Licence de mathématiques, 2^e année Algèbre Linéaire 2

Une heure, ni documents, ni calculatrice

Part	iel	1	

Jeudi 16 octobre 2014

☐ Luminy☑ Saint-Charles☐ Saint-Jérôme

☐ Aix-Montperrin

☐ Château-Gombert

Enseignants : T. Coulbois, P. Mercat

Exercice 1. (cours) Soit $f: V \to V$ un endomorphisme d'un espace vectoriel de dimension finie V.

- **1.** Rappeler la définition des coordonnées d'un vecteur u par rapport à une base \mathcal{B} de V.
- **2.** Définir la matrice de f par rapport à une base \mathcal{B} de V.
- **3.** Monter que si $\lambda \neq \mu$ sont deux valeurs propres disctinctes de f alors les sous-espaces propres E_{λ} et E_{μ} sont en somme directe.

Exercice 2. Soient P_0 , P_1 et P_{-1} les polynômes de $\mathbb{R}_2[X]$ définis par :

$$P_1 = X(X-1), \quad P_{-1} = X(X+1), \quad P_0 = X^2 - 1.$$

(1) Montrer que P_0, P_1, P_{-1} est une base de $\mathbb{R}_2[X]$.

Nous allons montrer que P_0, P_1, P_{-1} est une famille libre. Soit $\lambda_0, \lambda_1, \lambda_2$ trois nombres réels tels que $\lambda_0 P_0(X) + \lambda_1 P_1(X) + \lambda_2 P_{-1}(X) = 0$. Alors en prenant successivement X = 0, X = 1 et X = -1 nous obtenons $\lambda_0 = 0$, $2\lambda_2 = 0$ et $2\lambda_1 = 0$ ce qui démontre que $\lambda_0 = \lambda_1 = \lambda_2 = 0$ et que la famille P_0, P_1, P_{-1} est libre et donc une base de $\mathbb{R}_2[X]$.

(2) Soient $F = \{P \in \mathbb{R}_2[X] | P(1) = 0\}$ et $G = \{P \in \mathbb{R}_2[X] | P(0) = 0\}$. Montrer que F et G sont des sous-espaces vectoriels de $\mathbb{R}_2[X]$.

Soit P et Q deux polynômes de F et λ et μ deux scalaires, alors P(1)=Q(1)=0 et $(\lambda P+\mu Q)(1)=\lambda P(1)+\mu Q(1)=0$ et donc $\lambda P+\mu Q$ appartient à F. Comme de plus le polynôme constant nul 0 est dans F, nous avons démontré que F est un sous-espace vectoriel de $\mathbb{R}_2[X]$.

De même nous montrerions que G est un sous-espace vectoriel en évaluant les polynômes en X=0.

(3) Déterminer $\dim(F)$, $\dim(G)$, $\dim(F \cap G)$ et $\dim(F + G)$.

Soit $P(X) = aX^2 + bX + c$ un polynôme de $\mathbb{R}_2[X]$. Alors

$$P \in F \iff P(1) = 0 \iff a+b+c = 0$$

$$P \in G \iff P(0) = 0 \iff c = 0$$

$$P \in F \cap G \iff \left\{ \begin{array}{c} a+b+c = 0 \\ c = 0 \end{array} \right. \iff \left\{ \begin{array}{c} a+b = 0 \\ c = 0 \end{array} \right.$$

Nous constatons donc que F et G sont deux plans vectoriels distincts de $\mathbb{R}_2[X]$, alors que leur intersection est la droite vectorielle dirigée par le polynôme P_1 . Nous avons ainsi :

$$\dim(F) = \dim(G) = 2, \quad \dim(F \cap G) = 1 \text{ et } \dim(F + G) = \dim(F) + \dim(G) - \dim(F \cap G) = 3$$

Exercice 3. On se place dans l'espace vectoriel $E=\mathbb{R}^3$. Soit m un paramètre réel. On considère le vecteur $u_m=\begin{pmatrix} 3\\0\\m \end{pmatrix}$ et le sous-espace vectoriel V_m d'équation 2x-(m-1)z=0.

1. Pour quelles valeurs du paramètre m a-t'on $u_m \in V_m$?

Le vecteur u_m appartient au plan vectoriel V_m si et seulement si ses coordonnées vérifient l'équation définissant V_m :

$$2\times 3-(m-1)\times m=0\iff m^2-m-6=0\iff (m+2)(m-3)=0\iff m=-2\text{ ou }m=3$$

2. Donner une équation cartésienne de la droite vectorielle D_m engendrée par u_m .

Le vecteur u_m vérifient les équations y=0 et mx-3z=0. Ces deux équations sont indépendantes et elles définissent donc la droite vectorielle engendrées par u_m :

$$D_m: \left\{ \begin{array}{l} y=0\\ mx-3z=0 \end{array} \right.$$

3. Donner une base de V_m

Les vecteurs $e_2=\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ et $v_m=\begin{pmatrix} m-1\\0\\2 \end{pmatrix}$ sont deux vecteurs non colinéaires du plan vectoriel V_m , ils forment donc une base de V_m .

4. Trouver l'ensemble S des valeurs de m pour lesquelles les sous-espaces D_m et V_m sont supplémentaires.

 D_m et V_m sont en somme directe si, et seulement si, leur intersection est vide, c'est-à-dire si u_m n'appartient pas à V_m . D'après la première question cela se produit exactement lorsque $m \neq -2$ et $m \neq 3$.

Comme D_m est une droite vectorielle et V_m un plan vectoriel, nous pouvons conclure que ces deux sous-espaces sont supplémentaires si, et seulement si, ils sont en somme directe :

$$D_m \oplus V_m = \mathbb{R}^3 \iff m \neq -2 \text{ et } m \neq 3.$$

L'ensemble S est donc

$$S=\mathbb{R}\smallsetminus\{-2;3\}=]-\infty;-2[\cup]-2;3[\cup]3;+\infty[$$

5. Pour $m \in S$ et pour $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un vecteur quelconque de E, trouver un nombre réel t tel que le vecteur $v - tu_m$ appartient à V_m .

 $v-tu_m\in V_m \text{ si, et seulement si, ses coordonnées } \begin{pmatrix} x-3t\\y\\z-mt \end{pmatrix} \text{ vérifient l'équation cartésienne}$ de V_m :

$$2(x-3t) - (m-1)(z-mt) = 0 \iff (m(m-1)-6)t = (m-1)z - 2x \iff t = \frac{(m-1)z - 2x}{(m+2)(m-3)}$$

6. Toujours pour $m \in S$, en déduire les coordonnées du projeté de v sur la droite D_m parallèlement à V_m en fonction de x, y, z.

Le projeté w du vecteur v sur la droite D_m parallèment à V_m est l'unique vecteur $w \in D_m$ tel que $v-w \in V_m$. D'après la définition de la droite vectoriel D_m , il existe donc $t \in \mathbb{R}$ tel que $w=tu_m$. D'après la question précédente, $t=\frac{(m-1)z-2x}{(m+2)(m-3)}$ et donc finalement

$$w = \frac{(m-1)z - 2x}{(m+2)(m-3)} \begin{pmatrix} 3\\0\\m \end{pmatrix}.$$

Exercice 4. Soit la matrice
$$A = \begin{pmatrix} -3 & 4 & 0 \\ -2 & 3 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$
.

(1) Calculer det(A). La matrice est-elle inversible?

En développant par rapport à la première ligne

$$\det(A) = \begin{vmatrix} -3 & 4 & 0 \\ -2 & 3 & 0 \\ -2 & 2 & 1 \end{vmatrix} = -3 \begin{vmatrix} 3 & 0 \\ 2 & 1 \end{vmatrix} - 4 \begin{vmatrix} -2 & 0 \\ -2 & 1 \end{vmatrix} = -1 \neq 0$$

A est donc inversible.

(2) Montrer que le vecteur $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ est un vecteur propre de A.

Calculons:

$$AX_1 = \begin{pmatrix} -3 & 4 & 0 \\ -2 & 3 & 0 \\ -2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Le vecteur $X_1=\begin{pmatrix}1\\1\\1\end{pmatrix}$ est donc bien un vecteur propre de la matrice A associé à la valeur propre 1

(3) Calculer le polynôme caractéristique de A. En déduire l'ensemble des valeurs propres de A.

Toujours en développant par rapport à la première ligne nous obtenons :

$$\chi_A(\lambda) = \begin{vmatrix} -3 - \lambda & 4 & 0 \\ -2 & 3 - \lambda & 0 \\ -2 & 2 & 1 - \lambda \end{vmatrix} = -(3 + \lambda) \begin{vmatrix} 3 - \lambda & 0 \\ 2 & 1 - \lambda \end{vmatrix} - 4 \begin{vmatrix} -2 & 0 \\ -2 & 1 - \lambda \end{vmatrix}$$
$$= -(3 + \lambda)(3 - \lambda)(1 - \lambda) + 8(1 - \lambda) = (1 - \lambda)(\lambda^2 - 9 + 8) = -(\lambda - 1)^2(\lambda + 1)$$
The property do A sort done 1 et ...1

Les valeurs propres de A sont donc 1 et -1.

(4) Montrer que la matrice A est diagonalisable.

Calculons les sous-espaces propres de A:

$$\underline{E_1}$$
 :Nous cherchons $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ tel que $AX = X$

$$\iff \begin{cases} -3x + 4y & = x \\ -2x + 3y & = y \\ -2x + 2y + z = z \end{cases} \iff \begin{cases} -4x + 4y = 0 \\ -2x + 2y = 0 \iff x = y \\ -2x + 2y = 0 \end{cases}$$

Le sous espaces propre E_1 est donc un plan vectoriel de dimension 2.

 $\underline{E_{-1}}$: Comme -1 est valeur propre de A, le sous-espace propre E_{-1} est de dimension au moins $\overline{1}$.

Nous constatons donc que $\dim(E_1) + \dim(E_{-1}) \ge 3$ or la dimension est 3 donc A est diagonalisable.

(5) Donner une base B de vecteurs propres.

En reprenant les calculs de la question précédente, nous constatons que $X_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $X_1' = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

 $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ forment une base du sous-espace propre E_1 associé à la valeur propre 1.

Le sous-espace propre E_{-1} est constitué des vecteurs $X=\begin{pmatrix} x\\y\\z \end{pmatrix}$ tel que AX=-X. Ce qui nous donne le système :

$$\begin{cases}
-3x + 4y & = -x \\
-2x + 3y & = -y \\
-2x + 2y + z = -z
\end{cases} \iff \begin{cases}
-2x + 4y & = 0 \\
-2x + 4y & = 0 \\
-2x + 2y + 2z = 0
\end{cases} \iff \begin{cases}
x = 2y \\
y = z
\end{cases}$$

Le souse-espace propre E_{-1} est donc la droite vectorielle dirigée par le vecteur $X = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

Les vecteurs propres X_1, X_1', X_{-1} forment une base de vecteurs propres de A.