Mathématiques – L3 – Topologie

PLANCHE D'EXERCICES 3- COMPLÉTUDE ET CONNEXITÉ

Connexité

Exercice 1 Soit A une partie connexe d'un espace métrique X. Montrer que toute partie B telle que $A \subset B \subset \overline{A}$ est connexe.

Exercice 2

- 1. Soient A et B deux parties connexes telles que $A \cap B \neq \emptyset$. Montrer que $A \cup B$ est connexe.
- 2. On suppose maintenant que $\overline{A} \cap B \neq \emptyset$. Montrer que $A \cup B$ est connexe.

Exercice 3 Déterminer les parties connexes de Q.

Exercice 4 Montrer que

- 1) [0,1] et un cercle de \mathbb{R}^2 ne peuvent pas être homéomorphes,
- 2) [a, b[et]a, b[ne peuvent pas être homéomorphes.

Exercice 5 On considère le graphe de la fonction $x \mapsto \sin \frac{1}{x} : \mathcal{G} = \{(x, \sin \frac{1}{x}) \mid x \in \mathbb{R}^*\}.$

- 1. Déterminer l'adhérence $\bar{\mathcal{G}}$ de \mathcal{G} .
- 2. Montrer que $\bar{\mathcal{G}}$ est connexe

Exercice 6 Montrer que, dans un espace normé $(E, \|\cdot\|)$ de dimension au moins deux, toute sphère est connexe par arcs. En déduire que si $C \subset E$ est convexe borné alors $E \setminus C$ est connexe par arcs.

Exercice 7 Soit $M_n(\mathbb{C})$ (respectivement $M_n(\mathbb{R})$) l'ensemble des matrices $n \times n$ à coefficients dans \mathbb{C} (resp. \mathbb{R}), et soit $GL_n(\mathbb{C})$ (resp. $GL_n(\mathbb{R})$) celles de déterminant non-nul. On considère M_n comme espace vectoriel normé avec n'importe quelle norme.

1) Soient $A, B \in GL_n(\mathbb{C})$ et P(z) le polynôme P(z) = dét(Az + (1-z)B).

Montrer que 0, 1 ne sont pas des racines de P(z).

Montrer que $GL_n(\mathbb{C})$ est connexe par arcs. (On admet que \mathbb{C} privé d'un ensemble fini est connexe par arcs.)

- 2) Montrer que $GL_n(\mathbb{R})$ n'est pas connexe.
- 3) Montrer que $SL_n(\mathbb{R})$ est connexe

Exercice 8 Montrer que \mathbb{R}^2 privé d'un nombre fini de points est connexe par arcs. Soit A une partie discrète de \mathbb{R}^2 , montrer que $\mathbb{R}^2 \setminus A$ est connexe par arcs.

Exercice 9 Soit $(x_n)_n$ une suite de Cauchy dans un espace métrique quelconque. Montrer que cette suite converge si et seulement si elle admet une sous-suite convergente.

Exercice 10 Une métrique complète sur \mathbb{N} .

Soit a>0 quelconque. On définit d par $d(m,n)=a+\frac{1}{m+1}+\frac{1}{n+1}$, pour $m\neq n$ et d(n,n)=0. Montrer que d est une distance sur \mathbb{N} , et que (\mathbb{N},d) est complet.

Exercice 11 *Une métrique non complète sur* \mathbb{R} .

Montrer que $d(x,y) = |\operatorname{Arctg} y|$ définit une distance sur \mathbb{R} et que l'espace (\mathbb{R},d) n'est pas complet (on pourra considérer la suite $u_n = n$ et se rappeller que $\operatorname{Arctg} x + \operatorname{Arctg} \frac{1}{x} = \frac{\pi}{2}$ si x > 0).

Exercice 12 Soit $f: \mathbb{R} \to \mathbb{R}^2$ une application injective. Pour tout $x, y \in \mathbb{R}$ on définit d(x, y) = ||f(x) - f(y)||. Montrer que (\mathbb{R}, d) est complet si et seulement si $f(\mathbb{R})$ est fermé dans \mathbb{R}^2 .

Exercice 13 $(C([0,1],\mathbb{R}), \| \bullet \|_1)$ n'est pas complet

Trouver une suite (f_n) qui soit de Cauchy dans $E := (C([0,1],\mathbb{R}), \| \bullet \|_1)$ et qui ne converge pas dans E. (On pourra, pour chaque n, couper [0,1] en trois intervalles tels que f_n soit nulle sur le premier, affine sur le second et égale à 1 sur le troisième).

Exercice 14 Non équivalence des normes $\| \bullet \|_{\infty}$ et $\| \bullet \|_1$ sur c_{00} On pose

$$c_{00} := \{X = (x_i) \in \mathbb{R}^{\mathbb{N}}; x_i = 0 \text{ à partir d'un certain rang}\}.$$

Soit (X_n) , $X_n=(x_{n,i})_{i\in\mathbb{N}}$, la suite de points de l'espace c_{00} définie par $x_{n,i}=(1+i)^{-1}$ pour $i< n, x_{n,i}=0$ pour $i\geq n$. Soient $E_\infty=(c_{00},\|\bullet\|_\infty)$ et $E_1=(c_{00},\|\bullet\|_1)$. Montrer que (X_n) est une suite de Cauchy dans E_∞ et pas dans E_1 . En déduire que les normes $\|\bullet\|_\infty$ et $\|\bullet\|_1$ ne sont pas équivalentes sur l'espace c_{00} .

Exercice 15 Soient K un espace métrique compact et F un espace métrique complet. On note $C^0(K,F)$ l'ensemble des fonctions continues de K vers F que l'on munit de la distance suivante :

$$d(f,g) := \sup_{x \in K} d_F(f(x), g(x)) \quad \forall f, g \in C^0(K, F).$$

Montrer que $(C^0(K, F), d)$ est un espace métrique complet.

Exercice 16 $E_{\infty}=(c_{00},\|\bullet\|_{\infty})$ et $E_1=(c_{00},\|\bullet\|_1)$ ne sont pas complets

Soit $(X_n)_n$, $X_n=(x_{n,i})_{i\in\mathbb{N}}$, la suite de points de l'espace c_{00} définie par $x_{n,i}=2^{-i}$ pour $i\leq n, x_{n,i}=0$ pour i>n.

1/ Montrer que $(X_n)_n$ est une suite de Cauchy dans E_1 et en déduire qu'elle l'est aussi dans E_{∞} .

2/ Montrer que E_{∞} n'est pas complet et en déduire que E_1 ne l'est pas non plus.

Exercice 17 $E = (c_0, \| \bullet \|_{\infty})$ est complet

On pose

$$c_0 := \{ X = (x_i)_i \in \mathbb{R}^{\mathbb{N}}; \lim_{i \to \infty} x_i = 0 \}$$

1/ Montrer que c_0 est une partie fermée de $l^\infty.$ En déduire que E est complet.

- 2) Montrer que c_{00} est dense dans E. En déduire une nouvelle démonstration de l'exercice précédent.
- 3/ Montrer que tout élément $X=(x_n)$ de c_0 est somme de la série de terme général x_ne_n où (e_n) est la suite canonique de c_0 .

Exercice 18 lp est complet

1/ Montrer que l'espace $(l^p, \| \bullet \|_p)$, où p est un réel ≥ 1 , est complet.

2/ Montrer que tout élément $X=(x_n)$ de l^p est somme de la série de terme général (x_ne_n) où (e_n) est la suite canonique de l^p .

2

Exercice 19 $E = (c, \| \bullet \|_{\infty})$ est complet

On désigne par c le sous-espace de l^{∞} formé des suites convergentes. Montrer que c est une partie fermée de l^{∞} muni de la norme infinie (par exemple, raisonner en $\varepsilon/3$) et donc que E est complet.

Exercice 20 Extension du théorème du point fixe

Soient E un espace métrique complet et $f: E \to E$ tels que pour un entier p > 0 la fonction f^p soit une contraction.

- 1/ Montrer que f possède un point fixe.
- 2/ Montrer que ce point fixe est unique. On le note a.
- 3) Montrer que a est la limite de la suite définie par $x_{k+1} = f(x_k)$ où x_0 est un point arbitraire de E.

Exercice 21 Une application du théorème du point fixe

Soient $y_0 \in \mathbb{R}^n$ et ε un réel tel que $0 < \varepsilon \le 1$. On pose $I = [0, \varepsilon]$ et $B = \{y \in \mathbb{R}^n; ||y - y_0|| \le 1\}$. L'espace E = C(I, B) est muni de la distance induite par la norme uniforme sur $C(I, \mathbb{R}^n)$.

1/Montrer que (E,d) est un espace métrique complet.

2/ A tout $f \in E$ on associe G(f) défini par

$$G(f)(t) = y_0 + \int_0^t e^s f(s) ds, \quad 0 \le t \le \varepsilon.$$

Si ε est assez petit montrer que $G(E)\subset E$ et que l'application G est contractante. Déterminer alors le point fixe de G.