Exercice 1. Donnez les racines de:

1.
$$X^2 + X - 20$$

2.
$$X^2 + X + 1$$

3.
$$X^2 - 2X + 5$$

4.
$$3X^2 - 2X + \frac{10}{3}$$

5.
$$X^3 + 3X^2 + X - 1$$

6.
$$X^4 + 1$$

7.
$$3X^4 - 2X^2 - 2$$

Exercice 2. Soit P un polynôme à coefficients réels et $\alpha < \beta$ deux racines de P. En utilisant le théorème de Rolle montrer qu'il existe une racine γ de P' dans $]\alpha,\beta[$.

Exercice 3. Soit n un nombre entier et x_0 un réel. Montrer que l'application

$$\begin{array}{ccc}
\mathbb{R}_n[X] & \to & \mathbb{R} \\
P & \mapsto & P(x_0)
\end{array}$$

est linéaire et donc continue.

Exercice 4. Soit $P \in \mathbb{R}[X]$.

- 1. Montrer que si $\alpha \in \mathbb{C}$ est une racine de P alors $\overline{\alpha}$ est aussi racine de P.
- **2.** En utilisant le théorème de d'Alembert déduire que les polynômes irréductibles de $\mathbb{R}[X]$ sont de degré 2.

Exercice 5. Formules de Cardan

- 1. Soit $P(X) = a_3 X^3 + a_2 X^2 + a_1 X + a_0$ un polynôme de degré 3. Montrer que α est une racine de P si et seulement si $\beta = \alpha + \frac{a_2}{3a_3}$ est racine d'un polynôme $Q(Z) = Z^3 + pZ + q$ où p et q sont des nombres que l'on calculera.
- 2. Soit β une racine de Q. On pose $\beta = u + v$ avec 3uv + p = 0. Montrer que u^3 et v^3 sont les racines y_1 et y_2 d'un polynôme de degré 2 que l'on explicitera.
- 3. Comment faut-il associer les racines cubiques de y_1 et y_2 pour que leur somme soit racine de Q
- 4. Trouver les racines de $X^3 2X 12$ et $X^3 15X 4$

Exercice 6. 1. Montrer que si α est racine double d'un polynôme P alors α est racine du polynôme dérivé P'.

- **2.** En déduire que P a une racine double dans \mathbb{C} si et seulement si P et P' ne sont pas premiers entre eux.
- **3.** Soit $P(X) = X^3 + pX + q$ a quelle condition sur p et q, P a-t'il une racine double? Une racine triple?
- 4. Si $4p^3 + 27q^2 = 0$ donner les racines de P.

Exercice 7. Soit $P \in \mathbb{R}_n[X]$ de racines deux à deux distinctes $\alpha_1 < \cdots < \alpha_n$.

1. On suppose n pair et que le coefficient dominant de P est positif. Montrer que

$$P(\alpha_1 - 1), P(\frac{\alpha_2 + \alpha_3}{2}), \dots, P(\frac{\alpha_{n-2} + \alpha_{n-1}}{2}), P(\alpha_n + 1)$$

sont strictement positifs alors que

$$P(\frac{\alpha_1+\alpha_2}{2}), P(\frac{\alpha_3+\alpha_4}{2}), \dots, P(\frac{\alpha_{n-1}+\alpha_n}{2})$$

sont strictement négatifs.

- 2. En utilisant l'exercice 3, montrer qu'il existe un ouvert U_0 de $\mathbb{R}_n[X]$ contenant P tel que pour tout polynôme Q dans U_0 , $Q(\alpha_1 1) > 0$. Montrer de même qu'il existe un ouvert U_1 de $\mathbb{R}_n[X]$ contenant P tel que pour tout polynôme Q dans U_1 , $Q(\frac{\alpha_1 + \alpha_2}{2}) < 0$.
- **3.** En déduire qu'il existe un ouvert U de $\mathbb{R}_n[X]$ contenant P tel que pour tout polynôme Q dans U, Q a n racines réelles distinctes situées dans les intervalles

$$]\alpha_{1}-1,\frac{\alpha_{1}+\alpha_{2}}{2}[,]\frac{\alpha_{1}+\alpha_{2}}{2},\frac{\alpha_{2}+\alpha_{3}}{2}[,\ldots,]\frac{\alpha_{n-2}+\alpha_{n-1}}{2},\frac{\alpha_{n-1}+\alpha_{n}}{2}[\text{ et }]\frac{\alpha_{n-1}+\alpha_{n}}{2},\alpha_{n}+1[.$$

- **4.** En déduire que l'ensemble V des polynômes de $\mathbb{R}_n[X]$ ayant n racines distinctes dans \mathbb{R} est un ouvert de $\mathbb{R}_n[X]$.
- **5.** Montrer que l'application

$$V \to \mathbb{R}$$

$$P \mapsto \min\{\alpha | P(\alpha) = 0\}$$

est continue.

Exercice 8. Soit P un polynôme à coefficients complexes et $\alpha_1, \ldots, \alpha_n$ ses racines complexes avec multiplicité: $P(X) = \lambda(X - \alpha_1) \cdots (X - \alpha_n)$.

1. Exprimer le polynôme dérivé P' de P.

Posons pour
$$i = 1, ..., n$$
 et γ un nombre, $a_i = \frac{P(\gamma)\overline{P(\gamma)}}{(\gamma - \alpha_i)\overline{(\gamma - \alpha_i)}}$.

2. Montrer que si γ est une racine de P' alors

$$\gamma = \frac{1}{\sum_{i=1}^{n} a_i} \sum_{i=1}^{n} a_i \alpha_i$$

3. En déduire que γ est dans l'enveloppe convexe des α_i .

Exercice 9. Trouver une parabole passant par les trois points donnés.

1.
$$A(0,2), B(1,4), C(2,12)$$

2.
$$A(-2,13)$$
, $B(1,-2)$, $C(3,-2)$

3.
$$A(-1, -6), B(1,0), C(5,60)$$

Exercice 10. Trouver une courbe de degré 3 passant par

1.
$$A(-1,2)$$
, $B(0,-4)$, $C(1,-10)$, $D(2,-10)$

2.
$$A(1,7)$$
, $B(2,23)$, $C(3,61)$, $D(4,133)$

Exercice 11. Soit m un nombre. Trouver une parabole passant par A(1,-1), B(2,-4), $C_m(3,2m-7)$.

Exercice 12. Montrer que la fonction qui à 2n + 2 nombres $(x_0, y_0), \ldots, (x_n, y_n)$ associe le polynôme d'interpolation de Lagrange P de degré n tel que $P(x_0) = y_0, \ldots, P(x_n) = y_n$ est continue sur son domaine de définition.

Exercice 13. Soit $f(x) = \frac{1}{1+x^2}$. Donner le polynôme d'interpolation de Lagrange de f pour :

1.
$$x_0 = -1$$
 $x_1 = 1$

2.
$$x_0 = -1$$
 $x_2 = 0$ $x_1 = 1$

3.
$$x_0 = -1$$
 $x_3 = \frac{-1}{2}$ $x_2 = 0$ $x_4 = \frac{1}{2}$ $x_1 = 1$