Question de cours. 1. Donner la définition d'un sous-espace caractéristique.

Soit f un endomorphisme linéaire d'un k-espace vectoriel E de dimension finie et $\lambda \in k$ une valeur propre de f. Soit α la mulitplicité algébrique de la valeur propre λ (α est l'exposant de $(X - \lambda)$ dans le polynôme caractéristique P_f de f). Le sous-espace caractéristique de f associé à la valeur propre λ est

$$N_{\lambda} = \ker(f - \lambda id)^{\alpha}.$$

C'est un sous-espace invariant par f et de dimension α .

2. Démontrer que la dimension d'un sous-espace caractéristique est égale à la multiplicité algébrique de la valeur propre correspondante.

Dans les conditions de la question précédente, $P_f(X) = (X - \lambda)^{\alpha}Q$, où Q est un polynôme dont λ n'est pas racine et donc Q et $(X - \lambda)^{\alpha}$ sont premiers entre eux. Le théorème de Cayley-Hamilton affirme que $P_f(f) = 0$ et le théorème de décomposition des noyaux affirme que

$$E = N_{\lambda} \oplus \ker Q(f).$$

Les deux sous-espaces N_{λ} et $\ker Q(f)$ sont invariants par f, nous pouvons donc considérer les restrictions f_{λ} et g de f à N_{λ} et $\ker Q(f)$ respectivement. $(X - \lambda)^{\alpha}$ est un polynôme annulateur de f_{λ} et donc f_{λ} n'a qu'une seule valeur propre λ et est trigonalisable; son polynôme caractéristique est $(X - \lambda)^{\beta}$ où β est la dimension de N_{λ} . De même Q est un polynôme annulateur de g et donc λ n'est pas une valeur propre de g, $(X - \lambda)$ ne divise donc pas le polynôme caractéristique P_g de g et P_g et $(X - \lambda)^{\alpha}$ sont premiers entre eux.

Les polynômes caractéristiques de f, f_{λ} et g sont liés par la relation

$$P_f = P_{f_{\lambda}} P_g$$

(car si nous choisissons une base \mathcal{B}_{λ} de N_{λ} et une base \mathcal{B}' de ker Q(f), alors leur réunion $\mathcal{B} = \mathcal{B}_{\lambda} \cup \mathcal{B}'$ est une base de E dans laquelle la matrice de f est

$$[f]_{\mathcal{B}} = \left(\begin{array}{c|c} [f_{\lambda}]_{\mathcal{B}_{\lambda}} & 0\\ \hline 0 & [g]_{\mathcal{B}'} \end{array}\right).)$$

De cette égalité nous déduisons

$$(X - \lambda)^{\alpha} Q = (X - \lambda)^{\beta} P_g$$

et comme Q et P_q sont premiers à $(X - \lambda)$,

$$\alpha = \beta$$

ce qui est l'égalité cherchée entre la multiplicité algébrique α de la valeur propre λ et la dimension β du sous-espace caractéristique N_{λ} associé.

Exercice I. Soit E le plan vectoriel réel. Soit f un endomorphisme linéaire de E dont le polynôme caractéristique est $P_f(X) = X^2 + 1$.

1. Quelles sont les valeurs propres réelles et complexes de f?

Les valeurs propres de f sont les racines de son polynôme caractéristique ce sont les nombres complexes i et -i. f n'a pas de valeurs propres réelles.

2. Soit u un vecteur non-nul de E.

a. Montrer que (u, f(u)) est une base de E.

Si (u, f(u)) n'est pas une famille libre, comme u est non nul, nous avons une relation $f(u) = \lambda u$ pour un certain $\lambda \in \mathbb{R}$. λ est une valeur propre réelle de f ce qui est impossible. (u, f(u)) est donc libre et comme E est de dimension 2 c'est une base de E.

b. Montrer que $f^2(u) = -u$.

D'après le théorème de CAYLEY-HAMILTON le polynôme caractérisitique est un polynôme annulateur : $P_f(f) = 0$ et en particulier $P_f(f)(u) = 0$ ce qui nous donne $(X^2 + 1)(f)(u) = (f^2 + id)(u) = (f^2(u) + u) = 0$ et donc $f^2(u) = -u$.

c. Donner la matrice de f dans la base (u, f(u)).

La matrice de f dans la base (u, f(u)) est donc

$$[f]_{(u,f(u))} = \left(\begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right).$$

3. Déduire de la question précédente que deux endomorphismes de E dont le polynôme caractéristique est $X^2 + 1$ sont conjugués (ou, ce qui revient au même, que deux matrices réelles de polynôme caractéristique $X^2 + 1$ sont semblables).

Soit f et g deux endomorphismes linéaires de E dont le polynôme caractéristique est X^2+1 . Soit u un vecteur non nul. D'après les questions précédentes (u, f(u)) et (u, g(u)) sont des bases de E dans lesquelles les matrices sont

$$[f]_{(u,f(u))} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = [g]_{(u,g(u))}.$$

Les deux endomorphismes sont donc conjugués par l'isomorphisme linéaire h qui envoie la base (u, f(u)) sur la base (u, g(u)):

$$hfh^{-1} = g$$

(égalité que nous pouvons vérifier aisément en calculant les images des vecteurs de la base (u,g(u)).)

On considère maintenant E un espace vectoriel réel de dimension 4. Soit f un endomorphisme linéaire de E dont le polynôme minimal est $m_f(X) = X^3 - X^2 + X - 1$.

4. Quelles sont les valeurs propres réelles et complexes de f?

Nous factorisons $m_f(X) = X^3 - X^2 + X - 1 = (X - 1)(X^2 + 1)$, les valeurs propres complexes de f sont donc 1, i et -i. f n'a qu'une seule valeur propre réelle : 1.

5. Rappeler les relations entre les polynômes caractéristique et minimal d'un endomorphisme.

2

Le polynôme minimal divise le polynôme caractéristique et ils ont les mêmes racines (plus généralement, ils ont aussi les mêmes facteurs irréductibles).

6. Donner le polynôme caractéristique P_f de f.

Nous savons que m_f divise P_f , que P_f est de degré la dimension de E c'est-à-dire 4 et que P_f est un polynôme unitaire. Nous en déduisons qu'il existe un polynôme de degré $1:(X-\lambda)$ où λ est un réel tel que $m_f(X)(X-\lambda)=P_f(X)$. λ est alors une valeur propre réelle de f et donc $\lambda=1$ d'après les questions précédentes. Ainsi

$$P_f(X) = (X-1)^2(X^2+1).$$

7. Donner la dimension du sous-espace caractéristique N_1 associé à la valeur propre 1.

Comme dans la question de cours, la dimension de N_1 est la multiplicité algébrique de la valeur propre 1 c'est donc 2.

8. Donner la dimension de $ker(X^2 + 1)(f)$.

D'après le théorème de CAYLEY-HAMILTON, $P_f(f)=0$. D'après le théorème de décomposition des noyaux $E=N_1\oplus\ker(X^2+1)(f)$. Et puisque dim E=4 et dim $N_1=2$ nous en déduisons que

$$\dim \ker(X^2 + 1)(f) = 2.$$

9. Donner la multiplicité géométrique de la valeur propre 1.

Toujours d'après le théorème de décomposition des noyaux et puisque m_f est un polynôme annulateur de f, $E = \ker(X - 1)(f) \oplus \ker(X^2 + 1)(f)$. Le sous-espace propre $E_1 = \ker(X - 1)(f)$ a donc pour dimension dim $E - \dim \ker(X^2 + 1)(f) = 2$. La multiplicité géométrique de la valeur propre 1 est donc 2. Remarquons que nous avons donc $E_1 = N_1$.

10. Montrer qu'il existe une base \mathcal{B} de E dans laquelle la matrice de f est

$$[f]_{\mathcal{B}} = \left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Soit $V = \ker(X^2 + 1)(f)$. V est un sous-espace invariant par f de dimension 2. Soit g la restriction de f à V, alors $X^2 + 1$ est un polynôme annulateur de g et d'après le début de l'exercice pour tout vecteur u de V, (u, g(u)) est une base de V dans laquelle la matrice de g est

$$[g]_{(u,g(u))} = \left(\begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right)$$

remarquons que g(u) = f(u) par définition. Soit (e_1, e_2) une base de $E_1 = N_1$, alors d'après la question précédente, $(u, f(u), e_1, e_2)$ est une base de E dans laquelle la matrice de f est

$$[f]_{\mathcal{B}} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Exercice II. On considère la matrice

$$A = \left(\begin{array}{ccc} 0 & 2 & 4 \\ 0 & 2 & 0 \\ -1 & 1 & 4 \end{array}\right).$$

3

1. Calculer le polynôme caractéristique de A.

Un rapide calcul donne $P_A(X) = -(X-2)^3$.

 $\mathbf{2}$. Calculer les sous-espaces propres et caractéristiques de A et préciser leurs dimensions.

$$A-2I_3=\left(egin{array}{ccc} -2&2&4\\0&0&0\\-1&1&2 \end{array}
ight)$$
 c'est une matrice de rang 1 et de noyau le plan vectoriel E_2

d'équation -x+y+2z=0, c'est le sous-espace propre de A associé à l'unique valeur propre 2, il est de dimension 2. $E=\mathbb{R}^3$ est le sous-espace caractéristique associé à la valeur propre 2.

3. Donner le polynôme minimal de A.

Un rapide calcul donne $(A - 2I_3)^2 = 0$ et nous avons vu que $A - 2I_3 \neq 0$ donc le polynôme minimal de A est $m_A(X) = (X - 2)^2$.

4. Donner la forme de JORDAN de A.

La forme de JORDAN de A possède deux blocs de JORDAN associés à la valeur propre 2 car la multiplicité geométrique de 2 est 2. Le plus grand bloc de JORDAN associé à la valeur propre 2 est de taille 2 car 2 est l'exposant de (X-2) dans le polynôme minimal $m_A(X)$. Puisque nous sommes en dimension 3 la matrice A est semblable à la matrice

de Jordan
$$J = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

5. Préciser une matrice de passage P telle que $P^{-1}AP$ est une matrice de JORDAN.

Soit
$$e_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$
 un vecteur qui n'est pas dans E_2 . Soit $e_1 = Ae_2 - 2e_2 = \begin{pmatrix} 12 \\ 0 \\ 6 \end{pmatrix}$,

c'est un vecteur de E_2 (ce qui est normal puisque $(A - I_2)^2 = 0$ donc $(A - I_2)^2 e_2 = (A - I_2)e_1 = 0$). Soit enfin e_3 un vecteur de E_2 qui n'est pas colinéaire à e_1 , par exemple

$$e_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
. Alors (e_1, e_2, e_3) est une base de $E = \mathbb{R}^3$, la matrice de passage entre la

base canonique et cette base est

$$P = \left(\begin{array}{ccc} 12 & -1 & 1\\ 0 & 1 & 1\\ 6 & 2 & 0 \end{array}\right)$$

et

$$P^{-1}AP = J = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$