Université d'Aix-Marseille
Faculté des sciences et techniques
Licence de mathématiques et informatique 2^{e} année Analyse 2 (MA301)

Lundi 9 janvier 2012

Examen \square Saint-Jérôme \square Aix - Montperrin

T. COULBOIS et P. SICBALDI

Ni calculatrices, ni documents. 3 heures.

Toute réponse doit être justifiée, la qualité de la rédaction et la clarté des raisonnements constituent un élément important d'appréciation.

Exercice I. (Cours)

- 1. Énoncer et démontrer le critère de convergence des séries numériques de RIEMANN de la forme $\sum \frac{1}{n^{\alpha}}$ où α est un nombre réel. (Vous pourrez comparer avec des intégrales généralisées.)
- 2. Donner les définitions de :
- a. convergence simple;
- **b.** convergence uniforme;
- c. convergence normale.

Exercice II. Étudier la convergence des intégrales généralisées suivantes

1.
$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$
 2. $\int_0^{+\infty} \left(\frac{\pi}{2} - \arctan(x)\right) dx$ 3. $\int_0^{\frac{\pi}{2}} \ln(1-\cos(x)) dx$

1. La fonction $x \mapsto \frac{1}{\sqrt{1-x^2}}$ est définie, continue et localement intégrable sur]-1;1[. Pour $a \in]-1;1[$, $\int_0^a \frac{1}{\sqrt{1-x^2}} dx = \arcsin(a)$. En faisant tendre a vers 1, nous obtenons que l'intégrale est convergente et $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx = \arcsin(1) = \frac{\pi}{2}$.

- 2. La fonction $x \mapsto \frac{\pi}{2} \arctan(x)$ est définie, continue et localement intégrable sur \mathbb{R} . Étudions la convergence en $+\infty$. Calculons : $\forall \theta \in]\frac{-\pi}{2}; \frac{\pi}{2}[$, $\tan(\frac{\pi}{2} \theta) = \frac{1}{\tan \theta}$ et en passant à la bijection réciproque, $\forall x \in \mathbb{R}, \frac{\pi}{2} \arctan(x) = \arctan(\frac{1}{x})$. En 0 la fonction arctan est dérivable, son développement limité est $\arctan(u) = u + o(u)$. Nous avons donc l'équivalent $\frac{\pi}{2} \arctan(x) \sim \frac{1}{x}$ au voisinage de l'infini. Comme l'intégrale $\int_{1}^{+\infty} \frac{1}{x} dx$ diverge, nous concluons que l'intégrale $\int_{0}^{+\infty} \left(\frac{\pi}{2} \arctan(x)\right) dx$ est divergente.
- 3. La fonction $x\mapsto \ln(1-\cos(x))$ est définie, continue et localement intégrable sur $]0;2\pi[$. Étudions la convergence en 0 en effectuant un développement limité au voisinage de $0:\ln(1-\cos(x))=\ln(1-(1-\frac{x^2}{2}+o(x^3)))=\ln(\frac{x^2}{2}+o(x^3))\sim 2\ln(x)$. L'intégrale $\int_0^1\ln(x)\,dx=[x\ln(x)-x]_0^1=-1$ est convergente. Nous concluons que l'intégrale $\int_0^{\frac{\pi}{2}}\ln(1-\cos(x))\,dx$ converge.

4.
$$\int_0^{+\infty} (\sin x) (\ln x) \, dx$$

La fonction $x \mapsto (\sin x)(\ln x)$ est définie, continue et localement intégrable sur $]0; +\infty[$. Soit $n \in \mathbb{N}^*$ et $x \in [\frac{\pi}{6} + 2n\pi; \frac{5\pi}{6} + 2n\pi]$, alors $\sin(x) \ge \frac{1}{2}$ et $(\sin x)(\ln x) \ge \frac{1}{2}\ln(2n\pi)$. En intégrant cette inégalité nous obtenons $\int_{\frac{\pi}{6} + 2n\pi}^{\frac{5\pi}{6} + 2n\pi} (\sin x)(\ln x) \, dx \ge \frac{\pi}{3}\ln(2n\pi)$. Cette dernière quantité est plus grande que 1 car $n \ge 1$. L'intégrale ne vérifie donc pas le critère de CAUCHY pour les intégrales généralisées convergentes. L'intégrale $\int_0^{+\infty} (\sin x)(\ln x) \, dx$ est donc divergente.

Exercice III. 1. Étudier la convergence et calculer $\sum_{n=0}^{+\infty} \frac{1}{n^2 + 5n + 6}$. (Vous pourrez décomposer la fraction en éléments simples et reconnaître une série télescopique)

À l'infini nous avons l'équivalence $\frac{1}{n^2+5n+6}\sim\frac{1}{n^2}$. La série de RIEMANN $\sum_{n=0}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$ converge. Donc la série $\sum_{n=0}^{+\infty}\frac{1}{n^2+5n+6}$ converge. Pour tout $n\in\mathbb{N}, \frac{1}{n^2+5n+6}=\frac{1}{n+2}+\frac{-1}{n+3}$. Nous reconnaissons une série télescopique : pour $N\in\mathbb{N}, \sum_{n=0}^{N}\frac{1}{n^2+5n+6}=\sum_{n=0}^{N}\left(\frac{1}{n+2}+\frac{-1}{n+3}\right)=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\cdots+\frac{1}{N+2}-\frac{1}{N+3}=\frac{1}{2}-\frac{1}{N+3}$. En faisant tendre N vers $+\infty$ nous obtenons : $\sum_{n=0}^{+\infty}\frac{1}{n^2+5n+6}=\frac{1}{2}$.

2. Étudier la convergence de la série $\sum_{n \in \mathbb{N}^*} \left(\frac{(-1)^n}{n} + 1 - \cos\left(\frac{1}{n}\right) \right).$

Nous reconnaisons la série harmonique alternée $\sum_{n=1}^{+\infty} \left(\frac{(-1)^n}{n}\right) = \ln 2$ qui converge. En effectuant un développement limité, nous obtenons $1 - \cos\left(\frac{1}{n}\right) = \frac{1}{2n^2} + o\left(\frac{1}{n^3}\right) \sim \frac{1}{2n^2}$. La série de RIEMANN $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ converge, donc la série $\sum 1 - \cos\left(\frac{1}{n}\right)$ converge. Ainsi la série proposée converge, puisqu'elle est la somme de deux séries convergentes.

3. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0=1\\ u_{n+1}=\frac{u_n}{2+u_n},\ n\in\mathbb{N} \end{cases}$. Montrer que la série $\sum_{n\in\mathbb{N}}u_n$ converge.

Par récurrence, nous pouvons montrer que pour tout $n \in \mathbb{N}$, $u_n \geq 0$. Pour $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \frac{1}{2+u_n} \leq \frac{1}{2} < 1$. D'après le critère de D'Alembert la série numérique $\sum_{n \in \mathbb{N}} u_n$ converge.

Exercice IV. Soit $\alpha > 1$. On considère la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ définies sur [0; 1] par $f_n(x) = \frac{nx}{1 + n^{\alpha}x^2}$.

1. Montrer que la suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction constante nulle sur [0;1] si, et seulement si, $\alpha>2$.

Pour
$$x = 0$$
 et pour tout $n \in \mathbb{N}$, $f_n(0) = 0$.
Pour $x \in]0;1]$ et $n \in \mathbb{N}^*$, $f_n(x) = n^{1-\alpha} \frac{x}{\frac{1}{n^{\alpha}} + x^2} \rightarrow_{n \to +\infty} 0$ car $1 - \alpha < 0$.

La suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge donc simplement vers la fonction constante nulle f sur [0;1].

Étudions la convergence uniforme. Cherchons pour $n \in \mathbb{N}$ le maximum de la fonction f_n . Cette fonction est dérivable et pour $x \in [0;1]$, $f'_n(x) = \frac{n(1-n^{\alpha}x^2)}{(1+n^{\alpha}x^2)^2}$. La fonction dérivée s'annule donc en $x_n = \frac{1}{n^{\frac{\alpha}{2}}}$. La fonction f_n atteind son maximum $f_n(x_n) = \frac{n^{1-\frac{\alpha}{2}}}{2}$ en x_n . Nous obtenons que $\lim_{n \to +\infty} f_n(x_n) = 0 \iff \alpha > 2$.

La suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [0;1] si, et seulement si, $\alpha>2$.

2. Pour
$$\alpha = 3$$
, montrer que $\lim_{n \to +\infty} \int_0^1 f_n(t) dt = 0$.

D'après la question précédente, pour $\alpha=3$ la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [0;1] vers la fonction nulle. De plus les fonctions f_n sont continues donc intégrables. Nous pouvons inverser la limite et l'intégrale :

$$\lim_{n \to +\infty} \int_0^1 f_n(t) \, dt = \int_0^1 \lim_{n \to +\infty} f_n(t) \, dt = \int_0^1 0 \, dt = 0.$$

3. Pour $\alpha > 1$ et $n \in \mathbb{N}$, calculer $u_n = \int_0^1 f_n(t) dt$.

Pour
$$\alpha > 1$$
 et $n \in \mathbb{N}$, calculons : $u_n = \int_0^1 \frac{nx}{1 + n^{\alpha}x^2} dt = [n \frac{\ln(1 + n^{\alpha}x^2)}{2n^{\alpha}}]_0^1 = n \frac{\ln(1 + n^{\alpha})}{2n^{\alpha}}$.

4. Montrer que pour tout $\beta > 0$, $\lim_{x \to +\infty} \frac{\ln(1+x)}{x^{\beta}} = 0$.

Soit $\beta > 0$, pour tout x > 0, $\frac{\ln(1+x)}{x^{\beta}} = \frac{1}{\beta} \frac{\ln((1+x)^{\beta})}{(1+x)^{\beta}} \frac{(1+x)^{\beta}}{x^{\beta}}$. En changeant de variable $X = (1+x)^{\beta}$ nous obtenons la limite du premier facteur : $\lim_{x \to +\infty} \frac{\ln((1+x)^{\beta})}{(1+x)^{\beta}} = \lim_{x \to +\infty} \frac{\ln X}{X} = 0$. En factorisant par x^{β} , le deuxième facteur converge vers 1. Nous avons donc montré que pour tout $\beta > 0$, $\lim_{x \to +\infty} \frac{\ln(1+x)}{x^{\beta}} = 0$.

5. En déduire que pour tout $\alpha > 1 \lim_{n \to +\infty} \int_0^1 f_n(t) dt = 0.$

En posant $x = n^{\alpha}$ et $\beta = 1 - \frac{1}{\alpha}$, nous pouvons écrire pour tout $n \in \mathbb{N}$ et pour tout $\alpha > 1$, $u_n = \frac{1}{2} \frac{\ln(1+X)}{X^{\beta}}$ avec $\beta > 0$, la question précédente nous permet donc que conclure que $\lim_{n \to +\infty} u_n = 0$.

6. Étudier les convergences simple et normale de la série $\sum_{n\in\mathbb{N}} f_n$ selon les valeurs de α .

Si x=0 alors pour tout entier n, $f_n(0)=0$ et la série numérique $\sum f_n(0)$ converge. Pour $x\neq 0$, quand n tend vers $+\infty$, nous avons l'équivalent $f_n(x)\sim \frac{1}{x}\frac{1}{n^{\alpha-1}}$. Nous reconnaissons une série de RIEMANN et la série numérique $\sum f_n(x)$ converge si, et seulement si, $\alpha>2$.

Ainsi, la série de fonctions $\sum f_n$ converge simplement sur [0;1] si, et seulement si, $\alpha>2$.

D'après les calculs faits précédemment pour $n \in \mathbb{N}$, $||f_n|| = f_n(x_n) = \frac{n^{1-\frac{\alpha}{2}}}{2}$. La série numérique $\sum ||f_n||$ est donc une série de RIEMANN qui converge si, et seulement si, $\alpha > 4$.

Ainsi, la série de fonctions $\sum f_n$ converge normalement sur [0;1] si, et seulement si, $\alpha > 4$.