Licence de mathématiques, 3^e année Topologie et analyse **Devoir à la maison** mardi 25 novembre 2014

☐ Aix-Montperrin
□ Luminy
Saint-Charles
☐ Saint-Jérôme
□ Château-Gombert

Vous apporterez un grand soin à la rédaction Enseignants : T. Coulbois, L. Paoluzzi, G. Rond

Exercice I. Théorèmes de DINI

Soit K un ensemble compact. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions telle que

- (i). $\forall n \in \mathbb{N}, f_n : K \to \mathbb{R} \text{ est continue};$
- (ii). la suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction continue $f: K \to \mathbb{R}$.
- (iii). pour chaque $x \in K$ la suite de nombres réels $(f_n(x))_{n \in \mathbb{N}}$ est décroissante.

Nous allons montrer que la suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur K.

1. Pour $\epsilon > 0$ et $n \in \mathbb{N}$ montrer que $V_{n,\epsilon} = \{x \in K \mid 0 \le f_n(x) - f(x) < \epsilon\}$ est ouvert.

Comme les fonctions f_n et f sont continues, $V_{n,\epsilon} = (f_n - f)^{-1}(] - \infty, \epsilon[)$ est ouvert.

2. Montrer que pour chaque $\epsilon > 0$ les $(V_{n,\epsilon})_{n \in \mathbb{N}}$ forment un recouvrement ouvert de K.

La suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur K, ce qui veut dire que pour chaque $x\in K$, la suite de nombres réels $(f_n(x))_{n\in\mathbb{N}}$ converge en décroissant vers f(x), donc pour tout $\epsilon>0$ il existe $N=N_{x,\epsilon}$ tel que pour tout $n\geq N$, $0\leq f_n(x)-f(x)<\epsilon$ c'est-à-dire $x\in V_{n,\epsilon}$.

Pour un $\epsilon > 0$ fixé, les $V_{n,\epsilon}$ forment donc un recouvrement ouvert de K:

$$\forall \epsilon > 0, \quad K = \bigcup_{n \in \mathbb{N}} V_{n,\epsilon}.$$

3. Conclure.

D'après la propriété de BOREL-LEBESGUE pour le compact K, nous pouvons extraire un sous-recouvrement fini. De plus la décroissance des suites $(f_n(x))_{n\in\mathbb{N}}$ implique que ces ouverts sont emboîtés :

$$\forall m \leq n, V_{m,\epsilon} \subseteq V_{n,\epsilon}.$$

Nous en concluons que pour tout $\epsilon>0,$ il existe N tel que $K=V_{N,\epsilon}.$ Nous pouvons donc écrire :

$$\forall \epsilon > 0, \exists N, \forall n \geq N, \forall x \in K, 0 \leq f_n(x) - f(x) < \epsilon$$

Ce qui démontre que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément verst la fonction f sur K.

Exercice II. Distance de Hausdorff

Pour une partie non-vide A de \mathbb{R}^2 et un point $M \in \mathbb{R}^2$, on définit

$$\delta(M, A) = \inf\{d(M, P) \mid P \in A\}.$$

où d est la distance euclidienne.

On considère O=(0,0) l'origine de \mathbb{R}^2 , I=(1,1), $C=\mathcal{C}(0,1)=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}$ le cercle unité et $D=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\}$ le disque unité.

1. Calculer $\delta(O, C)$, $\delta(O, D)$, $\delta(I, C)$.

Tous les points de C sont à distance 1 de O donc $\delta(O,C)=1$. O est un point de D, donc $\delta(O,D)=0$. Un petit dessin montre que $\delta(I,C)=d(I,J)=\sqrt{2}-1$ où $J=(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$.

2. Montrer que si A est compact non-vide alors pour tout point M de \mathbb{R}^2 il existe un point $Q = Q(M) \in A$ tel que $\delta(M, A) = d(M, Q)$. En déduire que $\delta(M, A) = 0 \iff M \in A$.

La fonction $Q\mapsto d(M,Q)$ est continue elle atteint donc ses bornes sur le compact A: il existe un point $Q\in A$ tel que $d(M,Q)=\inf\{d(M,P)\mid P\in A\}=\delta(M,A)$. Nous en déduisons que si $\delta(M,A)=0$ alors il existe un point $Q\in A$ tel que $d(M,Q)=\delta(M,A)=0$ et donc M=Q ce qui montre que $M\in A$.

3. Montrer cela reste vrai si nous supposons seulement que A est fermé (et non-vide).

Soit P_0 un point de A et M un point de \mathbb{R}^2 , alors $\delta(M,A) = \inf\{d(M,P) \mid P \in A\} \leq d(M,P_0)$ et donc $\delta(M,A) = \inf\{d(M,P) \mid P \in A, d(M,P) \leq d(M,P_0)\}$. Soit $K = A \cap B_f(M,d(M,P_0))$ l'intersection de A et de la boule fermée de centre M et de rayon $d(M,P_0)$. Alors K est l'intersection de deux fermés donc K est fermé et de plus K est borné. Nous en déduisons que K est borné. Comme nous sommes dans le plan (un espace vectoriel de dimension 2) K est compact.

Nous avons constaté que $\delta(M,A) = \delta(M,K)$ et donc d'après la question précédente il existe $Q \in K \subseteq A$ tel que $\delta(M,A) = \delta(M,K) = d(M,Q)$.

4. Montrer que pour un compact A de \mathbb{R}^2 , l'application $M \mapsto \delta(M, A)$ est continue.

Pour un point $M \in \mathbb{R}^2$ il existe d'après les questions précédentes un point $Q \in A$ tel que $\delta(M, A) = d(M, Q)$. Alors pour tout point $N \in \mathbb{R}^2$,

$$\delta(N, A) \le d(N, Q) \le d(N, M) + d(M, Q) = d(N, M) + \delta(M, A).$$

Ainsi, nous avons démontré que

$$\forall M, N \in \mathbb{R}^2, \delta(N, A) - \delta(M, A) \le d(M, N)$$

En échangeant les rôles de M et N dans la formule ci-dessus, nous obtenons

$$\forall M, N \in \mathbb{R}^2, |\delta(N, A) - \delta(M, A)| \le d(M, N)$$

ce qui prouve que l'application $M \mapsto \delta(M, A)$ est 1-lipschizienne donc continue.

Pour deux compacts non-vide K et K' de \mathbb{R}^2 , on définit

$$\Delta(K, K') = \sup \{ \delta(M, K') \mid M \in K \} + \sup \{ \delta(M', K) \mid M' \in K' \}.$$

5. Calculer $\Delta(\{O\}, C)$, $\Delta(C, D)$, $\Delta(C, C')$ où $C' = \mathcal{C}(I, 3)$) est le cercle de centre I et de rayon 3.

Pour chaque point P de C nous avons d(O, P) = 1, nous en déduisons que $\Delta(\{0\}, C) = 1 + 1 = 2$.

Comme $C \subseteq D$, pour chaque point P de C, $\delta(P,D) = 0$. Pour un point $P \in D$, $\delta(P,C) \le 1$, le maximum 1 étant atteint pour P = O. Ainsi $\Delta(C,D) = 0 + 1 = 1$.

Pour un point $M \in \mathbb{R}^2$, nous constatons que $\delta(M,C) = |d(O,M) - 1|$. La borne supérieure de $\delta(M,C)$ pour $M \in C'$ est donc atteinte au point $J = (1+3\frac{\sqrt{2}}{2},1+3\frac{\sqrt{2}}{2})$ et vaut $\delta(J,C) = 2 + \sqrt{2}$.

De même pour un point $M \in \mathbb{R}^2$, $\delta(M,C') = |d(M,I)-3|$ et pour un point $M \in C$ la borne supérieure est atteinte en $I' = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ et vaut $\delta(I',C') = 4 - \sqrt{2}$. Nous concluons que $\Delta(C,C') = \delta(J,C) + \delta(I',C') = 6$.

6. Montrer que pour deux compacts non-vide K et K' de \mathbb{R}^2 , il existe des points $P \in K$ et $P' \in K'$ tels que $\Delta(K, K') = \delta(P, K') + \delta(P', K)$.

Pour simplifier les notations, notons $\Delta_{\ell}(K, K') = \sup\{\delta(M, K') \mid M \in K\}$ et $\Delta_{r}(K, K') = \sup\{\delta(M', K) \mid M' \in K'\}.$

Comme la fonction $K \to \mathbb{R}$, $M \mapsto \delta(M, K')$ est continue, elle atteint son maximum sur le compact K: il existe $P \in K$ tel que $\delta(P, K') = \Delta_{\ell}(K, K')$. De même, il existe $P' \in K'$ tel que $\delta(P', K) = \Delta_{r}(K, K')$.

Nous avons ainsi trouvé $P \in K$ et $P' \in K'$ tels que $\Delta(K, K') = \delta(P, K') + \delta(P', K)$.

7. Montrer que pour deux compacts non-vide K et K', $\Delta(K, K') = 0 \iff K = K'$.

Supposons que $\Delta(K,K')=0$ alors pour tous points $Q\in K$ et $Q'\in K'$, $\delta(Q,K')+\delta(Q',K)\leq 0$ donc $\delta(Q,K')=\delta(Q',K)=0$ et d'après les questions précédentes, $Q\in K'$ et $Q'\in K$. Nous avons ainsi démontré que $K\subseteq K'$ et $K'\subseteq K$. Donc que K=K'.

Réciproquement si K = K' alors pour tous points $Q \in K$ et $Q' \in K'$, $\delta(Q, K') = 0$ et $\delta(Q', K) = 0$ donc $\Delta(K, K') = 0$.

Nous avons donc bien démontré l'équivalence $\Delta(K, K') = 0 \iff K = K'$.

Soit \mathcal{H} l'ensemble des compacts non-vide de \mathbb{R}^2 .

8. Montrer que Δ est une distance sur \mathcal{H} .

D'après la définition de Δ et la commutativité de l'addition, Δ est symétrique. Nous avons démontré à la question précédente que $\Delta(K, K') = 0 \iff K = K'$. Il nous reste à démontrer l'inégalité triangulaire.

Soit K, K', K'' trois compacts non-vide de \mathbb{R}^2 . D'après les questions précédentes il existe un point $Q \in K$ tel que $\delta(Q, K'') = \Delta_{\ell}(K, K'')$. Pour chaque point Q'' de K'', par définition de δ ,

$$\Delta_{\ell}(K, K'') = \delta(Q, K'') \le d(Q, Q'')$$

et en utilisant l'inégalité triangulaire pour chaque point $Q' \in K'$,

$$\leq d(Q, Q') + d(Q', Q'').$$

D'après les questions précédentes nous pouvons choisir $Q' \in K'$ tel que $\delta(Q, K') = d(Q, Q')$ puis $Q'' \in K''$ tel que $\delta(Q', K'') = d(Q', Q'')$. Nous obtenons alors,

$$d(Q, Q') + d(Q', Q'') = \delta(Q, K') + \delta(Q', K'')$$

et par définition de Δ_{ℓ} :

$$\leq \Delta_{\ell}(K, K') + \Delta_{\ell}(K', K'').$$

Nous avons ainsi démontré:

$$\Delta_{\ell}(K, K'') \le \Delta_{\ell}(K, K') + \Delta_{\ell}(K', K'').$$

Nous pourrions démontrer la même inégalité pour Δ_r et ainsi conclure que Δ vérifie l'inégalité triangulaire.

9. Soit \mathcal{P}_n le n-gone régulier dont les sommets sont les points d'affixes $e^{\frac{2ik\pi}{n}}$, $k = 0, 1, \ldots, n-1$. Montrer que la suite de compacts $(\mathcal{P}_n)_{n \in \mathbb{N}}$ converge vers C pour la métrique Δ .

Soit $S_n = \{e^{\frac{2ik\pi}{n}} \mid k = 0, 1, \dots, n-1\}$ l'ensemble des sommets du polygône \mathcal{P}_n . Nous calculons que pour $k \in \mathbb{Z}$,

$$\left| e^{\frac{2ik\pi}{n}} - e^{\frac{2i(k+1)\pi}{n}} \right| = \left| \cos(\frac{2k\pi}{n}) - \cos(\frac{2(k+1)\pi}{n}) + i(\sin(\frac{2k\pi}{n}) - \sin(\frac{2(k+1)\pi}{n})) \right|$$

$$= \left| 2\sin(\frac{(2k+1)\pi}{n})\sin(\frac{\pi}{n}) - 2i(\sin(\frac{\pi}{n})\cos(\frac{(2k+1)\pi}{n})) \right| = 2\left| \sin(\frac{\pi}{n}) \right| \le \frac{2\pi}{n}.$$

(un dessin montre facilement l'égalité ci-dessus.) C'est-à-dire que deux sommets consécutifs de \mathcal{P}_n sont distants d'au plus $\frac{2\pi}{n}$. Les points du segment reliant ces deux sommets consécutifs sont donc à une distance inférieure à $\frac{\pi}{n}$ d'un des deux sommets. De plus $S_n \subseteq \mathcal{P}_n$, nous avons donc démonté que

$$\forall n \in \mathbb{N}^*, \quad \Delta(S_n, \mathcal{P}_n) = \Delta_r(S_n, \mathcal{P}_n) \le \frac{\pi}{n}.$$

Nous remarquons que S_n est inclus dans le cercle unité C, donc $\Delta_{\ell}(S_n, C) = 0$. Pour un point Q de C il existe un sommet $P \in S_n$ tel que l'angle $\theta = (OQ, OP)$ vérifie $0 \le |\theta| \le \frac{\pi}{n}$. Le même calcul que précédemment montre que

$$d(Q, P) = 2 \left| \sin(\frac{\theta}{2}) \right| \le |\theta| \le \frac{\pi}{n}.$$

et donc que $\delta(Q, S_n) \leq \frac{\pi}{n}$. En prenant la borne supérieure, nous obtenons $\Delta_r(S_n, C) \leq \frac{\pi}{n}$ et finalement

$$\forall n \in \mathbb{N}^*, \Delta(S_n, C) \le \frac{\pi}{n}.$$

Ce qui démontrer que la suite de compacts $(S_n)_{n\in\mathbb{N}}$ converge vers C et donc que la suite des polygônes $(\mathcal{P}_n)_{n\in\mathbb{N}}$ converge vers C.