

Licence de mathématiques, 2^e année Algèbre Linéaire 2

Deux heures, ni documents, ni calculatrice

☐ Aix-Montperrin
☐ Luminy
☐ Saint-Jérôme
☐ Château-Gombert

Enseignants: T. Coulbois, P. Mercat

Exercice 1. (cours)

Soit f un endomorphisme d'un espace vectoriel de dimension finie E.

1. Démontrer qu'un réel λ est valeur propre de f si et seulement si il est racine du polynôme caractéristique de f.

Partiel 2
Jeudi 27 novembre 2014

- 2. Donner la définition de la signature d'une permutation.
- **3.** Donner la définition du déterminant de f.

Exercice 2. On considère les permutations $\alpha, \beta \in S_7$:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 3 & 6 & 2 & 7 & 4 \end{pmatrix} \text{ et } \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 2 & 1 & 6 & 4 & 7 & 3 \end{pmatrix}$$

- 1. Décomposer α et β en produit de cycles à supports disjoints.
- **2.** Calculer $\alpha \circ \beta$.
- **3.** Écrire α comme un produit de transpositions.

Exercice 3. Dans l'espace euclidien $E = \mathbb{R}^3$, on considère les points A = (1, 0, 0), B = (0, 1, 0), C = (-1, 0, 0), D = (0, -1, 0), E = (0, 0, 1) et F = (0, 0, -1).

- ${f 1.}$ Tracer le polyèdre ABCDEF et montrer que c'est un octaèdre régulier.
- **2.** Soit I le milieu de [AE] et J le milieu de [CF]. Soit S le demi-tour d'axe (IJ).
- a. Déterminer la matrice de S par rapport à la base canonique
- **b.** Déterminer l'image de chacun des six sommets de l'octaèdre par ce demi-tour.
- ${f c.}$ Déterminer les valeurs propres et les sous-espaces propres de S.

Exercice 4. Soient $u_0, u_1, u_2 \in \mathbb{R}$, on définit la suite récurrente $(u_n)_{n\geq 0}$ par

$$u_{n+3} = 3u_{n+2} - 4u_n, \ \forall n \ge 0.$$

- $\textbf{1.} \quad \text{Posons } V_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} \text{ et } M = \begin{pmatrix} 3 & 0 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \text{. Exprimer le vecteur } V_{n+1} \text{ à l'aide du vecteur } V_n \text{ et de la matrice } M.$
- **2.** Donner l'expression de V_n à l'aide de la matrice M^n et de V_0 .
- **3.** Vérifier que le vecteur $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ est un vecteur propre de M. En déduire l'expression de u_n en fonction de n dans le cas où l'on a $u_0 = u_2 = 1$ et $u_1 = -1$.
- **4.** Déterminer les valeurs propres de M.
- **5.** La matrice M est-elle diagonalisable?

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est M, et soit

$$\mathcal{B} = \left(\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right), \left(\begin{array}{c} 4 \\ 2 \\ 1 \end{array} \right), \left(\begin{array}{c} 4 \\ 1 \\ 0 \end{array} \right) \right).$$

- **6.** Vérifier que \mathcal{B} est une base de \mathbb{R}^3 .
- **7.** Calculer la matrice de passage de la base canonique de \mathbb{R}^3 dans la base \mathcal{B} et son inverse.
- **8.** Donner la matrice M' de f dans la base \mathcal{B} .
- **9.** Vérifier que l'on a

$$\forall n \in \mathbb{N}, \quad (M')^n = \begin{pmatrix} (-1)^n & 0 & 0\\ 0 & 2^n & n2^{n-1}\\ 0 & 0 & 2^n \end{pmatrix}.$$

10. En déduire l'expression de u_n en fonction de u_0, u_1, u_2 et n.