Ni calculatrices, ni documents. 1 heure.

Exercice I. (Cours, 6 points)

- **1.** Soit n un entier et α une permutation de S_n . Montrer que $I_{\alpha} = \{k \in \mathbb{Z} \mid \alpha^k = id\}$ est un idéal de \mathbb{Z} .
- 2. Soit $\alpha = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_r$ une permutation de S_n et sa décomposition en un produit de cycles à supports disjoints. Donner l'ordre de α en fonction des longueurs des cycles.

Exercice II. On considère les permutations de S_8 , $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 7 & 4 & 1 & 6 & 2 & 8 \end{pmatrix}$ et $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 8 & 3 & 2 & 1 & 4 & 6 & 5 \end{pmatrix}$.

- 1. Décomposer α et β en produits de cycles à supports disjoints.
- **2.** Calculer les signatures de α et β .
- **3.** Calculer $\beta \circ \alpha \circ \beta^{-1}$

Exercice III. On considère l'application $\alpha: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$. $x \mapsto 5x + 2$

- 1. Montrer que α est une bijection.
- **2.** Montrer que $\alpha^2 = id$
- 3. Décomposer α en un produit de cycles à supports disjoints.

Exercice IV. Soit α une permutation de S_n d'ordre m.

- 1. On suppose que m = rs où r et s sont deux entiers. Montrer que α^r est d'ordre s.
- **2.** On suppose au contraire que r est un nombre premier avec m. Montrer que α^r est d'ordre m.