Exercice I. On considère les suites de fonctions définies sur [0, 1] par

$$f_n(x) = x^n,$$
 $g_n(x) = \frac{x^n}{n},$ $h_n(x) = \begin{cases} 1 - nx, & \text{si } 0 \le x \le \frac{1}{n}, \\ 0, & \text{si } \frac{1}{n} \le x \le 1. \end{cases}$

- 1. Étudier la convergence simple et la convergence uniforme de ces suites de fonctions sur [0,1].
- **2.** Étudier la dérivée de g_n . Que pouvez-vous en conclure?

Exercice II. La suite de fonctions (f_n) est définie sur $]-\infty, +\infty[$ par son terme général $f_n(x) = \frac{x^{2n}}{1+x^{2n}}.$

- 1. Montrer que cette suite converge simplement vers une fonction f que l'on déterminera.
- **2.** Montrer que la convergence est uniforme sur tous les intervalles du type [a, b] avec |a| < 1 et |b| < 1, ou bien a > 1, ou bien b < -1.
- 3. Montrer qu'il n'y a pas convergence uniforme sur des intervalles contenant 1 ou -1.

Exercice III. Étudier la convergence simple et la convergence uniforme de la suite de fonctions définies sur [0,1] par $f_n(x)=x^n\sin(\pi x)$.

Exercice IV. Étudier la convergence simple et la convergence uniforme de la suite de fonctions $f_n(x) = \frac{nx^3}{1+nx}$ définies sur l'intervalle [0, 100]. Que dire de cette convergence sur l'intervalle $[0, +\infty[$?

Exercice V. On donne la suite de fonctions $f_n(x) = \frac{\sin(nx)}{nx}, x \in]0,1[.$

Étudier la convergence simple et la convergence uniforme de cette suite sur l'intervalle de définition.

Exercice VI. Déterminer la limite suivante : $\lim_{n \to +\infty} \int_0^1 \frac{ne^x}{n+x} dx$.

Exercice VII. Soit la suite de fonctions (f_n) définies sur $[0, +\infty[$ par $f_n(x) = \frac{n}{(x-n)^2 + n^2}$

- 1. Montrer que la suite (f_n) converge uniformément sur $[0, +\infty[$ vers une fonction f que l'on déterminera.
- 2. Montrer que les deux intégrales généralisées $\int_0^{+\infty} f_n(x)dx$ et $\int_0^{+\infty} f(x)dx$ convergent et que pourtant, on ne peut pas passer aux limites :

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx \neq \int_0^{+\infty} \lim_{n \to +\infty} f_n(x) dx.$$

Expliquer.

Exercice VIII. Soit la suite de fonctions (f_n) définies sur [-1, +1] par

$$f_n(x) = \frac{x}{1 + n^2 x^2}$$

- 1. Montrer qu'elle converge uniformément sur [-1,+1] vers une fonction f que l'on déterminera.
- **2.** Montrer que $\lim_{n\to+\infty} f'_n(x) = f'(x)$, dans tout intervalle de la forme suivante : [-1,b], b<0 ou [a,1], a>0.
- **3.** Montrer que cette dernière propriété n'est pas vraie sur [-1, +1]. (Le théorème sur dérivation des suites de fonctions terme à terme ne s'applique pas ici sur [-1, +1]).

Exercice IX. Montrer que la limite simple d'une suite de fonctions convexes est convexe

Exercice X. Soit α un nombre réel positif ou nul, et (f_n) la suite de fonctions définies sur [0,1] par $f_n(x) = \frac{nx}{1 + n^2x^{\alpha}}$.

- 1. Déterminer les valeurs de α pour lesquelles la suite (f_n) converge uniformément vers une fonction f sur [0,1].
- 2. Dans les deux cas $\alpha=2$ et $\alpha=4$, étudier la convergence de la suite $\left(\int_0^1 f_n(x)dx\right)_{n\in\mathbb{N}}$. Cette suite converge-t-elle vers $\int_0^1 f(x)dx$.?

Exercice XI. Soit
$$(f_n)_n$$
 définie sur \mathbb{R}^+ par $f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0, n] \\ 0 & \text{si } x > n \end{cases}$

Montrer que $(f_n)_n$ converge simplement, puis uniformément sur \mathbb{R}^+ .

Exercice XII. Soit $(f_n)_n$ une suite de fonctions croissantes réelles, continues et définies sur un segment [a, b] de \mathbb{R} . Si $(f_n)_n$ converge simplement vers une fonction f continue sur [a, b], montrer que la convergence est uniforme.

2

Exercice XIII. Soit $f:[0,1] \to \mathbb{R}$ la fonction définie par $f(t) = \sqrt{t}$, $t \in [0,1]$. On définit sur [0,1] la suite de fonctions $(p_n)_{n \in \mathbb{N}}$ par

$$p_0(t) = 0$$
, $p_{n+1}(t) = p_n(t) + \frac{1}{2}(t - p_n(t)^2)$, $t \in [0, 1]$, $n \in \mathbb{N}$.

- 1. a. Calculer p_1 et p_2 .
- **b.** Montrer que les applications p_n , $n \in \mathbb{N}$, sont polynômiales.
- **2.** a. Montrer que pour tout $t \in [0,1]$ et tout $n \in \mathbb{N}$, on a

$$\sqrt{t} - p_{n+1}(t) = (\sqrt{t} - p_n(t)) \left(1 - \frac{1}{2}(\sqrt{t} + p_n(t))\right).$$

- **b.** En déduire que $0 \le p_n(t) \le \sqrt{t}$ pour tout $t \in [0,1]$ et tout $n \in \mathbb{N}$.
- **3.** a. Soit $t \in [0,1]$ fixé. Montrer que la suite $(p_n(t))_{n \in \mathbb{N}}$ est croissante.
- **b.** En déduire que la suite de fonctions $(p_n)_{n\in\mathbb{N}}$ converge simplement vers une limite que l'on déterminera.
- **4. a.** En utilisant la relation du 2.(a), montrer que pour tout $t \in [0,1]$ et tout $n \in \mathbb{N}$, on a

$$0 \le \sqrt{t} - p_n(t) \le \sqrt{t} \left(1 - \frac{1}{2}\sqrt{t}\right)^n.$$

b. Soit $n \ge 1$ fixé. En étudiant la fonction $g:[0,1] \to \mathbb{R}$ définie par $g(x) = x(1-\frac{x}{2})^n$, montrer que

$$|p_n(t) - f(t)| \le \frac{2}{n+1} \left(1 - \frac{1}{n+1}\right)^n$$
, pour tout $t \in [0,1]$.

5. Montrer que la suite de fonctions $(p_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [0,1].

Exercice XIV. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle qu'il existe k > 0 avec

$$|f(x+y) - f(x) - f(y)| \le k, \quad x, y \in \mathbb{R}.$$

À tout $n \in \mathbb{N}$, on associe la fonction g_n définie sur \mathbb{R} par $g(x) = \frac{1}{2^n} f(2^n x)$.

1. En écrivant $2^{n+1} = 2^n + 2^n$, montrer que

$$|g_{n+1}(x) - g_n(x)| \le \frac{k}{2^{n+1}}, \quad x \in \mathbb{R}.$$

2. Montrer alors que pour tout $p \in \mathbb{N}$ et tout $n \in \mathbb{N}$, on a

$$|g_{n+p}(x) - g_n(x)| \le \frac{k}{2^n}, \quad x \in \mathbb{R}.$$

- **3.** En déduire que $(g_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction continue $g:\mathbb{R}\to\mathbb{R}$.
- **4.** Montrer que q vérifie

$$g(x+y) = g(x) + g(y), \quad x, y \in \mathbb{R}.$$

5. En déduire que g(x) = xg(1) pour tout $x \in \mathbb{R}$.

Indication: on pourra d'abord montrer que $g\left(\frac{p}{q}\right) = \frac{p}{q}g(1)$ pour $p \in \mathbb{Z}$ et $q \in \mathbb{N}, q \geq 1$.

3