Licence de mathématiques, 2^e année Algèbre Linéaire 2

Examen 2e session Mardi 23 juin 2015

	Aix-Montperrin
	Luminy
\boxtimes	Saint-Charles
	Saint-Jérôme
	Château-Gombert

Enseignants: T. Coulbois, P. Mercat

Deux heures, ni documents, ni calculatrice

Exercice 1. (cours)

- 1. Donner la définition des valeurs propres et des vecteurs propes d'un endomorphisme.
- 2. a. Énoncer le théorème de CAYLEY-HAMILTON.
- \mathbf{b} . Démontrer le théorème de Cayley-Hamilton pour une matrice A diagonalisable.
- **3. a.** Donner le cardinal du groupe symétrique S_n .
- **b.** Donner la signature du cycle $(1\ 2\ 3\ \dots\ \ell)$.

Exercice 2. Soit
$$m \in \mathbb{R}$$
. On considère la matrice $A_m = \begin{pmatrix} 3 & 2 & -2 & 3 \\ -1 & 0 & m & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -3 & -2 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de A_m .
- 2. Donner les valeurs propres de A_m en précisant leurs multiplicités algébriques.
- 3. La matrice A_m est-elle trigonalisable?
- 4. Donner des équations du sous-espace propre associé à la valeur propre 1.
- **5.** Pour quelles valeurs de m la matrice A_m est-elle diagonalisable.
- **6.** Pour m = 0, donner une matrice de passage P_0 telle que $P_0^{-1}A_0P_0$ est triangulaire supérieure.
- 7. Pour $e_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$. Trouver un vecteur e'_1 tel que $A_0 e'_1 = e_1 + e'_1$.
- 8. Soit e_2 un vecteur propre associé à la valeur propre 2 et e_{-1} un vecteur propre associé à la valeur propre -1. Soit \mathcal{B}' la base (e_1, e'_1, e_2, e_{-1}) . Soit P'_0 la matrice de passage entre la base canonique et la base \mathcal{B}' . Donner la matrice $P'_0^{-1}A_0P'_0$. (Attention il semble que tous les enseignants ne soient pas d'accord sur le sens de la matrice P_0 , choisissez celui qui vous arrange!)

Exercice 3. 1. Écrire la permutation (1 3 5)(4 2 7 9) comme un produit de transpositions.

- 2. a. Écrire comme un produit de cycles à supports disjoints : (1 4 3)(1 2 3) et (1 2)(1 3).
- **b.** Écrire (1 4 2 7 9) comme un produit de transpositions.
- ${f c.}$ En utilisant les deux questions précédentes, écrire (1 4 2 7 9) comme un produit de cycles de longueur 3.