J. Math. Fluid Mech. 17 (2015), 707722
(© 2015 Springer Basel I

Journal of Mathematical
Fluid Mechanics

@ CrossMark

The Incompressible Navier—Stokes System with Time-Dependent Robin-Type
Boundary Conditions

1422-6928/15,/040707-16
DOI 10.1007/s00021-015-0227-4

Sylvie Monniaux and El Maati Ouhabaz

Communicated by M. Hieber
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1. Introduction

We consider the following incompressible Navier—Stokes system in a (sufficiently smooth) bounded domain
Q C R3 on a time interval [0, 7]
Ou—Au+Vp+ (u-V)u=0 in[0,7] x Q

NS
divu=0 in [0,7] x Q (NS)

where S(u,p) = %(Vu + (VU)T) — pld is the Cauchy stress tensor applied to (u,p) supplemented with
the conditions on the boundary 9 (v denotes the outer unit normal):

v-u=0 on [0,7] x 09
(Nbc)
[S(u,p)u]tan +Bu=0 on[0,7] x 0
and the initial condition
uw(0) =up in Q. (IC)

As usual [w]ian denotes the tangential part of w, that is [w]tan = w — (v - w)v. The conditions (Nbc)
are referred to in the literature as Navier’s boundary conditions and were introduced by Navier in his
lecture at the Académie royale des Sciences in 1822 [25]. They describe the fact that the fluid cannot
escape from the domain Q (v -wu = 0) and that the fluid slips with a friction described by a matrix B on
oQ ([S(u,p)v] van T Bu = 0). Such conditions have been recently derived from homogenization of rough
boundaries; see, e.g., [4,6,11,13].
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First we transform the system (NS) with boundary conditions (Nbc) and initial condition (IC) into
the following “Robin—Navier—Stokes” problem

Ou—Au+Vr—uxcurlu=0 in[0,7] x Q

divu=0 in [0,7] x Q

v-u = 0, vxcurlu=gu on [0, 7] x 99 (RNS)
u(0) = ug in Q.

This is based on the identities

(u-V)u=—ux curlu+ %VMQ
and

[S(u,p)l/]mn = —v x curlu 4+ 2Wu

on the boundary 9Q (see, e.g., [20, Section 2]), so that f =2W + B, and 7 = p + %|u|2 Here W is the
Weingarten map (for properties of W, see, e.g., [20, Section 6]; in particular, Wu = 0 on flat parts of the
boundary).

Our main objective in this paper is to prove existence and uniqueness of a solution of (RNS) in the
case of time-dependent Robin boundary condition. That is, we allow 3 to depend on both time and space
variables. We assume that 3 : [0, 7] x 9Q — .#3(R) is bounded measurable on [0, 7] x 9 such that

0 < B(t, )¢ - &€ < M|¢)? for almost all (t,z) € [0,7] x 9Q (1.1)
and all £ € R?

B(t, x) is symmetric for almost all (¢,z) € [0, 7] x 09, (1.2)

B(t,x)v(x) = A(t, z)v(z) for almost all x € 9, t > 0, (1.3)

where \ : [0,7] x 9Q — R, so that a normal vector field transformed by 3 = 3 remains normal at the
boundary.

Note that the condition 8 > 0 implies the geometric condition on the friction (symmetric) matrix B:
B > —2W. In particular, if © is convex, W > 0, so that we can treat any nonnegative friction matrix B.
Further, we assume that [ is piecewise a-Holder continuous for some « > 1/2 with respect to the time
variable. That is, there exist ¢;, 0 < ¢ < n, such that [0, 7] = U_,[t;, t;11] and constants M; such that on
each interval (¢;,¢;11), 0 is the restriction of some B such that for almost every x € 90

1B(t, ) — B(s,@)|.aw < Myt —s|* for all t,s € [t, tiy1]. (1.4)

Here |- ||z, denotes the operator norm in .#5. Under these assumptions we prove the following regularity
result.

Theorem 1.1. Let Q C R2 be a bounded €' or convex domain and let T > 0. There exists € > 0 such that
for all initial condition ug € L*(,R?) with divug = 0 in Q, v-ug = 0 on 92 and curlug € L?(2,R?),
lluoll2+ |lcurl ug||2 < €, there exists a unique (u, ) satisfying (RNS) for a.e. (t,z) € [0, 7] xQ. In addition,
u € HY0,7; L2(,R?)), Au € L?(0,7,L?(Q,R?)), 7 € L?(0,7; H*(Q)) and there exists a constant C
independent of u and 7 such that

lull z10,r, 22 (r3)) + | = Aullz2(0,722(.r3)) + V7l L2(0,7:22(,R8)) < Ce.

In the case where B(¢,2) = 0 for all (¢t,x) € [0,7] x 0L, the system (RNS) has been studied in
[20], in the case of Lipschitz domains for initial conditions in L3. See also [22] for related result on the
Neumann type boundary conditions on smooth domains and [5] for the case 3 constant in ¢’%! domains.
For Dirichlet boundary conditions v = 0 on 92, which correspond to 8 = oo, we refer to the classical
results by Fujita and Kato [10] (see also [19,23] for the case of less regular domains).

The method to prove Theorem 1.1 relies on the study of operators defined by forms and recent results
on maximal regularity for non-autonomous linear evolution equations. This latter property is the key
ingredient to treat the non linearity by appealing to classical fixed point arguments. We also prove an
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existence result for small initial conditions wug less regular (i.e., in a critical space for the scaling properties
of the Navier—Stokes equations) than those considered in Theorem 1.1; see Theorem 5.3 below.

The paper is organized as follows. Section 2 is devoted to analytical tools necessary for our approach
of the problem. In Sect. 3, we define the (time dependent) Robin Stokes operator. We use recent results
on maximal regularity in Sect. 4 in order to obtain regularity properties of the solution of the linearized
(RNS) system. The proof of Theorem 1.1 is given in Sect. 5.

2. Background Material

Throughout this section, 2 C R? will be a bounded domain which is either convex or €. We denote
by 00 its boundary. It is endowed with the surface measure do. It is a classical fact (see, e.g., [16,
Théoréme 8.3] for smooth domains and [26, Ch. 2, Théoréme 5.5] or [27, Ch. 2, Theorem 5.5] for Lipschitz
domains) that

Try,, : H'(Q) — HY?(09Q) — L*(9Q, do),
the latter embedding being compact.

(i) For u € L*(©,R?) such that divu € L?(2), the normal component v - u of u on 99 is defined in a
weak sense in the negative Sobolev space H~1/2(99) by

H-17200) (V- U @) 17290y = (divu, d)a + (u, Vo)a, (2.1)

for all p € HY2(09), where ¢ belongs to the Sobolev space H!(Q2) with Tr,,¢ = . Here, (-,")o
denotes either the scalar or the vector-valued scalar product in L? defined over 2. The notation
v (-, -)v means the duality between V' and V.
(ii) For u € L?(2,R?) such that curlu € L?*(Q, R?), the tangential component v X u of u on 9 is defined
in a weak sense in H~/2(99, R?) by
H-1/2(00,83) (V X U, 9) ir1/2(00,r3) = (curlu, @) — (u, curl g)q, (2.2)

for all ¢ € H'/2(9Q,R3) where ¢ € H*(Q,R%) with Tr,,¢ = ¢. As before, (-,-)q denotes the
vector-valued scalar product in L? defined over .
The following result, valid for Lipschitz domains, can be found in [7] (see also [24]).

Proposition 2.1. There ezists a constant C' > 0 such that for allu € L*(Q, R?) satisfying divu € L*(Q, R),
curlu € L*(Q,R?) and either v - u € L*(8Q) or v x u € L*(9Q,R3) we have Tr|,,u € L*(9Q,R?) with
the estimate

ITr)pq ]l L200.r2) <C (Hullz + [[divullz + feurlully

+min{||v - ul| 200, [V U||L2(89,R3)})~
Moreover, u € H/?(Q,R?) and

[ull 22 pey <C (IIUHz + [ldiv ][z + [eurlu]l2

+ min{ v - ull 200 [V X 20089} ) (2.3)
Moving on, let W and Wy be the spaces defined by
Wr ={u € L*(Q,R?);divu € L*(Q), curlu € L*(Q,R?)
and v-u =0 on 00} (2.4)
and
Wy ={u € L*(Q,R?);divu € L*(Q), curlu € L*(, R?)
and v x u =0 on 90} (2.5)
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both endowed with the norm
||u||W = ||u||L2(Q7R3) —+ HdiVUHLz(Q) —+ ||Cur1u||Lz(Q7R3), u e WT,N~ (26)

It is easy to see that Wr n are Hilbert spaces. Note also that since (2 is either convex or €11, the spaces
Wr n are contained in H'(Q,R?) (with continuous embedding). See [1, Theorem 2.9, Theorem 2.12 and
Theorem 2.17]. Thus, there exists a constant C' > 0 such that for all u € Wp

||u||H1(Q) S C(Hu||L2(Q7R3) -+ ||d1V U”LZ(Q) + ||Cu1‘17.LHL2(Q7R3)). (27)
In particular, the trace operator
Tr),q : Wrn — HY2(0Q,R?)

is continuous.

Next, we define the Hodge Laplacians with absolute and relative boundary conditions. Although these
operators do not appear explicitly in our main results they will be useful for the proof of the description
of the domain of Stokes operator with time dependent Robin boundary condition.

We define on L?(, R?) the two bilinear symmetric forms

bo(u,v) = (divu,dive)g + (curlu, curlv)q, w,v € Wr (2.8)
and
b1(u,v) = (divu,dive)q + (curlu, curlv)q, u,v € Wy. (2.9)
Both forms by and b; are closed. Therefore, there exist two operators
Boo:Wr — Wi, Byou=—Au
associated with by and
Bio: Wy =Wy, Biou=—-Au
associated with by in the sense that
bo(u,v) = wy (Boou,V)wy, u,v€ Wr
and
bi(u,v) = wy (Brou,v)wy, u,v€Wn.
The part By of By on L*(Q,R?), i.e.,
D(By) = {u € Wr,3v € L*(Q,R?) : bo(u, ¢) = (v, d)o Vo € Wr},
Byu = v, (2.10)
and the part By of By on L*(Q,R?), i.e.,
D(By) == {u € Wy,3v e L*(QR?) : b1(u, ) = (v, d)o Vo € Wy},
Biu =, (2.11)
are self-adjoint operators on L?(2,R3).
Proposition 2.2. The domains of By and By have the following description
D(By) ={u € L*(Q,R*);divu € H'(Q), curlu € L*(Q,R?), (2.12)
curl curlu € LQ(Q,RB) and v-u =0,v x curlu =0 on OQ}
and
D(By) ={u € L*(Q,R*);divu € H'(Q), curlu € L*(Q,R?), (2.13)
curlcurlu € L*(Q,R?) and v x u = 0,divu =0 on 9Q}.

Moreover, for u € L*(2,R?) such that curlu € L?(2,R?), the following commutator property occurs for
alle >0
curl (14 eBy) tu = (1 +eB;) teurlu. (2.14)
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Proof. The description of the domain of By can be found in [21, (3.17) & (3.18)]. We can describe
the domain of B; in the same way (see also [18, Theorem 7.1 & Theorem 7.3]). To prove (2.14), let
u € L?(Q,R3) such that curlu € L?(Q,R3). Let u. = (1 +eBg) 'u and w. = (1 +eBy) tcurlu.

Step 1: We claim that curlu. € D(By).
By (2.12) we have

curlu. € L*(Q,R?), curlcurlu. € L*(Q,R?),div (curlu.) = 0 € H'(Q),
v x curlue, = 0 and div (curlu,) =0  on 0.

To prove that curlu. € D(By), it remains to show, thanks to (2.13), that curl curl (curlu.) € L?(, R?).
This is due to the fact that

curl curl (curl u.) = curl (—Au.) in HH(Q,R?).
Since

—Au. = Bo(1 +eBy) tu =

M | =

(u— ue)
and curlu,,curlu € L?(Q,R3), the claim follows.

Step 2: We claim now that curl u, = we.
By Step 1, we know that curlu. € D(By). Moreover, we have in the sense of distributions

(1 +eBy)(curlue) = curlue — eAcurl u, = curl (uE - sAu5> = curlu
since u. — eAu. = (1 + £Bg)(1 + €By) ~'u = u. Therefore,
curlue = (14 eBy) teurlu = w,
which proves the claim. (I
The following lemma is inspired by [18, Proof of Proposition 2.4 (iii)].

Lemma 2.3. 1. Let g € L*(0Q,R3). Then there exists w € L*(Q,R?) with curlw € L*(Q,R?) such that
for all p € Wr

(g9,0)o0 = (curlw, d)q — (w, curl ¢)q. (2.15)

Moreover, there exists C' > 0 such that
Hw||L2(Q’Ra) + ||curlw||L2(Q’Ra) < CHQHLQ(SQ,H@)- (216)
2. If in addition g € L2, (02, R®) (which means that g € L*(92,R3) and v - g =0 on 9LQ), then there

ezists w € L?(2,R3) such that curlw € L?(Q,R3) and (2.15) holds for all ¢ € H*(Q). And in that
case g = v x w in H/2(9Q, R?).

Proof. 1. We define the space X := {(¢, curl ); » € Wr}. It is a closed subspace of L?(2, R?) x L?(Q, R3).
By classical trace theorems (see, e.g., [16, Théoréme 8.3], [26, Ch.2, Théoréme 5.5] or [27, Ch. 2, Theo-
rem 5.5 with & = 1 and p = 2]), we have that v x ¢ € L?(9Q,R?) for all ¢ € W C H'(Q,R3). Since
g € L?(09Q,R3), it is immediate that v x g € L%(9Q,R?) = (LQ(GQ,R3))/. Thus, v X g acts as a linear
functional on X as follows:

(v x g)(¢p,curl @) :== (v x g,v X p)aq for all p € Wr.

By the Hahn-Banach theorem, there exist (vi,v2) € L*(£, R3) x L?(€2,R?) such that
(V X g)(¢? curl d)) = <U17Cur1 ¢)>Q =+ <U27 ¢>Q for all ¢ S WTa

where we have identified (L?(Q,R3) x LQ(Q,R?’))/ with L2(Q,R3) x L?(2,R?). We can choose ¢ €
H}(,R?) € Wr and obtain that

0= pg-i(curlvy +v2, ) py.
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This gives that curlvy + vy = 0 in H1(Q,R3). We set w := —v; € L*(Q,R?), we have curlw = vy €
L2(9,R3) and
(Vv x g,v X Yo = —(w, curl ¢)q + (curlw, ¢p)q for all ¢ € Wr. (2.17)

Since ¢ € Wr, Tr|,,¢ € LE,,(0Q,R?) it is clear'that ¢ = (v X ¢) x v, so that the left-hand side of (2.17)
coincides with

(9,P)oq for all p € Wy, (2.18)

which proves (2.15).

The existence of C' > 0 such that (2.16) holds follows from the Closed Graph Theorem since {u €
L2(Q,R3);curlu € L%(Q,R3)} is complete for the norm ||ul| + ||curl u|s.

2. Assume now that g € L2 (9Q,R3). Let w € L*(Q,R?) such that curlw € L*(Q,R3) and (2.15)

tan

holds. Since v x g € L?(952,R?), we can approach it in L?(9Q, R3) by a sequence (¢, )nen of vector fields
©n € HY?(09,R?). In particular,

on XV — (Uxg)xv=g in L*(0R?) asn — oo.
By assertion 2.3, for each n € N there exists w,, € L?(Q,R3) such that curlw, € L?*(Q2,R3) satisfying
(pn X v, d)aa = (curlwy,, @)q — (wy, curl p)g  for all ¢ € Wr.
Thanks to the estimate (2.16), it is immediate that
w, — w and curlw, — curlw in L?(Q,R?) as n — oo.

Let now ¢ € H'(Q,R3). For € > 0, let ¢. = (1 +£By) ¢ with By as in Proposition 2.2. Then ¢. € Wy
and thanks to (2.14)

¢ — ¢ and curlg, = (14 eBy) teurlp — curlg  in L*(Q,R3) as € — 0.
This implies also that
VX ¢, — v X ¢ in H V200, R?) as e — 0.
Therefore, we have for all e > 0 and n € N
(VX e, on)oa = (Pn X 1V, 9c)oa = (curlwy,, de)q — (wy, curl g )q.
We first take the limit as € goes to 0 and obtain (recall that ,, belongs to H/2(9, R?))
i1 (U X 6, Gudgrisa = (el wg, @ — (wa, curl ¢,

Since ¢ € H(Q,R?), the first term of the latter equation is also equal to (¢, X v, $)sq. Taking the limit
as n goes to oo yields

(9,0)o0 = (curlw, d)q — (w, curl ¢)q

which proves the claim made in 2.3. O

Lemma 2.4. Let ¢ € HY/2(0Q,R?) N L2, (0Q,R3). Then there exists v € H' (2, R?) such that dive = 0
on 2 and v|,, = ©.

Proof. Let ¢ € H'/2(0Q,R3) N L2, (09, R?). Since the trace operator Tr),, : H'(Q,R3) — H/2(09,R?)

is onto there exists w € H'(Q, R3) such that W), = - By [8, Theorem 4.6], there exist three operators
R:L*(Q,R3) — HYQ,R?), S: L?(Q) — H(Q,R3) and T : L*(Q,R?) — H (2, R?) such that

curl Tu + Sdivu = u — Ru  for all u € H*(Q,R?) with v/-u = 0 on 9Q

1 Recall that for a, b, c € R3, the following identities hold:

(axb)-c=(bxc)-a, axb=—bxa, |a?b=(axb)Xxa+(a-b)a.
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(choose n =3, T =Ty, S =T3 and R = Ly in [8, Theorem 4.6]). We apply this result to u = w and we
define

v:=curl Tw = w — Sdivw — Rw;
v satisfies divo = 0, v € H*(Q,R?) and vy, = w),, = . O
The classical Hodge-Helmholtz decomposition asserts that the space L?(Q, R?) is the orthogonal direct

L
sum H @& G where
H:={ue L*(QR*;divu=0in Q,v-u =0 on 90} (2.19)
and G := VH(Q,R).

Remark 2.5. The space H coincides with the closure in L2(2,R3) of the space of vector fields u €
€ (2, R?) with divu = 0 in Q which we denote by 2(Q2). See, e.g., [30, Theorem 1.4].

We denote by J : H — L?(€;R?) the canonical embedding and P : L?(Q;R3) — H the orthogonal
projection. Recall that for u € L?(2,R?), there exists p € H'(Q2) so that Pu = u — Vp. It is clear that
PJ = Idy and that

(u,Pv)q = (Pu,v)q for all u,v € L?(Q;R?). (2.20)
Define now the space V' := Wy N H. Thus, for every v € Wy, Pv € V.. The space V will be used to define
the Stokes operator with Robin boundary conditions in the next section.

3. The Robin-Stokes Operator

In this section we define the Stokes operator with Robin boundary conditions on 9. In order to do
this we use the method of sesquilinear forms; see e.g., [9, Example 3, p. 449]. We start by defining the
Hodge-Laplacian with Robin boundary conditions. As in the previous section, €2 is a bounded domain of
R? and we suppose that it is either convex or has a ¢'''!-boundary.

Fix 7 € (0,00) and let 8 : [0,7] x 9Q — #3(R) be bounded measurable on [0, 7] x 9. We assume
that (1.1)—(1.3) are satisfied.

Recall that V = W N H and that the embedding J restricted to V maps V' to Wr. We denote this
restriction by Jo : V — Wry. Its adjoint J§ =: Py : Wi — V' is then an extension of the orthogonal
projection P.

Lemma 3.1. The projection P restricted to W takes its values in V, so that PJy = Idy holds.

Proof. Let w € Wy. Since W C L2(2,R?), there exists 7 € H(2) such that w = JPw + V7 and 7
satisfies Ar = divw € L*(Q) and 9,7 = v-w = 0 on 9. Moreover, curl Vor = 0 in (2, so that V7 € Wr.
Therefore, div JPw = 0 in €, curl JPw = curlw € L?(Q,R3) and v - JPw = 0 on 99, which proves that
PweV. O

We are now in the situation to define the Stokes operator with Robin boundary conditions. We consider
on the Hilbert space H the bilinear symmetric form

ag:VxV — R

ag(u,v) := (curl Jou, curl Jov)o + (8 Tr|,, Jou, Tr|,, Jov) sq- (3.1)

Using the fact that PJy = Idy we see that the form ag is closed. Therefore, there exists an operator
Ago: V — V' associated with ag in the sense that
ag(u,v) = v (Agou,v)v, u,veV.
The part Ag of Agg on H, i.e.,
D(Ag) :={ueV,3ve H :ag(u,p) =(v,9)q Vo eV}, Agu:=v
is a self-adjoint operator on H. We call Ag the Robin-Stokes operator.
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From now on, since J and Jy are embedding operators, we will omit to write them to avoid too
pedantic an exposition.

Theorem 3.2. The operator Ag is given by
D(Ag) = {u € Vicurleurlu € L*(Q,R?), v x curlu = Bu on 99}, (3.2)
Agu = P(curlcurlu) = —Au+ Vp, u € D(Ag),
for some p € HY(Q).
In addition, —Ag generates an analytic semigroup of contractions on H and D(Ag) =V.

Proof. Let Dg be the space on the right-hand side of (3.2). First note that, thanks to the condition (1.3)
on 3, BTr|,,u € L2, (09, R?) whenever u € Wr. Next, remark that for u € Dg, since

tan
curlu € L*(Q,R?) and curlcurlu € L*(Q,R?),
the integration by parts (2.2) allows to define
v x curlu € H™Y2(00, R?).

Moreover, the condition v x curlu = Bu on 92 implies that v x curlu € L?(9Q, R?) and by the obvious
fact that divecurlu = 0 € L*(Q2), Proposition 2.1 yields Tr),, (curlu) € L?(9Q,R?).
If u € Dg, then —Au = curlcurlu € L?(2,R?) and for all v € V, we have by (2.2)

ag(u,v) = (curlu, curl v)g + (Bu, v)asa (3.3)
= (curl curlu, v)q — (v x curlu, v)sa + (Bu, v)sq (3.4)
= (P(curl curlu), v)q. (3.5)

Since P(curl curlw) € H, we have then proved that for all u € Dg, u € D(Ag) and Agu = P(curl curlu).
Conversely, let u € V. C Wr and set g := Tr|,,u. As already mentioned, g € L2, (09, R?) thanks to
(1.3). We can then apply Lemma 2.3 to obtain w € L?(2, R?) with curlw € L?(Q,R?) satisfying

(9,v)90 = (curlw,v)g — (w,curlv)q  for all v € Wr. (3.6)
Therefore, for a fixed u € V, we can rewrite ag(u, -) as follows:
ag(u,v) = (curlu, curlv)g + (curlw, v)q — (w,curlv)q for allv € V. (3.7
We assume now that u € D(Ag). Since Agu € H C L*(Q,R?) and Pv € V for v € Wy, we can write

(Agu,v)q = (Agu, Pu)g = ag(u,Pv) (3.8)
= (curlu, curl Pv)q + (curlw, Pv)q — (w, curl Pv)q (3.9
= (curlu — w, curlv)q + (Peurl w, v)q. (3.10)

The last equality (3.10) comes from (2.20) and the fact that curl Pv = curlv. Therefore we obtain
(Agu — Pcurlw, v)q = (curlu — w, curlv)q for all v € Wr. (3.11)
For all v € H}(Q,R3) C Wy, (3.11) becomes
(Apu — Peurlw, v)q = g1 (curl (curlu — w),v) g,
which implies that curl (curlu — w) € L?(€2,R?) and ultimately, since curlw € L?(Q,R3), curlcurlu €
L?(Q,R3).

We have proved that for u € D(Ag), curlcurlu € L*(Q,R3). It remains to identify Agu and the
boundary condition v x curlu = fu on 9 for v € D(Ag). Note that this condition is well defined thanks
to (2.2) since curlu € L*(Q,R3) (u € D(Ag) CV C Wr) and curlcurlu € L?(Q, R3). By definition (3.1)
of ag and thanks to (2.20), we have for all v € Z(1) (recall that 2(Q) = {w € €>°(Q,R?),divw =0 in Q}
has been defined in Remark 2.5)

(Agu,v)q = ag(u,v) = (curly, curlv)g
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= (curl curl u, v)o = (curl curl u, Pv)g
= (P(curlcurlu), v)q, (3.12)

since Pv = v. This proves that Agu = P(curl curlu) since 2(€2) is dense in H (see Remark 2.5).

Now, let v € V' and recall that Tr|,,v € H'2(09, R?). We have then by (2.2)
(P(curl curlu), v)q = (Agu,v)q = ag(u, v)

Q=

= (curlu, curl v)q + (Bu, v)oq

= (curlcurlu, v)q — g-1/2{v x curlu, v) g1/2 + (Bu, v)oq
=

P(curlcurlu), v)g — g-1/2(v x curlu, v) g1/2 + (Bu, v)oq,

which proves that

g-12(fu —v x curlu,v) g1 =0 forallve V. (3.13)

Let ¢ € HY2(09,R?) N L2, (02, R?) be arbitrary. By Lemma 2.4, we can find v € V such that v|,, = ¢
on 09Q. Therefore, (3.13) implies that for all p € H'/2(9Q,R?) N L2, (09, R3)

g-12{fu —v x curlu, ) 1,2 =0, (3.14)

With w € L?(2, R?) such that curl w € L?(Q, R?) satisfying fu = vxw in H~'/2(9Q, R?) as in Lemma 2.3,
it follows from (3.14) that w; := w — curlu satisfies

(curlwy, v)q — (wy,curlv)g =0 for all v € Wrp. (3.15)

Let now v € H'(Q,R3) and denote for € > 0, v. = (1 + eBg) v (recall that the operator By has been
defined in (2.10)). It is clear that v. € Wy for all € > 0 and

ve — v in L*(Q,R?) ase— 0.
Moreover, thanks to (2.14), we have that
curlv, = (1 +eBy) teurlv — v in L*(Q,R3)  ase — 0.
Applying (3.15) to v. and taking the limit as ¢ — 0, we obtain
0 = (curlwy, ve)q — (wy, curlv.)g — (curlwy, v)q — (wy,curlv)g  ase — 0.
It follows then that v x w; = 0 in H~/2(9Q, R?) and therefore
fu—vxcurlu=0 in H Y200, R?).
Finally, the fact that —Ag generates an analytic semigroup of contractions follows from the fact that

1
Apg is a non-negative self-adjoint operator. The equality D(Aé) = V is a standard result for symmetric
bilinear closed forms (see [17] and [14]). O

Corollary 3.3. If u € D(Ap) then curlu € L3(2,R3) and there exists a constant Cq independent of u
such that

Jeurlulls < Ca (I 4gulln + (18lloe + Dlulv)-

Proof. Let u € D(Ag). By Theorem 3.2, curlu € L*(Q,R?), curl curlu € L*(Q,R?) and v x curlu = fu €
L?(99, R3). Therefore, by Proposition 2.1, curlu € H'/?(Q,R?) with the estimate

||CUT1U||H1/2(Q,R3)

< C (leurlul| 2o rey + [Jcurl curl ul| 2o gy + [|Bull L2(00,r5))

< C((IBlloe + Vllully + flerrl curlul 2o, p5))-
This latter estimate together with the following Sobolev embedding valid in dimension 3

HY?(Q,R?) — L3(Q,R%)

proves the corollary. O
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4. Maximal Regularity for Non-autonomous Equations

Our aim in this section is to show maximal regularity for the Stokes problem. We first recall some recent
results on maximal regularity for evolution equations associated with time-dependent sesquilinear forms.

Let 'H be a Hilbert space and let V be another Hilbert space with dense and continuous embedding in
H. Consider a family of sesquilinear forms (a(t))o<i<, such that D(a(t)) =V for all t. We suppose that
(a(t))o<i<- is uniformly bounded in the sense that there exists a constant M independent of ¢ such that

lat; u,v)| < Mjully]v]lv (4.1)

for all u,v € V. Here ||v||y, denotes the norm of V. We also suppose that (a(t))o<i<, is quasi-coercive,
i.e., there exists > 0 and p € R such that for all u € V

Sllully < alt;u, w) + pllull3,. (4.2)

For each fixed ¢, the form a(t) is closed. Denote by A(t) : V — V'’ the operator associated with a(t) in
the sense that

a(t;u,v) = p{A(t)u,v)p, ¥ u,v € V.
The operator associated with a(¢) on H is the part of A(t). That is,
D(A@) ={ueV,A{t)u e H}, A(t)u= A(t)u.
We recall now the famous Lions’ maximal regularity result in V':

Theorem 4.1. Under the above assumptions, for all f € L?(0,7;V") and all ug € H, there exists a unique
u € L2(0,7; V)N HY(0,7; V") solution of
W)+ Afut) = f(t), w0) = uo. (P)

Moreover, u € € ([0, 7], H).

One says that (P) has LP maximal regularity in H if for every f € LP(0,7;H) there exists a unique
u € WHP(0,7;H) which satisfies the problem in the LP-sense. Note that one has in addition that ¢ —
A(t)u(t) is in LP(0,7; H).
Maximal regularity for non-autonomous equations in H has been investigated recently in the context

of operators associated with forms as we described above. The following is a particular case of a result
proved in [12].

Theorem 4.2. Let (a(t))o<t<r be a family of sesquilinear forms satisfying the previous conditions (4.1)
and (4.2). Suppose in addition that t — a(t) is piecewise a—Holder continuous for some o > 1/2 in the
sense that there existto =0 < t1 < --- <t} = 7 and constants M; such that the restriction of t — a(t;-,-)
to (t;,tit1) satisfies

la(t;u,v) —a(s;u,v)| < M|t —s|¥|ullv|vlly  for all u,v € V. (4.3)
Then the Cauchy problem (P) has L?-mazimal regularity for all initial value ug € D((p + A(O))l/Q).

Note that if the form a(0) is symmetric then D((p + A(O))l/Q) = V. Recall also that if the L?-maximal
regularity holds for (P) then the solution w satisfies the a priori estimate

[ull 20,7374y + 1A U L2 (0,779 < C(1f L2077 + [luollv)- (4.4)

Interpolating between Theorems 4.1 and 4.2 we obtain also

Corollary 4.3. Under the assumptions of Theorem 4.2, we have that for all uy € D((u—|—A(O))1/4) =:
Vij2 and for all f € LZ(O,T;V{/Q) there exists a unique u € HI(O,T;V{/Q) such that t — A(t)u(t) €
L2(0,T;V{/2), solution of the evolution problem (P).
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Now we turn back to the Robin—Stokes operator Ag. As previously, 2 denotes a bounded domain of
R3 which is either €11 or convex. Let H := H defined by (2.19), that is
H:={ue L*(Q,R%;divu=0in Q,v-u=0on 00}

and ag the form defined by (3.1). We assume in addition to (1.1), (1.2) and (1.3) that ¢ — B(t,x) is
piecewise Holder continuous of order a > 1/2 in the sense of (1.4).

The family of forms a5 = ag(;,.), 0 <t < 7, satisfies the assumptions of Theorem 4.2. In order to check
(4.3) we write for u,v € V and ¢,s € (t;,t;41)

lage,) (w,v) — ages, (u,v)| = ((B(t, ) — B(s,+))u, v)aa
< sup. 18(t,2) — B(s, ) ||.as || Tr 00| L2 (00,75) [ T |90 || 2 (902, R3)
S

< OMft = s|*|ullv [|v]lv.

The last inequality follows from (1.4) and Proposition 2.1. Therefore we conclude that L?-maximal reg-
ularity holds for the Robin-Stokes operator Ag on the Hilbert space H.

Theorem 4.4. Under the above assumptions, for every ug € V and every f € L*(0,7; H) there exists a
unique w € H*(0,7; H) such that u(t) € D(Agg)) for almost all t € [0,7] and

{ u(0) = up. (4.5)
In addition there exists a constant Chyr independent of t, f and ug such that
ull 1 0,750y + 1As@y w22 0,71y < Crrr (I1f 112 (0,7:0) + lluollv). (4.6)

Note that if (1.4) holds with o« = 1 then we can apply the results from [2] and obtain the previous
theorem with the additional information that the solution v € €([0, 7]; V). In particular, u € L (0, 7; V).
This latter property is not covered by the results in [12] when (1.4) holds for some o > 1/2. However,
in the recent paper [3, Theorem 4.4], it has been proven that this is true in our particular situation for
the operators Ag;.). We give a proof here in the more general setting of forms for which (1.4) holds for
some o > 1/2.

As in the beginning of this section, let (a(t))o<¢<- be a family of symmetric forms on a Hilbert space H
which satisfy (4.1) and (4.2). Suppose that t — a(t) is piecewise a—H&lder continuous for some a > 1/2
(see Theorem 4.2). We define the space of maximal regularity

E:={ue H'(0,7;H),u(t) € D(Apq)) a-e.,
t — A(t)u(t) € L*(0,7;H) and u(0) € V}. (4.7)
The space F is endowed with the natural norm
lalls = a1 0.r700 + [ACUE 20,570 + (O]l

Clearly, (E,| - |g) is a Banach space. Note that if u(-) € H*(0,7;H) then u € €([0,7]; H) and hence
u(0), needed in the definition of E, is well defined.

Proposition 4.5. The space E is continuously embedded into L*>(0,7;V).

Proof. First by adding a positive constant to A(t), it is clear that we may suppose without loss of
generality that (4.2) holds with u = 0.
Let u € E and set f := d,u + A(-)u(-) € L*(0,7,H). As in [12], taking the derivative of s — v(s) :=
e~ (=) AWy (s) for 0 < s <t < 7 and then integrating from 0 to ¢ it follows that
t
u(t) :/e_(t_S)A(t) (A(t) — A(s))u(s)ds

0
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¢
+ e A ®y(0) + / e~ (=AW f(5) ds. (4.8)
0
We estimate the norm in V of each term. Recall that —A(t) generates a bounded holomorphic semigroup

in V' (see [28, Chapter 1]) with bound independent of ¢ € [0, 7] thanks to (4.1) and (4.2). In particular,
there exist a constant C' such that for all s > 0 and ¢ € [0, 7]

—s — —s C
e kA(t)”‘Z(V’,V) <9 1||-/4(t)€ ‘A(t)Hf(V’) < 5 (4.9)
Therefore,
t
H / e = AD (A(8) — A(s))u(s) dsH
0
t

/ “C () — Al)u(s) v ds

Cuw(t
/ ) Ju(s)lly ds

where 7 — w(r) is piecewise a-Hélder continuous on [0, 7] with a > 1/2 by assumption. By the Cauchy—
Schwarz inequality we conclude that

t

H / IO A(e) - A(s))uls) ds| < / u(s)|I3 ds)l/ B (4.10)

0

The second term is easily estimated since the semigroup (e=*4(*) 5, is uniformly bounded on V (see
again [28, Chapter 1]). Thus

||e_tA(t)u(0)HV < C|lu(0)|ly  for all t > 0. (4.11)
It remains to estimate the third term. Set v(s) := [ e=¢=4® f(r)dr, s > 0. The function v satisfies
Osv + A( Juv=1/f, v(0)=0.
Fix € > 0. Since A(t)l/Qe_EA(t) is a bounded operator on H we have that
5 AW e AOu(s) B, = (A 2640 (5), A1) e~ Ou(s))
= (—A(t)v(s) + f(s), At)e 24D (s)).

Thus,
1A 2e= 4O v(s) 13, + | A(t)e 4 Pu(s) |3,
(F(s), At)e™24Wu(s))

1 1 _
< S5 B+ 5 IA@e A 0u(s) 3,

Next we integrate from 0 to ¢ and then letting ¢ — 0 it follows that

N =
I

t

2
HA(t)l/Q/e—(t—7)A(t)f(r) drHv < 1F1220.r.20)-
0
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From the coercivity assumption (4.2) with u = 0, it follows that

t

2
| [e 105 ar] ) <6110 (412)
0

We obtain from (4.8) and the forgoing estimates (4.10)—(4.12) that for some constant Cy > 0

t
a1 < Co[ [ 1) ds + (@I + 10,0
0

It follows from Gronwall’s lemma that
lu(®)13 < Co e [[wO)3 + 17132 0,070] -
Replacing f(t) by its expression f(t) = Opu(t) + A(t)u(t), the conclusion of the proposition follows. [
Combining now Corollary 4.3 with Proposition 4.5 we obtain the analog of Theorem 4.4.

Theorem 4.6. Under the assumptions of Theorem 4.4, for every ug € V% and every f € L?(0,7;V]) there
2
exists a unique u € H*(0,7;V{) such that t — Agyu(t) € Vi for almost all t € [0, 7] solution of (4.5).
2 2

In addition there exists a constant Cl,p independent of t, f and ug such that

lellars o.7vp) + IMAs@ w2 07v1) < Chrr(lflz20,mv) + luollv, ), (4.13)
2 2 2
where Vi := [H,V]1 denotes the interpolation space between H and V', which coincides with D(A;{f)).

Moreover, the space of solutions described above continuously embeds into L>(0, T; V%).

5. The Navier—Stokes System with Robin Boundary Conditions
As in the previous sections,  denotes a bounded ¢! or convex domain of R and 3 : [0, 7] x9Q — #3(R)
satisfies (1.1)—(1.4) for some a > 1. Recall from Sect. 3 that
H = {u € L2(Q,R?);divu =0in Q,v-u=0on 89}
and
V ={ue L*(QR);divu=0in Q curlu € L*(Q,R?) and v -u = 0 on §Q}.

The latter space is the domain of the bilinear symmetric form which gives rise to the Robin—Stokes
operator Ag defined in Sect. 3.
We consider the Navier—Stokes system with Robin-type boundary conditions on the time interval [0, 7]

Ou—Au+Vr —uxcurlu=0 in [0,7] X

divu =0 in [0,7] x Q (NS)
v-u = 0, vxcurlu=pu on [0, 7] x 99

u(0) = ug in Q.

Our main result in this section is the following existence, uniqueness and regularity result for (NS).

Theorem 5.1. There exists € > 0 such that for every ug € V with ||ug|lv < €, there exists a unique
we HY(0,7; H) with t — Agyu(t) € L*(0,7; H) and = € L*(0,7; H'(Q)) such that (u, ) satisfies (NS)
for a.e. (t,x) € [0,7] x Q. In addition there exists a constant C independent of u and w such that

HUHHl(O,T;H) =+ || — AUHLZ(O,T;LQ(Q,]R?’)) + ||V7T||L2(O,T;L2(Q,R3)) < (Ce. (51)
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Proof. Recall the maximal regularity space
E={ue H(0,7;H);u(t) € D(Ag) a.e.,
t — Agu(t) € L*(0,7; H) and u(0) € V}.
For all u € E, we have that u(t) € D(Agq)) for a.e. t € [0, 7]. Then by Corollary 3.3 we obtain
leurlu(t)]ls < Coll Agqyu®lx + C(I8ls + Dlul®)v.
Using Proposition 4.5 and taking the L?-norm in time, it follows that
leurlul 2o,5:25 (0,2 < Callullz + C(IBlloe + Dlullz = Cululs- (5.2)

On the other hand, by (2.7), the classical Sobolev embedding of H!(Q) into L5(f2) in dimension 3 and
Proposition 4.5, there exists a constant Cy such that for every u € E

ullLos (0,718 (r3)) < Callull k. (5.3)
Let ug € V. By Theorem 4.4, there exists a solution a € E of the problem
Ora+ Agpa = 0 a(0) = wuo, (5.4)
with
lalle < Curlluollv. (5.5)
Let u,v € E and set f := 1 P(u x curlv 4+ v x curlu). By (5.2) and (5.3), f € L*(0,7; H) and
[ fll2 (0,758 < CLCallul|g|v]&- (5.6)
Again by Theorem 4.4 there exists w solution of
Ow+ Agpyw = f, w(0) = 0. (5.7)

In addition, w € E and satisfies |w||g < Cyprll fllz2(0,7,m5)-
We define the bilinear application

B:ExE—E, (uv)—w.

Then the latter estimate gives

1B(u, )|z = wle < CurllfllLzorm- (5-8)

Thus we have from (5.6)
[1B(u, v)lle < CyurCiCsllull vl &- (5.9)
We now use Picard’s contraction principle (see [15, Theorem 13.2]). Let § > 0 such that § < m.

If ||a]|g < 4, the mapping

v+— a+ B(v,v)

is a strict contraction. Therefore there exists a unique u € Bg/(0,20) satisfying v = a + B(u,u). By (5.5),
the condition ||a||g < 0 is satisfied if |Jug|ly < €:= C1€1R' It remains to prove that u is a solution of (NS)
for a.e. (t,x) € [0, 7] x Q. Since u = a + B(u, u) with a the solution of (5.4) and w = B(u,u) the solution

of (5.7) with v = u we obtain

Opu = Ora + 0y B(u, )
= —Aga — AgB(u,u) + P(u x curlu)
= —Agu + P(u x curlu).
Since u € E, t — Agpyu(t) € L*(0,7, H) and hence by Theorem 3.2,
t + curleurlu(t) = —Au(t) € L*(0,7, L*(Q, R?).
Thus, Agu = —Au+ Vq with ¢ € L*(0, 7, H'(2)). In addition

v-u=0 and v X curlu= u
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for a.e. (t,x) € (0,7) x 0Q. By the definition of P and integrability properties (5.3) (for u) and (5.2) (for
curlu), P(u x curlu) = u x curlu + Vp with p € L?(0, 7, H(Q)). Therefore, if we take m := p + ¢ we see
that (u,7) satisfy (NS) for a.e. (t,z) € [0, 7] x £ O

Remark 5.2. One of the main tools in our method is the maximal regularity for non-autonomous evolution
equations. We relied on the results from [12] and this why we had to assume (piecewise) Holder continuity
(1.4) for some o > 1/2. Since this work was submitted some progress have been made on maximal
regularity when dealing with non-autonomous Robin boundary conditions. Indeed, the results from [3]
and [29] show that for such boundary conditions one may assume Holder continuity with order strictly
larger than 1/4. Based on this, one may weaken slightly the regularity assumption (1.4).

Using Theorem 4.6 we obtain the following existence (and uniqueness) result in the critical space Vi

1
for small initial conditions. Under our assumptions, Vi= D(A},,,) for all ¢t € [0, 7].

B(t)

Theorem 5.3. Under the assumptions of this section, there exists € > 0 such that for every ug € V% =
1
D(Aj ) with ||U0Hv% < e, there exists a unique u € HI(O,T;V%/) with t — Ageyu(t) € L*(0,7; V%’) and

7 € L2(0,7; H/2(Q)) such that (u, ) satisfies (NS) in the sense of distributions. In addition there exists
a constant C' independent of u and m such that

lullzro,mvy) + 11 = Aull 2o, mm-12(0.r8)) + IVT | L20,15-12(0r8)) < Ce (5.10)
2

Proof. The proof goes as the proof of Theorem 5.1, using the space
F = {u c Hl(O,T;Vé);t — Aﬁ(t)u(t) S L2(0,T; V%/) and U(O) S V%}

instead of E and Theorem 4.6 instead of Theorem 4.4. We only have to verify that in that case we
can make sense of the nonlinearity u x curlu in a suitable space. It is immediate to see that F' —
L*(0,7; V). Therefore, for u,v € F, we have that u x curlv,v x curlu € L?(0,7; L3/?(;R?)) and then
fi=23P(u x curlv + v x cuwrlu) € L*(0,7; V) since Jj = P; maps L¥2(QR3) to V{ (see Sect. 3) by
interpolation. ’ ’ (I
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