Exercice I. Déterminer la convergence simple et la convergence uniforme des séries de fonctions définies par les termes généraux

1.
$$u_n(x) = x^n(1-x^n), \ n \ge 0, \ x \in [0,1],$$
 2. $v_n(x) = \frac{x}{n(1+nx^2)}, \ n \ge 1, \ x \in \mathbb{R}.$

2.
$$v_n(x) = \frac{x}{n(1+nx^2)}, \ n \ge 1, \ x \in \mathbb{R}.$$

Exercice II. Etudier les domaines de convergence simple et de convergence uniforme des séries de fonctions définies par les termes généraux

1.
$$u_n(x) = \frac{\sin(2^n \pi x)}{2^n}, \ n \ge 0, \ \mathbf{2.} \ v_n(x) = e^{-n^2 x}, \ n \ge 0 \ \mathbf{3.} \ w_n(x) = \frac{1}{n^2 + x^2}, \ n \ge 1.$$

Exercice III. Soit $(f_n)_{n\geq 1}$ la suite de fonctions définies sur $[0,+\infty[$ par

$$f_n(x) = \frac{x}{x^2 + n^2}.$$

- Soit M > 0. Montrer que la série de fonctions $\sum_{i=1}^{\infty} f_n$ converge normalement sur [0, M].
- En déduire que la fonction somme $f = \sum_{n=0}^{\infty} f_n$ est continue sur $[0, +\infty[$.
- Étudier la convergence de la série de fonctions $\sum_{n>1} (-1)^n f_n$ sur $[0,+\infty[$.

Exercice IV. 1. Montrer que la série de fonctions définie par son terme général $f_n(x) = \frac{1}{n^2} \sin\left(\frac{x}{n}\right)$, pour $n \ge 1$, converge uniformément sur \mathbb{R} , on note f sa somme.

2. Exprimer $\int_{0}^{1} f(x)dx$ comme somme d'une série numérique.

Exercice V. Soit $f_n(x) = e^{-nx} \sin\left(\frac{\pi}{2^n}\right)$, pour $n \ge 1$, le terme général d'une série de fonctions définies sur $[0, +\infty[$. Montrer qu'elle converge simplement vers une fonction fdérivable et que $f'(x) = \sum_{n=0}^{\infty} f'_n(x)$.

Exercice VI. Determiner la convergence simple et de convergence uniforme des séries de fonctions définies par les termes généraux

1.
$$u_n(x) = x^n(1-x), \ n \ge 0, \ x \in [0,1].$$

1.
$$u_n(x) = x^n(1-x), \ n \ge 0, \ x \in [0,1],$$
 2. $v_n(x) = \frac{(-1)^n}{n+x}, \ n \ge 1, \ x \in [0,+\infty[,$

3.
$$w_n(x) = \frac{1}{x} \chi_{[n,n+1[}, n \ge 1, x \in [1, +\infty[.$$

Exercice VII. Soit la série de fonctions, de terme général $f_n(x) = \frac{\sin(nx)}{n^p}$, pour $n \ge 1$.

- Montrer que si p > 1, elle converge uniformément sur \mathbb{R} .
- Soient $0 , <math>2k\pi < \alpha < \beta < 2(k+1)\pi$. Montrer que la convergence est uniforme sur $[\alpha, \beta]$.

Exercice VIII. Etudier les domaines de convergence simple et de convergence uniforme des séries de fonctions :

1.
$$t_n(x) = \frac{e^{-n^2x^2}}{n^2}$$
,

2.
$$s_n(x) = \frac{1}{2^{n-1}\sqrt{1+nx}},$$
 3. $z_n(x) = \frac{\cos(nx)}{e^{nx}}.$

$$3. \quad z_n(x) = \frac{\cos(nx)}{e^{nx}}$$

Exercice IX. On considère la série de fonctions définies sur [0,1] par le terme général $f_n(x) = \frac{x^n}{n^3(1+x^n)}$, pour $n \ge 1$.

- 1. Étudier la convergence simple et la convergence uniforme de cette série de fonctions sur [0, 1].
- **2.** La fonction $f = \sum_{n=0}^{\infty} f_n$, est-elle dérivable sur [0,1]?

Exercice X. Soit |a| < 1. Soit (f_n) la suite de fonctions définies sur $\left[0, \frac{\pi}{2}\right]$ par $f_n(x) =$ $\cos(x)^n a^n$, pour $n \ge 0$.

- 1. Montrer que la série de fonctions $\sum_{n=0}^{\infty} f_n$ converge uniformément sur $\left[0, \frac{\pi}{2}\right]$.
- **2.** En déduire que $\int_0^{\frac{\pi}{2}} \frac{dx}{1 a\cos(x)} = \sum_{n=0}^{\infty} a^n \int_0^{\frac{\pi}{2}} \cos(x)^n dx$.

Exercice XI. Soit $f_n(x) = \ln\left(1 + \frac{x}{n}\right) - \frac{x}{n}$, pour $n \ge 1$, le terme général d'une série de fonctions définies sur [0,1].

- 1. Étudier la convergence simple et la convergence uniforme de cette série de fonctions sur [0, 1].
- 2. Montrer que la fonction $f = \sum_{n=0}^{\infty} f_n$ est dérivable, calculer sa dérivée sous forme d'une série.
- Calculer la valeur de la dérivée f'(x) au point x=1.

Exercice XII. Soit (f_n) la suite de fonctions définies sur \mathbb{R} par $f_n(x) = \frac{\sin(nx)}{x^3}$, pour $n \ge 1$.

- Montrer que la série des fonctions $\sum_{n=1}^{\infty} f_n$ converge normalement sur \mathbb{R} .
- On note S sa somme. Montrer que $\int_0^1 S(x)dx = \sum_{n=0}^{\infty} \frac{(1-\cos(n))}{n^4}$.
- 3. Montrer que $\int_0^{\pi} S(x)dx = 2\sum_{1}^{\infty} \frac{1}{(2n-1)^4}$.

Soit $f_n(x) = \frac{1}{n^2 + n^3 x^2}$, pour $n \ge 1$, le terme général d'une série de Exercice XIII. fonctions. Montrer qu'elle converge sur tout \mathbb{R} vers une fonction f dérivable.

2