clear that
PJ = IdH and that

〈u,Pv〉Ω = 〈Pu, v〉Ω for all u, v ∈ L2(Ω;R3). (2.20)
Define now the space V := WT ∩ H. Thus, for every v ∈ WT , Pv ∈ V . The space V will be used to define
the Stokes operator with Robin boundary conditions in the next section.

3. The Robin–Stokes Operator

In this section we define the Stokes operator with Robin boundary conditions on ∂Ω. In order to do
this we use the method of sesquilinear forms; see e.g., [9, Example 3, p. 449]. We start by defining the
Hodge-Laplacian with Robin boundary conditions. As in the previous section, Ω is a bounded domain of
R

3 and we suppose that it is either convex or has a C 1,1-boundary.
Fix τ ∈ (0,∞) and let β : [0, τ ] × ∂Ω → M3(R) be bounded measurable on [0, τ ] × ∂Ω. We assume

that (1.1)–(1.3) are satisfied.
Recall that V = WT ∩ H and that the embedding J restricted to V maps V to WT . We denote this

restriction by J0 : V ↪→ WT . Its adjoint J ′
0 =: P1 : W ′

T → V ′ is then an extension of the orthogonal
projection P.

Lemma 3.1. The projection P restricted to WT takes its values in V , so that PJ0 = IdV holds.

Proof. Let w ∈ WT . Since WT ⊂ L2(Ω,R3), there exists π ∈ H1(Ω) such that w = JPw + ∇π and π
satisfies Δπ = div w ∈ L2(Ω) and ∂νπ = ν · w = 0 on ∂Ω. Moreover, curl ∇π = 0 in Ω, so that ∇π ∈ WT .
Therefore, div JPw = 0 in Ω, curlJPw = curlw ∈ L2(Ω,R3) and ν · JPw = 0 on ∂Ω, which proves that
Pw ∈ V . �

We are now in the situation to define the Stokes operator with Robin boundary conditions. We consider
on the Hilbert space H the bilinear symmetric form

aβ : V × V −→ R

aβ(u, v) := 〈curl J0u, curl J0v〉Ω + 〈β Tr|∂ΩJ0u, Tr|∂ΩJ0v〉∂Ω.
(3.1)

Using the fact that PJ0 = IdV we see that the form aβ is closed. Therefore, there exists an operator
Aβ,0 : V → V ′ associated with aβ in the sense that

aβ(u, v) = V ′〈Aβ,0u, v〉V , u, v ∈ V.

The part Aβ of Aβ,0 on H, i.e.,

D(Aβ) := {u ∈ V,∃ v ∈ H : aβ(u, φ) = 〈v, φ〉Ω ∀φ ∈ V }, Aβu := v

is a self-adjoint operator on H. We call Aβ the Robin–Stokes operator.



714 S. Monniaux and E. M. Ouhabaz JMFM

From now on, since J and J0 are embedding operators, we will omit to write them to avoid too
pedantic an exposition.

Theorem 3.2. The operator Aβ is given by

D(Aβ) =
{
u ∈ V ; curl curlu ∈ L2(Ω,R3), ν × curl u = βu on ∂Ω

}
, (3.2)

Aβu = P(curl curlu) = −Δu + ∇p, u ∈ D(Aβ),

for some p ∈ H1(Ω).

In addition, −Aβ generates an analytic semigroup of contractions on H and D(A
1
2
β ) = V .

Proof. Let Dβ be the space on the right-hand side of (3.2). First note that, thanks to the condition (1.3)
on β, βTr|∂Ωu ∈ L2

tan(∂Ω,R3) whenever u ∈ WT . Next, remark that for u ∈ Dβ , since

curl u ∈ L2(Ω,R3) and curl curlu ∈ L2(Ω,R3),

the integration by parts (2.2) allows to define

ν × curlu ∈ H−1/2(∂Ω,R3).

Moreover, the condition ν × curl u = βu on ∂Ω implies that ν × curlu ∈ L2(∂Ω,R3) and by the obvious
fact that div curlu = 0 ∈ L2(Ω), Proposition 2.1 yields Tr|∂Ω(curlu) ∈ L2(∂Ω,R3).

If u ∈ Dβ , then −Δu = curl curlu ∈ L2(Ω,R3) and for all v ∈ V , we have by (2.2)

aβ(u, v) = 〈curl u, curl v〉Ω + 〈βu, v〉∂Ω (3.3)

= 〈curl curlu, v〉Ω − 〈ν × curlu, v〉∂Ω + 〈βu, v〉∂Ω (3.4)

= 〈P(curl curlu), v〉Ω. (3.5)

Since P(curl curlu) ∈ H, we have then proved that for all u ∈ Dβ , u ∈ D(Aβ) and Aβu = P(curl curlu).
Conversely, let u ∈ V ⊂ WT and set g := βTr|∂Ωu. As already mentioned, g ∈ L2

tan(∂Ω,R3) thanks to
(1.3). We can then apply Lemma 2.3 to obtain w ∈ L2(Ω,R3) with curlw ∈ L2(Ω,R3) satisfying

〈g, v〉∂Ω = 〈curl w, v〉Ω − 〈w, curl v〉Ω for all v ∈ WT . (3.6)

Therefore, for a fixed u ∈ V , we can rewrite aβ(u, ·) as follows:

aβ(u, v) = 〈curl u, curl v〉Ω + 〈curl w, v〉Ω − 〈w, curl v〉Ω for all v ∈ V. (3.7)

We assume now that u ∈ D(Aβ). Since Aβu ∈ H ⊂ L2(Ω,R3) and Pv ∈ V for v ∈ WT , we can write

〈Aβu, v〉Ω = 〈Aβu,Pv〉Ω = aβ(u,Pv) (3.8)

= 〈curl u, curlPv〉Ω + 〈curl w,Pv〉Ω − 〈w, curlPv〉Ω (3.9)

= 〈curl u − w, curl v〉Ω + 〈Pcurl w, v〉Ω. (3.10)

The last equality (3.10) comes from (2.20) and the fact that curlPv = curl v. Therefore we obtain

〈Aβu − Pcurl w, v〉Ω = 〈curl u − w, curl v〉Ω for all v ∈ WT . (3.11)

For all v ∈ H1
0 (Ω,R3) ⊂ WT , (3.11) becomes

〈Aβu − Pcurl w, v〉Ω = H−1〈curl (curlu − w), v〉H1
0
,

which implies that curl (curlu − w) ∈ L2(Ω,R3) and ultimately, since curlw ∈ L2(Ω,R3), curl curlu ∈
L2(Ω,R3).

We have proved that for u ∈ D(Aβ), curl curlu ∈ L2(Ω,R3). It remains to identify Aβu and the
boundary condition ν × curlu = βu on ∂Ω for u ∈ D(Aβ). Note that this condition is well defined thanks
to (2.2) since curlu ∈ L2(Ω,R3) (u ∈ D(Aβ) ⊂ V ⊂ WT ) and curl curlu ∈ L2(Ω,R3). By definition (3.1)
of aβ and thanks to (2.20), we have for all v ∈ D(Ω) (recall that D(Ω) =

{
w ∈ C∞

c (Ω,R3),div w = 0 in Ω
}

has been defined in Remark 2.5)

〈Aβu, v〉Ω = aβ(u, v) = 〈curl u, curl v〉Ω
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= 〈curl curlu, v〉Ω = 〈curl curlu,Pv〉Ω
= 〈P(curl curlu), v〉Ω, (3.12)

since Pv = v. This proves that Aβu = P(curl curlu) since D(Ω) is dense in H (see Remark 2.5).
Now, let v ∈ V and recall that Tr|∂Ωv ∈ H1/2(∂Ω,R3). We have then by (2.2)

〈P(curl curlu), v〉Ω = 〈Aβu, v〉Ω = aβ(u, v)

= 〈curl u, curl v〉Ω + 〈βu, v〉∂Ω

= 〈curl curlu, v〉Ω − H−1/2〈ν × curl u, v〉H1/2 + 〈βu, v〉∂Ω

= 〈P(curl curlu), v〉Ω − H−1/2〈ν × curlu, v〉H1/2 + 〈βu, v〉∂Ω,

which proves that
H−1/2〈βu − ν × curl u, v〉H1/2 = 0 for all v ∈ V. (3.13)

Let ϕ ∈ H1/2(∂Ω,R3) ∩ L2
tan(∂Ω,R3) be arbitrary. By Lemma 2.4, we can find v ∈ V such that v|∂Ω = ϕ

on ∂Ω. Therefore, (3.13) implies that for all ϕ ∈ H1/2(∂Ω,R3) ∩ L2
tan(∂Ω,R3)

H−1/2〈βu − ν × curlu, ϕ〉H1/2 = 0, (3.14)

With w ∈ L2(Ω,R3) such that curlw ∈ L2(Ω,R3) satisfying βu = ν×w in H−1/2(∂Ω,R3) as in Lemma 2.3,
it follows from (3.14) that w1 := w − curlu satisfies

〈curl w1, v〉Ω − 〈w1, curl v〉Ω = 0 for all v ∈ WT . (3.15)

Let now v ∈ H1(Ω,R3) and denote for ε > 0, vε = (1 + εB0)−1v (recall that the operator B0 has been
defined in (2.10)). It is clear that vε ∈ WT for all ε > 0 and

vε −→ v in L2(Ω,R3) as ε → 0.

Moreover, thanks to (2.14), we have that

curl vε = (1 + εB1)−1curl v −→ v in L2(Ω,R3) as ε → 0.

Applying (3.15) to vε and taking the limit as ε → 0, we obtain

0 = 〈curl w1, vε〉Ω − 〈w1, curl vε〉Ω −→ 〈curl w1, v〉Ω − 〈w1, curl v〉Ω as ε → 0.

It follows then that ν × w1 = 0 in H−1/2(∂Ω,R3) and therefore

βu − ν × curlu = 0 in H−1/2(∂Ω,R3).

Finally, the fact that −Aβ generates an analytic semigroup of contractions follows from the fact that

Aβ is a non-negative self-adjoint operator. The equality D(A
1
2
β ) = V is a standard result for symmetric

bilinear closed forms (see [17] and [14]). �

Corollary 3.3. If u ∈ D(Aβ) then curlu ∈ L3(Ω,R3) and there exists a constant CΩ independent of u
such that

‖curl u‖3 ≤ CΩ

(
‖Aβu‖H + (‖β‖∞ + 1)‖u‖V

)
.

Proof. Let u ∈ D(Aβ). By Theorem 3.2, curlu ∈ L2(Ω,R3), curl curlu ∈ L2(Ω,R3) and ν ×curl u = βu ∈
L2(∂Ω,R3). Therefore, by Proposition 2.1, curlu ∈ H1/2(Ω,R3) with the estimate

‖curl u‖H1/2(Ω,R3)

≤ C
(‖curl u‖L2(Ω,R3) + ‖curl curlu‖L2(Ω,R3) + ‖βu‖L2(∂Ω,R3)

)
≤ C

(
(‖β‖∞ + 1)‖u‖V + ‖curl curlu‖L2(Ω,R3)

)
.

This latter estimate together with the following Sobolev embedding valid in dimension 3

H1/2(Ω,R3) ↪→ L3(Ω,R3)

proves the corollary. �
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4. Maximal Regularity for Non-autonomous Equations

Our aim in this section is to show maximal regularity for the Stokes problem. We first recall some recent
results on maximal regularity for evolution equations associated with time-dependent sesquilinear forms.

Let H be a Hilbert space and let V be another Hilbert space with dense and continuous embedding in
H. Consider a family of sesquilinear forms (a(t))0≤t≤τ such that D(a(t)) = V for all t. We suppose that
(a(t))0≤t≤τ is uniformly bounded in the sense that there exists a constant M independent of t such that

|a(t;u, v)| ≤ M‖u‖V‖v‖V (4.1)

for all u, v ∈ V. Here ‖v‖V denotes the norm of V. We also suppose that (a(t))0≤t≤τ is quasi-coercive,
i.e., there exists δ > 0 and μ ∈ R such that for all u ∈ V

δ‖u‖2
V ≤ a(t;u, u) + μ‖u‖2

H. (4.2)

For each fixed t, the form a(t) is closed. Denote by A(t) : V → V ′ the operator associated with a(t) in
the sense that

a(t;u, v) = V′〈A(t)u, v〉V , ∀ u, v ∈ V.

The operator associated with a(t) on H is the part of A(t). That is,

D(A(t)) =
{
u ∈ V,A(t)u ∈ H}

, A(t)u = A(t)u.

We recall now the famous Lions’ maximal regularity result in V ′:

Theorem 4.1. Under the above assumptions, for all f ∈ L2(0, τ ;V ′) and all u0 ∈ H, there exists a unique
u ∈ L2(0, τ ;V) ∩ H1(0, τ ;V ′) solution of

u′(t) + A(t)u(t) = f(t), u(0) = u0. (P)

Moreover, u ∈ C ([0, τ ],H).

One says that (P) has Lp maximal regularity in H if for every f ∈ Lp(0, τ ;H) there exists a unique
u ∈ W 1,p(0, τ ;H) which satisfies the problem in the Lp-sense. Note that one has in addition that t �→
A(t)u(t) is in Lp(0, τ ;H).
Maximal regularity for non-autonomous equations in H has been investigated recently in the context
of operators associated with forms as we described above. The following is a particular case of a result
proved in [12].

Theorem 4.2. Let (a(t))0≤t≤τ be a family of sesquilinear forms satisfying the previous conditions (4.1)
and (4.2). Suppose in addition that t �→ a(t) is piecewise α−Hölder continuous for some α > 1/2 in the
sense that there exist t0 = 0 < t1 < · · · < tk = τ and constants Mi such that the restriction of t �→ a(t; ·, ·)
to (ti, ti+1) satisfies

|a(t;u, v) − a(s;u, v)| ≤ Mi|t − s|α‖u‖V‖v‖V for all u, v ∈ V. (4.3)

Then the Cauchy problem (P) has L2-maximal regularity for all initial value u0 ∈ D((μ + A(0))1/2).

Note that if the form a(0) is symmetric then D((μ + A(0))1/2) = V. Recall also that if the L2-maximal
regularity holds for (P) then the solution u satisfies the a priori estimate

‖u‖H1(0,τ ;H) + ‖A(t)u(t)‖L2(0,τ ;H) ≤ C
(‖f‖L2(0,τ ;H) + ‖u0‖V

)
. (4.4)

Interpolating between Theorems 4.1 and 4.2 we obtain also

Corollary 4.3. Under the assumptions of Theorem 4.2, we have that for all u0 ∈ D((μ + A(0))1/4) =:
V1/2 and for all f ∈ L2(0, τ ;V ′

1/2) there exists a unique u ∈ H1(0, τ ;V ′
1/2) such that t �→ A(t)u(t) ∈

L2(0, τ ;V ′
1/2), solution of the evolution problem (P).
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Now we turn back to the Robin–Stokes operator Aβ . As previously, Ω denotes a bounded domain of
R

3 which is either C 1,1 or convex. Let H := H defined by (2.19), that is

H :=
{
u ∈ L2(Ω,R3); div u = 0 in Ω, ν · u = 0 on ∂Ω

}
and aβ the form defined by (3.1). We assume in addition to (1.1), (1.2) and (1.3) that t �→ β(t, x) is
piecewise Hölder continuous of order α > 1/2 in the sense of (1.4).

The family of forms aβ = aβ(t,·), 0 ≤ t ≤ τ , satisfies the assumptions of Theorem 4.2. In order to check
(4.3) we write for u, v ∈ V and t, s ∈ (ti, ti+1)

|aβ(t,·)(u, v) − aβ(s,·)(u, v)| = 〈(β(t, ·) − β(s, ·))u, v〉∂Ω

≤ sup
x∈∂Ω

‖β(t, x) − β(s, x)‖M3‖Tr|∂Ωu‖L2(∂Ω,R3)‖Tr|∂Ωv‖L2(∂Ω,R3)

≤ CMi|t − s|α‖u‖V ‖v‖V .

The last inequality follows from (1.4) and Proposition 2.1. Therefore we conclude that L2-maximal reg-
ularity holds for the Robin–Stokes operator Aβ on the Hilbert space H.

Theorem 4.4. Under the above assumptions, for every u0 ∈ V and every f ∈ L2(0, τ ;H) there exists a
unique u ∈ H1(0, τ ;H) such that u(t) ∈ D(Aβ(t)) for almost all t ∈ [0, τ ] and{

∂tu(t, ·) + Aβ(t)u(t, ·) = f(t)
u(0) = u0.

(4.5)

In addition there exists a constant CMR independent of t, f and u0 such that

‖u‖H1(0,τ ;H) + ‖Aβ(t)u(t)‖L2(0,τ ;H) ≤ CMR

(‖f‖L2(0,τ ;H) + ‖u0‖V

)
. (4.6)

Note that if (1.4) holds with α = 1 then we can apply the results from [2] and obtain the previous
theorem with the additional information that the solution u ∈ C ([0, τ ];V ). In particular, u ∈ L∞(0, τ ;V ).
This latter property is not covered by the results in [12] when (1.4) holds for some α > 1/2. However,
in the recent paper [3, Theorem 4.4], it has been proven that this is true in our particular situation for
the operators Aβ(t,·). We give a proof here in the more general setting of forms for which (1.4) holds for
some α > 1/2.

As in the beginning of this section, let (a(t))0≤t≤τ be a family of symmetric forms on a Hilbert space H
which satisfy (4.1) and (4.2). Suppose that t �→ a(t) is piecewise α−Hölder continuous for some α > 1/2
(see Theorem 4.2). We define the space of maximal regularity

E :=
{
u ∈ H1(0, τ ;H), u(t) ∈ D(Aβ(t)) a.e.,

t �→ A(t)u(t) ∈ L2(0, τ ;H) and u(0) ∈ V}
. (4.7)

The space E is endowed with the natural norm

‖u‖E := ‖u(·)‖H1(0,τ ;H) + ‖A(·)u(·)‖L2(0,τ ;H) + ‖u(0)‖V .

Clearly, (E, ‖ · ‖E) is a Banach space. Note that if u(·) ∈ H1(0, τ ;H) then u ∈ C ([0, τ ];H) and hence
u(0), needed in the definition of E, is well defined.

Proposition 4.5. The space E is continuously embedded into L∞(0, τ ;V).

Proof. First by adding a positive constant to A(t), it is clear that we may suppose without loss of
generality that (4.2) holds with μ = 0.
Let u ∈ E and set f := ∂tu + A(·)u(·) ∈ L2(0, τ,H). As in [12], taking the derivative of s �→ v(s) :=
e−(t−s)A(t)u(s) for 0 < s ≤ t < τ and then integrating from 0 to t it follows that

u(t) =

t∫
0

e−(t−s)A(t)(A(t) − A(s))u(s) ds
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+ e−tA(t)u(0) +

t∫
0

e−(t−s)A(t)f(s) ds. (4.8)

We estimate the norm in V of each term. Recall that −A(t) generates a bounded holomorphic semigroup
in V ′ (see [28, Chapter 1]) with bound independent of t ∈ [0, τ ] thanks to (4.1) and (4.2). In particular,
there exist a constant C such that for all s > 0 and t ∈ [0, τ ]

‖e−sA(t)‖L (V′,V) ≤ δ−1‖A(t)e−sA(t)‖L (V′) ≤ C

s
. (4.9)

Therefore,

∥∥∥
t∫

0

e−(t−s)A(t)(A(t) − A(s))u(s) ds
∥∥∥

V

≤
t∫

0

C

t − s
‖(A(t) − A(s))u(s)‖V′ ds

≤
t∫

0

Cω(t − s)
t − s

‖u(s)‖V ds

where r �→ ω(r) is piecewise α-Hölder continuous on [0, τ ] with α > 1/2 by assumption. By the Cauchy–
Schwarz inequality we conclude that

∥∥∥
t∫

0

e−(t−s)A(t)(A(t) − A(s))u(s) ds
∥∥∥

V
≤ C ′

( t∫
0

‖u(s)‖2
V ds

)1/2

. (4.10)

The second term is easily estimated since the semigroup (e−sA(t))s≥0 is uniformly bounded on V (see
again [28, Chapter 1]). Thus

‖e−tA(t)u(0)‖V ≤ C‖u(0)‖V for all t ≥ 0. (4.11)

It remains to estimate the third term. Set v(s) :=
∫ s

0
e−(s−r)A(t)f(r) dr, s ≥ 0. The function v satisfies

∂sv + A(t)v = f, v(0) = 0.

Fix ε > 0. Since A(t)1/2e−εA(t) is a bounded operator on H we have that

1
2

d
ds

‖A(t)1/2e−εA(t)v(s)‖2
H = (A(t)1/2e−εA(t)v′(s), A(t)1/2e−εA(t)v(s))

= (−A(t)v(s) + f(s), A(t)e−2εA(t)v(s)).

Thus,

1
2

d
ds

‖A(t)1/2e−εA(t)v(s)‖2
H + ‖A(t)e−εA(t)v(s)‖2

H

= (f(s), A(t)e−2εA(t)v(s))

≤ 1
2

‖f(s)‖2
H +

1
2

‖A(t)e−2εA(t)v(s)‖2
H.

Next we integrate from 0 to t and then letting ε → 0 it follows that

∥∥∥A(t)1/2

t∫
0

e−(t−r)A(t)f(r) dr
∥∥∥2

V
≤ ‖f‖2

L2(0,τ,H).
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From the coercivity assumption (4.2) with μ = 0, it follows that

∥∥∥
t∫

0

e−(t−r)A(t)f(r) dr
∥∥∥2

V
≤ δ−1‖f‖2

L2(0,τ,H). (4.12)

We obtain from (4.8) and the forgoing estimates (4.10)–(4.12) that for some constant C0 > 0

‖u(t)‖2
V ≤ C0

[ t∫
0

‖u(s)‖2
V ds + ‖u(0)‖2

V + ‖f‖2
L2(0,τ,H)

]
.

It follows from Gronwall’s lemma that

‖u(t)‖2
V ≤ C0 eC0τ

[
‖u(0)‖2

V + ‖f‖2
L2(0,τ,H)

]
.

Replacing f(t) by its expression f(t) = ∂tu(t) + A(t)u(t), the conclusion of the proposition follows. �

Combining now Corollary 4.3 with Proposition 4.5 we obtain the analog of Theorem 4.4.

Theorem 4.6. Under the assumptions of Theorem 4.4, for every u0 ∈ V 1
2
and every f ∈ L2(0, τ ;V ′

1
2
) there

exists a unique u ∈ H1(0, τ ;V ′
1
2
) such that t �→ Aβ(t)u(t) ∈ V ′

1
2
for almost all t ∈ [0, τ ] solution of (4.5).

In addition there exists a constant C ′
MR independent of t, f and u0 such that

‖u‖H1(0,τ ;V ′
1
2
) + ‖Aβ(t)u(t)‖L2(0,τ ;V ′

1
2
) ≤ C ′

MR

(‖f‖L2(0,τ ;V ′
1
2
) + ‖u0‖V 1

2

)
, (4.13)

where V 1
2

:= [H,V ] 1
2
denotes the interpolation space between H and V , which coincides with D(A1/4

β(t)).
Moreover, the space of solutions described above continuously embeds into L∞(0, τ ;V 1

2
).

5. The Navier–Stokes System with Robin Boundary Conditions

As in the previous sections, Ω denotes a bounded C 1,1 or convex domain of R3 and β : [0, τ ]×∂Ω → M3(R)
satisfies (1.1)–(1.4) for some α > 1

2 . Recall from Sect. 3 that

H =
{
u ∈ L2(Ω,R3); div u = 0 in Ω, ν · u = 0 on ∂Ω

}
and

V =
{
u ∈ L2(Ω,R3); div u = 0 in Ω, curl u ∈ L2(Ω,R3) and ν · u = 0 on ∂Ω

}
.

The latter space is the domain of the bilinear symmetric form which gives rise to the Robin–Stokes
operator Aβ defined in Sect. 3.
We consider the Navier–Stokes system with Robin-type boundary conditions on the time interval [0, τ ]⎧⎪⎪⎨

⎪⎪⎩
∂tu − Δu + ∇π − u × curlu = 0 in [0, τ ] × Ω
div u = 0 in [0, τ ] × Ω
ν · u = 0, ν × curlu = βu on [0, τ ] × ∂Ω
u(0) = u0 in Ω.

(NS)

Our main result in this section is the following existence, uniqueness and regularity result for (NS).

Theorem 5.1. There exists ε > 0 such that for every u0 ∈ V with ‖u0‖V ≤ ε, there exists a unique
u ∈ H1(0, τ ;H) with t �→ Aβ(t)u(t) ∈ L2(0, τ ;H) and π ∈ L2(0, τ ;H1(Ω)) such that (u, π) satisfies (NS)
for a.e. (t, x) ∈ [0, τ ] × Ω. In addition there exists a constant C independent of u and π such that

‖u‖H1(0,τ ;H) + ‖ − Δu‖L2(0,τ ;L2(Ω,R3)) + ‖∇π‖L2(0,τ ;L2(Ω,R3)) ≤ Cε. (5.1)
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Proof. Recall the maximal regularity space

E =
{
u ∈ H1(0, τ ;H);u(t) ∈ D(Aβ(t)) a.e.,

t �→ Aβ(t)u(t) ∈ L2(0, τ ;H) and u(0) ∈ V
}
.

For all u ∈ E, we have that u(t) ∈ D(Aβ(t)) for a.e. t ∈ [0, τ ]. Then by Corollary 3.3 we obtain

‖curl u(t)‖3 ≤ CΩ‖Aβ(t)u(t)‖H + C(‖β‖∞ + 1)‖u(t)‖V .

Using Proposition 4.5 and taking the L2-norm in time, it follows that

‖curl u‖L2(0,τ ;L3(Ω,R3)) ≤ CΩ‖u‖E + C(‖β‖∞ + 1)‖u‖E = C1‖u‖E . (5.2)

On the other hand, by (2.7), the classical Sobolev embedding of H1(Ω) into L6(Ω) in dimension 3 and
Proposition 4.5, there exists a constant C2 such that for every u ∈ E

‖u‖L∞(0,τ ;L6(Ω,R3)) ≤ C2‖u‖E . (5.3)

Let u0 ∈ V . By Theorem 4.4, there exists a solution a ∈ E of the problem

∂ta + Aβ(t)a = 0 a(0) = u0, (5.4)

with
‖a‖E ≤ CMR‖u0‖V . (5.5)

Let u, v ∈ E and set f := 1
2 P(u × curl v + v × curlu). By (5.2) and (5.3), f ∈ L2(0, τ ;H) and

‖f‖L2(0,τ ;H) ≤ C1C2‖u‖E‖v‖E . (5.6)

Again by Theorem 4.4 there exists w solution of

∂tw + Aβ(t)w = f, w(0) = 0. (5.7)

In addition, w ∈ E and satisfies ‖w‖E ≤ CMR‖f‖L2(0,τ,H).
We define the bilinear application

B : E × E → E, (u, v) �→ w.

Then the latter estimate gives

‖B(u, v)‖E = ‖w‖E ≤ CMR‖f‖L2(0,τ,H). (5.8)

Thus we have from (5.6)
‖B(u, v)‖E ≤ CMRC1C2‖u‖E‖v‖E . (5.9)

We now use Picard’s contraction principle (see [15, Theorem 13.2]). Let δ > 0 such that δ < 1
4CMRC1C2

.
If ‖a‖E ≤ δ, the mapping

T : BE(0, 2δ) −→ BE(0, 2δ)
v �−→ a + B(v, v)

is a strict contraction. Therefore there exists a unique u ∈ BE(0, 2δ) satisfying u = a+B(u, u). By (5.5),
the condition ‖a‖E ≤ δ is satisfied if ‖u0‖V ≤ ε := δ

CMR
. It remains to prove that u is a solution of (NS)

for a.e. (t, x) ∈ [0, τ ] × Ω. Since u = a + B(u, u) with a the solution of (5.4) and w = B(u, u) the solution
of (5.7) with v = u we obtain

∂tu = ∂ta + ∂tB(u, u)

= −Aβa − AβB(u, u) + P(u × curlu)

= −Aβu + P(u × curl u).

Since u ∈ E, t �→ Aβ(t)u(t) ∈ L2(0, τ,H) and hence by Theorem 3.2,

t �→ curl curlu(t) = −Δu(t) ∈ L2(0, τ, L2(Ω,R3).

Thus, Aβu = −Δu + ∇q with q ∈ L2(0, τ,H1(Ω)). In addition

ν · u = 0 and ν × curlu = βu
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for a.e. (t, x) ∈ (0, τ) × ∂Ω. By the definition of P and integrability properties (5.3) (for u) and (5.2) (for
curlu), P(u × curl u) = u × curl u + ∇p with p ∈ L2(0, τ,H1(Ω)). Therefore, if we take π := p + q we see
that (u, π) satisfy (NS) for a.e. (t, x) ∈ [0, τ ] × Ω. �
Remark 5.2. One of the main tools in our method is the maximal regularity for non-autonomous evolution
equations. We relied on the results from [12] and this why we had to assume (piecewise) Hölder continuity
(1.4) for some α > 1/2. Since this work was submitted some progress have been made on maximal
regularity when dealing with non-autonomous Robin boundary conditions. Indeed, the results from [3]
and [29] show that for such boundary conditions one may assume Hölder continuity with order strictly
larger than 1/4. Based on this, one may weaken slightly the regularity assumption (1.4).

Using Theorem 4.6 we obtain the following existence (and uniqueness) result in the critical space V 1
2

for small initial conditions. Under our assumptions, V 1
2

= D(A
1
4
β(t)) for all t ∈ [0, τ ].

Theorem 5.3. Under the assumptions of this section, there exists ε > 0 such that for every u0 ∈ V 1
2

=

D(A
1
4
β(t)) with ‖u0‖V 1

2
≤ ε, there exists a unique u ∈ H1(0, τ ;V ′

1
2
) with t �→ Aβ(t)u(t) ∈ L2(0, τ ;V ′

1
2
) and

π ∈ L2(0, τ ;H1/2(Ω)) such that (u, π) satisfies (NS) in the sense of distributions. In addition there exists
a constant C ′ independent of u and π such that

‖u‖H1(0,τ ;V ′
1
2
) + ‖ − Δu‖L2(0,τ ;H−1/2(Ω,R3)) + ‖∇π‖L2(0,τ ;H−1/2(Ω,R3)) ≤ C ′ε. (5.10)

Proof. The proof goes as the proof of Theorem 5.1, using the space

F :=
{
u ∈ H1(0, τ ;V ′

1
2
); t �→ Aβ(t)u(t) ∈ L2(0, τ ;V ′

1
2
) and u(0) ∈ V 1

2

}
instead of E and Theorem 4.6 instead of Theorem 4.4. We only have to verify that in that case we
can make sense of the nonlinearity u × curl u in a suitable space. It is immediate to see that F ↪→
L4(0, τ ;V ). Therefore, for u, v ∈ F , we have that u × curl v, v × curlu ∈ L2(0, τ ;L3/2(Ω;R3)) and then
f := 1

2 P(u × curl v + v × curlu) ∈ L2(0, τ ;V ′
1
2
) since J ′

0 = P1 maps L3/2(Ω;R3) to V ′
1
2

(see Sect. 3) by
interpolation. �
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[9] Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 8, INSTN:

Collection Enseignement. [INSTN: Teaching Collection], Masson, Paris, 1988, Évolution: semi-groupe, variationnel.
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[27] Nečas, J.: Direct methods in the theory of elliptic equations, Springer Monographs in Mathematics, Springer, Heidelberg,

2012, Translated from the 1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination and preface
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