

Licence de mathématiques, 3^e année Topologie

Partiel 1
Mardi 18 novembre 2014

	Aix-Montperrin
\boxtimes	Luminy
\boxtimes	Saint-Charles
	Saint-Jérôme
	Château-Gombert

Trois heures, ni calculatrices, ni documents

Enseignant-es: T. Coulbois, L. Paoluzzi, G. Rond

Exercice I. Cours, 6 points

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

- **1.** Donner la définition d'un ouvert et d'un fermé de E. Montrer qu'une partie F de E est fermée si, et seulement si, pour toute suite de points $(x_n)_{n\in\mathbb{N}}$ de F qui converge vers un point x de E alors $x\in F$.
- **2.** Soit $f: E \to \mathbb{R}$ une fonction continue pour la norme $\|\cdot\|$. Soit $\|\cdot\|_1$ une autre norme de E équivalente à $\|\cdot\|$. Montrer que f est continue pour la norme $\|\cdot\|_1$.
- 3. Donner la définition d'un compact et démontrer que l'image d'un compact par une application continue est compacte.

Exercice II. Soit O un ouvert d'un espace métrique (E,d). Montrer que pour toute partie $A \subseteq E$, on a l'équivalence

$$A \cap O = \emptyset \iff \overline{A} \cap O = \emptyset.$$

Démontrons chacune des deux implications.

 \Longrightarrow On suppose que $A \cap O = \emptyset$. Alors A est inclus dans le complémentaire $F = C_E(O)$. Par définition des fermés et comme O est ouvert, F est fermé. L'adhérence \overline{A} est le plus petit fermé contenant A, elle est donc incluse dans F. Ce qui démontre que $\overline{A} \cap O \subseteq F \cap O = C_E(O) \cap O = \emptyset$ et donc que $\overline{A} \cap O = \emptyset$.

Exercice III. Soit $E = \mathbb{R}[X]$, l'espace vectoriel des polynômes à coefficients réels. Pour $P = \sum_{k=0}^{n} a_k X^k$, on pose :

$$||P||_{\infty} = \max\{|a_0|, \cdots, |a_n|\} \text{ et } ||P||_* = \sup\{|P(t)|, t \in [0, 1]\}.$$

1. Montrer que $\|\cdot\|_*$ est une norme.

Comme une fonction polynômiale est continue et comme [0;1] est compact la borne supérieure dans la définition de la norme $\|\cdot\|_*$ est un maximum et c'est donc un nombre réel positif. De plus si elle est nulle alors le polynôme est constant nul sur l'intervalle [0;1], il a donc une infinité de racines, ce qui n'est possible que si le polynôme est nul. Bien sûr, cette norme est linéaire : $\forall P \in \mathbb{R}[X], \forall \lambda \in \mathbb{R}$,

$$\|\lambda P\|_* = \sup\{|\lambda P(t)|,\ t\in[0,1]\} = |\lambda|\sup\{|P(t)|,\ t\in[0,1]\} = |\lambda|\,\|P\|_*.$$

Enfin, quelque soit $P, Q \in \mathbb{R}[X]$, $||P + Q||_* = \sup\{|P(t) + Q(t)|, t \in [0, 1]\}$. Or pour chaque réel t, l'inégalité triangulaire pour la valeur absolue donne

$$|P(t) + Q(t)| \le |P(t)| + |Q(t)|.$$

Or

$$\forall t \in [0; 1], |P(t)| \le \sup\{|P(t')|, t' \in [0, 1]\} = ||P||_*$$

et

$$\forall t \in [0; 1], |Q(t)| \le \sup\{|Q(t')|, t' \in [0, 1]\} = ||Q||_*.$$

Donc

$$\forall t \in [0; 1], \quad |P(t) + Q(t)| \le ||P||_* + ||Q||_*$$

Et en prenant la borne supérieure

$$||P + Q||_* = \sup\{|P(t) + Q(t)|, \ t \in [0, 1]\} \le ||P||_* + ||Q||_*.$$

Nous avons ainsi démontré que $\|\cdot\|_*$ est une norme sur $\mathbb{R}[X]$.

2. Montrer que ces deux normes ne sont pas équivalentes. (On pourra considérer les polynômes $P_n(X) = 1 + X + X^2 + \cdots + X^n$)

Pour $n \in \mathbb{N}^*$, on considère le polynôme $P_n(X) = 1 + X + X^2 + \cdots + X^n$, alors

$$||P_n||_{\infty} = 1 \text{ et } ||P_n||_* = n+1$$

Ce qui montre que les rapports $\frac{\|P_n\|_*}{\|P_n\|_{\infty}}$ ne sont pas bornés. Nous avons ainsi démontré que les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_*$ ne sont pas équivalentes.

3. Montrer que le sous-espace vectoriel $V = \{P \in \mathbb{R}[X] \mid P(1) = 0\}$ n'est pas fermé pour la norme $\|\cdot\|_{\infty}$.

Nous remarquons que pour tout $n \in \mathbb{N}^*$, le polynôme $Q_n(X) = 1 - \frac{1}{n+1}P_n(X)$ appartient à V. Vu les calculs ci-dessus, pour la norme $\|\cdot\|_{\infty}$, $\lim_{n\to\infty}Q_n=1$ et le polynôme constant égal à 1 n'appartient pas à V. Ce qui montre que V n'est pas fermé.

Exercice IV.

On considère le plan $E = \mathbb{R}^2$ muni de la métrique euclidienne d. Pour deux points $M, N \in \mathbb{R}^2$, on considère :

$$\delta(M,N) = \left\{ \begin{array}{ll} d(M,N) & \text{si } O,\, M \text{ et } N \text{ sont align\'es} \\ d(O,N) + d(O,M) & \text{sinon} \end{array} \right.$$

(En particulier pour tout point M de \mathbb{R}^2 : $\delta(O, M) = d(O, M)$.) On admet que δ est une distance sur \mathbb{R}^2 .

Pour un point $C \in \mathbb{R}^2$ et un rayon r > 0, on considère

$$B_{\delta}(C, r) = \{ M \in \mathbb{R}^2 \mid \delta(C, M) < r \}.$$

1. Déterminer $B_{\delta}(O, r)$ pour tout r > 0.

D'après la définition pour tout point $M \in \mathbb{R}^2$, $\delta(O, M) = d(O, M)$ et donc $B_{\delta}(O, r)$ est la boule de centre O et de rayon r (pour la métrique euclidienne).

2. On considère les points A=(1,2), B=(1,1) et C=(2,4). Calculer $\delta(A,B), \delta(A,C)$ et $\delta(B,C)$.

$$\delta(A,B) = d(O,A) + d(O,B) = \sqrt{5} + \sqrt{2}, \quad \delta(A,C) = d(A,C) = \sqrt{5} \text{ et } \delta(B,C) = d(O,B) + d(O,C) = \sqrt{2} + 2\sqrt{5}.$$

3. a. Déterminer l'ensemble des points $M \in \mathbb{R}^2$ tels que $\delta(A, M) < 1$.

Remarquons d'abord que si O,A et M ne sont pas alignés alors $\delta(A,M)=d(O,A)+d(O,M)\geq d(O,A)=\sqrt{5}>1$. Nous en déduisons que si $\delta(A,M)<1$ alors O,A et M et sont alignés. L'ensemble cherché est donc le segment ouvert]DE[où $D=(1-\frac{\sqrt{5}}{5},2-2\frac{\sqrt{5}}{5})$ et $E=(1+\frac{\sqrt{5}}{5},2+2\frac{\sqrt{5}}{5})$. Cette appellation de "segment ouvert" est fautive, car un segment désigne un compact, mais l'analogie avec les intervalles de $\mathbb R$ est parlante.

b. Montrer que si $M \in \mathbb{R}^2$ n'appartient pas à la droite (OA) et $\delta(A, M) < 3$ alors M appartient à la boule euclidienne de centre O et de rayon $3 - \sqrt{5}$.

Puisque O, A et M ne sont pas alignés, $\delta(A,M)=d(O,A)+d(O,M)=\sqrt{5}+d(O,M)$ et donc $d(O,M)<3-\sqrt{5}$. Ce qui démontre que M est dans la boule euclidienne de centre O et de rayon $3-\sqrt{5}$.

- c. Tracer $B_{\delta}(A,3)$.
- **4.** Pour tout point $D \neq O$, et pour tout r > 0, déterminer $B_{\delta}(D, r)$ si $r \leq d(O, D)$, puis si r > d(O, D).

Comme précédemment, si $\delta(D,M) < r \le d(O,D)$ alors O,D et M sont alignés. Dans ce cas $B_{\delta}(D,r)$ est le segment ouvert $]D_{-r}; D_{r}[$ où D_{-r} et D_{r} sont les deux points de la droite (OD) à distance (euclidienne) r de D.

Pour r > d(O, D), comme à la question précédente, $B_{\delta}(D, r)$ est la réunion de la boule (euclidienne) de centre O et de rayon r - d(O, D) et de le segment ouvert $]O; D_r[$ où D_r est le point de la droite (OD) à distance r de D et qui n'est pas sur la demi-droite issue de D contenant O.

5. En déduire que les parties de \mathbb{R}^2 ouvertes pour d sont ouvertes pour δ .

D'après la définition pour tous points M,N de \mathbb{R}^2 , $\delta(M,N) \geq d(M,N)$ (ces deux distances sont égales si, O,M et N sont alignés et sinon l'inégalité triangulaire de la distance euclidienne d donne l'inégalité). Pour tout r>0 et tout point M, nous en déduisons que $B_{\delta}(M,r)\subseteq B_d(M,r)$. Pour tout ouvert U pour la métrique euclidienne, pour tout point M de U il existe r>0 tel que $B_d(M,r)\subseteq U$ et donc $B_{\delta}(M,r)\subseteq U$. Ce qui démontre que U est ouvert pour la distance δ .

Dans la suite on suppose \mathbb{R}^2 muni de la topologie induite par δ .

- **6.** Soit H le demi-plan ouvert supérieur : $H = \{(x, y); y > 0\}$.
- **a.** Montrer que H est ouvert.

Soit C=(x,y) un point de H, alors $0< y\leq d(O,C)$, et $B_{\delta}(C,\frac{y}{2})$ est un segment ouvert inclus dans H. Ce qui montre que H est ouvert.

b. Déterminer \overline{H} .

Notons d'abord que la suite $(A_n)_{n\in\mathbb{N}^*}$ de points tels que $A_n=(0,\frac{1}{n})$ converge (pour la distance δ) vers l'origine O.

Donc $O \in \overline{H}$.

Montrons que $\overline{H} = H \cup \{O\}$. Pour cela il suffit de démontrer que son complémentaire $U = H^C \setminus \{O\}$ est ouvert. U est la réunion de $-H = \{(x,y) \mid y < 0\}$, dont nous montrerions comme ci-dessus qu'il est ouvert, et de $V = \{(x,0) \mid x \neq 0\}$. Comme ci-dessus pour tout point $C = (x,0) \in V$, $B_{\delta}(C,\frac{|x|}{2})$ est l'intérieur d'un segment horizontal qui ne contient pas O et est donc inclus dans V. Ainsi V est ouvert et U est la réunion de deux ouverts donc ouverts.

Nous avons donc démontré que $\overline{H} = H \cup \{O\}$.

7. Soit u = (1,0) et $t_u : \mathbb{R}^2 \to \mathbb{R}^2$ la translation de vecteur u. Montrer que t_u n'est pas continue.

Reprenons la suite de points $(A_n)_{n\in\mathbb{N}^*}$ de la question précédente. Nous avons déjà vu qu'elle converge vers O. Un rapide calcul nous montre que pour tout $n\in\mathbb{N}^*$:

$$\delta(t_u(A_n), t_u(O)) = d(O, t_u(A_n)) + d(O, t_u(O)) = \sqrt{1 + \frac{1}{n^2}} + 1 \xrightarrow{n \to \infty} 2 \neq 0.$$

La suite $t_u(A_n)$ ne converge donc pas vers $t_u(O)$ ce qui montre que la translation t_u n'est pas continue pour la distance δ .